research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two dis-symmetric di-Schiff base compounds: 2-({(E)-2-[(E)-2,6-di­chloro­benzyl­­idene]hydrazin-1-yl­­idene}meth­yl)-6-meth­­oxy­phenol and 4-bromo-2-({(E)-2-[(E)-2,6-di­chloro­benzyl­­idene]hydrazin-1-yl­­idene}meth­yl)phenol

CROSSMARK_Color_square_no_text.svg

aChemical Research Laboratory, Department of Chemistry Saurashtra University, Rajkot - 360005, Gujarat, India, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 May 2020; accepted 13 May 2020; online 19 May 2020)

Each of the title dis-symmetric di-Schiff base compounds, C15H12Cl2N2O2 (I) and C14H9BrCl2N2O (II), features a central azo-N—N bond connecting two imine groups, each with an E-configuration. One imine bond in each mol­ecule connects to a 2,6-di­chloro­benzene substituent while the other links a 2-hydroxyl-3-meth­oxy-substituted benzene ring in (I) or a 2-hydroxyl-4-bromo benzene ring in (II). Each mol­ecule features an intra­molecular hydroxyl-O—H⋯N(imine) hydrogen bond. The C—N—N—C torsion angles of −151.0 (3)° for (I) and 177.8 (6)° (II) indicates a significant twist in the former. The common feature of the mol­ecular packing is the formation of supra­molecular chains. In (I), the linear chains are aligned along the a-axis direction and the mol­ecules are linked by meth­oxy-C—H⋯O(meth­oxy) and chloro­benzene-C—Cl⋯π(chlorobenzene) inter­actions. The chain in (II) is also aligned along the a axis but, has a zigzag topology and is sustained by Br⋯O [3.132 (4) Å] secondary bonding inter­actions. In each crystal, the chains pack without directional inter­actions between them. The non-covalent inter­actions are delineated in the study of the calculated Hirshfeld surfaces. Dispersion forces make the most significant contributions to the identified inter­molecular inter­actions in each of (I) and (II).

1. Chemical context

Schiff base mol­ecules, known for their ease of formation, can be deprotonated to form a prominent class of multidentate ligands for a full range of metal ions leading to a rich coordination chemistry (Vigato & Tamburini, 2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]; Clarke & Storr, 2014[Clarke, R. M. & Storr, T. (2014). Dalton Trans. 43, 9380-9391.]). The broad range of biological activities exhibited by Schiff base mol­ecules such as anti-bacterial, anti-viral, anti-fungal, anti-malarial, anti-inflammatory, etc. (Naeimi et al., 2013[Naeimi, H., Nazifi, Z. S., Matin Amininezhad, S. & Amouheidari, M. (2013). J. Antibiot. 66, 687-689.]; Mukherjee et al., 2013[Mukherjee, T., Pessoa, J. C., Kumar, A. & Sarkar, A. R. (2013). Dalton Trans. 42, 2594-2607.]) is a key motivation for studies in this area. Indeed, this is the motivation for the preparation of dis-symmetric di-Schiff base mol­ecules (Liu et al., 2018[Liu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D. & Hamon, J.-R. (2018). Coord. Chem. Rev. 357, 144-172.]) related to the title compounds and their transition-metal complexes (Manawar et al., 2019a[Manawar, R. B., Gondaliya, M. B., Mamtora, M. J. & Shah, M. K. (2019a). Sci. News 126, 222-247.]), complemented by crystallographic studies (Manawar et al., 2019b[Manawar, R. B., Gondaliya, M. B., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019b). Acta Cryst. E75, 1423-1428.], 2020[Manawar, R. B., Mamtora, M. J., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 53-61.]). In a continuation of these structural studies, the crystal and mol­ecular structures of meth­oxy- (I)[link] and bromine-substituted (II)[link] analogues of an earlier published dis-symmetric di-Schiff base (Manawar et al., 2019b[Manawar, R. B., Gondaliya, M. B., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019b). Acta Cryst. E75, 1423-1428.]) are described herein, together with the detailed analysis of the mol­ecular packing by Hirshfeld surface analysis and computation of energy frameworks.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of (I)[link] and (II)[link] are shown in Fig. 1[link]. The common feature of each mol­ecule is the presence of two imine bonds connected by a azo-N—N bond, Table 1[link]. At one end of each mol­ecule is a 2,6-di­chloro­benzene substituent. In (I)[link], the mol­ecule is terminated by a 2-hydroxyl-3-meth­oxy-substituted benzene ring and in (II)[link], the terminal group is a 2-hydroxyl-4-bromo benzene ring. The configuration about each of the imine bonds is E. Each mol­ecule features an intra­molecular hydroxyl-O—H⋯N(imine) hydrogen bond with geometric details listed in Tables 2[link] and 3[link], respectively. As might be expected and judged from the data in Table 1[link], there is a close similarity in comparable geometric parameters characterizing mol­ecules (I)[link] and (II)[link] with salient bond lengths being equal within experimental error. The most significant difference in bond angles is seen in the ca 3° wider C9—C8—N2 angle in (II)[link] cf. (I)[link]. There is an apparent difference in conformation in the central region of the mol­ecules as seen in the ca 25° difference in the C7—N1—N2—C8 torsion angles indicating a discernible kink in (I)[link]. The central C2N2 chromophore in (I)[link] exhibits distortions from co-planarity as the r.m.s. deviation of the fitted atoms is 0.1459 Å with maximum deviations to either side of the plane being 0.155 (17) Å for the N2 atom and 0.149 (14) Å for C8. By contrast, the r.m.s. deviation for the central atoms in (II)[link] is 0.0112 Å. Further differences are noted in dihedral angles between the central plane and pendant benzene rings, and between the benzene rings, Table 1[link], with the maximum difference occurring for the (C7,N1,N2,C8)/(C9–C14) dihedral angles of 23.1 (4) and 1.5 (6)° for (I)[link] and (II)[link], respectively.

Table 1
Selected geometric parameters (Å, °) in (I)[link] and (II)

Parameter (I) (II)
N1—N2 1.409 (3) 1.417 (7)
C7—N1 1.283 (3) 1.276 (7)
C8—N2 1.256 (4) 1.234 (7)
N2—N1—C7 112.4 (2) 110.9 (5)
N1—N2—C8 114.2 (2) 114.9 (5)
C1—C7—N1 122.6 (3) 123.1 (6)
C9—C8—N2 121.1 (3) 124.5 (6)
C7—N1—N2—C8 −151.0 (3) 177.8 (6)
C1—C7—N1—N2 −178.8 (2) −178.9 (5)
C9—C8—N2—N1 179.9 (2) −179.2 (6)
(C7,N1,N2,C8)/(C1–C6) 20.9 (4) 15.6 (5)
(C7,N1,N2,C8)/(C9–C14) 23.1 (4) 1.5 (6)
(C1–C6)/(C9–C14) 2.41 (17) 15.5 (3)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the (C9–14) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.83 (3) 1.91 (3) 2.657 (3) 149 (3)
C15—H15B⋯O2i 0.96 2.58 3.439 (4) 149
C14—Cl2⋯Cg1ii 1.74 (1) 3.70 (1) 3.765 (3) 79 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (ii) x-1, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.83 (6) 1.96 (6) 2.655 (8) 141 (7)
[Figure 1]
Figure 1
The mol­ecular structures of (a) (I)[link] and (b) (II)[link], showing the atom-labelling schemes and displacement ellipsoids at the 35% probability level.

3. Supra­molecular features

The two prominent directional inter­actions in the mol­ecular packing of (I)[link] are of the type C—H⋯O and C—Cl⋯π, Table 2[link]. Thus, meth­oxy-C—H⋯O(meth­oxy) and chloro­benzene-C—Cl⋯π(chloro­benzene) contacts serve to link mol­ecules into supra­molecular chain aligned along the a-axis direction, Fig. 2[link](a). The linear chains thus formed assemble in the crystal without directional contacts between them, Fig. 2[link](b).

[Figure 2]
Figure 2
Mol­ecular packing in the crystal of (I)[link]: (a) supra­molecular chain sustained by meth­oxy-C—H⋯O(meth­oxy) and chloro­benzene-C—Cl⋯π(chloro­benzene) inter­actions shown as orange and purple dashed lines, respectively and (b) a view of the unit-cell contents in projection down the a axis with one chain highlighted in space-filling mode.

Supra­molecular chains along the a axis are also noted in the packing of (II)[link], Fig. 3[link](a). In this instance, the contacts between mol­ecules are of the type Br⋯O, i.e. the Br1⋯O1 separation is 3.132 (4) Å for symmetry operation [{1\over 2}] + x, 3 − y, z. With the first such inter­action in a crystal being reported in 1954, i.e. in the crystal of Br2·O(CH2CH2)2O (Hassel & Hvoslef, 1954[Hassel, O. & Hvoslef, J. (1954). Acta Chem. Scand. 8, 873.]), these well-described secondary bonding inter­actions (Alcock, 1972[Alcock, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1-58.]), are termed halogen-bonding inter­actions in the current parlance (Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 219-228.]). In (II)[link], the Br⋯O inter­actions assemble mol­ecules into zigzag chains as these are propagated by glide symmetry. Globally, the supra­molecular chains stack along the b axis to form layers and the layers stack along the c axis in an …ABAB… fashion, Fig. 3[link](b), but there are no directional inter­actions between the chains.

[Figure 3]
Figure 3
Mol­ecular packing in the crystal of (II)[link]: (a) supra­molecular, zigzag chain sustained by Br⋯O secondary bonding inter­actions shown as black dashed lines and (b) a view of the unit-cell contents in projection down the b axis.

4. Hirshfeld surface analysis

The Hirshfeld surfaces for (I)[link] and (II)[link] were calculated employing the Crystal Explorer 17 program (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.]) following recently published protocols (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The results describe the influence of non-bonded inter­actions upon the mol­ecular packing in the crystals of (I)[link] and (II)[link], especially in the absence of directional inter­actions between the chains.

On the Hirshfeld surfaces mapped over dnorm, the presence of the bright-red spots near the meth­oxy-O2 and H15B atoms for (I)[link] in Fig. 4[link](a),(b) and those near the Br1 and hydroxyl-O1 atoms in Fig. 5[link](a) for (II)[link], are indicative of dominant inter­molecular C—H⋯O and Br⋯O contacts in their respective crystal structures. The faint-red spots viewed near the imine-N2 and H8 atoms for (I)[link], and near the Cl2 and H7 atoms for (II)[link] in Fig. 4[link](a),(b) and 5(b), respectively, indicate the influence of short inter­atomic contacts (Table 4[link]) on their mol­ecular packing. The Hirshfeld surfaces mapped over the calculated electrostatic potential for (I)[link] and (II)[link] showing contributions from different inter­molecular inter­actions are illustrated through blue and red regions corresponding to positive and negative electrostatic potential in Fig. 6[link]. For (I)[link], the presence of a short C—Cl2⋯π(C9–C14) contact, Table 2[link], is illustrated through a blue bump and a orange concave region in the Hirshfeld surface mapped with the shape-index property in Fig. 4[link](c).

Table 4
Summary of short inter­atomic contacts (Å) for (I)[link] and (II)a

Contact Distance Symmetry operation
(I)    
H12⋯O1 2.59 x, [{1\over 2}] + y, [{1\over 2}] − z
H8⋯N2 2.58 −1 + x, y, z
H13⋯H15A 2.30 [{1\over 2}] + x, 2 − y, [{1\over 2}] + z
(II)    
Br1⋯O1 3.132 (4) [{1\over 2}] + x, 3 − y, z
Cl2⋯H7 2.69 [{1\over 2}] + x, 1 − y, z
Notes: (a) The inter­atomic distances are calculated in Crystal Explorer (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.]) whereby the X—H bond lengths are adjusted to their neutron values.
[Figure 4]
Figure 4
Views of the Hirshfeld surface for (I)[link] mapped: (a) and (b) over dnorm in the range −0.097 to + 1.103 arbitrary units and (c) with the shape-index property showing inter­molecular C—Cl⋯π/π⋯Cl—C contacts.
[Figure 5]
Figure 5
Views of the Hirshfeld surface for (II)[link] mapped over dnorm in the range −0.016 to 1.528 arbitrary units.
[Figure 6]
Figure 6
A view of the Hirshfeld surface mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively): (a) for (I)[link] in the range −0.071 to +0.038 atomic units and (b) for (II)[link] in the range −0.063 to +0.040 atomic units.

The overall two-dimensional fingerprint plots for (I)[link], Fig. 7[link](a), and (II)[link], Fig.7(f), and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts for (I)[link] are illustrated in Fig. 7[link](b)–(e), respectively, and the equivalent plots for (II)[link] are found in Fig. 7[link](g)–(j). The percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces of (I)[link] and (II)[link] are qu­anti­tatively summarized in Table 5[link]. For (I)[link], the short inter­atomic H⋯H contact between the meth­oxy-H15A and di­chloro­benzene-H13 atoms, Table 4[link], is evident as a pair of almost fused peaks at de + di ∼2.3 Å in Fig.7(b). In (II)[link], comparable inter­actions are at inter­atomic distances farther than the sum of their van der Waals radii. The decrease in the percentage contribution from H⋯H contacts to the Hirshfeld surface of (II)[link] compared to (I)[link], Table 5[link], can be related, in the main, to the presence of the bromine substituent in the hydroxyl­benzene ring, in contrast to the meth­oxy group in (I)[link], and its participation in a number of surface contacts, most notably Br⋯H/H⋯Br contacts (13.7%).

Table 5
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)[link] and (II)

Contact   Percentage contribution
  (I) (II)
H⋯H 31.1 21.1
O⋯H/H⋯O 9.1 4.3
C⋯H/H⋯C 16.4 13.8
Cl⋯H/H⋯Cl 17.3 23.1
N⋯H/H⋯N 8.0 0.4
C⋯Cl/Cl⋯C 6.2 1.0
C⋯C 4.6 7.2
C⋯O/O⋯C 3.7 0.1
C⋯N/N⋯C 0.0 7.1
Cl⋯Cl 3.5 2.7
Cl⋯N/N⋯Cl 0.0 0.6
N⋯O/O⋯N 0.0 0.1
Br⋯H/H⋯Br 13.7
Br⋯O/O⋯Br 2.6
Br⋯C/C⋯Br 1.8
Br⋯Cl/Cl⋯Br 0.2
Br⋯Br 0.2
[Figure 7]
Figure 7
(a) A comparison of the full two-dimensional fingerprint plot for (I)[link] and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) C⋯C contacts, (f)–(j) equivalent fingerprint plots for (II)[link], (g) N⋯H/H⋯N for (I)[link], (h) C⋯Cl/C⋯Cl for (I)[link], (i) Cl⋯H/H⋯Cl for (II)[link] and (j) Br⋯O/O⋯Br for (II)[link].

The presence of C—H⋯O contacts in the crystal of (I)[link] is characterized as the pair of forceps-like tips at de + di ∼2.5 Å in the fingerprint plot delineated into O⋯H/H⋯O contacts, Fig. 7[link](c), with the points related to other short inter­atomic O⋯H contacts merged within. The comparatively small contribution from these contacts in (II)[link], Table 5[link], show the points to be at distances greater than sum of their van der Waals radii in Fig. 7[link](h). In the fingerprint plot delineated into C⋯H/H⋯C contacts for both (I)[link] and (II)[link], Fig. 7[link](d) and (i), the characteristic wings are observed but with different shapes. Their relatively long inter­atomic distances are consistent with the absence of inter­molecular C—H⋯π or short C⋯H contacts in the crystals. The absence of aromatic ππ stacking is also evident from the fingerprint plots delineated into C⋯C contacts, Figs. 7(e) and (j), although significant percentage contributions from these contacts are noted, Table 5[link]. In addition to the above, some specific contacts occur in the crystals of (I)[link] and (II)[link].

The pair of forceps-like tips at de + di ∼2.5 Å in the fingerprint plot delineated into N⋯H/H⋯N contacts for (I)[link] in Fig. 7[link](k) indicate the short inter­atomic N⋯H contact involving the imine-N2 and H12 atoms, Table 4[link], formed within the supra­molecular chain along a axis Fig. 2[link](a). Also, in the fingerprint plot delineated into C⋯Cl/Cl⋯C contacts for (I)[link], Fig. 7[link](l), the C—Cl⋯π contacts are highlighted as the pattern of blue points at separations as close as de = di = 1.85 Å. In the case of (II)[link], in the fingerprint plot delineated into Cl⋯H/H⋯Cl contacts, Fig. 7[link](m), the short inter­atomic contact involving the Cl2 and imine-H7 atoms is apparent as the pair of spikes with their tips at de + di ∼2.7 Å. Finally, the presence of inter­atomic Br⋯O inter­actions along the a axis in the crystal is reflected in the pair of thin spikes at de + di ∼3.2 Å in Fig. 7[link](n). The comparatively greater percentage contribution from inter­atomic contacts such as C⋯O/O⋯C and Cl⋯Cl to the surface of (I)[link] and Br⋯H/H⋯Br and C⋯N/N⋯C to that of (II)[link] as well as smaller contributions from other contacts as summarized in Table 5[link], show negligible effect on the respective mol­ecular packing due to the inter­atomic separations being equal to or exceeding the respective sums of the van der Waals radii.

5. Energy frameworks

The pairwise inter­action energies between the mol­ecules in the crystals of (I)[link] and (II)[link] were calculated by summing up four energy components, these being the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) terms (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.]). The energies were obtained using the wavefunctions calculated at the B3LYP/6–31 G(d,p) and HF/STO-3 G levels theory for (I)[link] and (II)[link], respectively. The individual energy components as well as the total inter­action energy were calculated relative to a reference mol­ecule. The nature and strength of the energies for the key identified inter­molecular inter­actions are summarized in Table 6[link].

Table 6
Summary of inter­action energies (kJ mol−1) calculated for (I)[link] and (II)

Contact R (Å) Eele Epol Edis Erep Etot
(I)a            
C15—H15B⋯O2i 12.93 −12.5 −2.7 −13.1 9.1 −21.1
C14—Cl2 ⋯π(C9–C14)ii + 4.36 −4.7 −3.5 −66.8 36.9 −43.0
N2 ⋯H8iii            
H13⋯H15Aiv 13.64 −0.6 −0.6 −9.7 5.5 −6.1
(II)b            
Br1⋯O1i 10.21 −4.6 −0.9 −7.2 5.4 −7.5
Cl2⋯H7ii 8.69 −3.9 −0.7 −4.2 0.7 −3.1
Notes: (a) Symmetry operations for (I)[link]: (i) −1 + x, y, z; (ii) −[{1\over 2}] + x, [{5\over 2}] − y, − z; (iii) 1 + x, y, z. (b) Symmetry operations for (II)[link]: (i) [{1\over 2}] + x, 3 − y, z; (ii) −[{1\over 2}] + x, 1 − y, z.

It is apparent from the inter­action energies calculated for (I)[link] that the dispersion component, Edis, makes the major contribution to the C—Cl⋯π and N⋯H contacts and these are dominant in the mol­ecular packing. By contrast, the C—H⋯O inter­action has nearly equal contributions from the electrostatic component, Eele, and Edis. The small value of the inter­action energy corresponding to the short H⋯H contact arises primarily from Edis. The inter­molecular Br⋯O and Cl⋯H contacts instrumental in the crystal of (II)[link] have small inter­action energy values dominated by Edis.

Fig. 8[link] represents graphically the magnitudes of inter­molecular energies in the form of energy frameworks, which provide a view of the supra­molecular architecture of crystals through cylinders joining centroids of mol­ecular pairs by using red, green and blue colour codes for the components Eele, Edisp and Etot, respectively. The radius of the cylinder is proportional to the magnitude of the inter­action energies which are adjusted to same scale factor of 50 with a cut-off value of 3 kJ mol−1 within 4 × 4 × 4 unit cells. The appearance of the energy frameworks clearly reflect the foregoing discussion, namely the clear dominance of the Edis terms, especially for (II)[link].

[Figure 8]
Figure 8
The energy frameworks calculated for (I)[link] showing the (a) electrostatic potential force, (b) dispersion force and (c) total energy. The energy frameworks were adjusted to the same scale factor of 50 with a cut-off value of 3 kJ mol−1 within 4 × 4 × 4 unit cells. (d)–(f) Equivalent frameworks for (II)[link].

6. Database survey

In a recent contribution describing the structure of the analogue of (I)[link] where the meth­oxy substituent is absent (Manawar et al., 2019b[Manawar, R. B., Gondaliya, M. B., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019b). Acta Cryst. E75, 1423-1428.]), i.e. (III), it was noted that crystal structure determinations of mol­ecules with the 2-OH-C6-C(H)N—NC(H)-C6 fragment number fewer than ten, and that there is some conformational flexibility in these mol­ecules. This observation is borne out in the present study where there is a disparity of over 25° in the central C7—N1—N2—C8 torsion angle, i.e. −151.0 (3) and 177.8 (6)° for (I)[link] and (II)[link], respectively. These values compare with the equivalent angle of −172.7 (2)° in (III). An overlay diagram for (I)–(III) is shown in Fig. 9[link]: here, the different conformations for (I)[link], cf. (II)[link] and (III), are clearly evident.

[Figure 9]
Figure 9
Two overlay diagrams of (I)–(III), represented by red, green and blue images, respectively. The mol­ecules have been overlapped so the O1, N1 and C1 atoms are coincident.

7. Synthesis and crystallization

The title compounds were synthesized and characterized as per the procedures reported in the literature (Manawar et al., 2019a[Manawar, R. B., Gondaliya, M. B., Mamtora, M. J. & Shah, M. K. (2019a). Sci. News 126, 222-247.]). The crystals of (I)[link] and (II)[link] in the form of yellow blocks suitable for the structural study reported here were grown by slow evaporation of their chloro­form solutions.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The positions of the O-bound H atoms were refined with O—H = 0.82±0.01 Å, and with Uiso(H) set to 1.5Ueq(O).

Table 7
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H12Cl2N2O2 C14H9BrCl2N2O
Mr 323.17 372.04
Crystal system, space group Orthorhombic, P212121 Orthorhombic, Pca21
Temperature (K) 296 296
a, b, c (Å) 4.3556 (2), 12.8548 (4), 25.9904 (9) 16.4510 (12), 4.4314 (3), 20.0523 (15)
V3) 1455.21 (10) 1461.83 (18)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.45 3.17
Crystal size (mm) 0.30 × 0.25 × 0.25 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.557, 0.746 0.398, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 48935, 3751, 2909 39831, 3569, 2150
Rint 0.070 0.108
(sin θ/λ)max−1) 0.678 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.02 0.038, 0.082, 1.00
No. of reflections 3751 3569
No. of parameters 194 184
No. of restraints 1 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.25 0.30, −0.59
Absolute structure Flack x determined using 1004 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). Flack x determined using 829 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.12 (3) 0.003 (7)
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) top
Crystal data top
C15H12Cl2N2O2Dx = 1.475 Mg m3
Mr = 323.17Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7669 reflections
a = 4.3556 (2) Åθ = 2.8–20.9°
b = 12.8548 (4) ŵ = 0.45 mm1
c = 25.9904 (9) ÅT = 296 K
V = 1455.21 (10) Å3Block, yellow
Z = 40.30 × 0.25 × 0.25 mm
F(000) = 664
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2909 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.070
ω and φ scanθmax = 28.8°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 55
Tmin = 0.557, Tmax = 0.746k = 1717
48935 measured reflectionsl = 3435
3751 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.2295P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3751 reflectionsΔρmax = 0.16 e Å3
194 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack x determined using 1004 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5635 (2)0.58257 (6)0.17813 (3)0.0639 (2)
Cl20.1091 (2)0.85695 (7)0.29187 (3)0.0635 (2)
O10.0486 (6)1.03357 (16)0.07165 (7)0.0526 (5)
H1O0.076 (10)0.990 (2)0.0947 (10)0.079*
O20.0282 (6)1.13830 (16)0.01337 (7)0.0580 (6)
N10.2888 (6)0.86954 (18)0.11908 (9)0.0462 (6)
N20.3817 (6)0.80405 (19)0.15969 (9)0.0511 (6)
C10.3847 (6)0.9094 (2)0.03056 (9)0.0407 (6)
C20.1975 (6)0.9977 (2)0.02967 (9)0.0406 (6)
C30.1588 (7)1.0536 (2)0.01676 (10)0.0436 (6)
C40.3053 (7)1.0193 (2)0.06085 (10)0.0529 (8)
H40.2809901.0559230.0914410.063*
C50.4876 (8)0.9312 (3)0.05996 (11)0.0577 (8)
H50.5816250.9082780.0900220.069*
C60.5300 (8)0.8777 (2)0.01501 (11)0.0531 (7)
H60.6569100.8194780.0146520.064*
C70.4354 (7)0.8510 (2)0.07726 (10)0.0454 (6)
H70.5801110.7977980.0770200.054*
C80.1755 (7)0.7862 (2)0.19229 (10)0.0433 (6)
H80.0175520.8158620.1880630.052*
C90.2348 (6)0.7189 (2)0.23722 (10)0.0384 (6)
C100.4098 (7)0.6277 (2)0.23543 (10)0.0442 (6)
C110.4597 (8)0.5674 (2)0.27870 (12)0.0559 (8)
H110.5781680.5073590.2764540.067*
C120.3337 (8)0.5965 (3)0.32511 (12)0.0597 (8)
H120.3703490.5565470.3543120.072*
C130.1540 (8)0.6841 (3)0.32858 (11)0.0543 (8)
H130.0647940.7028560.3597340.065*
C140.1081 (7)0.7439 (2)0.28499 (10)0.0439 (6)
C150.0503 (10)1.2040 (3)0.05738 (12)0.0743 (11)
H15A0.1460961.2350290.0641680.111*
H15B0.1986961.2577410.0510060.111*
H15C0.1132121.1636440.0866010.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0822 (6)0.0538 (4)0.0555 (4)0.0136 (4)0.0063 (4)0.0055 (4)
Cl20.0727 (5)0.0550 (4)0.0628 (5)0.0050 (4)0.0086 (4)0.0072 (4)
O10.0699 (14)0.0525 (12)0.0353 (10)0.0110 (11)0.0077 (10)0.0009 (8)
O20.0781 (15)0.0535 (12)0.0425 (11)0.0107 (12)0.0016 (10)0.0082 (9)
N10.0520 (14)0.0456 (13)0.0412 (13)0.0021 (11)0.0001 (11)0.0106 (10)
N20.0489 (13)0.0557 (14)0.0486 (13)0.0001 (12)0.0027 (12)0.0156 (11)
C10.0438 (14)0.0426 (14)0.0356 (13)0.0066 (12)0.0008 (11)0.0029 (11)
C20.0476 (15)0.0438 (14)0.0303 (12)0.0066 (12)0.0019 (11)0.0054 (11)
C30.0493 (15)0.0448 (15)0.0366 (13)0.0063 (13)0.0020 (12)0.0002 (11)
C40.0604 (19)0.066 (2)0.0325 (14)0.0094 (16)0.0021 (13)0.0015 (14)
C50.064 (2)0.0714 (19)0.0377 (15)0.0019 (18)0.0109 (14)0.0091 (14)
C60.0553 (17)0.0555 (17)0.0484 (16)0.0004 (15)0.0075 (14)0.0117 (13)
C70.0469 (16)0.0408 (14)0.0485 (15)0.0024 (13)0.0020 (13)0.0001 (12)
C80.0494 (16)0.0414 (14)0.0390 (14)0.0027 (13)0.0062 (12)0.0021 (11)
C90.0406 (13)0.0377 (13)0.0370 (13)0.0076 (11)0.0051 (11)0.0022 (10)
C100.0472 (15)0.0433 (14)0.0420 (14)0.0030 (13)0.0037 (13)0.0007 (12)
C110.0602 (18)0.0476 (16)0.0600 (18)0.0029 (15)0.0070 (15)0.0143 (14)
C120.066 (2)0.065 (2)0.0481 (17)0.0039 (17)0.0051 (16)0.0233 (15)
C130.0587 (18)0.069 (2)0.0355 (14)0.0093 (16)0.0006 (13)0.0059 (14)
C140.0456 (15)0.0442 (14)0.0419 (14)0.0082 (12)0.0026 (13)0.0016 (12)
C150.098 (3)0.072 (2)0.0529 (19)0.014 (2)0.001 (2)0.0195 (17)
Geometric parameters (Å, º) top
Cl1—C101.733 (3)C5—H50.9300
Cl2—C141.743 (3)C6—H60.9300
O1—C21.350 (3)C7—H70.9300
O1—H1O0.828 (13)C8—C91.476 (4)
O2—C31.362 (4)C8—H80.9300
O2—C151.425 (3)C9—C101.399 (4)
N1—C71.283 (3)C9—C141.396 (4)
N1—N21.409 (3)C10—C111.383 (4)
N2—C81.256 (4)C11—C121.377 (4)
C1—C21.398 (4)C11—H110.9300
C1—C61.403 (4)C12—C131.374 (5)
C1—C71.444 (4)C12—H120.9300
C2—C31.415 (4)C13—C141.384 (4)
C3—C41.384 (4)C13—H130.9300
C4—C51.383 (4)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.369 (4)C15—H15C0.9600
C2—O1—H1O107 (3)N2—C8—H8119.5
C3—O2—C15117.5 (3)C9—C8—H8119.5
C7—N1—N2112.4 (2)C10—C9—C14116.0 (2)
C8—N2—N1114.2 (2)C10—C9—C8124.1 (2)
C2—C1—C6119.0 (3)C14—C9—C8120.0 (3)
C2—C1—C7121.7 (2)C11—C10—C9121.9 (3)
C6—C1—C7119.3 (3)C11—C10—Cl1116.8 (2)
O1—C2—C1123.0 (2)C9—C10—Cl1121.3 (2)
O1—C2—C3117.3 (3)C10—C11—C12119.8 (3)
C1—C2—C3119.8 (2)C10—C11—H11120.1
O2—C3—C4125.7 (3)C12—C11—H11120.1
O2—C3—C2115.0 (2)C13—C12—C11120.5 (3)
C4—C3—C2119.3 (3)C13—C12—H12119.8
C3—C4—C5120.8 (3)C11—C12—H12119.8
C3—C4—H4119.6C12—C13—C14118.9 (3)
C5—C4—H4119.6C12—C13—H13120.5
C6—C5—C4120.2 (3)C14—C13—H13120.5
C6—C5—H5119.9C13—C14—C9122.9 (3)
C4—C5—H5119.9C13—C14—Cl2117.3 (2)
C5—C6—C1120.9 (3)C9—C14—Cl2119.8 (2)
C5—C6—H6119.5O2—C15—H15A109.5
C1—C6—H6119.5O2—C15—H15B109.5
N1—C7—C1122.6 (3)H15A—C15—H15B109.5
N1—C7—H7118.7O2—C15—H15C109.5
C1—C7—H7118.7H15A—C15—H15C109.5
N2—C8—C9121.1 (3)H15B—C15—H15C109.5
C7—N1—N2—C8151.0 (3)C6—C1—C7—N1173.4 (3)
C6—C1—C2—O1179.9 (3)N1—N2—C8—C9179.9 (2)
C7—C1—C2—O11.0 (4)N2—C8—C9—C1039.5 (4)
C6—C1—C2—C30.3 (4)N2—C8—C9—C14141.8 (3)
C7—C1—C2—C3178.8 (3)C14—C9—C10—C111.4 (4)
C15—O2—C3—C47.2 (5)C8—C9—C10—C11179.7 (3)
C15—O2—C3—C2173.5 (3)C14—C9—C10—Cl1176.3 (2)
O1—C2—C3—O20.2 (4)C8—C9—C10—Cl12.5 (4)
C1—C2—C3—O2180.0 (2)C9—C10—C11—C120.4 (5)
O1—C2—C3—C4179.6 (3)Cl1—C10—C11—C12177.4 (2)
C1—C2—C3—C40.6 (4)C10—C11—C12—C131.1 (5)
O2—C3—C4—C5179.2 (3)C11—C12—C13—C141.5 (5)
C2—C3—C4—C50.1 (4)C12—C13—C14—C90.5 (4)
C3—C4—C5—C61.2 (5)C12—C13—C14—Cl2177.6 (3)
C4—C5—C6—C11.5 (5)C10—C9—C14—C131.0 (4)
C2—C1—C6—C50.8 (4)C8—C9—C14—C13179.9 (3)
C7—C1—C6—C5179.9 (3)C10—C9—C14—Cl2179.0 (2)
N2—N1—C7—C1178.8 (2)C8—C9—C14—Cl22.1 (4)
C2—C1—C7—N17.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (C9–14) ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.83 (3)1.91 (3)2.657 (3)149 (3)
C15—H15B···O2i0.962.583.439 (4)149
C14—Cl2···Cg1ii1.74 (1)3.70 (1)3.765 (3)79 (1)
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x1, y, z.
4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) top
Crystal data top
C14H9BrCl2N2ODx = 1.690 Mg m3
Mr = 372.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 4698 reflections
a = 16.4510 (12) Åθ = 2.5–18.6°
b = 4.4314 (3) ŵ = 3.17 mm1
c = 20.0523 (15) ÅT = 296 K
V = 1461.83 (18) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 736
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2150 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.108
ω and φ scanθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2121
Tmin = 0.398, Tmax = 0.746k = 55
39831 measured reflectionsl = 2626
3569 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.024P)2 + 0.3263P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3569 reflectionsΔρmax = 0.30 e Å3
184 parametersΔρmin = 0.59 e Å3
2 restraintsAbsolute structure: Flack x determined using 829 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.17606 (4)1.58575 (14)0.09985 (4)0.0617 (2)
Cl10.95249 (10)0.2117 (4)0.37299 (9)0.0682 (5)
Cl20.63270 (11)0.3504 (5)0.30362 (11)0.0830 (6)
O10.8392 (2)1.0502 (9)0.1011 (4)0.0618 (10)
H1O0.830 (5)0.931 (14)0.132 (3)0.093*
N10.8804 (3)0.7671 (11)0.2128 (2)0.0459 (12)
N20.8764 (3)0.5871 (12)0.2711 (3)0.0583 (14)
C10.9706 (3)1.0963 (12)0.1535 (3)0.0395 (13)
C20.9148 (3)1.1674 (11)0.1024 (4)0.0461 (13)
C30.9379 (4)1.3636 (14)0.0523 (3)0.0568 (18)
H30.9013341.4127790.0186410.068*
C41.0152 (4)1.4872 (14)0.0519 (3)0.0557 (17)
H41.0299721.6201460.0181490.067*
C51.0700 (3)1.4155 (11)0.1008 (5)0.0454 (12)
C61.0480 (4)1.2229 (13)0.1514 (3)0.0450 (15)
H61.0853121.1765910.1846950.054*
C70.9496 (4)0.8944 (13)0.2077 (3)0.0458 (14)
H70.9885420.8557560.2402090.055*
C80.8102 (4)0.4636 (14)0.2809 (3)0.0490 (15)
H80.7692600.4949960.2497450.059*
C90.7918 (4)0.2707 (15)0.3384 (3)0.0441 (15)
C100.8495 (4)0.1490 (13)0.3823 (3)0.0471 (15)
C110.8267 (4)0.0303 (14)0.4358 (3)0.0602 (17)
H110.8662520.1097040.4639110.072*
C120.7460 (5)0.0916 (16)0.4478 (4)0.073 (2)
H120.7313220.2116140.4838670.087*
C130.6868 (4)0.0252 (16)0.4062 (4)0.066 (2)
H130.6321250.0153590.4138760.079*
C140.7104 (4)0.2044 (17)0.3525 (3)0.0525 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0534 (4)0.0635 (3)0.0682 (4)0.0060 (3)0.0127 (4)0.0003 (5)
Cl10.0462 (9)0.0986 (13)0.0599 (10)0.0036 (9)0.0082 (8)0.0084 (10)
Cl20.0440 (10)0.1108 (15)0.0943 (14)0.0090 (11)0.0136 (10)0.0087 (13)
O10.048 (2)0.068 (3)0.069 (3)0.003 (2)0.015 (3)0.010 (3)
N10.047 (3)0.044 (3)0.047 (3)0.000 (3)0.004 (2)0.001 (2)
N20.048 (4)0.067 (4)0.060 (4)0.011 (3)0.011 (3)0.019 (3)
C10.043 (3)0.036 (3)0.039 (3)0.003 (3)0.001 (3)0.004 (3)
C20.046 (3)0.044 (3)0.048 (3)0.005 (2)0.005 (4)0.001 (4)
C30.063 (5)0.054 (4)0.053 (4)0.009 (3)0.013 (3)0.005 (3)
C40.068 (5)0.049 (4)0.050 (4)0.001 (3)0.004 (4)0.009 (3)
C50.053 (3)0.038 (3)0.045 (3)0.003 (3)0.006 (4)0.003 (4)
C60.043 (4)0.046 (3)0.046 (4)0.004 (3)0.001 (3)0.002 (3)
C70.042 (4)0.049 (3)0.047 (3)0.004 (3)0.005 (3)0.002 (3)
C80.041 (4)0.059 (4)0.047 (4)0.002 (3)0.007 (3)0.000 (3)
C90.044 (4)0.046 (4)0.042 (4)0.008 (3)0.001 (3)0.006 (3)
C100.048 (4)0.050 (4)0.044 (3)0.004 (3)0.001 (3)0.008 (3)
C110.072 (5)0.063 (4)0.046 (4)0.004 (4)0.005 (4)0.002 (3)
C120.081 (6)0.078 (5)0.058 (4)0.021 (5)0.014 (5)0.003 (4)
C130.054 (4)0.080 (5)0.063 (4)0.023 (4)0.012 (4)0.010 (4)
C140.046 (4)0.065 (4)0.047 (4)0.011 (4)0.005 (3)0.007 (3)
Geometric parameters (Å, º) top
Br1—C51.901 (5)C4—H40.9300
Cl1—C101.727 (6)C5—C61.375 (10)
Cl2—C141.736 (8)C6—H60.9300
O1—C21.349 (7)C7—H70.9300
O1—H1O0.827 (14)C8—C91.466 (9)
N1—C71.276 (7)C8—H80.9300
N1—N21.417 (7)C9—C101.402 (9)
N2—C81.234 (7)C9—C141.400 (8)
C1—C61.393 (8)C10—C111.388 (9)
C1—C21.411 (9)C11—C121.375 (10)
C1—C71.448 (8)C11—H110.9300
C2—C31.382 (9)C12—C131.384 (11)
C3—C41.384 (9)C12—H120.9300
C3—H30.9300C13—C141.392 (10)
C4—C51.369 (10)C13—H130.9300
C2—O1—H1O114 (6)C1—C7—H7118.5
C7—N1—N2110.9 (5)N2—C8—C9124.5 (6)
C8—N2—N1114.9 (5)N2—C8—H8117.8
C6—C1—C2118.8 (5)C9—C8—H8117.8
C6—C1—C7119.3 (5)C10—C9—C14116.1 (6)
C2—C1—C7121.9 (5)C10—C9—C8125.3 (6)
O1—C2—C3118.8 (6)C14—C9—C8118.6 (6)
O1—C2—C1121.9 (6)C11—C10—C9121.5 (6)
C3—C2—C1119.3 (5)C11—C10—Cl1116.2 (5)
C2—C3—C4120.4 (6)C9—C10—Cl1122.3 (5)
C2—C3—H3119.8C12—C11—C10120.6 (7)
C4—C3—H3119.8C12—C11—H11119.7
C5—C4—C3120.6 (6)C10—C11—H11119.7
C5—C4—H4119.7C11—C12—C13120.0 (7)
C3—C4—H4119.7C11—C12—H12120.0
C4—C5—C6119.9 (5)C13—C12—H12120.0
C4—C5—Br1120.4 (6)C12—C13—C14118.9 (7)
C6—C5—Br1119.7 (6)C12—C13—H13120.6
C5—C6—C1120.9 (6)C14—C13—H13120.6
C5—C6—H6119.5C13—C14—C9122.9 (6)
C1—C6—H6119.5C13—C14—Cl2116.3 (6)
N1—C7—C1123.1 (6)C9—C14—Cl2120.8 (5)
N1—C7—H7118.5
C7—N1—N2—C8177.8 (6)N1—N2—C8—C9179.2 (6)
C6—C1—C2—O1179.3 (6)N2—C8—C9—C1013.9 (10)
C7—C1—C2—O10.2 (9)N2—C8—C9—C14164.6 (7)
C6—C1—C2—C31.0 (8)C14—C9—C10—C111.0 (9)
C7—C1—C2—C3179.4 (5)C8—C9—C10—C11179.5 (6)
O1—C2—C3—C4179.7 (6)C14—C9—C10—Cl1179.2 (5)
C1—C2—C3—C40.6 (9)C8—C9—C10—Cl10.6 (9)
C2—C3—C4—C50.5 (10)C9—C10—C11—C120.6 (10)
C3—C4—C5—C61.1 (10)Cl1—C10—C11—C12179.5 (5)
C3—C4—C5—Br1179.9 (5)C10—C11—C12—C130.1 (10)
C4—C5—C6—C10.6 (9)C11—C12—C13—C140.1 (11)
Br1—C5—C6—C1179.6 (4)C12—C13—C14—C90.5 (11)
C2—C1—C6—C50.4 (8)C12—C13—C14—Cl2178.5 (6)
C7—C1—C6—C5180.0 (5)C10—C9—C14—C130.9 (10)
N2—N1—C7—C1178.9 (5)C8—C9—C14—C13179.6 (6)
C6—C1—C7—N1179.3 (6)C10—C9—C14—Cl2178.0 (5)
C2—C1—C7—N10.3 (9)C8—C9—C14—Cl20.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.83 (6)1.96 (6)2.655 (8)141 (7)
Selected geometric parameters (Å, °) in (I) and (II) top
Parameter(I)(II)
N1—N21.409 (3)1.417 (7)
C7—N11.283 (3)1.276 (7)
C8—N21.256 (4)1.234 (7)
N2—N1—C7112.4 (2)110.9 (5)
N1—N2—C8114.2 (2)114.9 (5)
C1—C7—N1122.6 (3)123.1 (6)
C9—C8—N2121.1 (3)124.5 (6)
C7—N1—N2—C8-151.0 (3)177.8 (6)
C1—C7—N1—N2-178.8 (2)-178.9 (5)
C9—C8—N2—N1179.9 (2)-179.2 (6)
(C7,N1,N2,C8)/(C1–C6)20.9 (4)15.6 (5)
(C7,N1,N2,C8)/(C9–C14)23.1 (4)1.5 (6)
(C1–C6)/(C9–C14)2.41 (17)15.5 (3)
Summary of short interatomic contacts (Å) for (I) and (II)a top
ContactDistanceSymmetry operation
(I)
H12···O12.59-x, 1/2 + y, 1/2 - z
H8···N22.58-1 + x, y, z
H13···H15A2.301/2 + x, 2 - y, 1/2 + z
(II)
Br1···O13.132 (4)1/2 + x, 3 - y, z
Cl2···H72.69-1/2 + x, 1 - y, z
Notes: (a) The interatomic distances are calculated in Crystal Explorer (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values.
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) and (II) top
ContactPercentage contribution
(I)(II)
H···H31.121.1
O···H/H···O9.14.3
C···H/H···C16.413.8
Cl···H/H···Cl17.323.1
N···H/H···N8.00.4
C···Cl/Cl···C6.21.0
C···C4.67.2
C···O/O···C3.70.1
C···N/N···C0.07.1
Cl···Cl3.52.7
Cl···N/N···Cl0.00.6
N···O/O···N0.00.1
Br···H/H···Br13.7
Br···O/O···Br2.6
Br···C/C···Br1.8
Br···Cl/Cl···Br0.2
Br···Br0.2
Summary of interaction energies (kJ mol-1) calculated for (I) and (II) top
ContactR (Å)EeleEpolEdisErepEtot
(I)a
C15—H15B···O2i12.93-12.5-2.7-13.19.1-21.1
C14—Cl2 ···π(C9–C14)ii +4.36-4.7-3.5-66.836.9-43.0
N2 ···H8iii
H13···H15A'iv13.64-0.6-0.6-9.75.5-6.1
(II)b
Br1···O1i10.21-4.6-0.9-7.25.4-7.5
Cl2···H7ii8.69-3.9-0.7-4.20.7-3.1
Notes: (a) Symmetry operations for (I): (i) -1 + x, y, z; (ii) -1/2 + x, 5/2 - y, - z; (iii) 1 + x, y, z. (b) Symmetry operations for (II): (i) 1/2 + x, 3 - y, z; (ii) -1/2 + x, 1 - y, z.
 

Footnotes

Additional correspondence author, e-mail: drmks2000hotmail.com.

Acknowledgements

The authors thank the Department of Chemistry, Saurashtra University, Rajkot, Gujarat, India, for access to the chemical synthesis laboratory and to the Sophisticated Analytical Instrumentation Centre (SAIC), Tezpur, Assam, India for providing the X-ray intensity data for (I)[link] and (II)[link].

Funding information

Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. STR-RCTR-RCCM-001-2019).

References

First citationAlcock, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1–58.  CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarke, R. M. & Storr, T. (2014). Dalton Trans. 43, 9380–9391.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHassel, O. & Hvoslef, J. (1954). Acta Chem. Scand. 8, 873.  CSD CrossRef Web of Science Google Scholar
First citationLiu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D. & Hamon, J.-R. (2018). Coord. Chem. Rev. 357, 144–172.  Web of Science CrossRef CAS Google Scholar
First citationManawar, R. B., Gondaliya, M. B., Mamtora, M. J. & Shah, M. K. (2019a). Sci. News 126, 222–247.  CAS Google Scholar
First citationManawar, R. B., Gondaliya, M. B., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019b). Acta Cryst. E75, 1423–1428.  CSD CrossRef IUCr Journals Google Scholar
First citationManawar, R. B., Mamtora, M. J., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 53–61.  CSD CrossRef IUCr Journals Google Scholar
First citationMukherjee, T., Pessoa, J. C., Kumar, A. & Sarkar, A. R. (2013). Dalton Trans. 42, 2594–2607.  CSD CrossRef CAS PubMed Google Scholar
First citationNaeimi, H., Nazifi, Z. S., Matin Amininezhad, S. & Amouheidari, M. (2013). J. Antibiot. 66, 687–689.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 219–228.  CrossRef Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.  Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds