research communications
2+ cation and the dianion of diphenylsilanediylbis(4-benzoic acid)
of the one-dimensional coordination polymer formed by the macrocyclic [Ni(cyclam)]aL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net
The catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-4,4′-(diphenylsilanediyl)dibenzoato-κ2O:O′] sesquihydrate], {[Ni(C26H18O4Si)(C10H24N4)]·1.5H2O}n, consists of the halves of the centrosymmetric macrocyclic cation and the C2-symmetric dicarboxylate dianion and of the water molecule of crystallization. The Ni2+ ion is coordinated by the four secondary N atoms of the macrocyclic ligand characterized by the most energetically favourable trans-III conformation and two mutually trans O atoms of the carboxylate, forming a slightly tetragonally elongated trans-N4O2 octahedron. The crystals are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] direction. Each polymeric chain is bonded to four neighbouring ones via water molecules providing O—H⋯O hydrogen bonds to the non-coordinated carboxyl O atoms to form a three-dimensional supramolecular network.
of the title compound,Keywords: crystal structure; macrocyclic ligand; cyclam; nickel; coordination polymers; hydrogen bonds.
CCDC reference: 2004084
1. Chemical context
Aromatic carboxylates are the most popular ligands employed as linkers joining metal-containing fragments (secondary building units, SBUs) in the construction of coordination polymers (Rao et al., 2004). This class of hybrid organic–inorganic materials possesses great potential for applications in gas storage, separation, catalysis, etc. (MacGillivray & Lukehart, 2014; Kaskel, 2016). At the same time, carboxylate linkers containing a silicon core are still rare objects of investigation, although it is assumed that the presence of these heteroatoms may affect the topology and properties of the resulting coordination polymers, which are known to be rather sensitive to tiny structural variations in the constituting parts. Besides these structural aspects, carboxylate ligands containing heteroatoms are of current interest as precursors for the preparation of structured heteroatom-doped carbonaceous materials possessing excellent electron conductivity, high porosity and diverse applications, including electrocatalysis and energy storage and conversion (Yang et al., 2019; Zhong et al., 2019).
Diphenylsilanediylbis(4-benzoic acid), a dicarboxylate possessing a characteristic bent shape, has been already utilized for the synthesis of coordination polymers with tetranuclear ZnII (Liu et al., 2009) and dinuclear ZnII and MnII (Turcan-Trofin et al., 2018) SBUs, as well as a copper(II) complex with 1,10-phenanthroline as co-ligand (Cazacu et al., 2014). However, no attempt has been made thus far to combine this linker with macrocyclic complexes, which provide pre-formed SBUs of another type (two vacant trans axial positions in the coordination sphere of the metal ion) with an additional benefit of extremely high thermodynamic stability and kinetic inertness (Melson, 1979; Yatsimirskii & Lampeka, 1985). At the same time, such SBUs have been used successfully for the assembly of a number of coordination polymers (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018), including those with some other Si-containing carboxylates (Gavrish et al., 2020a; Gavrish et al., 2020b).
As part of our research on such compounds, we report herein the synthesis and L), and the dianion of diphenylsilanediylbis(4-benzoic acid) (H2A), viz., catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1N4N8N11)nickel(II)]-μ-diphenylsilanediylbis(4-benzoato)-κ2O:O′] sesquihydrate], [Ni(L)(A)·1.5H2O]n, (I).
of the coordination polymer built up from the nickel(II) complex of the 14-membered macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane (cyclam,2. Structural commentary
The molecular structure of the title compound I is shown in Fig. 1. It represents a one-dimensional coordination polymer built of the centrosymmetric macrocyclic [Ni(L)]2+ cations coordinated in axial positions by the oxygen atoms of the carboxyl groups of the acid.
The macrocyclic ligand in the complex cation adopts the most abundant energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965) with almost equal Ni—N bond lengths (Table 1). The five-membered chelate rings are present in gauche and the six-membered in chair conformations. The geometric parameters observed are characteristic of high-spin nickel(II) complexes with 14-membered tetraamine ligands (Lampeka & Tsymbal, 2004). The axial Ni—O bond lengths are somewhat longer than the Ni—N ones resulting in a slight tetragonal distortion of the trans-N4O2 nickel(II) The location of the metal ion on the inversion centre enforces strict planarity of the equatorial Ni(N4) fragment.
|
The dianion of the acid in complex I possesses intrinsic twofold axial symmetry, with the Si atom lying on the rotation axis. An analogous C2-symmetric conformation was found [Cambridge Structural Database (CSD, Version 5.40, last update February 2019; Groom et al., 2016)] for the molecules/anions of the acid in the structures XOZVIT (Cazacu et al., 2014) and ZIGXEV (Turcan-Trofin et al., 2018). In two cases [XOZWAM (Cazacu et al., 2014) and ZIGXIZ (Turcan-Trofin et al., 2018)], the carboxylate is present in an asymmetric conformation. At the same time, the coordination polymer XOQXIL (Liu et al., 2009) includes dianions of the acid in both C2-symmetric and asymmetric conformations. All these data are summarized in Fig. 2, which clearly illustrates the capability of rotation of aromatic rings in the tetraphenylsilane moiety around the Si—Caryl bonds by a wide range of angles. Another feature worth noting is that the symmetric and asymmetric species in fact refer to essentially different types with minor structural variations within each group, with the exception of anion XOQXIL-1.
The carboxyl groups in I are coordinated in a monodentate fashion via the O1 atom. The non-coordinated O2 atom is involved as proton acceptor in strong hydrogen bonding with the NH group of the macrocycle (Fig. 1, Table 2), a situation that is frequently observed in carboxylate complexes of cyclam-like ligands. Almost identical C—O bond lengths [C6—O1 = 1.254 (4) and C6—O2 = 1.260 (4) Å] support the model of essential electronic delocalization in the carboxylate group. The carboxyl group is tilted with respect to the plane of benzene ring by 23.6 (2)°. In general, this angle is prone to large variations, e.g. for the structures presented in Fig. 2 it spans the range 4.1–30.1°.
3. Supramolecular features
The crystals of I are composed of polymeric chains of [Ni(L)]2+ cations bridged by the carboxylate ligands, which propagate along the [101] direction. These chains have a distinctive zigzag shape with a chain link length (Si⋯Si distance) of 17.854 (3) Å and an almost ideal tetrahedral angle (Si⋯Si⋯Si) of 109.09 (2)°(Fig. 3). The nickel(II) cations in a chain are arranged in line with an Ni⋯Ni separation of 14.543 (2) Å.
In the crystal, each such chain is linked to four neighbouring ones due to formation of water-mediated hydrogen bonds between the non-coordinated O2 atoms of the carboxyl group: O2⋯HO1W—H⋯O2 (Table 2). In turn, each O2 atom is involved in hydrogen bonding with two H2O molecules [symmetry codes: x, y, z; −x + , y − , −z + ], which in conjunction with the N1—H⋯O2 hydrogen bond makes it a triple proton acceptor, while the water molecule serves as a proton donor only. Thus, the water molecules of crystallization play a key role in assembling the one-dimensional polymeric chains into a three-dimensional supramolecular network (Fig. 4).
4. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The macrocyclic nickel(II) complex Ni(L)(ClO4)2 (Barefield et al., 1976) and diphenylsilanediylbis(4-benzoic acid) (Cazacu et al., 2014) were prepared according to procedures described previously.
{Ni(L)(A)·1.5H2O}n, (I). A solution of 100 mg (0.236 mmol) of the acid (H2A) in 24.5 ml of DMF containing 0.3 ml of triethylamine was thoroughly layered on top of the solution of 120 mg (0.262 mmol) of [Ni(L)](ClO4)2 in 7.5 ml of water and the tightly closed system was left for two weeks at room temperature. The crystalline precipitate formed was filtered off, washed with DMF, methanol and dried in air. Yield 157 mg (94%). Analysis calculated for C72H90N8Ni2O11Si2: C, 61.03; H, 6.40; N, 7.91%. Found: C, 61.16; H, 6.36; N, 8.09%.
Single crystals of I in the form of light-yellow prisms suitable for X-ray were obtained analogously using ca 10 times lower concentration of reagents.
Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.
5. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (ring H atoms) or 0.97 Å (open-chain H atoms), an N—H distance of 0.98 Å and an aqua O—H distance of 0.85 Å with Uiso(H) values of 1.2 or 1.5Ueq times that of the parent atoms. Since the water molecule of crystallization at full occupancy exhibited unreasonably high displacement ellipsoids, its occupancy parameter was reduced to 75%.
details are summarized in Table 3Supporting information
CCDC reference: 2004084
https://doi.org/10.1107/S2056989020006544/hb7914sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020006544/hb7914Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C26H18O4Si)(C10H24N4)]·1.5H2O | F(000) = 1500 |
Mr = 1417.11 | Dx = 1.390 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 25.390 (4) Å | Cell parameters from 1577 reflections |
b = 7.3865 (10) Å | θ = 2.6–29.5° |
c = 18.2424 (16) Å | µ = 0.66 mm−1 |
β = 98.161 (10)° | T = 200 K |
V = 3386.6 (8) Å3 | Prism, clear light yellow |
Z = 2 | 0.35 × 0.10 × 0.10 mm |
Agilent Xcalibur, Eos diffractometer | 3926 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2512 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 29.5°, θmin = 2.6° |
ω scans | h = −31→21 |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014), | k = −10→9 |
Tmin = 0.964, Tmax = 1.000 | l = −21→23 |
7999 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.066 | H-atom parameters constrained |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.0427P)2 + 4.2041P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3926 reflections | Δρmax = 0.51 e Å−3 |
219 parameters | Δρmin = −0.51 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.250000 | 0.250000 | 0.000000 | 0.0273 (2) | |
Si1 | 0.500000 | 0.95105 (19) | 0.250000 | 0.0256 (3) | |
O1 | 0.30989 (10) | 0.3756 (4) | 0.07669 (14) | 0.0372 (7) | |
O2 | 0.27252 (11) | 0.4301 (4) | 0.17836 (15) | 0.0514 (8) | |
N1 | 0.19897 (12) | 0.2120 (5) | 0.07732 (17) | 0.0377 (8) | |
H1 | 0.214580 | 0.275668 | 0.122344 | 0.045* | |
N2 | 0.27921 (12) | −0.0047 (4) | 0.03013 (18) | 0.0381 (8) | |
H2 | 0.262042 | −0.087426 | −0.007954 | 0.046* | |
C1 | 0.20090 (17) | 0.0146 (6) | 0.0952 (2) | 0.0464 (11) | |
H1A | 0.177654 | −0.051687 | 0.057721 | 0.056* | |
H1B | 0.188941 | −0.005714 | 0.142697 | 0.056* | |
C2 | 0.25790 (17) | −0.0508 (6) | 0.0976 (2) | 0.0480 (11) | |
H2A | 0.279912 | 0.003615 | 0.139702 | 0.058* | |
H2B | 0.259044 | −0.181115 | 0.104319 | 0.058* | |
C3 | 0.33655 (17) | −0.0306 (6) | 0.0316 (2) | 0.0490 (12) | |
H3A | 0.345186 | −0.156556 | 0.042523 | 0.059* | |
H3B | 0.355364 | 0.042076 | 0.071235 | 0.059* | |
C4 | 0.14439 (17) | 0.4804 (6) | 0.0397 (2) | 0.0477 (11) | |
H4A | 0.108246 | 0.524309 | 0.038067 | 0.057* | |
H4B | 0.166204 | 0.543620 | 0.079585 | 0.057* | |
C5 | 0.14505 (15) | 0.2795 (6) | 0.0585 (2) | 0.0435 (11) | |
H5A | 0.125675 | 0.260021 | 0.100024 | 0.052* | |
H5B | 0.127171 | 0.212343 | 0.016526 | 0.052* | |
C6 | 0.30912 (15) | 0.4468 (5) | 0.1389 (2) | 0.0319 (9) | |
C7 | 0.35609 (14) | 0.5657 (5) | 0.16868 (18) | 0.0247 (8) | |
C8 | 0.40442 (14) | 0.5475 (5) | 0.14241 (19) | 0.0312 (9) | |
H8 | 0.408530 | 0.458487 | 0.107630 | 0.037* | |
C9 | 0.44678 (14) | 0.6610 (5) | 0.1675 (2) | 0.0329 (9) | |
H9 | 0.479200 | 0.644164 | 0.150332 | 0.039* | |
C10 | 0.44174 (14) | 0.8002 (5) | 0.21810 (18) | 0.0264 (8) | |
C11 | 0.39244 (14) | 0.8183 (5) | 0.24315 (18) | 0.0296 (8) | |
H11 | 0.387380 | 0.911020 | 0.275947 | 0.035* | |
C12 | 0.35091 (14) | 0.7001 (5) | 0.21976 (19) | 0.0309 (9) | |
H12 | 0.319013 | 0.711608 | 0.238874 | 0.037* | |
C13 | 0.51508 (14) | 1.1037 (5) | 0.1735 (2) | 0.0285 (8) | |
C14 | 0.55319 (15) | 1.2399 (5) | 0.1896 (2) | 0.0371 (9) | |
H14 | 0.571043 | 1.249604 | 0.237641 | 0.044* | |
C15 | 0.56512 (17) | 1.3597 (6) | 0.1370 (2) | 0.0466 (11) | |
H15 | 0.590586 | 1.449113 | 0.149517 | 0.056* | |
C16 | 0.53943 (17) | 1.3472 (6) | 0.0658 (2) | 0.0458 (11) | |
H16 | 0.547953 | 1.426763 | 0.029713 | 0.055* | |
C17 | 0.50098 (17) | 1.2169 (6) | 0.0477 (2) | 0.0464 (11) | |
H17 | 0.483033 | 1.210014 | −0.000366 | 0.056* | |
C18 | 0.48907 (15) | 1.0964 (5) | 0.1009 (2) | 0.0361 (9) | |
H18 | 0.463175 | 1.008505 | 0.088027 | 0.043* | |
O1W | 0.19429 (16) | 0.6528 (6) | 0.2165 (2) | 0.0640 (12) | 0.75 |
H1WA | 0.205149 | 0.708674 | 0.256534 | 0.096* | 0.75 |
H1WB | 0.218579 | 0.582004 | 0.206074 | 0.096* | 0.75 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0236 (4) | 0.0255 (4) | 0.0312 (4) | −0.0020 (3) | −0.0015 (3) | −0.0022 (3) |
Si1 | 0.0214 (7) | 0.0242 (7) | 0.0295 (7) | 0.000 | −0.0019 (6) | 0.000 |
O1 | 0.0313 (15) | 0.0442 (17) | 0.0345 (14) | −0.0102 (13) | −0.0009 (11) | −0.0133 (14) |
O2 | 0.0425 (19) | 0.065 (2) | 0.0492 (17) | −0.0234 (16) | 0.0151 (14) | −0.0184 (16) |
N1 | 0.0339 (19) | 0.043 (2) | 0.0352 (18) | −0.0042 (16) | 0.0013 (14) | −0.0049 (16) |
N2 | 0.035 (2) | 0.0298 (18) | 0.047 (2) | 0.0013 (15) | −0.0039 (15) | 0.0018 (17) |
C1 | 0.046 (3) | 0.039 (2) | 0.054 (3) | −0.011 (2) | 0.005 (2) | 0.004 (2) |
C2 | 0.052 (3) | 0.041 (3) | 0.051 (3) | 0.008 (2) | 0.006 (2) | 0.016 (2) |
C3 | 0.040 (3) | 0.046 (3) | 0.060 (3) | 0.016 (2) | 0.003 (2) | 0.002 (2) |
C4 | 0.037 (3) | 0.050 (3) | 0.053 (3) | 0.004 (2) | −0.001 (2) | −0.004 (2) |
C5 | 0.028 (2) | 0.059 (3) | 0.044 (2) | −0.002 (2) | 0.0067 (18) | −0.009 (2) |
C6 | 0.032 (2) | 0.025 (2) | 0.036 (2) | −0.0021 (17) | −0.0012 (17) | 0.0018 (18) |
C7 | 0.0252 (19) | 0.0228 (18) | 0.0245 (18) | −0.0011 (15) | −0.0023 (14) | 0.0033 (16) |
C8 | 0.033 (2) | 0.028 (2) | 0.031 (2) | 0.0018 (17) | −0.0005 (16) | −0.0102 (17) |
C9 | 0.021 (2) | 0.033 (2) | 0.043 (2) | −0.0005 (17) | 0.0023 (16) | −0.0034 (19) |
C10 | 0.0216 (19) | 0.0271 (19) | 0.0277 (18) | 0.0005 (15) | −0.0060 (14) | 0.0048 (16) |
C11 | 0.030 (2) | 0.034 (2) | 0.0238 (18) | −0.0023 (17) | −0.0003 (15) | −0.0045 (17) |
C12 | 0.0223 (19) | 0.039 (2) | 0.0311 (19) | −0.0028 (17) | 0.0026 (15) | −0.0015 (18) |
C13 | 0.024 (2) | 0.0255 (19) | 0.036 (2) | 0.0017 (16) | 0.0037 (15) | 0.0035 (18) |
C14 | 0.038 (2) | 0.032 (2) | 0.040 (2) | −0.0025 (19) | 0.0004 (17) | 0.002 (2) |
C15 | 0.041 (3) | 0.032 (2) | 0.067 (3) | −0.005 (2) | 0.008 (2) | 0.004 (2) |
C16 | 0.046 (3) | 0.039 (3) | 0.054 (3) | 0.011 (2) | 0.015 (2) | 0.017 (2) |
C17 | 0.049 (3) | 0.053 (3) | 0.036 (2) | 0.010 (2) | 0.0020 (19) | 0.008 (2) |
C18 | 0.028 (2) | 0.038 (2) | 0.040 (2) | −0.0006 (18) | −0.0031 (17) | 0.003 (2) |
O1W | 0.050 (3) | 0.070 (3) | 0.072 (3) | 0.000 (2) | 0.009 (2) | −0.012 (3) |
Ni1—O1i | 2.128 (2) | C4—C5 | 1.523 (6) |
Ni1—O1 | 2.128 (2) | C5—H5A | 0.9700 |
Ni1—N1 | 2.066 (3) | C5—H5B | 0.9700 |
Ni1—N1i | 2.065 (3) | C6—C7 | 1.518 (5) |
Ni1—N2i | 2.068 (3) | C7—C8 | 1.386 (5) |
Ni1—N2 | 2.068 (3) | C7—C12 | 1.381 (5) |
Si1—C10ii | 1.878 (4) | C8—H8 | 0.9300 |
Si1—C10 | 1.878 (4) | C8—C9 | 1.389 (5) |
Si1—C13ii | 1.875 (4) | C9—H9 | 0.9300 |
Si1—C13 | 1.875 (4) | C9—C10 | 1.399 (5) |
O1—C6 | 1.254 (4) | C10—C11 | 1.399 (5) |
O2—C6 | 1.260 (4) | C11—H11 | 0.9300 |
N1—H1 | 0.9800 | C11—C12 | 1.389 (5) |
N1—C1 | 1.493 (5) | C12—H12 | 0.9300 |
N1—C5 | 1.452 (5) | C13—C14 | 1.398 (5) |
N2—H2 | 0.9800 | C13—C18 | 1.395 (5) |
N2—C2 | 1.455 (5) | C14—H14 | 0.9300 |
N2—C3 | 1.465 (5) | C14—C15 | 1.371 (5) |
C1—H1A | 0.9700 | C15—H15 | 0.9300 |
C1—H1B | 0.9700 | C15—C16 | 1.372 (6) |
C1—C2 | 1.520 (5) | C16—H16 | 0.9300 |
C2—H2A | 0.9700 | C16—C17 | 1.377 (6) |
C2—H2B | 0.9700 | C17—H17 | 0.9300 |
C3—H3A | 0.9700 | C17—C18 | 1.382 (5) |
C3—H3B | 0.9700 | C18—H18 | 0.9300 |
C3—C4i | 1.497 (6) | O1W—H1WA | 0.8499 |
C4—H4A | 0.9700 | O1W—H1WB | 0.8504 |
C4—H4B | 0.9700 | ||
O1—Ni1—O1i | 180.0 | C3i—C4—H4A | 108.2 |
N1i—Ni1—O1i | 93.98 (11) | C3i—C4—H4B | 108.2 |
N1i—Ni1—O1 | 86.02 (11) | C3i—C4—C5 | 116.3 (4) |
N1—Ni1—O1 | 93.98 (11) | H4A—C4—H4B | 107.4 |
N1—Ni1—O1i | 86.02 (11) | C5—C4—H4A | 108.2 |
N1i—Ni1—N1 | 180.0 | C5—C4—H4B | 108.2 |
N1—Ni1—N2i | 93.95 (13) | N1—C5—C4 | 111.6 (3) |
N1—Ni1—N2 | 86.05 (13) | N1—C5—H5A | 109.3 |
N1i—Ni1—N2 | 93.95 (13) | N1—C5—H5B | 109.3 |
N1i—Ni1—N2i | 86.05 (13) | C4—C5—H5A | 109.3 |
N2—Ni1—O1i | 88.51 (11) | C4—C5—H5B | 109.3 |
N2—Ni1—O1 | 91.49 (11) | H5A—C5—H5B | 108.0 |
N2i—Ni1—O1 | 88.51 (11) | O1—C6—O2 | 125.7 (3) |
N2i—Ni1—O1i | 91.49 (11) | O1—C6—C7 | 117.0 (3) |
N2—Ni1—N2i | 180.0 | O2—C6—C7 | 117.3 (3) |
C10—Si1—C10ii | 107.2 (2) | C8—C7—C6 | 120.6 (3) |
C13ii—Si1—C10ii | 111.20 (15) | C12—C7—C6 | 120.8 (3) |
C13—Si1—C10 | 111.20 (15) | C12—C7—C8 | 118.5 (3) |
C13ii—Si1—C10 | 110.63 (16) | C7—C8—H8 | 119.7 |
C13—Si1—C10ii | 110.63 (16) | C7—C8—C9 | 120.7 (3) |
C13—Si1—C13ii | 106.1 (2) | C9—C8—H8 | 119.7 |
C6—O1—Ni1 | 132.6 (2) | C8—C9—H9 | 119.3 |
Ni1—N1—H1 | 106.8 | C8—C9—C10 | 121.4 (3) |
C1—N1—Ni1 | 106.1 (2) | C10—C9—H9 | 119.3 |
C1—N1—H1 | 106.8 | C9—C10—Si1 | 119.9 (3) |
C5—N1—Ni1 | 117.0 (3) | C11—C10—Si1 | 123.0 (3) |
C5—N1—H1 | 106.8 | C11—C10—C9 | 117.1 (3) |
C5—N1—C1 | 112.8 (3) | C10—C11—H11 | 119.5 |
Ni1—N2—H2 | 105.8 | C12—C11—C10 | 121.0 (3) |
C2—N2—Ni1 | 106.0 (2) | C12—C11—H11 | 119.5 |
C2—N2—H2 | 105.8 | C7—C12—C11 | 121.2 (3) |
C2—N2—C3 | 116.2 (3) | C7—C12—H12 | 119.4 |
C3—N2—Ni1 | 116.2 (3) | C11—C12—H12 | 119.4 |
C3—N2—H2 | 105.8 | C14—C13—Si1 | 119.0 (3) |
N1—C1—H1A | 110.0 | C18—C13—Si1 | 124.3 (3) |
N1—C1—H1B | 110.0 | C18—C13—C14 | 116.6 (3) |
N1—C1—C2 | 108.6 (3) | C13—C14—H14 | 118.9 |
H1A—C1—H1B | 108.4 | C15—C14—C13 | 122.2 (4) |
C2—C1—H1A | 110.0 | C15—C14—H14 | 118.9 |
C2—C1—H1B | 110.0 | C14—C15—H15 | 120.1 |
N2—C2—C1 | 111.6 (3) | C14—C15—C16 | 119.8 (4) |
N2—C2—H2A | 109.3 | C16—C15—H15 | 120.1 |
N2—C2—H2B | 109.3 | C15—C16—H16 | 120.0 |
C1—C2—H2A | 109.3 | C15—C16—C17 | 120.0 (4) |
C1—C2—H2B | 109.3 | C17—C16—H16 | 120.0 |
H2A—C2—H2B | 108.0 | C16—C17—H17 | 120.0 |
N2—C3—H3A | 108.9 | C16—C17—C18 | 120.0 (4) |
N2—C3—H3B | 108.9 | C18—C17—H17 | 120.0 |
N2—C3—C4i | 113.2 (3) | C13—C18—H18 | 119.3 |
H3A—C3—H3B | 107.7 | C17—C18—C13 | 121.4 (4) |
C4i—C3—H3A | 108.9 | C17—C18—H18 | 119.3 |
C4i—C3—H3B | 108.9 | H1WA—O1W—H1WB | 109.5 |
Ni1—O1—C6—O2 | 14.6 (6) | C8—C9—C10—Si1 | −179.6 (3) |
Ni1—O1—C6—C7 | −164.5 (2) | C8—C9—C10—C11 | 0.9 (5) |
Ni1—N1—C1—C2 | 38.6 (4) | C9—C10—C11—C12 | 1.4 (5) |
Ni1—N1—C5—C4 | −55.8 (4) | C10ii—Si1—C10—C9 | −51.0 (3) |
Ni1—N2—C2—C1 | 38.2 (4) | C10ii—Si1—C10—C11 | 128.4 (3) |
Ni1—N2—C3—C4i | −54.2 (4) | C10ii—Si1—C13—C14 | −68.5 (3) |
Si1—C10—C11—C12 | −178.0 (3) | C10—Si1—C13—C14 | 172.6 (3) |
Si1—C13—C14—C15 | −178.1 (3) | C10ii—Si1—C13—C18 | 114.3 (3) |
Si1—C13—C18—C17 | 177.9 (3) | C10—Si1—C13—C18 | −4.6 (4) |
O1—C6—C7—C8 | −21.4 (5) | C10—C11—C12—C7 | −2.8 (5) |
O1—C6—C7—C12 | 155.4 (3) | C12—C7—C8—C9 | 0.6 (5) |
O2—C6—C7—C8 | 159.4 (4) | C13ii—Si1—C10—C9 | −172.4 (3) |
O2—C6—C7—C12 | −23.9 (5) | C13—Si1—C10—C9 | 70.0 (3) |
N1—C1—C2—N2 | −53.4 (4) | C13ii—Si1—C10—C11 | 7.0 (3) |
C1—N1—C5—C4 | −179.3 (3) | C13—Si1—C10—C11 | −110.6 (3) |
C2—N2—C3—C4i | 180.0 (4) | C13ii—Si1—C13—C14 | 52.2 (3) |
C3—N2—C2—C1 | 169.0 (3) | C13ii—Si1—C13—C18 | −125.0 (4) |
C3i—C4—C5—N1 | 70.1 (5) | C13—C14—C15—C16 | −0.3 (6) |
C5—N1—C1—C2 | 168.0 (3) | C14—C13—C18—C17 | 0.6 (6) |
C6—C7—C8—C9 | 177.4 (3) | C14—C15—C16—C17 | 1.3 (6) |
C6—C7—C12—C11 | −175.1 (3) | C15—C16—C17—C18 | −1.3 (6) |
C7—C8—C9—C10 | −2.0 (5) | C16—C17—C18—C13 | 0.3 (6) |
C8—C7—C12—C11 | 1.8 (5) | C18—C13—C14—C15 | −0.7 (6) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.98 | 2.02 | 2.916 (4) | 151 |
O1W—H1WA···O2iii | 0.85 | 2.05 | 2.850 (5) | 156 |
O1W—H1WB···O2 | 0.85 | 1.89 | 2.744 (5) | 177 |
Symmetry code: (iii) −x+1/2, y+1/2, −z+1/2. |
Distances | Bite angles | ||
Ni1—N1 | 2.066 (3) | N1—Ni1—N2 | 86.05 (13) |
Ni1—N2 | 2.068 (3) | N1—Ni1—N2i | 93.95 (13) |
Ni1—O1 | 2.128 (2) |
Symmetry code: (i) -x + 1/2, -y + 1/2, -z. |
Funding information
This work was supported by the Romanian Ministry of Research and Innovation, CNCS – UEFISCDI, project No. PN-III-P4-ID-PCCF-2016-0050 (contract 4/2018), within PNCDI III.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Barefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220–224. CAS Google Scholar
Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108. CrossRef CAS Web of Science Google Scholar
Cazacu, M., Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G. & Train, C. (2014). J. Organomet. Chem. 774, 70–78. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gavrish, S. P., Shova, S., Cazacu, M., Dascalu, M. & Lampeka, Y. D. (2020b). Acta Cryst. E76, 446–451. Google Scholar
Gavrish, S. P., Shova, S., Cazacu, M. & Lampeka, Y. D. (2020a). Acta Cryst. C76, 419–426. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications, 2 volumes. Weinheim: Wiley-VCH. Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Liu, Z., Stern, C. L. & Lambert, J. B. (2009). Organometallics, 28, 84–93. CSD CrossRef Google Scholar
MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials, Hoboken: John Wiley and Sons. Google Scholar
Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press. Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Turcan-Trofin, G.-O., Avadanei, M., Shova, S., Vlad, A., Cazacu, M. & Zaltariov, M.-F. (2018). Inorg. Chim. Acta, 483, 454–463. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, W., Li, X., Li, Y., Zhu, R. & Pang, H. (2019). Adv. Mater. 31, 1804740. Google Scholar
Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian.) Google Scholar
Zhong, M., Kong, L., Li, N., Liu, Y.-Y., Zhu, J. & Bu, X.-H. (2019). Coord. Chem. Rev. 388, 172–201. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.