research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 2-(2,3-di­hydro-1H-perimidin-2-yl)phenol

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique et de Substances Naturelles, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan, Côte d'Ivoire, cLaboratoire de Thermodynamique et Physicochimie du Milieu, Université Nangui, Abrogoua, UFR-SFA, 02 BP 801 Abidjan 02, Côte d'Ivoire, dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and eInstitut de Chimie des Substances Naturelles, 1 av. de la Terrasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: daoudaballo526@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 6 April 2020; accepted 29 April 2020; online 5 May 2020)

The asymmetric unit of the title compound, C17H14N2O, contains two independent mol­ecules each consisting of perimidine and phenol units. The tricyclic perimidine units contain naphthalene ring systems and non-planar C4N2 rings adopting envelope conformations with the C atoms of the NCN groups hinged by 44.11 (7) and 48.50 (6)° with respect to the best planes of the other five atoms. Intra­molecular O—H⋯N hydrogen bonds may help to consolidate the mol­ecular conformations. The two independent mol­ecules are linked through an N—H⋯O hydrogen bond. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (39.5%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

1-H Perimidines are defined as peri-naphtho-fused pyrimidines (Varsha et al., 2010[Varsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. M. M. (2010). Tetrahedron Lett. 51, 2174-2177.]). They were first discovered in 1874 (De Aguiar, 1874[De Aguiar, A. (1874). Ber. Dtsch. Chem. Ges. 7, 309-319.]) and are characterized either by a binding deficit or an excess of π binding (Woodgate et al., 1987[Woodgate, P. D., Herbert, J. M. & Denny, W. A. (1987). Heterocycles, 26, 1029-1036.]). They are used as inter­mediates in dyes, dyeing and polymerization systems (Watanab et al., 1977[Watanab, K. & Hareda, H. (1977). Chem. Abstr. 8499.]) and have been recognized as new carbene ligands (Bazinet et al., 2003[Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2003). J. Am. Chem. Soc. 125, 13314-13315.]), attracting great inter­est (Bu et al., 2001[Bu, X., Deady, L. W., Finlay, G. J., Baguley, B. C. & Denny, W. A. (2001). J. Med. Chem. 44, 2004-2014.]; Starshikoy et al., 1973[Starshikoy, N. M. & Pozharskii, F. T. (1973). Chem. Heterocycl. Compd. 9, 922-924.]). 1-H Perimidines also exhibit important biological activities (Zhou et al., 2019[Zhou, D. C., Lu, Y. T., Mai, Y. W., Zhang, C., Xia, J., Yao, P. F., Wang, H. G., Huang, S. L. & Huang, Z. S. (2019). Bioorg. Chem. 91, 103131.]), having the potential to act as anti-inflammatory agents (Zhang et al., 2017[Zhang, H. G., Wang, X. Z., Cao, Q., Gong, G. H. & Quan, Z. S. (2017). Bioorg. Med. Chem. Lett. 27, 4409-4414.]) and inhibitors of enzymes (Alam et al., 2016[Alam, M. & Lee, D.-U. (2016). Comput. Biol. Chem. 64, 185-201.]) and to have applications in fluorescence (Giani et al., 2016[Giani, A. M., Lamperti, M., Maspero, A., Cimino, A., Negri, R., Giovenzana, G. B., Palmisano, G. & Nardo, L. (2016). J. Lumin. 179, 384-392.]), catalysis (Behbahani et al., 2017[Behbahani, F. K. & Golchin, F. M. (2017). J. Taibah Univ. Sci. 11, 85-89.]), corrosion inhibition (He et al., 2018[He, X., Mao, J., Ma, Q. & Tang, Y. (2018). J. Mol. Liq. 269, 260-268.]) and in coordination chemistry (Booysen et al., 2016[Booysen, I. N., Ebinumoliseh, I., Sithebe, S., Akerman, M. P. & Xulu, B. (2016). Polyhedron, 117, 755-760.]; Mahapatra et al., 2015[Mahapatra, A. K., Maji, R., Maiti, K., Manna, S. K., Mondal, S., Das Mukhopadhyay, C., Goswami, S., Sarkar, D., Mondal, T. K., Quah, C. K. & Fun, H. K. (2015). Sens. Actuators B Chem. 207, 878-886.]).

Perimidines are obtained by the condensation of 1,8-di­aminona­phthalene with various carbonyl groups. As a contin­uation of our research into the development of new perimidine derivatives with potential pharmacological applications, we have studied the reaction of the condensation of salicyl­aldehyde and 1,8- di­aminona­phthalene in ether under agitation at room temperature to give the title compound in good yield. The title compound was obtained for the first time and characterized by single-crystal X-ray diffraction techniques as well as by Hirshfeld surface analysis. The results of the calculations by density functional theory (DFT), carried out at the B3LYP/6-311G (d,p) level, are compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, I, contains two crystallographically independent mol­ecules each consisting of perimidine and phenol units, where the tricyclic perimidine units contain naphthalene ring systems and non-planar C4N2 rings (Fig. 1[link]). A puckering analysis of the non-planar six-membered C4N2, B (N1A/N2A/C1A/C9A–C11A) and B′ (N1A/N2A/C1A/C9B–C11B) rings gave the parameters q2 = 0.9280 (12) Å, q3 = 0.1829 (12) Å, QT = 0.9459 (13) Å, θ2 = 75.85 (15)° and φ 2= 134.47 (18)° for B and q2 = 0.5320 (11) Å, q3 = 0.3791 (11) Å, QT = 0.6533 (14) Å, θ2 = 54.33 (12)° and φ 2= −5.47 (13)° for B′; both rings adopt envelope conformations, where atoms C1A and C1B are at the flap positions and at distances of 0.6044 (12) and −0.6590 (13) Å, respectively, from the best planes through the other five atoms. The C4N2 rings may alternatively be described as being hinged about the N⋯N vectors with the N1A/C1A/N2A and N1B/C1B/N2B planes being inclined by 44.11 (7) and 48.50 (6)°, respectively, to the best planes through the other five atoms (N1A/N2A/C9A–C11A) and (N1B/N2B/C9B–C11B). Rings A (C2A–C7A), C (C10A–C15A), D (C9A/C10A/C15A–C18A) and A′ (C2B–C7B), C′ (C10B–C15B), D′ (C9B/C10B/C15B–C18B) are oriented at dihedral angles of A/C = 76.78 (4), A/D = 78.49 (4), C/D = 2.09 (3)° and A′/C′ = 88.43 (3), A′/D′ = 88.31 (3), C′/D′ = 3.26 (4)°. Intra­molecular O—H⋯N hydrogen bonds (Table 1[link]) may be effective in consolidating the conformations of the two independent mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1A 0.86 (2) 2.66 (2) 3.1072 (16) 113.8 (17)
O1A—H1OA⋯N2A 0.86 (2) 2.03 (2) 2.7763 (16) 144.6 (19)
O1B—H1OB⋯N1B 0.84 (2) 2.20 (3) 2.8835 (16) 138 (2)
O1B—H1OB⋯N2B 0.84 (2) 2.47 (2) 3.0196 (16) 123 (2)
N1B—H1NB⋯O1A 0.865 (17) 2.331 (17) 3.1608 (18) 160.8 (14)
[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the two mol­ecules in the asymmetric unit are linked through an N—H⋯O hydrogen bond (Table 1[link], Fig. 1[link]).

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 2[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors.

[Figure 2]
Figure 2
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1813 to 1.6330 a.u.

The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 3[link] clearly suggests that there are no ππ inter­actions in I. The overall two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) is shown in Fig. 4[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯C contacts are illustrated in Fig. 4[link] bf, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 52.9% to the overall crystal packing, which is reflected in Fig. 4[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at de = di = 1.10 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 4[link]c, (39.5% contribution to the HS) have the tips at de + di = 2.50 Å. The scattered points in the pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H (Fig. 4[link]d, 5.7% contribution) have a symmetrical distribution with the tips at de + di = 2.49 Å. The H⋯N/N⋯H contacts (Fig. 4[link]e, 1.3% contribution) have a distribution of points with the tips at de + di = 2.72 Å. Finally, the C⋯C inter­actions (0.5% contribution to the overall crystal packing) are reflected in Fig. 4[link]f as low density wings with the tips at de + di = 3.60 Å.

[Figure 3]
Figure 3
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 4]
Figure 4
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H and (f) O⋯C/C⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 5[link]ac, respectively.

[Figure 5]
Figure 5
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. DFT calculations

The optimized structure of the title compound, I, in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US]). The theoretical and experimental results were in good agreement (Table 2[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO, which clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3[link]. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6[link]. The HOMO and LUMO are localized in the plane extending from the whole 2-(2,3-di­hydro-1H-perimidin-2-yl)phenol ring. The energy band gap [ΔE = ELUMO - EHOMO] of the mol­ecule is 1.4933 eV, the frontier mol­ecular orbital energies EHOMO and ELUMO being −3.2606 and −1.7673 eV, respectively.

Table 2
Comparison of selected X-ray and DFT geometrical parameters (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
C1A—N1A 1.4597 (17) 1.40941
C1A—N2A 1.4646 (19) 1.35557
C1A—C2A 1.5079 (17) 1.43731
C1A—H1A 0.9800 1.03211
N1A—C9A 1.3944 (17) 1.42420
N1A—H1N1 0.873 (19) 1.00630
O1A—C3A 1.3693 (18) 1.40953
O1A—H1OA 0.86 (2) 0.97032
C2A—C7A 1.388 (2) 1.42763
C2A—C3A 1.3923 (19) 1.42630
N2A—C11A 1.4081 (17) 1.36897
     
N1A—C1A—N2A 106.61 (11) 115.07
N1A—C1A—C2A 110.09 (11) 125.03
N2A—C1A—C2A 109.23 (11) 109.89
N1A—C1A—H1A 110.3 110.17
N2A—C1A—H1A 110.3 110.03
C2A—C1A—H1A 110.3 110.08
C9A—N1A—C1A 117.08 (11) 117.82
C9A—N1A—H1N1 115.0 (12) 114.98
C3A—O1A—H1OA 106.1 (14) 107.84

Table 3
Calculated energies

Mol­ecular Energy (a.u.) (eV) Compound I
Total Energy TE (eV) −22880.3725
EHOMO (eV) −3.2606
ELUMO (eV) −1.7673
Gap, ΔE (eV) 1.4933
Dipole moment, μ (Debye) 3.3491
Ionization potential, I (eV) 3.2606
Electron affinity, A 1.7673
Electronegativity, χ 2.5139
Hardness, η 0.7466
Electrophilicity index, ω 4.2322
Softness, σ 1.3393
Fraction of electron transferred, ΔN 3.0042
[Figure 6]
Figure 6
The energy band gap of the title compound.

6. Database survey

Similar perimidine derivatives have also been reported in which the groups at position 2 are almost coplanar with the perimidic nucleus. Examples related to the title compound, I, are II (Ghorbani, 2012[Ghorbani, M. H. (2012). Acta Cryst. E68, o2605.]), III (Fun et al., 2011[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o715-o716.]), IV (Maloney et al., 2013[Maloney, S., Slawin, A. M. Z. & Woollins, J. D. (2013). Acta Cryst. E69, o246.]), V (Cucciolito et al., 2013[Cucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013). Acta Cryst. E69, o1133-o1134.]) and VI (Manimekalai et al., 2014[Manimekalai, A., Vijayalakshmi, N. & Selvanayagam, S. (2014). Acta Cryst. E70, o959.]), where III and V are most closely related while II, IV and VI are more distant relatives.

[Scheme 2]

7. Synthesis and crystallization

0.35 mol (1.48 g) of 1,8-di­aminona­phthalene and 18.8 mmol (2 ml) of salicyl­aldehyde were introduced into a 250 ml flask and 30 ml of ether were added thereto. The mixture was stirred magnetically for 3 days. The grey precipitate that formed was recovered by filtration, washed with ether, rinsed with ethanol and dried under Büchner. The resulting brownish powder was recrystallized several times from ethanol to obtain colourless 2-(2,3-di­hydro-1H-perimidin-2-yl)phenol product (Rf = 0.70 in hexa­ne/ethyl acetate (1:0.5), yield: 97% A significant qu­antity of the colourless monocrystalline product was obtained by the slow evaporation of the solvent after 15 days.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in are summarized in Table 4[link]. The H atoms of OH and NH groups were located in difference-Fourier maps and refined freely. The C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms) and 0.98 Å (for methine H atom) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C17H14N2O
Mr 262.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.0710 (4), 12.0526 (7), 24.6120 (11)
β (°) 95.999 (4)
V3) 2676.1 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.60 × 0.35 × 0.05
 
Data collection
Diffractometer Rigaku XtaLAB PRO
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.212, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29344, 6395, 4554
Rint 0.042
(sin θ/λ)max−1) 0.690
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.120, 1.03
No. of reflections 6395
No. of parameters 379
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.21
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012).

2-(2,3-Dihydro-1H-perimidin-2-yl)phenol top
Crystal data top
C17H14N2OF(000) = 1104
Mr = 262.30Dx = 1.302 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0710 (4) ÅCell parameters from 8291 reflections
b = 12.0526 (7) Åθ = 2.8–29.0°
c = 24.6120 (11) ŵ = 0.08 mm1
β = 95.999 (4)°T = 293 K
V = 2676.1 (2) Å3Plate, colourless
Z = 80.60 × 0.35 × 0.05 mm
Data collection top
Rigaku XtaLAB PRO
diffractometer
6395 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku micromax 0034554 reflections with I > 2σ(I)
Rigaku Integrated Confocal MaxFlux double bounce multi-layer mirror optics monochromatorRint = 0.042
Detector resolution: 5.811 pixels mm-1θmax = 29.4°, θmin = 2.7°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1516
Tmin = 0.212, Tmax = 1.000l = 3332
29344 measured reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.390P]
where P = (Fo2 + 2Fc2)/3
6395 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.56889 (14)0.53907 (11)0.62210 (5)0.0396 (3)
H1A0.6389200.5262710.5950130.047*
N1A0.41985 (13)0.50532 (11)0.60023 (5)0.0437 (3)
H1N10.4106 (19)0.4334 (16)0.5970 (7)0.066*
O1A0.43505 (13)0.56864 (10)0.72308 (4)0.0584 (3)
H1OA0.438 (2)0.6117 (18)0.6953 (9)0.088*
C2A0.61653 (14)0.47595 (12)0.67387 (5)0.0405 (3)
N2A0.56102 (14)0.65756 (10)0.63467 (4)0.0435 (3)
H1NA0.646 (2)0.6821 (15)0.6495 (7)0.065*
O1B0.04282 (12)0.30406 (13)0.63319 (5)0.0708 (4)
H1OB0.043 (3)0.318 (2)0.6666 (10)0.106*
N1B0.20034 (13)0.37845 (10)0.73446 (4)0.0411 (3)
H1NB0.2567 (17)0.4294 (14)0.7230 (6)0.049*
C1B0.25725 (13)0.26647 (11)0.72676 (5)0.0375 (3)
H1B0.3474280.2542760.7516150.045*
C3A0.54903 (15)0.49467 (12)0.72131 (5)0.0443 (3)
C2B0.28946 (14)0.24906 (11)0.66876 (5)0.0369 (3)
N2B0.14081 (13)0.19020 (11)0.74018 (5)0.0419 (3)
H2NB0.1541 (17)0.1222 (14)0.7310 (6)0.050*
C4A0.59490 (18)0.43710 (15)0.76890 (6)0.0582 (4)
H4A0.5507600.4509730.8006630.070*
C3B0.17999 (14)0.26533 (12)0.62532 (5)0.0433 (3)
C5A0.70642 (19)0.35908 (16)0.76890 (7)0.0661 (5)
H5A0.7368380.3201940.8007420.079*
C4B0.20960 (17)0.24421 (13)0.57226 (6)0.0503 (4)
H4B0.1351020.2523040.5435780.060*
C6A0.77248 (17)0.33852 (16)0.72245 (8)0.0645 (5)
H6A0.8469570.2854540.7226390.077*
C5B0.34887 (19)0.21132 (14)0.56196 (6)0.0568 (4)
H5B0.3687940.1980520.5262230.068*
C7A0.72813 (15)0.39693 (14)0.67520 (6)0.0519 (4)
H7A0.7738440.3830220.6437840.062*
C6B0.45901 (18)0.19793 (14)0.60424 (7)0.0582 (4)
H6B0.5538040.1771750.5970660.070*
C9A0.35196 (14)0.56636 (11)0.55642 (5)0.0378 (3)
C7B0.42863 (15)0.21533 (12)0.65727 (6)0.0456 (3)
H7B0.5028480.2042170.6857870.055*
C10A0.38759 (13)0.68071 (11)0.55413 (5)0.0348 (3)
C9B0.15927 (15)0.40010 (13)0.78695 (5)0.0444 (3)
C11A0.49532 (14)0.72763 (11)0.59321 (5)0.0379 (3)
C10B0.10259 (14)0.30998 (13)0.81524 (5)0.0455 (3)
C12A0.52565 (18)0.83872 (12)0.59224 (6)0.0494 (4)
H12A0.5976600.8689950.6176260.059*
C11B0.09143 (14)0.20261 (12)0.79161 (5)0.0422 (3)
C13A0.44833 (19)0.90655 (13)0.55310 (6)0.0559 (4)
H13A0.4685740.9821950.5530590.067*
C12B0.02694 (16)0.11725 (16)0.81762 (6)0.0578 (4)
H12B0.0184780.0473550.8015910.069*
C14A0.34396 (17)0.86426 (13)0.51502 (6)0.0509 (4)
H14A0.2936310.9112370.4894540.061*
C13B0.0259 (2)0.1357 (2)0.86819 (8)0.0763 (6)
H13B0.0697820.0776550.8855200.092*
C15A0.31142 (14)0.75013 (12)0.51393 (5)0.0407 (3)
C14B0.0142 (2)0.2368 (2)0.89238 (8)0.0829 (7)
H14B0.0481870.2463580.9264370.099*
C16A0.20329 (16)0.70134 (14)0.47590 (5)0.0508 (4)
H16A0.1529440.7448200.4487810.061*
C15B0.04892 (18)0.32860 (18)0.86688 (6)0.0644 (5)
C17A0.17231 (16)0.59168 (15)0.47860 (6)0.0552 (4)
H17A0.1004500.5612440.4532040.066*
C16B0.0568 (2)0.4373 (2)0.88808 (8)0.0871 (7)
H16B0.0231780.4514340.9218320.105*
C18A0.24558 (16)0.52286 (13)0.51861 (6)0.0505 (4)
H18A0.2221790.4478030.5195530.061*
C18B0.1656 (2)0.50467 (16)0.80913 (7)0.0639 (4)
H18B0.2043130.5634640.7906890.077*
C17B0.1125 (3)0.5215 (2)0.86015 (8)0.0844 (6)
H17B0.1157460.5924670.8751060.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0369 (6)0.0440 (8)0.0368 (6)0.0004 (6)0.0008 (5)0.0035 (5)
N1A0.0475 (6)0.0373 (6)0.0431 (6)0.0065 (5)0.0108 (5)0.0045 (5)
O1A0.0697 (7)0.0588 (7)0.0487 (6)0.0109 (6)0.0153 (5)0.0095 (5)
C2A0.0347 (6)0.0438 (8)0.0409 (7)0.0056 (6)0.0055 (5)0.0066 (6)
N2A0.0470 (6)0.0416 (7)0.0385 (6)0.0103 (5)0.0113 (5)0.0042 (5)
O1B0.0442 (6)0.1251 (12)0.0413 (6)0.0251 (6)0.0033 (5)0.0002 (6)
N1B0.0451 (6)0.0392 (7)0.0390 (6)0.0011 (5)0.0046 (5)0.0005 (5)
C1B0.0320 (6)0.0436 (8)0.0360 (6)0.0035 (5)0.0009 (5)0.0022 (5)
C3A0.0443 (7)0.0458 (8)0.0414 (7)0.0062 (6)0.0017 (6)0.0052 (6)
C2B0.0372 (6)0.0352 (7)0.0383 (6)0.0002 (5)0.0039 (5)0.0013 (5)
N2B0.0443 (6)0.0397 (7)0.0424 (6)0.0002 (5)0.0079 (5)0.0026 (5)
C4A0.0635 (10)0.0667 (11)0.0422 (8)0.0147 (8)0.0045 (7)0.0124 (7)
C3B0.0396 (7)0.0510 (9)0.0392 (7)0.0017 (6)0.0038 (5)0.0024 (6)
C5A0.0567 (9)0.0738 (12)0.0624 (10)0.0109 (9)0.0196 (8)0.0315 (9)
C4B0.0583 (9)0.0533 (9)0.0386 (7)0.0017 (7)0.0010 (6)0.0004 (6)
C6A0.0413 (8)0.0676 (11)0.0809 (12)0.0057 (8)0.0115 (8)0.0250 (9)
C5B0.0715 (10)0.0573 (10)0.0441 (8)0.0027 (8)0.0179 (7)0.0076 (7)
C7A0.0364 (7)0.0584 (10)0.0594 (9)0.0023 (7)0.0020 (6)0.0109 (7)
C6B0.0520 (9)0.0632 (11)0.0622 (9)0.0089 (8)0.0195 (7)0.0082 (8)
C9A0.0369 (6)0.0431 (8)0.0325 (6)0.0025 (6)0.0001 (5)0.0012 (5)
C7B0.0396 (7)0.0461 (8)0.0511 (8)0.0034 (6)0.0045 (6)0.0031 (6)
C10A0.0343 (6)0.0415 (7)0.0288 (6)0.0002 (5)0.0048 (5)0.0022 (5)
C9B0.0421 (7)0.0532 (9)0.0364 (7)0.0082 (6)0.0033 (5)0.0045 (6)
C11A0.0416 (7)0.0405 (8)0.0316 (6)0.0032 (6)0.0032 (5)0.0015 (5)
C10B0.0359 (7)0.0647 (10)0.0349 (6)0.0115 (6)0.0008 (5)0.0031 (6)
C12A0.0647 (9)0.0424 (8)0.0401 (7)0.0106 (7)0.0007 (6)0.0014 (6)
C11B0.0313 (6)0.0564 (9)0.0381 (7)0.0073 (6)0.0007 (5)0.0114 (6)
C13A0.0798 (11)0.0378 (8)0.0506 (8)0.0022 (8)0.0099 (8)0.0058 (6)
C12B0.0459 (8)0.0708 (11)0.0566 (9)0.0013 (8)0.0049 (7)0.0234 (8)
C14A0.0613 (9)0.0492 (9)0.0427 (8)0.0103 (7)0.0082 (7)0.0139 (6)
C13B0.0614 (11)0.1090 (18)0.0607 (11)0.0030 (11)0.0162 (8)0.0329 (11)
C15A0.0390 (7)0.0512 (9)0.0327 (6)0.0044 (6)0.0072 (5)0.0074 (6)
C14B0.0694 (12)0.137 (2)0.0460 (9)0.0154 (13)0.0225 (8)0.0196 (12)
C16A0.0443 (7)0.0714 (11)0.0352 (7)0.0037 (7)0.0030 (6)0.0124 (7)
C15B0.0549 (9)0.0997 (15)0.0388 (8)0.0167 (9)0.0057 (7)0.0008 (8)
C17A0.0482 (8)0.0757 (12)0.0383 (7)0.0105 (8)0.0119 (6)0.0019 (7)
C16B0.0949 (15)0.122 (2)0.0457 (9)0.0253 (14)0.0137 (9)0.0216 (11)
C18A0.0539 (8)0.0520 (9)0.0429 (7)0.0127 (7)0.0078 (6)0.0002 (6)
C18B0.0766 (11)0.0603 (11)0.0528 (9)0.0090 (9)0.0019 (8)0.0138 (8)
C17B0.1031 (16)0.0873 (16)0.0611 (11)0.0239 (13)0.0011 (11)0.0309 (11)
Geometric parameters (Å, º) top
C1A—N1A1.4597 (17)C6B—C7B1.378 (2)
C1A—N2A1.4646 (19)C6B—H6B0.9300
C1A—C2A1.5079 (17)C9A—C18A1.3728 (18)
C1A—H1A0.9800C9A—C10A1.4181 (19)
N1A—C9A1.3944 (17)C7B—H7B0.9300
N1A—H1N10.873 (19)C10A—C11A1.4154 (17)
O1A—C3A1.3693 (18)C10A—C15A1.4189 (18)
O1A—H1OA0.86 (2)C9B—C18B1.372 (2)
C2A—C7A1.388 (2)C9B—C10B1.416 (2)
C2A—C3A1.3923 (19)C11A—C12A1.368 (2)
N2A—C11A1.4081 (17)C10B—C11B1.418 (2)
N2A—H1NA0.870 (19)C10B—C15B1.426 (2)
O1B—C3B1.3616 (17)C12A—C13A1.395 (2)
O1B—H1OB0.84 (2)C12A—H12A0.9300
N1B—C9B1.4059 (17)C11B—C12B1.374 (2)
N1B—C1B1.4644 (18)C13A—C14A1.360 (2)
N1B—H1NB0.865 (17)C13A—H13A0.9300
C1B—N2B1.4638 (17)C12B—C13B1.397 (3)
C1B—C2B1.5013 (17)C12B—H12B0.9300
C1B—H1B0.9800C14A—C15A1.406 (2)
C3A—C4A1.387 (2)C14A—H14A0.9300
C2B—C7B1.3833 (18)C13B—C14B1.356 (3)
C2B—C3B1.3949 (18)C13B—H13B0.9300
N2B—C11B1.3942 (17)C15A—C16A1.412 (2)
N2B—H2NB0.862 (17)C14B—C15B1.421 (3)
C4A—C5A1.381 (3)C14B—H14B0.9300
C4A—H4A0.9300C16A—C17A1.354 (2)
C3B—C4B1.3840 (19)C16A—H16A0.9300
C5A—C6A1.368 (3)C15B—C16B1.410 (3)
C5A—H5A0.9300C17A—C18A1.401 (2)
C4B—C5B1.373 (2)C17A—H17A0.9300
C4B—H4B0.9300C16B—C17B1.353 (3)
C6A—C7A1.383 (2)C16B—H16B0.9300
C6A—H6A0.9300C18A—H18A0.9300
C5B—C6B1.375 (2)C18B—C17B1.406 (3)
C5B—H5B0.9300C18B—H18B0.9300
C7A—H7A0.9300C17B—H17B0.9300
N1A—C1A—N2A106.61 (11)N1A—C9A—C10A117.35 (11)
N1A—C1A—C2A110.09 (11)C6B—C7B—C2B121.03 (13)
N2A—C1A—C2A109.23 (11)C6B—C7B—H7B119.5
N1A—C1A—H1A110.3C2B—C7B—H7B119.5
N2A—C1A—H1A110.3C11A—C10A—C9A120.35 (11)
C2A—C1A—H1A110.3C11A—C10A—C15A119.31 (12)
C9A—N1A—C1A117.08 (11)C9A—C10A—C15A120.30 (11)
C9A—N1A—H1N1115.0 (12)C18B—C9B—N1B122.14 (15)
C1A—N1A—H1N1112.7 (12)C18B—C9B—C10B120.75 (14)
C3A—O1A—H1OA106.1 (14)N1B—C9B—C10B117.02 (13)
C7A—C2A—C3A118.36 (13)C12A—C11A—N2A121.94 (12)
C7A—C2A—C1A120.67 (13)C12A—C11A—C10A120.34 (12)
C3A—C2A—C1A120.97 (12)N2A—C11A—C10A117.56 (12)
C11A—N2A—C1A117.26 (10)C9B—C10B—C11B120.84 (12)
C11A—N2A—H1NA112.9 (12)C9B—C10B—C15B119.55 (15)
C1A—N2A—H1NA111.1 (12)C11B—C10B—C15B119.53 (15)
C3B—O1B—H1OB107.7 (17)C11A—C12A—C13A119.88 (14)
C9B—N1B—C1B114.90 (11)C11A—C12A—H12A120.1
C9B—N1B—H1NB113.0 (10)C13A—C12A—H12A120.1
C1B—N1B—H1NB112.5 (10)C12B—C11B—N2B122.37 (15)
N2B—C1B—N1B106.09 (10)C12B—C11B—C10B120.51 (14)
N2B—C1B—C2B110.09 (11)N2B—C11B—C10B117.02 (12)
N1B—C1B—C2B110.99 (10)C14A—C13A—C12A121.31 (14)
N2B—C1B—H1B109.9C14A—C13A—H13A119.3
N1B—C1B—H1B109.9C12A—C13A—H13A119.3
C2B—C1B—H1B109.9C11B—C12B—C13B119.89 (19)
O1A—C3A—C4A117.37 (13)C11B—C12B—H12B120.1
O1A—C3A—C2A122.12 (12)C13B—C12B—H12B120.1
C4A—C3A—C2A120.50 (14)C13A—C14A—C15A120.62 (13)
C7B—C2B—C3B118.45 (12)C13A—C14A—H14A119.7
C7B—C2B—C1B120.52 (11)C15A—C14A—H14A119.7
C3B—C2B—C1B121.02 (11)C14B—C13B—C12B121.03 (18)
C11B—N2B—C1B116.45 (11)C14B—C13B—H13B119.5
C11B—N2B—H2NB114.1 (10)C12B—C13B—H13B119.5
C1B—N2B—H2NB114.4 (10)C14A—C15A—C16A123.37 (13)
C5A—C4A—C3A119.71 (16)C14A—C15A—C10A118.52 (12)
C5A—C4A—H4A120.1C16A—C15A—C10A118.08 (13)
C3A—C4A—H4A120.1C13B—C14B—C15B121.50 (16)
O1B—C3B—C4B117.87 (12)C13B—C14B—H14B119.3
O1B—C3B—C2B121.81 (12)C15B—C14B—H14B119.3
C4B—C3B—C2B120.30 (12)C17A—C16A—C15A120.50 (13)
C6A—C5A—C4A120.55 (14)C17A—C16A—H16A119.8
C6A—C5A—H5A119.7C15A—C16A—H16A119.8
C4A—C5A—H5A119.7C16B—C15B—C14B124.57 (18)
C5B—C4B—C3B120.04 (14)C16B—C15B—C10B117.87 (18)
C5B—C4B—H4B120.0C14B—C15B—C10B117.52 (18)
C3B—C4B—H4B120.0C16A—C17A—C18A121.78 (13)
C5A—C6A—C7A119.76 (16)C16A—C17A—H17A119.1
C5A—C6A—H6A120.1C18A—C17A—H17A119.1
C7A—C6A—H6A120.1C17B—C16B—C15B121.10 (17)
C4B—C5B—C6B120.27 (13)C17B—C16B—H16B119.4
C4B—C5B—H5B119.9C15B—C16B—H16B119.4
C6B—C5B—H5B119.9C9A—C18A—C17A119.91 (14)
C6A—C7A—C2A121.10 (15)C9A—C18A—H18A120.0
C6A—C7A—H7A119.4C17A—C18A—H18A120.0
C2A—C7A—H7A119.4C9B—C18B—C17B118.95 (19)
C5B—C6B—C7B119.85 (14)C9B—C18B—H18B120.5
C5B—C6B—H6B120.1C17B—C18B—H18B120.5
C7B—C6B—H6B120.1C16B—C17B—C18B121.76 (19)
C18A—C9A—N1A123.03 (13)C16B—C17B—H17B119.1
C18A—C9A—C10A119.42 (12)C18B—C17B—H17B119.1
N2A—C1A—N1A—C9A53.40 (15)C1A—N2A—C11A—C10A27.40 (17)
C2A—C1A—N1A—C9A171.78 (12)C9A—C10A—C11A—C12A177.51 (12)
N1A—C1A—C2A—C7A110.84 (15)C15A—C10A—C11A—C12A0.02 (18)
N2A—C1A—C2A—C7A132.41 (14)C9A—C10A—C11A—N2A1.84 (18)
N1A—C1A—C2A—C3A68.59 (16)C15A—C10A—C11A—N2A175.69 (11)
N2A—C1A—C2A—C3A48.16 (16)C18B—C9B—C10B—C11B177.89 (14)
N1A—C1A—N2A—C11A50.96 (15)N1B—C9B—C10B—C11B1.32 (18)
C2A—C1A—N2A—C11A169.89 (11)C18B—C9B—C10B—C15B1.2 (2)
C9B—N1B—C1B—N2B57.04 (13)N1B—C9B—C10B—C15B175.39 (12)
C9B—N1B—C1B—C2B176.61 (11)N2A—C11A—C12A—C13A174.43 (13)
C7A—C2A—C3A—O1A177.96 (13)C10A—C11A—C12A—C13A1.0 (2)
C1A—C2A—C3A—O1A1.5 (2)C1B—N2B—C11B—C12B155.68 (12)
C7A—C2A—C3A—C4A1.3 (2)C1B—N2B—C11B—C10B27.86 (16)
C1A—C2A—C3A—C4A179.23 (13)C9B—C10B—C11B—C12B175.50 (12)
N2B—C1B—C2B—C7B118.22 (14)C15B—C10B—C11B—C12B1.21 (19)
N1B—C1B—C2B—C7B124.63 (13)C9B—C10B—C11B—N2B1.03 (18)
N2B—C1B—C2B—C3B61.14 (16)C15B—C10B—C11B—N2B177.74 (12)
N1B—C1B—C2B—C3B56.01 (16)C11A—C12A—C13A—C14A0.9 (2)
N1B—C1B—N2B—C11B55.21 (14)N2B—C11B—C12B—C13B177.43 (13)
C2B—C1B—N2B—C11B175.37 (11)C10B—C11B—C12B—C13B1.1 (2)
O1A—C3A—C4A—C5A178.05 (14)C12A—C13A—C14A—C15A0.3 (2)
C2A—C3A—C4A—C5A1.3 (2)C11B—C12B—C13B—C14B0.3 (3)
C7B—C2B—C3B—O1B176.49 (14)C13A—C14A—C15A—C16A179.26 (14)
C1B—C2B—C3B—O1B4.1 (2)C13A—C14A—C15A—C10A1.3 (2)
C7B—C2B—C3B—C4B2.2 (2)C11A—C10A—C15A—C14A1.20 (18)
C1B—C2B—C3B—C4B177.14 (13)C9A—C10A—C15A—C14A176.34 (12)
C3A—C4A—C5A—C6A0.3 (3)C11A—C10A—C15A—C16A179.24 (11)
O1B—C3B—C4B—C5B176.17 (15)C9A—C10A—C15A—C16A1.70 (18)
C2B—C3B—C4B—C5B2.6 (2)C12B—C13B—C14B—C15B1.5 (3)
C4A—C5A—C6A—C7A0.5 (3)C14A—C15A—C16A—C17A176.90 (14)
C3B—C4B—C5B—C6B0.8 (2)C10A—C15A—C16A—C17A1.0 (2)
C5A—C6A—C7A—C2A0.4 (3)C13B—C14B—C15B—C16B176.13 (19)
C3A—C2A—C7A—C6A0.5 (2)C13B—C14B—C15B—C10B1.3 (3)
C1A—C2A—C7A—C6A179.92 (14)C9B—C10B—C15B—C16B0.9 (2)
C4B—C5B—C6B—C7B1.4 (3)C11B—C10B—C15B—C16B177.64 (15)
C1A—N1A—C9A—C18A153.25 (13)C9B—C10B—C15B—C14B176.72 (14)
C1A—N1A—C9A—C10A31.88 (17)C11B—C10B—C15B—C14B0.0 (2)
C5B—C6B—C7B—C2B1.7 (2)C15A—C16A—C17A—C18A0.2 (2)
C3B—C2B—C7B—C6B0.1 (2)C14B—C15B—C16B—C17B176.93 (19)
C1B—C2B—C7B—C6B179.29 (14)C10B—C15B—C16B—C17B0.5 (3)
C18A—C9A—C10A—C11A179.05 (12)N1A—C9A—C18A—C17A174.10 (13)
N1A—C9A—C10A—C11A3.99 (17)C10A—C9A—C18A—C17A0.7 (2)
C18A—C9A—C10A—C15A1.53 (19)C16A—C17A—C18A—C9A0.0 (2)
N1A—C9A—C10A—C15A173.53 (11)N1B—C9B—C18B—C17B175.37 (15)
C1B—N1B—C9B—C18B151.26 (14)C10B—C9B—C18B—C17B1.0 (2)
C1B—N1B—C9B—C10B32.21 (16)C15B—C16B—C17B—C18B0.4 (3)
C1A—N2A—C11A—C12A157.00 (13)C9B—C18B—C17B—C16B0.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.86 (2)2.66 (2)3.1072 (16)113.8 (17)
O1A—H1OA···N2A0.86 (2)2.03 (2)2.7763 (16)144.6 (19)
O1B—H1OB···N1B0.84 (2)2.20 (3)2.8835 (16)138 (2)
O1B—H1OB···N2B0.84 (2)2.47 (2)3.0196 (16)123 (2)
N1B—H1NB···O1A0.865 (17)2.331 (17)3.1608 (18)160.8 (14)
Comparison of selected X-ray and DFT geometrical parameters (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
C1A—N1A1.4597 (17)1.40941
C1A—N2A1.4646 (19)1.35557
C1A—C2A1.5079 (17)1.43731
C1A—H1A0.98001.03211
N1A—C9A1.3944 (17)1.42420
N1A—H1N10.873 (19)1.00630
O1A—C3A1.3693 (18)1.40953
O1A—H1OA0.86 (2)0.97032
C2A—C7A1.388 (2)1.42763
C2A—C3A1.3923 (19)1.42630
N2A—C11A1.4081 (17)1.36897
N1A—C1A—N2A106.61 (11)115.07
N1A—C1A—C2A110.09 (11)125.03
N2A—C1A—C2A109.23 (11)109.89
N1A—C1A—H1A110.3110.17
N2A—C1A—H1A110.3110.03
C2A—C1A—H1A110.3110.08
C9A—N1A—C1A117.08 (11)117.82
C9A—N1A—H1N1115.0 (12)114.98
C3A—O1A—H1OA106.1 (14)107.84
Calculated energies top
Molecular Energy (a.u.) (eV)Compound I
Total Energy TE (eV)-22880.3725
EHOMO (eV)-3.2606
ELUMO (eV)-1.7673
Gap, ΔE (eV)1.4933
Dipole moment, µ (Debye)3.3491
Ionization potential, I (eV)3.2606
Electron affinity, A1.7673
Electronegativity, χ2.5139
Hardness, η0.7466
Electrophilicity index, ω4.2322
Softness, σ1.3393
Fraction of electron transferred, ΔN3.0042
 

Acknowledgements

Professor Nahossé Ziao is thanked for allowing the synthesis to be undertaken in the Laboratory of Thermodynamics and Physical Chemistry of the Environment (LTPCM), University Nangui, Abrogoua, Côte d'Ivoire.

Funding information

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAlam, M. & Lee, D.-U. (2016). Comput. Biol. Chem. 64, 185–201.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBazinet, P., Yap, G. P. A. & Richeson, D. S. (2003). J. Am. Chem. Soc. 125, 13314–13315.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBehbahani, F. K. & Golchin, F. M. (2017). J. Taibah Univ. Sci. 11, 85–89.  Web of Science CrossRef Google Scholar
First citationBooysen, I. N., Ebinumoliseh, I., Sithebe, S., Akerman, M. P. & Xulu, B. (2016). Polyhedron, 117, 755–760.  Web of Science CSD CrossRef CAS Google Scholar
First citationBu, X., Deady, L. W., Finlay, G. J., Baguley, B. C. & Denny, W. A. (2001). J. Med. Chem. 44, 2004–2014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013). Acta Cryst. E69, o1133–o1134.  CSD CrossRef IUCr Journals Google Scholar
First citationDe Aguiar, A. (1874). Ber. Dtsch. Chem. Ges. 7, 309–319.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US  Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o715–o716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhorbani, M. H. (2012). Acta Cryst. E68, o2605.  CSD CrossRef IUCr Journals Google Scholar
First citationGiani, A. M., Lamperti, M., Maspero, A., Cimino, A., Negri, R., Giovenzana, G. B., Palmisano, G. & Nardo, L. (2016). J. Lumin. 179, 384–392.  Web of Science CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHe, X., Mao, J., Ma, Q. & Tang, Y. (2018). J. Mol. Liq. 269, 260–268.  Web of Science CrossRef CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationMahapatra, A. K., Maji, R., Maiti, K., Manna, S. K., Mondal, S., Das Mukhopadhyay, C., Goswami, S., Sarkar, D., Mondal, T. K., Quah, C. K. & Fun, H. K. (2015). Sens. Actuators B Chem. 207, 878–886.  Web of Science CrossRef CAS Google Scholar
First citationMaloney, S., Slawin, A. M. Z. & Woollins, J. D. (2013). Acta Cryst. E69, o246.  CSD CrossRef IUCr Journals Google Scholar
First citationManimekalai, A., Vijayalakshmi, N. & Selvanayagam, S. (2014). Acta Cryst. E70, o959.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStarshikoy, N. M. & Pozharskii, F. T. (1973). Chem. Heterocycl. Compd. 9, 922–924.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVarsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. M. M. (2010). Tetrahedron Lett. 51, 2174–2177.  Web of Science CSD CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWatanab, K. & Hareda, H. (1977). Chem. Abstr. 8499.  Google Scholar
First citationWoodgate, P. D., Herbert, J. M. & Denny, W. A. (1987). Heterocycles, 26, 1029–1036.  CAS Google Scholar
First citationZhang, H. G., Wang, X. Z., Cao, Q., Gong, G. H. & Quan, Z. S. (2017). Bioorg. Med. Chem. Lett. 27, 4409–4414.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhou, D. C., Lu, Y. T., Mai, Y. W., Zhang, C., Xia, J., Yao, P. F., Wang, H. G., Huang, S. L. & Huang, Z. S. (2019). Bioorg. Chem. 91, 103131.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds