research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the one-dimensional coordination polymer formed by the macrocyclic [Ni(cyclam)]2+ cation and the dianion of di­phenyl­silanediylbis(4-benzoic acid)

CROSSMARK_Color_square_no_text.svg

aL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 May 2020; accepted 15 May 2020; online 29 May 2020)

The asymmetric unit of the title compound, catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-4,4′-(di­phenyl­silanedi­yl)dibenz­o­ato-κ2O:O′] sesquihydrate], {[Ni(C26H18O4Si)(C10H24N4)]·1.5H2O}n, consists of the halves of the centrosymmetric macrocyclic cation and the C2-symmetric di­carboxyl­ate dianion and of the water mol­ecule of crystallization. The Ni2+ ion is coordinated by the four secondary N atoms of the macrocyclic ligand characterized by the most energetically favourable trans-III conformation and two mutually trans O atoms of the carboxyl­ate, forming a slightly tetra­gonally elongated trans-N4O2 octa­hedron. The crystals are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] direction. Each polymeric chain is bonded to four neighbouring ones via water mol­ecules providing O—H⋯O hydrogen bonds to the non-coordinated carboxyl O atoms to form a three-dimensional supra­molecular network.

1. Chemical context

Aromatic carboxyl­ates are the most popular ligands employed as linkers joining metal-containing fragments (secondary building units, SBUs) in the construction of coordination polymers (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]). This class of hybrid organic–inorganic materials possesses great potential for applications in gas storage, separation, catalysis, etc. (MacGillivray & Lukehart, 2014[MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal-Organic Framework Materials, Hoboken: John Wiley and Sons.]; Kaskel, 2016[Kaskel, S. (2016). Editor. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications, 2 volumes. Weinheim: Wiley-VCH.]). At the same time, carboxyl­ate linkers containing a silicon core are still rare objects of investigation, although it is assumed that the presence of these heteroatoms may affect the topology and properties of the resulting coordination polymers, which are known to be rather sensitive to tiny structural variations in the constituting parts. Besides these structural aspects, carboxyl­ate ligands containing heteroatoms are of current inter­est as precursors for the preparation of structured heteroatom-doped carbonaceous materials possessing excellent electron conductivity, high porosity and diverse applications, including electrocatalysis and energy storage and conversion (Yang et al., 2019[Yang, W., Li, X., Li, Y., Zhu, R. & Pang, H. (2019). Adv. Mater. 31, 1804740.]; Zhong et al., 2019[Zhong, M., Kong, L., Li, N., Liu, Y.-Y., Zhu, J. & Bu, X.-H. (2019). Coord. Chem. Rev. 388, 172-201.]).

Di­phenyl­silanediylbis(4-benzoic acid), a dicarboxylate possessing a characteristic bent shape, has been already utilized for the synthesis of coordination polymers with tetra­nuclear ZnII (Liu et al., 2009[Liu, Z., Stern, C. L. & Lambert, J. B. (2009). Organometallics, 28, 84-93.]) and dinuclear ZnII and MnII (Turcan-Trofin et al., 2018[Turcan-Trofin, G.-O., Avadanei, M., Shova, S., Vlad, A., Cazacu, M. & Zaltariov, M.-F. (2018). Inorg. Chim. Acta, 483, 454-463.]) SBUs, as well as a copper(II) complex with 1,10-phenanthroline as co-ligand (Cazacu et al., 2014[Cazacu, M., Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G. & Train, C. (2014). J. Organomet. Chem. 774, 70-78.]). However, no attempt has been made thus far to combine this linker with macrocyclic complexes, which provide pre-formed SBUs of another type (two vacant trans axial positions in the coordination sphere of the metal ion) with an additional benefit of extremely high thermodynamic stability and kinetic inertness (Melson, 1979[Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.]; Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian.)]). At the same time, such SBUs have been used successfully for the assembly of a number of coordination polymers (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]), including those with some other Si-containing carboxyl­ates (Gavrish et al., 2020a[Gavrish, S. P., Shova, S., Cazacu, M. & Lampeka, Y. D. (2020a). Acta Cryst. C76, 419-426.]; Gavrish et al., 2020b[Gavrish, S. P., Shova, S., Cazacu, M., Dascalu, M. & Lampeka, Y. D. (2020b). Acta Cryst. E76, 446-451.]).

[Scheme 1]

As part of our research on such compounds, we report herein the synthesis and crystal structure of the coordination polymer built up from the nickel(II) complex of the 14-membered macrocyclic ligand 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam, L), and the dianion of di­phenyl­silane­diylbis(4-benzoic acid) (H2A), viz., catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1N4N8N11)nickel(II)]-μ-di­phen­yl­silanediylbis(4-benzoato)-κ2O:O′] sesquihydrate], [Ni(L)(A)·1.5H2O]n, (I).

2. Structural commentary

The mol­ecular structure of the title compound I is shown in Fig. 1[link]. It represents a one-dimensional coordination polymer built of the centrosymmetric macrocyclic [Ni(L)]2+ cations coordinated in axial positions by the oxygen atoms of the carboxyl groups of the acid.

[Figure 1]
Figure 1
The extended asymmetric unit in I showing the coordination environment of the Ni atoms and the atom-labelling scheme (displacement ellipsoids are drawn at the 40% probability level). The atoms obtained by symmetry transformations are shown with 50% transparency. C-bound H atoms are omitted for clarity. Dashed lines represent hydrogen-bonding inter­actions. [Symmetry codes: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z; (ii) −x + 1, y, −z + [{1\over 2}]].

The macrocyclic ligand in the complex cation adopts the most abundant energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102-1108.]) with almost equal Ni—N bond lengths (Table 1[link]). The five-membered chelate rings are present in gauche and the six-membered in chair conformations. The geometric parameters observed are characteristic of high-spin nickel(II) complexes with 14-membered tetra­amine ligands (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]). The axial Ni—O bond lengths are somewhat longer than the Ni—N ones resulting in a slight tetra­gonal distortion of the trans-N4O2 nickel(II) coordination polyhedron. The location of the metal ion on the inversion centre enforces strict planarity of the equatorial Ni(N4) fragment.

Table 1
Selected bond lengths and angles (Å, °)

Distances   Bite angles  
Ni1—N1 2.066 (3) N1—Ni1—N2 86.05 (13)
Ni1—N2 2.068 (3) N1—Ni1—N2i 93.95 (13)
Ni1—O1 2.128 (2)    
Symmetry code: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z.

The dianion of the acid in complex I possesses intrinsic twofold axial symmetry, with the Si atom lying on the rotation axis. An analogous C2-symmetric conformation was found [Cambridge Structural Database (CSD, Version 5.40, last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])] for the mol­ecules/anions of the acid in the structures XOZVIT (Cazacu et al., 2014[Cazacu, M., Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G. & Train, C. (2014). J. Organomet. Chem. 774, 70-78.]) and ZIGXEV (Turcan-Trofin et al., 2018[Turcan-Trofin, G.-O., Avadanei, M., Shova, S., Vlad, A., Cazacu, M. & Zaltariov, M.-F. (2018). Inorg. Chim. Acta, 483, 454-463.]). In two cases [XOZWAM (Cazacu et al., 2014[Cazacu, M., Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G. & Train, C. (2014). J. Organomet. Chem. 774, 70-78.]) and ZIGXIZ (Turcan-Trofin et al., 2018[Turcan-Trofin, G.-O., Avadanei, M., Shova, S., Vlad, A., Cazacu, M. & Zaltariov, M.-F. (2018). Inorg. Chim. Acta, 483, 454-463.])], the carboxyl­ate is present in an asymmetric conformation. At the same time, the coordination polymer XOQXIL (Liu et al., 2009[Liu, Z., Stern, C. L. & Lambert, J. B. (2009). Organometallics, 28, 84-93.]) includes dianions of the acid in both C2-symmetric and asymmetric conformations. All these data are summarized in Fig. 2[link], which clearly illustrates the capability of rotation of aromatic rings in the tetra­phenyl­silane moiety around the Si—Car­yl bonds by a wide range of angles. Another feature worth noting is that the symmetric and asymmetric species in fact refer to essentially different types with minor structural variations within each group, with the exception of anion XOQXIL-1.

[Figure 2]
Figure 2
Comparison of the conformations of di­phenyl­silanediylbis(4-benzoic acid) and its anions. (a) C2-symmetric structures. H2A: dark-green – XOZVIT; A2−: red – I (current work), blue – ZIGXEV-1, yellow – XOQXIL-1. (b) Asymmetric structures. HA: light-green – XOZWAM; A2−: lilac – ZIGXIZ-1, pink – ZIGXIZ-2, orange – XOQXIL-2. Numbers accompanying refcodes refer to two structurally non-equivalent anions in a given compound. The disordered symmetric anion in ZIGXEV-2 is not shown.

The carboxyl groups in I are coordinated in a monodentate fashion via the O1 atom. The non-coordinated O2 atom is involved as proton acceptor in strong hydrogen bonding with the NH group of the macrocycle (Fig. 1[link], Table 2[link]), a situation that is frequently observed in carboxyl­ate complexes of cyclam-like ligands. Almost identical C—O bond lengths [C6—O1 = 1.254 (4) and C6—O2 = 1.260 (4) Å] support the model of essential electronic delocalization in the carboxyl­ate group. The carboxyl group is tilted with respect to the plane of benzene ring by 23.6 (2)°. In general, this angle is prone to large variations, e.g. for the structures presented in Fig. 2[link] it spans the range 4.1–30.1°.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.98 2.02 2.916 (4) 151
O1W—H1WA⋯O2i 0.85 2.05 2.850 (5) 156
O1W—H1WB⋯O2 0.85 1.89 2.744 (5) 177
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

The crystals of I are composed of polymeric chains of [Ni(L)]2+ cations bridged by the carboxyl­ate ligands, which propagate along the [101] direction. These chains have a distinctive zigzag shape with a chain link length (Si⋯Si distance) of 17.854 (3) Å and an almost ideal tetra­hedral angle (Si⋯Si⋯Si) of 109.09 (2)°(Fig. 3[link]). The nickel(II) cations in a chain are arranged in line with an Ni⋯Ni separation of 14.543 (2) Å.

[Figure 3]
Figure 3
The structure of the polymeric chain in I. C-bound H atoms are omitted for clarity.

In the crystal, each such chain is linked to four neighbouring ones due to formation of water-mediated hydrogen bonds between the non-coordinated O2 atoms of the carboxyl group: O2⋯HO1W—H⋯O2 (Table 2[link]). In turn, each O2 atom is involved in hydrogen bonding with two H2O mol­ecules [symmetry codes: x, y, z; −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]], which in conjunction with the N1—H⋯O2 hydrogen bond makes it a triple proton acceptor, while the water mol­ecule serves as a proton donor only. Thus, the water mol­ecules of crystallization play a key role in assembling the one-dimensional polymeric chains into a three-dimensional supra­molecular network (Fig. 4[link]).

[Figure 4]
Figure 4
The packing in I viewed down the [101] direction with polymeric chains cross-linked by O2⋯H—O1W—H⋯O2 hydrogen bonds (dotted lines) to form a three-dimensional supra­molecular network. C-bound H atoms are omitted for clarity.

4. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The macrocyclic nickel(II) complex Ni(L)(ClO4)2 (Barefield et al., 1976[Barefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220-224.]) and di­phenyl­silanediylbis(4-benzoic acid) (Cazacu et al., 2014[Cazacu, M., Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G. & Train, C. (2014). J. Organomet. Chem. 774, 70-78.]) were prepared according to procedures described previously.

{Ni(L)(A)·1.5H2O}n, (I). A solution of 100 mg (0.236 mmol) of the acid (H2A) in 24.5 ml of DMF containing 0.3 ml of tri­ethyl­amine was thoroughly layered on top of the solution of 120 mg (0.262 mmol) of [Ni(L)](ClO4)2 in 7.5 ml of water and the tightly closed system was left for two weeks at room temperature. The crystalline precipitate formed was filtered off, washed with DMF, methanol and dried in air. Yield 157 mg (94%). Analysis calculated for C72H90N8Ni2O11Si2: C, 61.03; H, 6.40; N, 7.91%. Found: C, 61.16; H, 6.36; N, 8.09%.

Single crystals of I in the form of light-yellow prisms suitable for X-ray diffraction analysis were obtained analogously using ca 10 times lower concentration of reagents.

Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (ring H atoms) or 0.97 Å (open-chain H atoms), an N—H distance of 0.98 Å and an aqua O—H distance of 0.85 Å with Uiso(H) values of 1.2 or 1.5Ueq times that of the parent atoms. Since the water mol­ecule of crystallization at full occupancy exhibited unreasonably high displacement ellipsoids, its occupancy parameter was reduced to 75%.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C26H18O4Si)(C10H24N4)]·1.5H2O
Mr 1417.11
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 25.390 (4), 7.3865 (10), 18.2424 (16)
β (°) 98.161 (10)
V3) 3386.6 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.66
Crystal size (mm) 0.35 × 0.10 × 0.10
 
Data collection
Diffractometer Agilent Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]),
Tmin, Tmax 0.964, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7999, 3926, 2512
Rint 0.052
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.147, 1.03
No. of reflections 3926
No. of parameters 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.51
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4,4'-(diphenylsilanediyl)dibenzoato-κ2O:O'] sesquihydrate] top
Crystal data top
[Ni(C26H18O4Si)(C10H24N4)]·1.5H2OF(000) = 1500
Mr = 1417.11Dx = 1.390 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.390 (4) ÅCell parameters from 1577 reflections
b = 7.3865 (10) Åθ = 2.6–29.5°
c = 18.2424 (16) ŵ = 0.66 mm1
β = 98.161 (10)°T = 200 K
V = 3386.6 (8) Å3Prism, clear light yellow
Z = 20.35 × 0.10 × 0.10 mm
Data collection top
Agilent Xcalibur, Eos
diffractometer
3926 independent reflections
Radiation source: Enhance (Mo) X-ray Source2512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.1593 pixels mm-1θmax = 29.5°, θmin = 2.6°
ω scansh = 3121
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014),
k = 109
Tmin = 0.964, Tmax = 1.000l = 2123
7999 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0427P)2 + 4.2041P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3926 reflectionsΔρmax = 0.51 e Å3
219 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.2500000.2500000.0000000.0273 (2)
Si10.5000000.95105 (19)0.2500000.0256 (3)
O10.30989 (10)0.3756 (4)0.07669 (14)0.0372 (7)
O20.27252 (11)0.4301 (4)0.17836 (15)0.0514 (8)
N10.19897 (12)0.2120 (5)0.07732 (17)0.0377 (8)
H10.2145800.2756680.1223440.045*
N20.27921 (12)0.0047 (4)0.03013 (18)0.0381 (8)
H20.2620420.0874260.0079540.046*
C10.20090 (17)0.0146 (6)0.0952 (2)0.0464 (11)
H1A0.1776540.0516870.0577210.056*
H1B0.1889410.0057140.1426970.056*
C20.25790 (17)0.0508 (6)0.0976 (2)0.0480 (11)
H2A0.2799120.0036150.1397020.058*
H2B0.2590440.1811150.1043190.058*
C30.33655 (17)0.0306 (6)0.0316 (2)0.0490 (12)
H3A0.3451860.1565560.0425230.059*
H3B0.3553640.0420760.0712350.059*
C40.14439 (17)0.4804 (6)0.0397 (2)0.0477 (11)
H4A0.1082460.5243090.0380670.057*
H4B0.1662040.5436200.0795850.057*
C50.14505 (15)0.2795 (6)0.0585 (2)0.0435 (11)
H5A0.1256750.2600210.1000240.052*
H5B0.1271710.2123430.0165260.052*
C60.30912 (15)0.4468 (5)0.1389 (2)0.0319 (9)
C70.35609 (14)0.5657 (5)0.16868 (18)0.0247 (8)
C80.40442 (14)0.5475 (5)0.14241 (19)0.0312 (9)
H80.4085300.4584870.1076300.037*
C90.44678 (14)0.6610 (5)0.1675 (2)0.0329 (9)
H90.4792000.6441640.1503320.039*
C100.44174 (14)0.8002 (5)0.21810 (18)0.0264 (8)
C110.39244 (14)0.8183 (5)0.24315 (18)0.0296 (8)
H110.3873800.9110200.2759470.035*
C120.35091 (14)0.7001 (5)0.21976 (19)0.0309 (9)
H120.3190130.7116080.2388740.037*
C130.51508 (14)1.1037 (5)0.1735 (2)0.0285 (8)
C140.55319 (15)1.2399 (5)0.1896 (2)0.0371 (9)
H140.5710431.2496040.2376410.044*
C150.56512 (17)1.3597 (6)0.1370 (2)0.0466 (11)
H150.5905861.4491130.1495170.056*
C160.53943 (17)1.3472 (6)0.0658 (2)0.0458 (11)
H160.5479531.4267630.0297130.055*
C170.50098 (17)1.2169 (6)0.0477 (2)0.0464 (11)
H170.4830331.2100140.0003660.056*
C180.48907 (15)1.0964 (5)0.1009 (2)0.0361 (9)
H180.4631751.0085050.0880270.043*
O1W0.19429 (16)0.6528 (6)0.2165 (2)0.0640 (12)0.75
H1WA0.2051490.7086740.2565340.096*0.75
H1WB0.2185790.5820040.2060740.096*0.75
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0236 (4)0.0255 (4)0.0312 (4)0.0020 (3)0.0015 (3)0.0022 (3)
Si10.0214 (7)0.0242 (7)0.0295 (7)0.0000.0019 (6)0.000
O10.0313 (15)0.0442 (17)0.0345 (14)0.0102 (13)0.0009 (11)0.0133 (14)
O20.0425 (19)0.065 (2)0.0492 (17)0.0234 (16)0.0151 (14)0.0184 (16)
N10.0339 (19)0.043 (2)0.0352 (18)0.0042 (16)0.0013 (14)0.0049 (16)
N20.035 (2)0.0298 (18)0.047 (2)0.0013 (15)0.0039 (15)0.0018 (17)
C10.046 (3)0.039 (2)0.054 (3)0.011 (2)0.005 (2)0.004 (2)
C20.052 (3)0.041 (3)0.051 (3)0.008 (2)0.006 (2)0.016 (2)
C30.040 (3)0.046 (3)0.060 (3)0.016 (2)0.003 (2)0.002 (2)
C40.037 (3)0.050 (3)0.053 (3)0.004 (2)0.001 (2)0.004 (2)
C50.028 (2)0.059 (3)0.044 (2)0.002 (2)0.0067 (18)0.009 (2)
C60.032 (2)0.025 (2)0.036 (2)0.0021 (17)0.0012 (17)0.0018 (18)
C70.0252 (19)0.0228 (18)0.0245 (18)0.0011 (15)0.0023 (14)0.0033 (16)
C80.033 (2)0.028 (2)0.031 (2)0.0018 (17)0.0005 (16)0.0102 (17)
C90.021 (2)0.033 (2)0.043 (2)0.0005 (17)0.0023 (16)0.0034 (19)
C100.0216 (19)0.0271 (19)0.0277 (18)0.0005 (15)0.0060 (14)0.0048 (16)
C110.030 (2)0.034 (2)0.0238 (18)0.0023 (17)0.0003 (15)0.0045 (17)
C120.0223 (19)0.039 (2)0.0311 (19)0.0028 (17)0.0026 (15)0.0015 (18)
C130.024 (2)0.0255 (19)0.036 (2)0.0017 (16)0.0037 (15)0.0035 (18)
C140.038 (2)0.032 (2)0.040 (2)0.0025 (19)0.0004 (17)0.002 (2)
C150.041 (3)0.032 (2)0.067 (3)0.005 (2)0.008 (2)0.004 (2)
C160.046 (3)0.039 (3)0.054 (3)0.011 (2)0.015 (2)0.017 (2)
C170.049 (3)0.053 (3)0.036 (2)0.010 (2)0.0020 (19)0.008 (2)
C180.028 (2)0.038 (2)0.040 (2)0.0006 (18)0.0031 (17)0.003 (2)
O1W0.050 (3)0.070 (3)0.072 (3)0.000 (2)0.009 (2)0.012 (3)
Geometric parameters (Å, º) top
Ni1—O1i2.128 (2)C4—C51.523 (6)
Ni1—O12.128 (2)C5—H5A0.9700
Ni1—N12.066 (3)C5—H5B0.9700
Ni1—N1i2.065 (3)C6—C71.518 (5)
Ni1—N2i2.068 (3)C7—C81.386 (5)
Ni1—N22.068 (3)C7—C121.381 (5)
Si1—C10ii1.878 (4)C8—H80.9300
Si1—C101.878 (4)C8—C91.389 (5)
Si1—C13ii1.875 (4)C9—H90.9300
Si1—C131.875 (4)C9—C101.399 (5)
O1—C61.254 (4)C10—C111.399 (5)
O2—C61.260 (4)C11—H110.9300
N1—H10.9800C11—C121.389 (5)
N1—C11.493 (5)C12—H120.9300
N1—C51.452 (5)C13—C141.398 (5)
N2—H20.9800C13—C181.395 (5)
N2—C21.455 (5)C14—H140.9300
N2—C31.465 (5)C14—C151.371 (5)
C1—H1A0.9700C15—H150.9300
C1—H1B0.9700C15—C161.372 (6)
C1—C21.520 (5)C16—H160.9300
C2—H2A0.9700C16—C171.377 (6)
C2—H2B0.9700C17—H170.9300
C3—H3A0.9700C17—C181.382 (5)
C3—H3B0.9700C18—H180.9300
C3—C4i1.497 (6)O1W—H1WA0.8499
C4—H4A0.9700O1W—H1WB0.8504
C4—H4B0.9700
O1—Ni1—O1i180.0C3i—C4—H4A108.2
N1i—Ni1—O1i93.98 (11)C3i—C4—H4B108.2
N1i—Ni1—O186.02 (11)C3i—C4—C5116.3 (4)
N1—Ni1—O193.98 (11)H4A—C4—H4B107.4
N1—Ni1—O1i86.02 (11)C5—C4—H4A108.2
N1i—Ni1—N1180.0C5—C4—H4B108.2
N1—Ni1—N2i93.95 (13)N1—C5—C4111.6 (3)
N1—Ni1—N286.05 (13)N1—C5—H5A109.3
N1i—Ni1—N293.95 (13)N1—C5—H5B109.3
N1i—Ni1—N2i86.05 (13)C4—C5—H5A109.3
N2—Ni1—O1i88.51 (11)C4—C5—H5B109.3
N2—Ni1—O191.49 (11)H5A—C5—H5B108.0
N2i—Ni1—O188.51 (11)O1—C6—O2125.7 (3)
N2i—Ni1—O1i91.49 (11)O1—C6—C7117.0 (3)
N2—Ni1—N2i180.0O2—C6—C7117.3 (3)
C10—Si1—C10ii107.2 (2)C8—C7—C6120.6 (3)
C13ii—Si1—C10ii111.20 (15)C12—C7—C6120.8 (3)
C13—Si1—C10111.20 (15)C12—C7—C8118.5 (3)
C13ii—Si1—C10110.63 (16)C7—C8—H8119.7
C13—Si1—C10ii110.63 (16)C7—C8—C9120.7 (3)
C13—Si1—C13ii106.1 (2)C9—C8—H8119.7
C6—O1—Ni1132.6 (2)C8—C9—H9119.3
Ni1—N1—H1106.8C8—C9—C10121.4 (3)
C1—N1—Ni1106.1 (2)C10—C9—H9119.3
C1—N1—H1106.8C9—C10—Si1119.9 (3)
C5—N1—Ni1117.0 (3)C11—C10—Si1123.0 (3)
C5—N1—H1106.8C11—C10—C9117.1 (3)
C5—N1—C1112.8 (3)C10—C11—H11119.5
Ni1—N2—H2105.8C12—C11—C10121.0 (3)
C2—N2—Ni1106.0 (2)C12—C11—H11119.5
C2—N2—H2105.8C7—C12—C11121.2 (3)
C2—N2—C3116.2 (3)C7—C12—H12119.4
C3—N2—Ni1116.2 (3)C11—C12—H12119.4
C3—N2—H2105.8C14—C13—Si1119.0 (3)
N1—C1—H1A110.0C18—C13—Si1124.3 (3)
N1—C1—H1B110.0C18—C13—C14116.6 (3)
N1—C1—C2108.6 (3)C13—C14—H14118.9
H1A—C1—H1B108.4C15—C14—C13122.2 (4)
C2—C1—H1A110.0C15—C14—H14118.9
C2—C1—H1B110.0C14—C15—H15120.1
N2—C2—C1111.6 (3)C14—C15—C16119.8 (4)
N2—C2—H2A109.3C16—C15—H15120.1
N2—C2—H2B109.3C15—C16—H16120.0
C1—C2—H2A109.3C15—C16—C17120.0 (4)
C1—C2—H2B109.3C17—C16—H16120.0
H2A—C2—H2B108.0C16—C17—H17120.0
N2—C3—H3A108.9C16—C17—C18120.0 (4)
N2—C3—H3B108.9C18—C17—H17120.0
N2—C3—C4i113.2 (3)C13—C18—H18119.3
H3A—C3—H3B107.7C17—C18—C13121.4 (4)
C4i—C3—H3A108.9C17—C18—H18119.3
C4i—C3—H3B108.9H1WA—O1W—H1WB109.5
Ni1—O1—C6—O214.6 (6)C8—C9—C10—Si1179.6 (3)
Ni1—O1—C6—C7164.5 (2)C8—C9—C10—C110.9 (5)
Ni1—N1—C1—C238.6 (4)C9—C10—C11—C121.4 (5)
Ni1—N1—C5—C455.8 (4)C10ii—Si1—C10—C951.0 (3)
Ni1—N2—C2—C138.2 (4)C10ii—Si1—C10—C11128.4 (3)
Ni1—N2—C3—C4i54.2 (4)C10ii—Si1—C13—C1468.5 (3)
Si1—C10—C11—C12178.0 (3)C10—Si1—C13—C14172.6 (3)
Si1—C13—C14—C15178.1 (3)C10ii—Si1—C13—C18114.3 (3)
Si1—C13—C18—C17177.9 (3)C10—Si1—C13—C184.6 (4)
O1—C6—C7—C821.4 (5)C10—C11—C12—C72.8 (5)
O1—C6—C7—C12155.4 (3)C12—C7—C8—C90.6 (5)
O2—C6—C7—C8159.4 (4)C13ii—Si1—C10—C9172.4 (3)
O2—C6—C7—C1223.9 (5)C13—Si1—C10—C970.0 (3)
N1—C1—C2—N253.4 (4)C13ii—Si1—C10—C117.0 (3)
C1—N1—C5—C4179.3 (3)C13—Si1—C10—C11110.6 (3)
C2—N2—C3—C4i180.0 (4)C13ii—Si1—C13—C1452.2 (3)
C3—N2—C2—C1169.0 (3)C13ii—Si1—C13—C18125.0 (4)
C3i—C4—C5—N170.1 (5)C13—C14—C15—C160.3 (6)
C5—N1—C1—C2168.0 (3)C14—C13—C18—C170.6 (6)
C6—C7—C8—C9177.4 (3)C14—C15—C16—C171.3 (6)
C6—C7—C12—C11175.1 (3)C15—C16—C17—C181.3 (6)
C7—C8—C9—C102.0 (5)C16—C17—C18—C130.3 (6)
C8—C7—C12—C111.8 (5)C18—C13—C14—C150.7 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.982.022.916 (4)151
O1W—H1WA···O2iii0.852.052.850 (5)156
O1W—H1WB···O20.851.892.744 (5)177
Symmetry code: (iii) x+1/2, y+1/2, z+1/2.
Selected bond lengths and angles (Å, °) top
DistancesBite angles
Ni1—N12.066 (3)N1—Ni1—N286.05 (13)
Ni1—N22.068 (3)N1—Ni1—N2i93.95 (13)
Ni1—O12.128 (2)
Symmetry code: (i) -x + 1/2, -y + 1/2, -z.
 

Funding information

This work was supported by the Romanian Ministry of Research and Innovation, CNCS – UEFISCDI, project No. PN-III-P4-ID-PCCF-2016-0050 (contract 4/2018), within PNCDI III.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBarefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220–224.  CAS Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationCazacu, M., Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G. & Train, C. (2014). J. Organomet. Chem. 774, 70–78.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGavrish, S. P., Shova, S., Cazacu, M., Dascalu, M. & Lampeka, Y. D. (2020b). Acta Cryst. E76, 446–451.  Google Scholar
First citationGavrish, S. P., Shova, S., Cazacu, M. & Lampeka, Y. D. (2020a). Acta Cryst. C76, 419–426.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications, 2 volumes. Weinheim: Wiley-VCH.  Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLiu, Z., Stern, C. L. & Lambert, J. B. (2009). Organometallics, 28, 84–93.  CSD CrossRef Google Scholar
First citationMacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials, Hoboken: John Wiley and Sons.  Google Scholar
First citationMelson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.  Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurcan-Trofin, G.-O., Avadanei, M., Shova, S., Vlad, A., Cazacu, M. & Zaltariov, M.-F. (2018). Inorg. Chim. Acta, 483, 454–463.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W., Li, X., Li, Y., Zhu, R. & Pang, H. (2019). Adv. Mater. 31, 1804740.  Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian.)  Google Scholar
First citationZhong, M., Kong, L., Li, N., Liu, Y.-Y., Zhu, J. & Bu, X.-H. (2019). Coord. Chem. Rev. 388, 172–201.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds