research communications
H-perimidin-2-yl)phenol
Hirshfeld surface analysis and DFT studies of 2-(2,3-dihydro-1aLaboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique et de Substances Naturelles, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan, Côte d'Ivoire, cLaboratoire de Thermodynamique et Physicochimie du Milieu, Université Nangui, Abrogoua, UFR-SFA, 02 BP 801 Abidjan 02, Côte d'Ivoire, dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and eInstitut de Chimie des Substances Naturelles, 1 av. de la Terrasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: daoudaballo526@gmail.com
The 17H14N2O, contains two independent molecules each consisting of perimidine and phenol units. The tricyclic perimidine units contain naphthalene ring systems and non-planar C4N2 rings adopting envelope conformations with the C atoms of the NCN groups hinged by 44.11 (7) and 48.50 (6)° with respect to the best planes of the other five atoms. Intramolecular O—H⋯N hydrogen bonds may help to consolidate the molecular conformations. The two independent molecules are linked through an N—H⋯O hydrogen bond. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (39.5%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
of the title compound, CKeywords: crystal structure; perimidine; phenol; Hirshfeld surface.
CCDC reference: 1976884
1. Chemical context
1-H Perimidines are defined as peri-naphtho-fused pyrimidines (Varsha et al., 2010). They were first discovered in 1874 (De Aguiar, 1874) and are characterized either by a binding deficit or an excess of π binding (Woodgate et al., 1987). They are used as intermediates in dyes, dyeing and polymerization systems (Watanab et al., 1977) and have been recognized as new carbene ligands (Bazinet et al., 2003), attracting great interest (Bu et al., 2001; Starshikoy et al., 1973). 1-H Perimidines also exhibit important biological activities (Zhou et al., 2019), having the potential to act as anti-inflammatory agents (Zhang et al., 2017) and inhibitors of enzymes (Alam et al., 2016) and to have applications in fluorescence (Giani et al., 2016), catalysis (Behbahani et al., 2017), corrosion inhibition (He et al., 2018) and in coordination chemistry (Booysen et al., 2016; Mahapatra et al., 2015).
Perimidines are obtained by the condensation of 1,8-diaminonaphthalene with various carbonyl groups. As a continuation of our research into the development of new perimidine derivatives with potential pharmacological applications, we have studied the reaction of the condensation of salicylaldehyde and 1,8- diaminonaphthalene in ether under agitation at room temperature to give the title compound in good yield. The title compound was obtained for the first time and characterized by single-crystal X-ray diffraction techniques as well as by Hirshfeld surface analysis. The results of the calculations by density functional theory (DFT), carried out at the B3LYP/6-311G (d,p) level, are compared with the experimentally determined molecular structure in the solid state.
2. Structural commentary
The I, contains two crystallographically independent molecules each consisting of perimidine and phenol units, where the tricyclic perimidine units contain naphthalene ring systems and non-planar C4N2 rings (Fig. 1). A puckering analysis of the non-planar six-membered C4N2, B (N1A/N2A/C1A/C9A–C11A) and B′ (N1A/N2A/C1A/C9B–C11B) rings gave the parameters q2 = 0.9280 (12) Å, q3 = 0.1829 (12) Å, QT = 0.9459 (13) Å, θ2 = 75.85 (15)° and φ 2= 134.47 (18)° for B and q2 = 0.5320 (11) Å, q3 = 0.3791 (11) Å, QT = 0.6533 (14) Å, θ2 = 54.33 (12)° and φ 2= −5.47 (13)° for B′; both rings adopt envelope conformations, where atoms C1A and C1B are at the flap positions and at distances of 0.6044 (12) and −0.6590 (13) Å, respectively, from the best planes through the other five atoms. The C4N2 rings may alternatively be described as being hinged about the N⋯N vectors with the N1A/C1A/N2A and N1B/C1B/N2B planes being inclined by 44.11 (7) and 48.50 (6)°, respectively, to the best planes through the other five atoms (N1A/N2A/C9A–C11A) and (N1B/N2B/C9B–C11B). Rings A (C2A–C7A), C (C10A–C15A), D (C9A/C10A/C15A–C18A) and A′ (C2B–C7B), C′ (C10B–C15B), D′ (C9B/C10B/C15B–C18B) are oriented at dihedral angles of A/C = 76.78 (4), A/D = 78.49 (4), C/D = 2.09 (3)° and A′/C′ = 88.43 (3), A′/D′ = 88.31 (3), C′/D′ = 3.26 (4)°. Intramolecular O—H⋯N hydrogen bonds (Table 1) may be effective in consolidating the conformations of the two independent molecules.
of the title compound,
|
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 2), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors.
The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 3 clearly suggests that there are no π–π interactions in I. The overall two-dimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 4a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯C contacts are illustrated in Fig. 4 b–f, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 52.9% to the overall crystal packing, which is reflected in Fig. 4b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at de = di = 1.10 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 4c, (39.5% contribution to the HS) have the tips at de + di = 2.50 Å. The scattered points in the pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H (Fig. 4d, 5.7% contribution) have a symmetrical distribution with the tips at de + di = 2.49 Å. The H⋯N/N⋯H contacts (Fig. 4e, 1.3% contribution) have a distribution of points with the tips at de + di = 2.72 Å. Finally, the C⋯C interactions (0.5% contribution to the overall crystal packing) are reflected in Fig. 4f as low density wings with the tips at de + di = 3.60 Å.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 5a–c, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. DFT calculations
The optimized structure of the title compound, I, in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 2). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO, which clarify the inevitable charge-exchange collaboration inside the studied material, (χ), hardness (η), potential (μ), (ω) and softness (σ) are recorded in Table 3. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6. The HOMO and LUMO are localized in the plane extending from the whole 2-(2,3-dihydro-1H-perimidin-2-yl)phenol ring. The energy band gap [ΔE = ELUMO - EHOMO] of the molecule is 1.4933 eV, the frontier molecular orbital energies EHOMO and ELUMO being −3.2606 and −1.7673 eV, respectively.
|
|
6. Database survey
Similar perimidine derivatives have also been reported in which the groups at position 2 are almost coplanar with the perimidic nucleus. Examples related to the title compound, I, are II (Ghorbani, 2012), III (Fun et al., 2011), IV (Maloney et al., 2013), V (Cucciolito et al., 2013) and VI (Manimekalai et al., 2014), where III and V are most closely related while II, IV and VI are more distant relatives.
7. Synthesis and crystallization
0.35 mol (1.48 g) of 1,8-diaminonaphthalene and 18.8 mmol (2 ml) of salicylaldehyde were introduced into a 250 ml flask and 30 ml of ether were added thereto. The mixture was stirred magnetically for 3 days. The grey precipitate that formed was recovered by filtration, washed with ether, rinsed with ethanol and dried under Büchner. The resulting brownish powder was recrystallized several times from ethanol to obtain colourless 2-(2,3-dihydro-1H-perimidin-2-yl)phenol product (Rf = 0.70 in hexane/ethyl acetate (1:0.5), yield: 97% A significant quantity of the colourless monocrystalline product was obtained by the slow evaporation of the solvent after 15 days.
8. Refinement
Crystal data, data collection and structure . The H atoms of OH and NH groups were located in difference-Fourier maps and refined freely. The C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms) and 0.98 Å (for methine H atom) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
details are summarized in are summarized in Table 4Supporting information
CCDC reference: 1976884
https://doi.org/10.1107/S2056989020005939/lh5957sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020005939/lh5957Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020005939/lh5957Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020005939/lh5957Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012).C17H14N2O | F(000) = 1104 |
Mr = 262.30 | Dx = 1.302 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0710 (4) Å | Cell parameters from 8291 reflections |
b = 12.0526 (7) Å | θ = 2.8–29.0° |
c = 24.6120 (11) Å | µ = 0.08 mm−1 |
β = 95.999 (4)° | T = 293 K |
V = 2676.1 (2) Å3 | Plate, colourless |
Z = 8 | 0.60 × 0.35 × 0.05 mm |
Rigaku XtaLAB PRO diffractometer | 6395 independent reflections |
Radiation source: micro-focus sealed X-ray tube, Rigaku micromax 003 | 4554 reflections with I > 2σ(I) |
Rigaku Integrated Confocal MaxFlux double bounce multi-layer mirror optics monochromator | Rint = 0.042 |
Detector resolution: 5.811 pixels mm-1 | θmax = 29.4°, θmin = 2.7° |
ω scans | h = −12→11 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −15→16 |
Tmin = 0.212, Tmax = 1.000 | l = −33→32 |
29344 measured reflections |
Refinement on F2 | Primary atom site location: other |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: mixed |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0558P)2 + 0.390P] where P = (Fo2 + 2Fc2)/3 |
6395 reflections | (Δ/σ)max = 0.001 |
379 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.56889 (14) | 0.53907 (11) | 0.62210 (5) | 0.0396 (3) | |
H1A | 0.638920 | 0.526271 | 0.595013 | 0.047* | |
N1A | 0.41985 (13) | 0.50532 (11) | 0.60023 (5) | 0.0437 (3) | |
H1N1 | 0.4106 (19) | 0.4334 (16) | 0.5970 (7) | 0.066* | |
O1A | 0.43505 (13) | 0.56864 (10) | 0.72308 (4) | 0.0584 (3) | |
H1OA | 0.438 (2) | 0.6117 (18) | 0.6953 (9) | 0.088* | |
C2A | 0.61653 (14) | 0.47595 (12) | 0.67387 (5) | 0.0405 (3) | |
N2A | 0.56102 (14) | 0.65756 (10) | 0.63467 (4) | 0.0435 (3) | |
H1NA | 0.646 (2) | 0.6821 (15) | 0.6495 (7) | 0.065* | |
O1B | 0.04282 (12) | 0.30406 (13) | 0.63319 (5) | 0.0708 (4) | |
H1OB | 0.043 (3) | 0.318 (2) | 0.6666 (10) | 0.106* | |
N1B | 0.20034 (13) | 0.37845 (10) | 0.73446 (4) | 0.0411 (3) | |
H1NB | 0.2567 (17) | 0.4294 (14) | 0.7230 (6) | 0.049* | |
C1B | 0.25725 (13) | 0.26647 (11) | 0.72676 (5) | 0.0375 (3) | |
H1B | 0.347428 | 0.254276 | 0.751615 | 0.045* | |
C3A | 0.54903 (15) | 0.49467 (12) | 0.72131 (5) | 0.0443 (3) | |
C2B | 0.28946 (14) | 0.24906 (11) | 0.66876 (5) | 0.0369 (3) | |
N2B | 0.14081 (13) | 0.19020 (11) | 0.74018 (5) | 0.0419 (3) | |
H2NB | 0.1541 (17) | 0.1222 (14) | 0.7310 (6) | 0.050* | |
C4A | 0.59490 (18) | 0.43710 (15) | 0.76890 (6) | 0.0582 (4) | |
H4A | 0.550760 | 0.450973 | 0.800663 | 0.070* | |
C3B | 0.17999 (14) | 0.26533 (12) | 0.62532 (5) | 0.0433 (3) | |
C5A | 0.70642 (19) | 0.35908 (16) | 0.76890 (7) | 0.0661 (5) | |
H5A | 0.736838 | 0.320194 | 0.800742 | 0.079* | |
C4B | 0.20960 (17) | 0.24421 (13) | 0.57226 (6) | 0.0503 (4) | |
H4B | 0.135102 | 0.252304 | 0.543578 | 0.060* | |
C6A | 0.77248 (17) | 0.33852 (16) | 0.72245 (8) | 0.0645 (5) | |
H6A | 0.846957 | 0.285454 | 0.722639 | 0.077* | |
C5B | 0.34887 (19) | 0.21132 (14) | 0.56196 (6) | 0.0568 (4) | |
H5B | 0.368794 | 0.198052 | 0.526223 | 0.068* | |
C7A | 0.72813 (15) | 0.39693 (14) | 0.67520 (6) | 0.0519 (4) | |
H7A | 0.773844 | 0.383022 | 0.643784 | 0.062* | |
C6B | 0.45901 (18) | 0.19793 (14) | 0.60424 (7) | 0.0582 (4) | |
H6B | 0.553804 | 0.177175 | 0.597066 | 0.070* | |
C9A | 0.35196 (14) | 0.56636 (11) | 0.55642 (5) | 0.0378 (3) | |
C7B | 0.42863 (15) | 0.21533 (12) | 0.65727 (6) | 0.0456 (3) | |
H7B | 0.502848 | 0.204217 | 0.685787 | 0.055* | |
C10A | 0.38759 (13) | 0.68071 (11) | 0.55413 (5) | 0.0348 (3) | |
C9B | 0.15927 (15) | 0.40010 (13) | 0.78695 (5) | 0.0444 (3) | |
C11A | 0.49532 (14) | 0.72763 (11) | 0.59321 (5) | 0.0379 (3) | |
C10B | 0.10259 (14) | 0.30998 (13) | 0.81524 (5) | 0.0455 (3) | |
C12A | 0.52565 (18) | 0.83872 (12) | 0.59224 (6) | 0.0494 (4) | |
H12A | 0.597660 | 0.868995 | 0.617626 | 0.059* | |
C11B | 0.09143 (14) | 0.20261 (12) | 0.79161 (5) | 0.0422 (3) | |
C13A | 0.44833 (19) | 0.90655 (13) | 0.55310 (6) | 0.0559 (4) | |
H13A | 0.468574 | 0.982195 | 0.553059 | 0.067* | |
C12B | 0.02694 (16) | 0.11725 (16) | 0.81762 (6) | 0.0578 (4) | |
H12B | 0.018478 | 0.047355 | 0.801591 | 0.069* | |
C14A | 0.34396 (17) | 0.86426 (13) | 0.51502 (6) | 0.0509 (4) | |
H14A | 0.293631 | 0.911237 | 0.489454 | 0.061* | |
C13B | −0.0259 (2) | 0.1357 (2) | 0.86819 (8) | 0.0763 (6) | |
H13B | −0.069782 | 0.077655 | 0.885520 | 0.092* | |
C15A | 0.31142 (14) | 0.75013 (12) | 0.51393 (5) | 0.0407 (3) | |
C14B | −0.0142 (2) | 0.2368 (2) | 0.89238 (8) | 0.0829 (7) | |
H14B | −0.048187 | 0.246358 | 0.926437 | 0.099* | |
C16A | 0.20329 (16) | 0.70134 (14) | 0.47590 (5) | 0.0508 (4) | |
H16A | 0.152944 | 0.744820 | 0.448781 | 0.061* | |
C15B | 0.04892 (18) | 0.32860 (18) | 0.86688 (6) | 0.0644 (5) | |
C17A | 0.17231 (16) | 0.59168 (15) | 0.47860 (6) | 0.0552 (4) | |
H17A | 0.100450 | 0.561244 | 0.453204 | 0.066* | |
C16B | 0.0568 (2) | 0.4373 (2) | 0.88808 (8) | 0.0871 (7) | |
H16B | 0.023178 | 0.451434 | 0.921832 | 0.105* | |
C18A | 0.24558 (16) | 0.52286 (13) | 0.51861 (6) | 0.0505 (4) | |
H18A | 0.222179 | 0.447803 | 0.519553 | 0.061* | |
C18B | 0.1656 (2) | 0.50467 (16) | 0.80913 (7) | 0.0639 (4) | |
H18B | 0.204313 | 0.563464 | 0.790689 | 0.077* | |
C17B | 0.1125 (3) | 0.5215 (2) | 0.86015 (8) | 0.0844 (6) | |
H17B | 0.115746 | 0.592467 | 0.875106 | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.0369 (6) | 0.0440 (8) | 0.0368 (6) | −0.0004 (6) | −0.0008 (5) | 0.0035 (5) |
N1A | 0.0475 (6) | 0.0373 (6) | 0.0431 (6) | −0.0065 (5) | −0.0108 (5) | 0.0045 (5) |
O1A | 0.0697 (7) | 0.0588 (7) | 0.0487 (6) | 0.0109 (6) | 0.0153 (5) | 0.0095 (5) |
C2A | 0.0347 (6) | 0.0438 (8) | 0.0409 (7) | −0.0056 (6) | −0.0055 (5) | 0.0066 (6) |
N2A | 0.0470 (6) | 0.0416 (7) | 0.0385 (6) | −0.0103 (5) | −0.0113 (5) | 0.0042 (5) |
O1B | 0.0442 (6) | 0.1251 (12) | 0.0413 (6) | 0.0251 (6) | −0.0033 (5) | −0.0002 (6) |
N1B | 0.0451 (6) | 0.0392 (7) | 0.0390 (6) | −0.0011 (5) | 0.0046 (5) | −0.0005 (5) |
C1B | 0.0320 (6) | 0.0436 (8) | 0.0360 (6) | 0.0035 (5) | −0.0009 (5) | 0.0022 (5) |
C3A | 0.0443 (7) | 0.0458 (8) | 0.0414 (7) | −0.0062 (6) | −0.0017 (6) | 0.0052 (6) |
C2B | 0.0372 (6) | 0.0352 (7) | 0.0383 (6) | −0.0002 (5) | 0.0039 (5) | 0.0013 (5) |
N2B | 0.0443 (6) | 0.0397 (7) | 0.0424 (6) | −0.0002 (5) | 0.0079 (5) | 0.0026 (5) |
C4A | 0.0635 (10) | 0.0667 (11) | 0.0422 (8) | −0.0147 (8) | −0.0045 (7) | 0.0124 (7) |
C3B | 0.0396 (7) | 0.0510 (9) | 0.0392 (7) | 0.0017 (6) | 0.0038 (5) | 0.0024 (6) |
C5A | 0.0567 (9) | 0.0738 (12) | 0.0624 (10) | −0.0109 (9) | −0.0196 (8) | 0.0315 (9) |
C4B | 0.0583 (9) | 0.0533 (9) | 0.0386 (7) | −0.0017 (7) | 0.0010 (6) | −0.0004 (6) |
C6A | 0.0413 (8) | 0.0676 (11) | 0.0809 (12) | 0.0057 (8) | −0.0115 (8) | 0.0250 (9) |
C5B | 0.0715 (10) | 0.0573 (10) | 0.0441 (8) | 0.0027 (8) | 0.0179 (7) | −0.0076 (7) |
C7A | 0.0364 (7) | 0.0584 (10) | 0.0594 (9) | 0.0023 (7) | −0.0020 (6) | 0.0109 (7) |
C6B | 0.0520 (9) | 0.0632 (11) | 0.0622 (9) | 0.0089 (8) | 0.0195 (7) | −0.0082 (8) |
C9A | 0.0369 (6) | 0.0431 (8) | 0.0325 (6) | −0.0025 (6) | −0.0001 (5) | 0.0012 (5) |
C7B | 0.0396 (7) | 0.0461 (8) | 0.0511 (8) | 0.0034 (6) | 0.0045 (6) | −0.0031 (6) |
C10A | 0.0343 (6) | 0.0415 (7) | 0.0288 (6) | 0.0002 (5) | 0.0048 (5) | 0.0022 (5) |
C9B | 0.0421 (7) | 0.0532 (9) | 0.0364 (7) | 0.0082 (6) | −0.0033 (5) | −0.0045 (6) |
C11A | 0.0416 (7) | 0.0405 (8) | 0.0316 (6) | −0.0032 (6) | 0.0032 (5) | 0.0015 (5) |
C10B | 0.0359 (7) | 0.0647 (10) | 0.0349 (6) | 0.0115 (6) | −0.0008 (5) | 0.0031 (6) |
C12A | 0.0647 (9) | 0.0424 (8) | 0.0401 (7) | −0.0106 (7) | 0.0007 (6) | −0.0014 (6) |
C11B | 0.0313 (6) | 0.0564 (9) | 0.0381 (7) | 0.0073 (6) | −0.0007 (5) | 0.0114 (6) |
C13A | 0.0798 (11) | 0.0378 (8) | 0.0506 (8) | −0.0022 (8) | 0.0099 (8) | 0.0058 (6) |
C12B | 0.0459 (8) | 0.0708 (11) | 0.0566 (9) | 0.0013 (8) | 0.0049 (7) | 0.0234 (8) |
C14A | 0.0613 (9) | 0.0492 (9) | 0.0427 (8) | 0.0103 (7) | 0.0082 (7) | 0.0139 (6) |
C13B | 0.0614 (11) | 0.1090 (18) | 0.0607 (11) | 0.0030 (11) | 0.0162 (8) | 0.0329 (11) |
C15A | 0.0390 (7) | 0.0512 (9) | 0.0327 (6) | 0.0044 (6) | 0.0072 (5) | 0.0074 (6) |
C14B | 0.0694 (12) | 0.137 (2) | 0.0460 (9) | 0.0154 (13) | 0.0225 (8) | 0.0196 (12) |
C16A | 0.0443 (7) | 0.0714 (11) | 0.0352 (7) | 0.0037 (7) | −0.0030 (6) | 0.0124 (7) |
C15B | 0.0549 (9) | 0.0997 (15) | 0.0388 (8) | 0.0167 (9) | 0.0057 (7) | −0.0008 (8) |
C17A | 0.0482 (8) | 0.0757 (12) | 0.0383 (7) | −0.0105 (8) | −0.0119 (6) | 0.0019 (7) |
C16B | 0.0949 (15) | 0.122 (2) | 0.0457 (9) | 0.0253 (14) | 0.0137 (9) | −0.0216 (11) |
C18A | 0.0539 (8) | 0.0520 (9) | 0.0429 (7) | −0.0127 (7) | −0.0078 (6) | −0.0002 (6) |
C18B | 0.0766 (11) | 0.0603 (11) | 0.0528 (9) | 0.0090 (9) | −0.0019 (8) | −0.0138 (8) |
C17B | 0.1031 (16) | 0.0873 (16) | 0.0611 (11) | 0.0239 (13) | 0.0011 (11) | −0.0309 (11) |
C1A—N1A | 1.4597 (17) | C6B—C7B | 1.378 (2) |
C1A—N2A | 1.4646 (19) | C6B—H6B | 0.9300 |
C1A—C2A | 1.5079 (17) | C9A—C18A | 1.3728 (18) |
C1A—H1A | 0.9800 | C9A—C10A | 1.4181 (19) |
N1A—C9A | 1.3944 (17) | C7B—H7B | 0.9300 |
N1A—H1N1 | 0.873 (19) | C10A—C11A | 1.4154 (17) |
O1A—C3A | 1.3693 (18) | C10A—C15A | 1.4189 (18) |
O1A—H1OA | 0.86 (2) | C9B—C18B | 1.372 (2) |
C2A—C7A | 1.388 (2) | C9B—C10B | 1.416 (2) |
C2A—C3A | 1.3923 (19) | C11A—C12A | 1.368 (2) |
N2A—C11A | 1.4081 (17) | C10B—C11B | 1.418 (2) |
N2A—H1NA | 0.870 (19) | C10B—C15B | 1.426 (2) |
O1B—C3B | 1.3616 (17) | C12A—C13A | 1.395 (2) |
O1B—H1OB | 0.84 (2) | C12A—H12A | 0.9300 |
N1B—C9B | 1.4059 (17) | C11B—C12B | 1.374 (2) |
N1B—C1B | 1.4644 (18) | C13A—C14A | 1.360 (2) |
N1B—H1NB | 0.865 (17) | C13A—H13A | 0.9300 |
C1B—N2B | 1.4638 (17) | C12B—C13B | 1.397 (3) |
C1B—C2B | 1.5013 (17) | C12B—H12B | 0.9300 |
C1B—H1B | 0.9800 | C14A—C15A | 1.406 (2) |
C3A—C4A | 1.387 (2) | C14A—H14A | 0.9300 |
C2B—C7B | 1.3833 (18) | C13B—C14B | 1.356 (3) |
C2B—C3B | 1.3949 (18) | C13B—H13B | 0.9300 |
N2B—C11B | 1.3942 (17) | C15A—C16A | 1.412 (2) |
N2B—H2NB | 0.862 (17) | C14B—C15B | 1.421 (3) |
C4A—C5A | 1.381 (3) | C14B—H14B | 0.9300 |
C4A—H4A | 0.9300 | C16A—C17A | 1.354 (2) |
C3B—C4B | 1.3840 (19) | C16A—H16A | 0.9300 |
C5A—C6A | 1.368 (3) | C15B—C16B | 1.410 (3) |
C5A—H5A | 0.9300 | C17A—C18A | 1.401 (2) |
C4B—C5B | 1.373 (2) | C17A—H17A | 0.9300 |
C4B—H4B | 0.9300 | C16B—C17B | 1.353 (3) |
C6A—C7A | 1.383 (2) | C16B—H16B | 0.9300 |
C6A—H6A | 0.9300 | C18A—H18A | 0.9300 |
C5B—C6B | 1.375 (2) | C18B—C17B | 1.406 (3) |
C5B—H5B | 0.9300 | C18B—H18B | 0.9300 |
C7A—H7A | 0.9300 | C17B—H17B | 0.9300 |
N1A—C1A—N2A | 106.61 (11) | N1A—C9A—C10A | 117.35 (11) |
N1A—C1A—C2A | 110.09 (11) | C6B—C7B—C2B | 121.03 (13) |
N2A—C1A—C2A | 109.23 (11) | C6B—C7B—H7B | 119.5 |
N1A—C1A—H1A | 110.3 | C2B—C7B—H7B | 119.5 |
N2A—C1A—H1A | 110.3 | C11A—C10A—C9A | 120.35 (11) |
C2A—C1A—H1A | 110.3 | C11A—C10A—C15A | 119.31 (12) |
C9A—N1A—C1A | 117.08 (11) | C9A—C10A—C15A | 120.30 (11) |
C9A—N1A—H1N1 | 115.0 (12) | C18B—C9B—N1B | 122.14 (15) |
C1A—N1A—H1N1 | 112.7 (12) | C18B—C9B—C10B | 120.75 (14) |
C3A—O1A—H1OA | 106.1 (14) | N1B—C9B—C10B | 117.02 (13) |
C7A—C2A—C3A | 118.36 (13) | C12A—C11A—N2A | 121.94 (12) |
C7A—C2A—C1A | 120.67 (13) | C12A—C11A—C10A | 120.34 (12) |
C3A—C2A—C1A | 120.97 (12) | N2A—C11A—C10A | 117.56 (12) |
C11A—N2A—C1A | 117.26 (10) | C9B—C10B—C11B | 120.84 (12) |
C11A—N2A—H1NA | 112.9 (12) | C9B—C10B—C15B | 119.55 (15) |
C1A—N2A—H1NA | 111.1 (12) | C11B—C10B—C15B | 119.53 (15) |
C3B—O1B—H1OB | 107.7 (17) | C11A—C12A—C13A | 119.88 (14) |
C9B—N1B—C1B | 114.90 (11) | C11A—C12A—H12A | 120.1 |
C9B—N1B—H1NB | 113.0 (10) | C13A—C12A—H12A | 120.1 |
C1B—N1B—H1NB | 112.5 (10) | C12B—C11B—N2B | 122.37 (15) |
N2B—C1B—N1B | 106.09 (10) | C12B—C11B—C10B | 120.51 (14) |
N2B—C1B—C2B | 110.09 (11) | N2B—C11B—C10B | 117.02 (12) |
N1B—C1B—C2B | 110.99 (10) | C14A—C13A—C12A | 121.31 (14) |
N2B—C1B—H1B | 109.9 | C14A—C13A—H13A | 119.3 |
N1B—C1B—H1B | 109.9 | C12A—C13A—H13A | 119.3 |
C2B—C1B—H1B | 109.9 | C11B—C12B—C13B | 119.89 (19) |
O1A—C3A—C4A | 117.37 (13) | C11B—C12B—H12B | 120.1 |
O1A—C3A—C2A | 122.12 (12) | C13B—C12B—H12B | 120.1 |
C4A—C3A—C2A | 120.50 (14) | C13A—C14A—C15A | 120.62 (13) |
C7B—C2B—C3B | 118.45 (12) | C13A—C14A—H14A | 119.7 |
C7B—C2B—C1B | 120.52 (11) | C15A—C14A—H14A | 119.7 |
C3B—C2B—C1B | 121.02 (11) | C14B—C13B—C12B | 121.03 (18) |
C11B—N2B—C1B | 116.45 (11) | C14B—C13B—H13B | 119.5 |
C11B—N2B—H2NB | 114.1 (10) | C12B—C13B—H13B | 119.5 |
C1B—N2B—H2NB | 114.4 (10) | C14A—C15A—C16A | 123.37 (13) |
C5A—C4A—C3A | 119.71 (16) | C14A—C15A—C10A | 118.52 (12) |
C5A—C4A—H4A | 120.1 | C16A—C15A—C10A | 118.08 (13) |
C3A—C4A—H4A | 120.1 | C13B—C14B—C15B | 121.50 (16) |
O1B—C3B—C4B | 117.87 (12) | C13B—C14B—H14B | 119.3 |
O1B—C3B—C2B | 121.81 (12) | C15B—C14B—H14B | 119.3 |
C4B—C3B—C2B | 120.30 (12) | C17A—C16A—C15A | 120.50 (13) |
C6A—C5A—C4A | 120.55 (14) | C17A—C16A—H16A | 119.8 |
C6A—C5A—H5A | 119.7 | C15A—C16A—H16A | 119.8 |
C4A—C5A—H5A | 119.7 | C16B—C15B—C14B | 124.57 (18) |
C5B—C4B—C3B | 120.04 (14) | C16B—C15B—C10B | 117.87 (18) |
C5B—C4B—H4B | 120.0 | C14B—C15B—C10B | 117.52 (18) |
C3B—C4B—H4B | 120.0 | C16A—C17A—C18A | 121.78 (13) |
C5A—C6A—C7A | 119.76 (16) | C16A—C17A—H17A | 119.1 |
C5A—C6A—H6A | 120.1 | C18A—C17A—H17A | 119.1 |
C7A—C6A—H6A | 120.1 | C17B—C16B—C15B | 121.10 (17) |
C4B—C5B—C6B | 120.27 (13) | C17B—C16B—H16B | 119.4 |
C4B—C5B—H5B | 119.9 | C15B—C16B—H16B | 119.4 |
C6B—C5B—H5B | 119.9 | C9A—C18A—C17A | 119.91 (14) |
C6A—C7A—C2A | 121.10 (15) | C9A—C18A—H18A | 120.0 |
C6A—C7A—H7A | 119.4 | C17A—C18A—H18A | 120.0 |
C2A—C7A—H7A | 119.4 | C9B—C18B—C17B | 118.95 (19) |
C5B—C6B—C7B | 119.85 (14) | C9B—C18B—H18B | 120.5 |
C5B—C6B—H6B | 120.1 | C17B—C18B—H18B | 120.5 |
C7B—C6B—H6B | 120.1 | C16B—C17B—C18B | 121.76 (19) |
C18A—C9A—N1A | 123.03 (13) | C16B—C17B—H17B | 119.1 |
C18A—C9A—C10A | 119.42 (12) | C18B—C17B—H17B | 119.1 |
N2A—C1A—N1A—C9A | 53.40 (15) | C1A—N2A—C11A—C10A | 27.40 (17) |
C2A—C1A—N1A—C9A | 171.78 (12) | C9A—C10A—C11A—C12A | −177.51 (12) |
N1A—C1A—C2A—C7A | 110.84 (15) | C15A—C10A—C11A—C12A | 0.02 (18) |
N2A—C1A—C2A—C7A | −132.41 (14) | C9A—C10A—C11A—N2A | −1.84 (18) |
N1A—C1A—C2A—C3A | −68.59 (16) | C15A—C10A—C11A—N2A | 175.69 (11) |
N2A—C1A—C2A—C3A | 48.16 (16) | C18B—C9B—C10B—C11B | 177.89 (14) |
N1A—C1A—N2A—C11A | −50.96 (15) | N1B—C9B—C10B—C11B | 1.32 (18) |
C2A—C1A—N2A—C11A | −169.89 (11) | C18B—C9B—C10B—C15B | 1.2 (2) |
C9B—N1B—C1B—N2B | 57.04 (13) | N1B—C9B—C10B—C15B | −175.39 (12) |
C9B—N1B—C1B—C2B | 176.61 (11) | N2A—C11A—C12A—C13A | −174.43 (13) |
C7A—C2A—C3A—O1A | −177.96 (13) | C10A—C11A—C12A—C13A | 1.0 (2) |
C1A—C2A—C3A—O1A | 1.5 (2) | C1B—N2B—C11B—C12B | −155.68 (12) |
C7A—C2A—C3A—C4A | 1.3 (2) | C1B—N2B—C11B—C10B | 27.86 (16) |
C1A—C2A—C3A—C4A | −179.23 (13) | C9B—C10B—C11B—C12B | −175.50 (12) |
N2B—C1B—C2B—C7B | −118.22 (14) | C15B—C10B—C11B—C12B | 1.21 (19) |
N1B—C1B—C2B—C7B | 124.63 (13) | C9B—C10B—C11B—N2B | 1.03 (18) |
N2B—C1B—C2B—C3B | 61.14 (16) | C15B—C10B—C11B—N2B | 177.74 (12) |
N1B—C1B—C2B—C3B | −56.01 (16) | C11A—C12A—C13A—C14A | −0.9 (2) |
N1B—C1B—N2B—C11B | −55.21 (14) | N2B—C11B—C12B—C13B | −177.43 (13) |
C2B—C1B—N2B—C11B | −175.37 (11) | C10B—C11B—C12B—C13B | −1.1 (2) |
O1A—C3A—C4A—C5A | 178.05 (14) | C12A—C13A—C14A—C15A | −0.3 (2) |
C2A—C3A—C4A—C5A | −1.3 (2) | C11B—C12B—C13B—C14B | −0.3 (3) |
C7B—C2B—C3B—O1B | −176.49 (14) | C13A—C14A—C15A—C16A | 179.26 (14) |
C1B—C2B—C3B—O1B | 4.1 (2) | C13A—C14A—C15A—C10A | 1.3 (2) |
C7B—C2B—C3B—C4B | 2.2 (2) | C11A—C10A—C15A—C14A | −1.20 (18) |
C1B—C2B—C3B—C4B | −177.14 (13) | C9A—C10A—C15A—C14A | 176.34 (12) |
C3A—C4A—C5A—C6A | 0.3 (3) | C11A—C10A—C15A—C16A | −179.24 (11) |
O1B—C3B—C4B—C5B | 176.17 (15) | C9A—C10A—C15A—C16A | −1.70 (18) |
C2B—C3B—C4B—C5B | −2.6 (2) | C12B—C13B—C14B—C15B | 1.5 (3) |
C4A—C5A—C6A—C7A | 0.5 (3) | C14A—C15A—C16A—C17A | −176.90 (14) |
C3B—C4B—C5B—C6B | 0.8 (2) | C10A—C15A—C16A—C17A | 1.0 (2) |
C5A—C6A—C7A—C2A | −0.4 (3) | C13B—C14B—C15B—C16B | 176.13 (19) |
C3A—C2A—C7A—C6A | −0.5 (2) | C13B—C14B—C15B—C10B | −1.3 (3) |
C1A—C2A—C7A—C6A | −179.92 (14) | C9B—C10B—C15B—C16B | −0.9 (2) |
C4B—C5B—C6B—C7B | 1.4 (3) | C11B—C10B—C15B—C16B | −177.64 (15) |
C1A—N1A—C9A—C18A | 153.25 (13) | C9B—C10B—C15B—C14B | 176.72 (14) |
C1A—N1A—C9A—C10A | −31.88 (17) | C11B—C10B—C15B—C14B | 0.0 (2) |
C5B—C6B—C7B—C2B | −1.7 (2) | C15A—C16A—C17A—C18A | −0.2 (2) |
C3B—C2B—C7B—C6B | −0.1 (2) | C14B—C15B—C16B—C17B | −176.93 (19) |
C1B—C2B—C7B—C6B | 179.29 (14) | C10B—C15B—C16B—C17B | 0.5 (3) |
C18A—C9A—C10A—C11A | 179.05 (12) | N1A—C9A—C18A—C17A | 174.10 (13) |
N1A—C9A—C10A—C11A | 3.99 (17) | C10A—C9A—C18A—C17A | −0.7 (2) |
C18A—C9A—C10A—C15A | 1.53 (19) | C16A—C17A—C18A—C9A | 0.0 (2) |
N1A—C9A—C10A—C15A | −173.53 (11) | N1B—C9B—C18B—C17B | 175.37 (15) |
C1B—N1B—C9B—C18B | 151.26 (14) | C10B—C9B—C18B—C17B | −1.0 (2) |
C1B—N1B—C9B—C10B | −32.21 (16) | C15B—C16B—C17B—C18B | −0.4 (3) |
C1A—N2A—C11A—C12A | −157.00 (13) | C9B—C18B—C17B—C16B | 0.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1OA···N1A | 0.86 (2) | 2.66 (2) | 3.1072 (16) | 113.8 (17) |
O1A—H1OA···N2A | 0.86 (2) | 2.03 (2) | 2.7763 (16) | 144.6 (19) |
O1B—H1OB···N1B | 0.84 (2) | 2.20 (3) | 2.8835 (16) | 138 (2) |
O1B—H1OB···N2B | 0.84 (2) | 2.47 (2) | 3.0196 (16) | 123 (2) |
N1B—H1NB···O1A | 0.865 (17) | 2.331 (17) | 3.1608 (18) | 160.8 (14) |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
C1A—N1A | 1.4597 (17) | 1.40941 |
C1A—N2A | 1.4646 (19) | 1.35557 |
C1A—C2A | 1.5079 (17) | 1.43731 |
C1A—H1A | 0.9800 | 1.03211 |
N1A—C9A | 1.3944 (17) | 1.42420 |
N1A—H1N1 | 0.873 (19) | 1.00630 |
O1A—C3A | 1.3693 (18) | 1.40953 |
O1A—H1OA | 0.86 (2) | 0.97032 |
C2A—C7A | 1.388 (2) | 1.42763 |
C2A—C3A | 1.3923 (19) | 1.42630 |
N2A—C11A | 1.4081 (17) | 1.36897 |
N1A—C1A—N2A | 106.61 (11) | 115.07 |
N1A—C1A—C2A | 110.09 (11) | 125.03 |
N2A—C1A—C2A | 109.23 (11) | 109.89 |
N1A—C1A—H1A | 110.3 | 110.17 |
N2A—C1A—H1A | 110.3 | 110.03 |
C2A—C1A—H1A | 110.3 | 110.08 |
C9A—N1A—C1A | 117.08 (11) | 117.82 |
C9A—N1A—H1N1 | 115.0 (12) | 114.98 |
C3A—O1A—H1OA | 106.1 (14) | 107.84 |
Molecular Energy (a.u.) (eV) | Compound I |
Total Energy TE (eV) | -22880.3725 |
EHOMO (eV) | -3.2606 |
ELUMO (eV) | -1.7673 |
Gap, ΔE (eV) | 1.4933 |
Dipole moment, µ (Debye) | 3.3491 |
Ionization potential, I (eV) | 3.2606 |
Electron affinity, A | 1.7673 |
Electronegativity, χ | 2.5139 |
Hardness, η | 0.7466 |
Electrophilicity index, ω | 4.2322 |
Softness, σ | 1.3393 |
Fraction of electron transferred, ΔN | 3.0042 |
Acknowledgements
Professor Nahossé Ziao is thanked for allowing the synthesis to be undertaken in the Laboratory of Thermodynamics and Physical Chemistry of the Environment (LTPCM), University Nangui, Abrogoua, Côte d'Ivoire.
Funding information
TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Alam, M. & Lee, D.-U. (2016). Comput. Biol. Chem. 64, 185–201. Web of Science CrossRef CAS PubMed Google Scholar
Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2003). J. Am. Chem. Soc. 125, 13314–13315. Web of Science CSD CrossRef PubMed CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Behbahani, F. K. & Golchin, F. M. (2017). J. Taibah Univ. Sci. 11, 85–89. Web of Science CrossRef Google Scholar
Booysen, I. N., Ebinumoliseh, I., Sithebe, S., Akerman, M. P. & Xulu, B. (2016). Polyhedron, 117, 755–760. Web of Science CSD CrossRef CAS Google Scholar
Bu, X., Deady, L. W., Finlay, G. J., Baguley, B. C. & Denny, W. A. (2001). J. Med. Chem. 44, 2004–2014. Web of Science CrossRef PubMed CAS Google Scholar
Cucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013). Acta Cryst. E69, o1133–o1134. CSD CrossRef IUCr Journals Google Scholar
De Aguiar, A. (1874). Ber. Dtsch. Chem. Ges. 7, 309–319. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US Google Scholar
Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o715–o716. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ghorbani, M. H. (2012). Acta Cryst. E68, o2605. CSD CrossRef IUCr Journals Google Scholar
Giani, A. M., Lamperti, M., Maspero, A., Cimino, A., Negri, R., Giovenzana, G. B., Palmisano, G. & Nardo, L. (2016). J. Lumin. 179, 384–392. Web of Science CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
He, X., Mao, J., Ma, Q. & Tang, Y. (2018). J. Mol. Liq. 269, 260–268. Web of Science CrossRef CAS Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Mahapatra, A. K., Maji, R., Maiti, K., Manna, S. K., Mondal, S., Das Mukhopadhyay, C., Goswami, S., Sarkar, D., Mondal, T. K., Quah, C. K. & Fun, H. K. (2015). Sens. Actuators B Chem. 207, 878–886. Web of Science CrossRef CAS Google Scholar
Maloney, S., Slawin, A. M. Z. & Woollins, J. D. (2013). Acta Cryst. E69, o246. CSD CrossRef IUCr Journals Google Scholar
Manimekalai, A., Vijayalakshmi, N. & Selvanayagam, S. (2014). Acta Cryst. E70, o959. CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Starshikoy, N. M. & Pozharskii, F. T. (1973). Chem. Heterocycl. Compd. 9, 922–924. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Varsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. M. M. (2010). Tetrahedron Lett. 51, 2174–2177. Web of Science CSD CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Watanab, K. & Hareda, H. (1977). Chem. Abstr. 8499. Google Scholar
Woodgate, P. D., Herbert, J. M. & Denny, W. A. (1987). Heterocycles, 26, 1029–1036. CAS Google Scholar
Zhang, H. G., Wang, X. Z., Cao, Q., Gong, G. H. & Quan, Z. S. (2017). Bioorg. Med. Chem. Lett. 27, 4409–4414. Web of Science CrossRef CAS PubMed Google Scholar
Zhou, D. C., Lu, Y. T., Mai, Y. W., Zhang, C., Xia, J., Yao, P. F., Wang, H. G., Huang, S. L. & Huang, Z. S. (2019). Bioorg. Chem. 91, 103131. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.