research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­methyl 5-(4-ethyl­phen­yl)-4-[(4-ethyl­phen­yl)ethyn­yl]-6,11-di­phenyl-1,3,6,11-tetra­hydro-2H-6,11-ep­­oxy­cyclo­penta­[a]anthracene-2,2-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Materials Engineering, Chaohu College, Chaohu Anhui, People's Republic of China
*Correspondence e-mail: mxzcd79@163.com

Edited by H. Ishida, Okayama University, Japan (Received 24 February 2020; accepted 13 May 2020; online 29 May 2020)

In the central fused ring system of the title compound, C51H42O5, all of the five-membered rings are in an envelope conformation. The dihedral angle between the two benzene rings in the fused ring system is 74.66 (7)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming a layer parallel to the ab plane. Each mol­ecule acts as a double donor as well as a double acceptor of the C—H⋯π inter­actions. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (61.4%) and C⋯H/H⋯C (25.3%) contacts.

1. Chemical context

The hexa­dehydro-Diels–Alder reaction, by which benzyne inter­mediates (Niu et al., 2013[Niu, D., Willoughby, P. H., Woods, B. P., Baire, B. & Hoye, T. R. (2013). Nature, 501, 531-534.]) as well as highly functionalized benzenoid products (Karmakar et al., 2013[Karmakar, R., Mamidipalli, P., Yun, S. Y. & Lee, D. (2013). Org. Lett. 15, 1938-1941.]) are prepared, has played a very significant role in the field of organic synthesis. Zhang et al. (2015[Zhang, M. X., Shan, W., Chen, Z., Yin, J., Yu, G. A. & Liu, S. H. (2015). Tetrahedron Lett. 56, 6833-6838.]) observed that benzyne inter­mediates can be captured by five-membered heterocyclic compounds, such as furans, pyrroles and thio­phenes. As part of our work on the application of the hexa­dehydro-Diels–Alder reaction (Meng et al., 2017[Meng, X. Z., Lv, S., Cheng, D., Hu, Q., Ma, J., Liu, B. H. & Hu, Y. M. (2017). Chem. Eur. J. 23, 6264-6271.]), we report herein the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. One ethyl group (C46–C47) is disordered over two sites around the C43—C46 bond axis with occupancies of 0.548 (9) and 0.452 (9). The fused ring system is not planar, and the five-membered rings (C4/C5/O5/C12/C13 and C5/C6/C11/C12/O5) adopt envelope conformations with atom O5 as the flap. The C4–C6/C11–C13 ring adopts a boat conformation. The C1–C3/C16/C17 ring adopts an envelope conformation with atom C1 as the flap and has puckering parameters Q2 = 0.3132 (18) Å and φ2 = 178.5 (3)°. The angle between the two benzene rings (C6–C11 and C3/C4/C13–C16) in the fused ring system is 74.66 (7)°. The sp-hybridized character of atoms C38 and C39 is confirmed by the C38—C39 [1.188 (2) Å] bond length, and the C15—C38—C39 [177.2 (2)°] and C38—C39—C40 [178.4 (2)°] bond angles. The C3/C4/C13–C16 benzene ring is inclined to the C30–C35 and C40–C45 benzene rings by 57.72 (7) and 35.48 (3)°, respectively, the latter two rings being inclined to each other by 77.78 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by weak C—H⋯π inter­actions (C20—H20⋯Cg4i and C26—H26⋯Cg7ii; symmetry codes as in Table 1[link]), forming a layer parallel to the ab plane (Fig. 2[link]); Cg4 and Cg7 are the centroids of the C3/C4/C13–C16 and C18—C23 rings, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg7 are the centroids of the C3/C4/C13–C16 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cg4i 0.93 2.61 3.516 (3) 165
C26—H26⋯Cg7ii 0.93 2.82 3.713 (3) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the c axis. The C—H⋯π inter­actions are shown as dashed lines.

In order to investigate the inter­molecular inter­actions in a visual manner, a Hirshfeld surface analysis was performed using CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. The University of Western Australia.]). The bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 3[link]a) show the presence of C—H⋯π inter­actions with neighbouring mol­ecules. The absence of adjacent red and blue triangles on the shape-index map (Fig. 3[link]b) suggests that there are no notable ππ inter­actions. The fingerprint plots (Fig. 4[link]) are given for all contacts, and those delineated into C⋯C (0.8%), C⋯O/O⋯C (0.2%), H⋯O/O⋯H (12.2%), C⋯H/H⋯C (25.3%) and H⋯H (61.4%) contacts. The most important contributions to the crystal packing are H⋯H and C⋯H/H⋯C contacts.

[Figure 3]
Figure 3
(a) The Hirshfeld surface mapped over dnorm in the range −0.260 (red) to 1.846 (blue) a.u., and (b) the Hirshfeld surface mapped over shape-index.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the title compound: (a) all inter­molecular inter­actions, (b) C⋯C contacts, (c) C⋯O/O⋯C contacts, (d) H⋯O/O⋯H contacts, (e) C⋯H/H⋯C contacts and (f) H⋯H contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, last update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave twelve hits for compounds having a 9,10-di­hydro-9,10-ep­oxy­anthracene fragment. In these structures, all five-membered rings are in an envelope conformation and the benzene rings in each fused ring system show a similar dihedral angle of ca 72°. A search for structures with a 3,6,7,8-tetra­hydro-1H-indeno­[4,5-c]furan fragment revealed two hits, and one of the compounds, dimethyl 5-phenyl-4-(phenyl­ethyn­yl)-1,3,6,9-tetra­hydro-2H-6,9-ep­oxy­cyclo­penta­[a]naphthalene-2,2-di­carb­oxyl­ate (refcode IKOJUP; Zhang et al., 2015[Zhang, M. X., Shan, W., Chen, Z., Yin, J., Yu, G. A. & Liu, S. H. (2015). Tetrahedron Lett. 56, 6833-6838.]) is closely related to the title compound.

5. Synthesis and crystallization

Dimethyl 2,2-bis­[5-(4-ethyl­phen­yl)penta-2,4-diyn-1-yl]malonate (0.46 g) and 1,3-di­phenyl­isobenzo­furan (0.3 g) were added to toluene (2.0 ml), and the mixture was stirred at room temperature and then heated at 373 K for 10 h in air. The reaction mixture was cooled to room temperature, and the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel using n-hexa­ne/ethyl acetate (20:1, v:v) as eluent to afford the compound (0.46 g) as a white solid. Part of the purified product was redissolved in n-hexa­ne/ethyl acetate and colourless crystals suitable for X-ray diffraction were formed after slow evaporation for several days.

Spectroscopic data: FT–IR (KBr): 3028, 2949, 1741, 1728, 1508, 1446, 1243, 1049, 619 cm−1; 1H NMR (C6D6, 300 MHz): δ 8.17–8.14 (d, J = 7.5Hz, 2H), 7.75–7.73 (d, J = 6.0 Hz, 1H), 7.60–7.56 (m, 3H), 7.35–7.31 (m, 2H), 7.24–7.16 (m, 5H), 7.00 (s, 2H), 6.91–6.76 (m, 7H), 4.29–4.23 (d, J = 17.1 Hz, 1H), 3.80–3.74 (d, J = 16.8Hz, 2H), 3.49–3.43 (d, J = 16.5Hz, 1H), 3.19 (s, 3H), 3.15 (s, 3H), 2.39–2.37 (m, 2H), 2.27–2.25 (m, 2H), 1.07–1.02 (t, J = 7.2Hz, 3H), 0.96–0.91 (t, J = 7.2Hz, 3H); 13C NMR (C6D6, 125 MHz): δ 171.9, 171.4, 151.6, 151.3, 149.6, 147.7, 144.6, 143.8, 143.1, 137.6, 135.9, 134.8, 134.7, 132.6, 131.9, 130.0, 129.8, 129.4, 128.9, 128.4, 127.7, 127.0, 126.4, 126.2, 122.9, 122.4, 121.3, 118.4, 97.3, 93.1, 91.1, 87.7, 60.8, 52.6, 52.5, 41.1, 39.7, 29.1, 29.1, 16.3, 15.6.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were included in calculated positions (C—H = 0.93–0.97 Å) using a riding model, with Uiso(H) = 1.5 or 1.2Ueq(C). The ethyl group (C46–C47) was found to be disordered over two sites around the C43—C46 bond axis and the occupancies were refined to 0.548 (9) and 0.452 (9). For the two ethyl groups (C36–C37 and C46—C47), displacement restraints (DELU and SIMU) were applied. For the disordered atoms (C47 and C47A), ISOR restraint and EADP constraint were also applied.

Table 2
Experimental details

Crystal data
Chemical formula C51H42O5
Mr 734.84
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.3654 (10), 14.2430 (12), 25.168 (2)
β (°) 91.207 (1)
V3) 4073.2 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.23 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.983, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 34227, 9159, 6819
Rint 0.031
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.169, 1.04
No. of reflections 9159
No. of parameters 515
No. of restraints 20
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHLEXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHLEXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dimethyl 5-(4-ethylphenyl)-4-[(4-ethylphenyl)ethynyl]-6,11-diphenyl-1,3,6,11-tetrahydro-2H-6,11-epoxycyclopenta[a]anthracene-2,2-dicarboxylate top
Crystal data top
C51H42O5F(000) = 1552
Mr = 734.84Dx = 1.198 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3654 (10) ÅCell parameters from 9893 reflections
b = 14.2430 (12) Åθ = 2.2–27.3°
c = 25.168 (2) ŵ = 0.08 mm1
β = 91.207 (1)°T = 293 K
V = 4073.2 (6) Å3Block, colourless
Z = 40.23 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
6819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1414
Tmin = 0.983, Tmax = 0.985k = 1817
34227 measured reflectionsl = 3232
9159 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0848P)2 + 1.1068P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.169(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.33 e Å3
9159 reflectionsΔρmin = 0.30 e Å3
515 parametersExtinction correction: SHELXL-2018/3, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
20 restraintsExtinction coefficient: 0.0288 (14)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.67845 (14)0.32574 (12)0.38548 (7)0.0473 (4)
C20.59520 (14)0.34546 (12)0.33729 (7)0.0457 (4)
H2A0.5534760.4043030.3415540.055*
H2B0.6382230.3472620.3044210.055*
C30.51201 (13)0.26312 (10)0.33826 (6)0.0387 (3)
C40.40374 (13)0.24906 (10)0.31442 (6)0.0371 (3)
C50.32602 (13)0.30966 (11)0.27700 (6)0.0393 (3)
C60.33055 (15)0.25996 (12)0.22280 (6)0.0441 (4)
C70.38339 (19)0.27862 (14)0.17523 (7)0.0605 (5)
H70.4252150.3339470.1702910.073*
C80.3725 (2)0.21236 (17)0.13465 (8)0.0737 (6)
H80.4056990.2248080.1019280.088*
C90.3143 (2)0.12947 (16)0.14186 (8)0.0692 (6)
H90.3092060.0862630.1142000.083*
C100.26254 (17)0.10908 (14)0.19004 (7)0.0550 (4)
H100.2245510.0521240.1953770.066*
C110.26919 (14)0.17587 (12)0.22980 (6)0.0441 (4)
C120.22847 (13)0.17681 (11)0.28746 (6)0.0407 (3)
C130.34321 (13)0.16415 (11)0.32089 (6)0.0379 (3)
C140.39041 (14)0.08984 (10)0.34996 (6)0.0392 (3)
C150.50249 (14)0.10493 (11)0.37516 (6)0.0402 (3)
C160.55998 (13)0.18993 (11)0.36889 (6)0.0405 (3)
C170.68014 (15)0.21714 (12)0.38992 (7)0.0505 (4)
H17A0.7416000.1902580.3685020.061*
H17B0.6916480.1971960.4265110.061*
C180.33666 (13)0.41416 (11)0.28409 (6)0.0409 (3)
C190.3906 (2)0.47302 (14)0.24958 (9)0.0707 (6)
H190.4190390.4493710.2178930.085*
C200.4037 (2)0.56778 (15)0.26106 (11)0.0796 (7)
H200.4429020.6063490.2374340.096*
C210.3608 (2)0.60460 (14)0.30570 (9)0.0666 (5)
H210.3701530.6681370.3131890.080*
C220.3027 (3)0.54696 (16)0.34017 (9)0.0839 (8)
H220.2714390.5716600.3710310.101*
C230.2907 (2)0.45260 (14)0.32917 (8)0.0722 (6)
H230.2507770.4143200.3526880.087*
C240.11663 (14)0.12878 (11)0.30320 (7)0.0449 (4)
C250.03121 (16)0.10294 (15)0.26622 (8)0.0594 (5)
H250.0442180.1122790.2302500.071*
C260.07348 (18)0.06334 (17)0.28205 (10)0.0726 (6)
H260.1296580.0454560.2566240.087*
C270.09501 (18)0.05029 (16)0.33468 (11)0.0732 (6)
H270.1654770.0235560.3451670.088*
C280.01173 (18)0.07699 (16)0.37203 (9)0.0692 (6)
H280.0261660.0686340.4079540.083*
C290.09345 (16)0.11620 (14)0.35656 (8)0.0553 (4)
H290.1490890.1342840.3821820.066*
C300.32887 (14)0.00163 (11)0.35447 (6)0.0432 (4)
C310.29777 (19)0.03780 (13)0.40336 (8)0.0589 (5)
H310.3222270.0077980.4345030.071*
C320.2301 (2)0.11886 (15)0.40585 (9)0.0715 (6)
H320.2094120.1421280.4388900.086*
C330.19276 (19)0.16572 (14)0.36061 (10)0.0663 (5)
C340.22917 (18)0.13207 (14)0.31229 (9)0.0630 (5)
H340.2086530.1643960.2813550.076*
C350.29538 (16)0.05141 (12)0.30907 (7)0.0511 (4)
H350.3181230.0298330.2759600.061*
C360.1087 (3)0.24775 (19)0.36355 (14)0.1012 (8)
H36A0.1301520.2945910.3374970.121*
H36B0.1154430.2762920.3984790.121*
C370.0154 (3)0.2178 (2)0.35341 (15)0.1107 (8)
H37A0.0230920.1924680.3181760.166*
H37B0.0363990.1707930.3788230.166*
H37C0.0666140.2710270.3567150.166*
C380.55911 (15)0.03226 (11)0.40587 (6)0.0452 (4)
C390.60910 (16)0.02503 (12)0.43218 (7)0.0488 (4)
C400.66926 (16)0.09620 (12)0.46286 (6)0.0479 (4)
C410.60811 (19)0.15832 (14)0.49438 (7)0.0585 (5)
H410.5268640.1531420.4969540.070*
C420.6680 (2)0.22811 (15)0.52203 (8)0.0707 (6)
H420.6259070.2690030.5432900.085*
C430.7868 (2)0.23862 (16)0.51901 (8)0.0722 (6)
C440.8472 (2)0.17530 (19)0.48899 (10)0.0843 (7)
H440.9286700.1799790.4872440.101*
C450.7898 (2)0.10488 (17)0.46135 (9)0.0740 (6)
H450.8330430.0626600.4414150.089*
C460.8509 (4)0.3181 (2)0.54713 (12)0.1143 (10)
H46A0.9348660.3067500.5452260.137*0.548 (9)
H46B0.8305170.3169160.5843590.137*0.548 (9)
H46C0.8007640.3449240.5739090.137*0.452 (9)
H46D0.9213460.2941220.5648260.137*0.452 (9)
C470.8270 (10)0.4094 (5)0.5268 (3)0.1202 (12)0.548 (9)
H47A0.7468090.4258970.5337090.180*0.548 (9)
H47B0.8787660.4539930.5437780.180*0.548 (9)
H47C0.8391070.4100760.4891640.180*0.548 (9)
C480.62644 (18)0.37218 (14)0.43477 (8)0.0582 (5)
C490.6058 (4)0.3681 (3)0.52714 (10)0.1300 (14)
H49A0.5258000.3883120.5220560.195*
H49B0.6544410.4212130.5359290.195*
H49C0.6101970.3231560.5555450.195*
C500.80048 (16)0.36611 (15)0.37898 (8)0.0586 (5)
C510.96438 (18)0.3759 (2)0.32348 (11)0.0918 (8)
H51A0.9798220.3691250.2863220.138*
H51B1.0180190.3373340.3437720.138*
H51C0.9746450.4404090.3336760.138*
O10.5728 (2)0.44286 (14)0.43391 (7)0.1123 (7)
O20.64680 (18)0.32502 (13)0.47847 (6)0.0914 (6)
O30.8505 (2)0.4118 (2)0.41081 (10)0.1535 (12)
O40.84501 (12)0.34724 (14)0.33351 (6)0.0822 (5)
O50.21155 (9)0.27792 (7)0.29414 (4)0.0413 (3)
C47A0.8856 (12)0.3967 (6)0.5060 (4)0.1202 (12)0.452 (9)
H47D0.8163510.4177790.4870260.180*0.452 (9)
H47E0.9211570.4486030.5245830.180*0.452 (9)
H47F0.9405020.3713750.4812520.180*0.452 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (9)0.0482 (9)0.0518 (9)0.0037 (7)0.0007 (7)0.0007 (7)
C20.0389 (8)0.0445 (9)0.0536 (9)0.0025 (7)0.0009 (7)0.0047 (7)
C30.0372 (8)0.0374 (8)0.0416 (8)0.0023 (6)0.0049 (6)0.0001 (6)
C40.0368 (8)0.0365 (8)0.0381 (7)0.0044 (6)0.0038 (6)0.0024 (6)
C50.0347 (7)0.0407 (8)0.0425 (8)0.0043 (6)0.0033 (6)0.0042 (6)
C60.0447 (9)0.0460 (9)0.0415 (8)0.0102 (7)0.0002 (6)0.0053 (6)
C70.0756 (13)0.0577 (11)0.0487 (10)0.0101 (9)0.0119 (9)0.0099 (8)
C80.1065 (18)0.0739 (14)0.0413 (10)0.0202 (13)0.0150 (10)0.0041 (9)
C90.0949 (16)0.0671 (13)0.0454 (10)0.0213 (12)0.0034 (10)0.0093 (9)
C100.0620 (11)0.0530 (10)0.0496 (9)0.0114 (8)0.0087 (8)0.0058 (8)
C110.0428 (8)0.0469 (9)0.0422 (8)0.0085 (7)0.0044 (6)0.0011 (7)
C120.0398 (8)0.0382 (8)0.0439 (8)0.0029 (6)0.0011 (6)0.0008 (6)
C130.0377 (8)0.0390 (8)0.0372 (7)0.0009 (6)0.0025 (6)0.0013 (6)
C140.0425 (8)0.0374 (8)0.0378 (7)0.0016 (6)0.0020 (6)0.0007 (6)
C150.0441 (8)0.0383 (8)0.0381 (7)0.0046 (6)0.0002 (6)0.0002 (6)
C160.0384 (8)0.0412 (8)0.0419 (8)0.0046 (6)0.0001 (6)0.0013 (6)
C170.0441 (9)0.0487 (10)0.0583 (10)0.0032 (7)0.0075 (7)0.0010 (8)
C180.0360 (8)0.0404 (8)0.0464 (8)0.0050 (6)0.0014 (6)0.0046 (6)
C190.0839 (15)0.0505 (11)0.0792 (14)0.0058 (10)0.0384 (12)0.0003 (10)
C200.0913 (17)0.0488 (11)0.1003 (17)0.0142 (11)0.0370 (14)0.0061 (11)
C210.0686 (13)0.0428 (10)0.0881 (15)0.0037 (9)0.0069 (11)0.0027 (10)
C220.136 (2)0.0538 (12)0.0624 (13)0.0023 (13)0.0167 (13)0.0098 (10)
C230.1158 (19)0.0472 (11)0.0544 (11)0.0035 (11)0.0213 (11)0.0020 (8)
C240.0375 (8)0.0409 (8)0.0562 (9)0.0011 (6)0.0006 (7)0.0015 (7)
C250.0463 (10)0.0669 (12)0.0648 (11)0.0043 (9)0.0063 (8)0.0006 (9)
C260.0451 (11)0.0768 (14)0.0952 (17)0.0115 (10)0.0112 (10)0.0073 (12)
C270.0465 (11)0.0692 (14)0.1044 (18)0.0115 (9)0.0113 (11)0.0022 (12)
C280.0558 (12)0.0788 (14)0.0735 (13)0.0082 (10)0.0144 (10)0.0057 (11)
C290.0460 (9)0.0616 (11)0.0584 (10)0.0047 (8)0.0046 (8)0.0039 (8)
C300.0457 (9)0.0370 (8)0.0469 (8)0.0007 (6)0.0015 (7)0.0020 (6)
C310.0739 (13)0.0520 (10)0.0507 (10)0.0127 (9)0.0008 (9)0.0039 (8)
C320.0831 (15)0.0606 (12)0.0711 (13)0.0150 (11)0.0081 (11)0.0159 (10)
C330.0607 (12)0.0447 (10)0.0935 (15)0.0082 (9)0.0002 (11)0.0004 (10)
C340.0645 (12)0.0487 (10)0.0754 (13)0.0041 (9)0.0082 (10)0.0122 (9)
C350.0562 (10)0.0447 (9)0.0525 (9)0.0020 (8)0.0017 (8)0.0033 (7)
C360.0879 (13)0.0697 (14)0.147 (2)0.0314 (12)0.0153 (15)0.0122 (14)
C370.0869 (14)0.0927 (16)0.153 (2)0.0297 (13)0.0180 (16)0.0223 (15)
C380.0502 (9)0.0410 (9)0.0442 (8)0.0037 (7)0.0025 (7)0.0001 (7)
C390.0579 (10)0.0417 (9)0.0465 (9)0.0031 (7)0.0051 (7)0.0012 (7)
C400.0600 (11)0.0440 (9)0.0395 (8)0.0065 (7)0.0037 (7)0.0037 (7)
C410.0670 (12)0.0549 (11)0.0538 (10)0.0038 (9)0.0074 (9)0.0054 (8)
C420.0971 (17)0.0601 (12)0.0553 (11)0.0041 (11)0.0121 (11)0.0185 (9)
C430.0997 (18)0.0679 (13)0.0488 (10)0.0251 (12)0.0048 (11)0.0144 (9)
C440.0658 (14)0.1027 (19)0.0844 (16)0.0242 (13)0.0013 (12)0.0346 (14)
C450.0635 (13)0.0812 (15)0.0772 (14)0.0060 (11)0.0020 (10)0.0357 (12)
C460.166 (3)0.0848 (15)0.0915 (18)0.0494 (19)0.0128 (17)0.0307 (13)
C470.172 (3)0.0868 (17)0.101 (2)0.048 (2)0.006 (2)0.0243 (18)
C480.0632 (12)0.0553 (11)0.0563 (11)0.0093 (9)0.0046 (9)0.0017 (9)
C490.212 (4)0.123 (3)0.0559 (14)0.015 (3)0.0250 (19)0.0133 (16)
C500.0432 (10)0.0687 (12)0.0635 (11)0.0078 (8)0.0047 (8)0.0000 (9)
C510.0402 (11)0.131 (2)0.1043 (19)0.0036 (12)0.0124 (11)0.0305 (17)
O10.170 (2)0.0872 (13)0.0810 (12)0.0496 (13)0.0309 (12)0.0040 (10)
O20.1366 (16)0.0861 (12)0.0514 (8)0.0106 (11)0.0029 (9)0.0001 (8)
O30.0914 (14)0.236 (3)0.1336 (18)0.0870 (18)0.0265 (13)0.0883 (19)
O40.0428 (7)0.1282 (14)0.0761 (10)0.0100 (8)0.0102 (7)0.0020 (9)
O50.0343 (5)0.0400 (6)0.0496 (6)0.0032 (4)0.0037 (4)0.0001 (5)
C47A0.172 (3)0.0868 (17)0.101 (2)0.048 (2)0.006 (2)0.0243 (18)
Geometric parameters (Å, º) top
C1—C21.548 (2)C28—C291.383 (3)
C1—C171.551 (2)C29—H290.9300
C1—C481.535 (3)C30—C311.387 (2)
C1—C501.513 (2)C30—C351.391 (2)
C2—H2A0.9700C31—H310.9300
C2—H2B0.9700C31—C321.389 (3)
C2—C31.507 (2)C32—H320.9300
C3—C41.372 (2)C32—C331.379 (3)
C3—C161.400 (2)C33—C341.379 (3)
C4—C51.542 (2)C33—C361.512 (3)
C4—C131.403 (2)C34—H340.9300
C5—C61.539 (2)C34—C351.377 (3)
C5—C181.504 (2)C35—H350.9300
C5—O51.4514 (18)C36—H36A0.9700
C6—C71.377 (2)C36—H36B0.9700
C6—C111.399 (2)C36—C371.491 (4)
C7—H70.9300C37—H37A0.9600
C7—C81.394 (3)C37—H37B0.9600
C8—H80.9300C37—H37C0.9600
C8—C91.368 (3)C38—C391.188 (2)
C9—H90.9300C39—C401.438 (2)
C9—C101.389 (3)C40—C411.385 (3)
C10—H100.9300C40—C451.377 (3)
C10—C111.382 (2)C41—H410.9300
C11—C121.532 (2)C41—C421.384 (3)
C12—C131.548 (2)C42—H420.9300
C12—C241.504 (2)C42—C431.363 (3)
C12—O51.4631 (18)C43—C441.370 (3)
C13—C141.388 (2)C43—C461.514 (3)
C14—C151.427 (2)C44—H440.9300
C14—C301.484 (2)C44—C451.377 (3)
C15—C161.386 (2)C45—H450.9300
C15—C381.436 (2)C46—H46A0.9700
C16—C171.505 (2)C46—H46B0.9700
C17—H17A0.9700C46—H46C0.9700
C17—H17B0.9700C46—H46D0.9700
C18—C191.362 (2)C46—C471.422 (8)
C18—C231.373 (3)C46—C47A1.581 (10)
C19—H190.9300C47—H47A0.9600
C19—C201.388 (3)C47—H47B0.9600
C20—H200.9300C47—H47C0.9600
C20—C211.341 (3)C48—O11.177 (3)
C21—H210.9300C48—O21.305 (2)
C21—C221.373 (3)C49—H49A0.9600
C22—H220.9300C49—H49B0.9600
C22—C231.378 (3)C49—H49C0.9600
C23—H230.9300C49—O21.455 (3)
C24—C251.381 (2)C50—O31.170 (3)
C24—C291.386 (2)C50—O41.290 (2)
C25—H250.9300C51—H51A0.9600
C25—C261.383 (3)C51—H51B0.9600
C26—H260.9300C51—H51C0.9600
C26—C271.365 (3)C51—O41.444 (3)
C27—H270.9300C47A—H47D0.9600
C27—C281.374 (3)C47A—H47E0.9600
C28—H280.9300C47A—H47F0.9600
C2—C1—C17104.11 (14)C24—C29—H29119.7
C48—C1—C2108.39 (15)C28—C29—C24120.55 (18)
C48—C1—C17112.08 (15)C28—C29—H29119.7
C50—C1—C2113.12 (14)C31—C30—C14121.56 (15)
C50—C1—C17112.13 (15)C31—C30—C35117.97 (16)
C50—C1—C48107.04 (15)C35—C30—C14120.40 (15)
C1—C2—H2A111.2C30—C31—H31120.0
C1—C2—H2B111.2C30—C31—C32120.02 (18)
H2A—C2—H2B109.1C32—C31—H31120.0
C3—C2—C1102.67 (13)C31—C32—H32119.1
C3—C2—H2A111.2C33—C32—C31121.7 (2)
C3—C2—H2B111.2C33—C32—H32119.1
C4—C3—C2131.57 (14)C32—C33—C36121.1 (2)
C4—C3—C16117.85 (14)C34—C33—C32117.85 (18)
C16—C3—C2110.57 (14)C34—C33—C36120.9 (2)
C3—C4—C5133.03 (14)C33—C34—H34119.4
C3—C4—C13120.84 (14)C35—C34—C33121.10 (19)
C13—C4—C5106.11 (13)C35—C34—H34119.4
C6—C5—C4104.75 (12)C30—C35—H35119.4
C18—C5—C4115.97 (13)C34—C35—C30121.17 (18)
C18—C5—C6123.82 (13)C34—C35—H35119.4
O5—C5—C498.61 (11)C33—C36—H36A109.3
O5—C5—C699.63 (12)C33—C36—H36B109.3
O5—C5—C18110.08 (12)H36A—C36—H36B108.0
C7—C6—C5134.88 (17)C37—C36—C33111.5 (2)
C7—C6—C11120.18 (16)C37—C36—H36A109.3
C11—C6—C5104.84 (13)C37—C36—H36B109.3
C6—C7—H7120.9C36—C37—H37A109.5
C6—C7—C8118.2 (2)C36—C37—H37B109.5
C8—C7—H7120.9C36—C37—H37C109.5
C7—C8—H8119.2H37A—C37—H37B109.5
C9—C8—C7121.52 (19)H37A—C37—H37C109.5
C9—C8—H8119.2H37B—C37—H37C109.5
C8—C9—H9119.6C39—C38—C15177.18 (19)
C8—C9—C10120.74 (19)C38—C39—C40178.44 (18)
C10—C9—H9119.6C41—C40—C39121.27 (17)
C9—C10—H10121.0C45—C40—C39120.69 (17)
C11—C10—C9118.07 (19)C45—C40—C41118.03 (17)
C11—C10—H10121.0C40—C41—H41120.0
C6—C11—C12105.85 (13)C42—C41—C40119.97 (19)
C10—C11—C6121.20 (16)C42—C41—H41120.0
C10—C11—C12132.75 (16)C41—C42—H42119.1
C11—C12—C13104.24 (12)C43—C42—C41121.9 (2)
C24—C12—C11121.28 (14)C43—C42—H42119.1
C24—C12—C13120.73 (13)C42—C43—C44117.85 (19)
O5—C12—C1199.24 (12)C42—C43—C46121.6 (2)
O5—C12—C1399.41 (11)C44—C43—C46120.6 (3)
O5—C12—C24107.67 (12)C43—C44—H44119.3
C4—C13—C12104.25 (12)C43—C44—C45121.4 (2)
C14—C13—C4122.24 (14)C45—C44—H44119.3
C14—C13—C12133.42 (14)C40—C45—H45119.6
C13—C14—C15116.80 (14)C44—C45—C40120.8 (2)
C13—C14—C30122.15 (14)C44—C45—H45119.6
C15—C14—C30121.05 (14)C43—C46—H46A108.4
C14—C15—C38121.08 (14)C43—C46—H46B108.4
C16—C15—C14119.95 (14)C43—C46—H46C109.6
C16—C15—C38118.94 (14)C43—C46—H46D109.6
C3—C16—C17109.98 (14)C43—C46—C47A110.3 (3)
C15—C16—C3122.27 (14)H46A—C46—H46B107.5
C15—C16—C17127.68 (14)H46C—C46—H46D108.1
C1—C17—H17A111.2C47—C46—C43115.4 (4)
C1—C17—H17B111.2C47—C46—H46A108.4
C16—C17—C1102.81 (13)C47—C46—H46B108.4
C16—C17—H17A111.2C47A—C46—H46C109.6
C16—C17—H17B111.2C47A—C46—H46D109.6
H17A—C17—H17B109.1C46—C47—H47A109.5
C19—C18—C5124.73 (15)C46—C47—H47B109.5
C19—C18—C23117.76 (17)C46—C47—H47C109.5
C23—C18—C5117.51 (15)H47A—C47—H47B109.5
C18—C19—H19119.5H47A—C47—H47C109.5
C18—C19—C20120.91 (19)H47B—C47—H47C109.5
C20—C19—H19119.5O1—C48—C1124.19 (19)
C19—C20—H20119.5O1—C48—O2122.6 (2)
C21—C20—C19121.0 (2)O2—C48—C1113.25 (18)
C21—C20—H20119.5H49A—C49—H49B109.5
C20—C21—H21120.5H49A—C49—H49C109.5
C20—C21—C22118.92 (19)H49B—C49—H49C109.5
C22—C21—H21120.5O2—C49—H49A109.5
C21—C22—H22119.9O2—C49—H49B109.5
C21—C22—C23120.2 (2)O2—C49—H49C109.5
C23—C22—H22119.9O3—C50—C1124.8 (2)
C18—C23—C22121.1 (2)O3—C50—O4122.0 (2)
C18—C23—H23119.4O4—C50—C1113.23 (16)
C22—C23—H23119.4H51A—C51—H51B109.5
C25—C24—C12122.00 (16)H51A—C51—H51C109.5
C25—C24—C29118.26 (16)H51B—C51—H51C109.5
C29—C24—C12119.55 (15)O4—C51—H51A109.5
C24—C25—H25119.6O4—C51—H51B109.5
C24—C25—C26120.8 (2)O4—C51—H51C109.5
C26—C25—H25119.6C48—O2—C49116.0 (2)
C25—C26—H26119.7C50—O4—C51118.93 (19)
C27—C26—C25120.5 (2)C5—O5—C1298.72 (10)
C27—C26—H26119.7C46—C47A—H47D109.5
C26—C27—H27120.3C46—C47A—H47E109.5
C26—C27—C28119.43 (19)C46—C47A—H47F109.5
C28—C27—H27120.3H47D—C47A—H47E109.5
C27—C28—H28119.8H47D—C47A—H47F109.5
C27—C28—C29120.4 (2)H47E—C47A—H47F109.5
C29—C28—H28119.8
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg7 are the centroids of the C3/C4/C13–C16 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg4i0.932.613.516 (3)165
C26—H26···Cg7ii0.932.823.713 (3)162
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Funding information

We acknowledge financial support from the Key Natural Science Foundation of Anhui Higher Education Institution (KJ2017A446), the Excellent Young Talents Support Program of Anhui Higher Education Institutions (gxyq2018075).

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarmakar, R., Mamidipalli, P., Yun, S. Y. & Lee, D. (2013). Org. Lett. 15, 1938–1941.  Google Scholar
First citationMeng, X. Z., Lv, S., Cheng, D., Hu, Q., Ma, J., Liu, B. H. & Hu, Y. M. (2017). Chem. Eur. J. 23, 6264–6271.  Google Scholar
First citationNiu, D., Willoughby, P. H., Woods, B. P., Baire, B. & Hoye, T. R. (2013). Nature, 501, 531–534.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. The University of Western Australia.  Google Scholar
First citationZhang, M. X., Shan, W., Chen, Z., Yin, J., Yu, G. A. & Liu, S. H. (2015). Tetrahedron Lett. 56, 6833–6838.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds