research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-bromo­anilinium nitrate

CROSSMARK_Color_square_no_text.svg

aMaterials Science Laboratory, Department of Physics, Periyar University, Salem, India, and bDepartment of Physics, Jimma University, Jimma, Ethiopia
*Correspondence e-mail: menberu.mengesha@ju.edu.et

Edited by J. T. Mague, Tulane University, USA (Received 19 February 2020; accepted 22 May 2020; online 29 May 2020)

The title compound C4H7BrN+·NO3 crystallizes in the monoclinic crystal system with space group P21/c. In the crystal, π-π stacking inter­actions and strong N—H⋯O and C—H⋯O hydrogen bonds link the cations and anions into layers parallel to the bc plane. The O⋯H/H⋯O inter­actions between the cation and anion are the major factor determining the crystal packing.

1. Chemical context

In recent years, halogenated anilines and their derivatives have been studied extensively for applications as anti­corrosives, anti­bacterials and in non-linear optical systems (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276-o280.]; Vivek et al., 2014[Vivek, P. & Murugakoothan, P. (2014). Appl. Phys. A, 115, 1139-1146.]). The simplest halogenated aniline readily forms metal/non-metal complexes (Hartmann et al., 1990[Hartmann, J., Dou, S.-Q. & Weiss, A. (1990). Berichte der Bunsengesellschaft für physikalische Chemie, 94, 1110-1121.]). Strong hydrogen bonding, non-covalent bonding and ππ stacking inter­actions are prominent in the supra­molecular arrangements of this mol­ecule. Here, we report the crystal structure of 4-bromo­anilinium nitrate, a salt complex whose structure is closely related to its 4-iodo analogue regarding the hydrogen-bond networks and ππ inter­actions (Fu et al., 2010[Fu, X. (2010). Acta Cryst. E66, o1326.]) although having significantly different unit-cell parameters.

[Scheme 1]

2. Structural commentary

The asymmetric unit consists of two 4-bromo­anilinium cations and two nitrate anions which are associated through N1—H10⋯O4ii, N2—H13⋯O3iv and a bifurcated N1—H9⋯O2i/N1—H9⋯O3i hydrogen bonds (Fig. 1[link]). This motif generates a van der Waals contact (O3⋯O6) of 2.980 (4) Å between the two nitrate ions. The phenyl rings in the independent cations extend in the same direction from the pair of anions with a dihedral angle of only 4.8 (2)° between their mean planes and participate in a ππ stacking inter­action with a centroid⋯centroid distance of 3.932 (2) Å. Meanwhile, one cation is rotated with respect to the other so that the Br1—C2⋯C10—Br2 torsion angle is 50.4 (su?)°.

[Figure 1]
Figure 1
The asymmetric unit with labelling scheme and 50% probability ellipsoids. N—H⋯O hydrogen bonds and π-stacking inter­actions are shown, respectively, by blue and orange dashed lines.

3. Supra­molecular features

In the crystal, the anions are arranged in coarsely corrugated layers parallel to the bc plane with the hydrogen-bonded cations protruding from each face in an alternating fashion (Fig. 2[link]). The cations containing Br1 are perpendicular to the layers and make close Br1⋯O5 contacts of 3.229 (5) Å (0.14 Å less than the sum of the van der Waals radii) with nitrate ions in adjacent layers (Fig. 2[link], Table 1[link]).

Table 1
ydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H9⋯O2i 0.89 2.19 2.930 (5) 140
N1—H9⋯O3i 0.89 2.15 3.002 (5) 160
N1—H10⋯O4i 0.89 2.08 2.957 (4) 167
N1—H11⋯O2ii 0.89 1.91 2.773 (4) 162
N2—H12⋯O1i 0.89 2.59 3.356 (6) 145
N2—H12⋯O6i 0.89 2.11 2.827 (5) 137
N2—H12⋯O1iii 0.89 2.59 3.158 (5) 122
N2—H13⋯O3iv 0.89 2.12 2.774 (5) 130
N2—H13⋯O6iv 0.89 2.55 3.345 (5) 149
N2—H14⋯O4iii 0.89 2.19 2.831 (5) 129
C4—H3⋯O1iii 0.93 2.41 3.129 (5) 134
C12—H8⋯O3i 0.93 2.59 3.410 (5) 147
C12—H8⋯O6i 0.93 2.58 3.1943 (3) 124
Symmetry codes: (i) x+1, y, z; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Packing viewed along the c-axis direction showing a portion of two coarsely corrugated layers of anions with the cations extending alternately from each side. The N—H⋯O and C—H⋯O hydrogen bonds are shown, respectively, by blue and black dashed lines. The Br⋯O inter­actions are shown by green dashed lines.

4. Hirshfeld surface analysis

The inter­molecular inter­actions were investigated qu­anti­tatively and visualized with Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]; Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The dnorm, curvedness and 2D fingerprint plots are depicted in Figs. 3[link]–5[link][link], respectively. The red spots on the Hirshfeld surface represent N—H⋯O contacts (Br⋯O contacts are not visible as red spots) while the blue regions correspond to weak inter­actions such as C—H⋯O contacts. The two triangles in the curvedness surface clearly illustrate the ππ stacking inter­actions. The O⋯H/H⋯O (51.4%) inter­actions are the major factor in the crystal packing with H⋯H (15.5%) inter­actions representing the next highest contribution. The percentage contributions of other weak inter­actions are: H⋯Br/Br⋯H (10.3%), C⋯H/H⋯C (9.2%), O⋯Br/Br⋯O (4.1%), Br⋯Br (2.7%), N⋯H/H⋯N (1.7%), O⋯O (1.6%), C⋯C (1.5%), C⋯O/O⋯C (0.8%), N⋯Br/Br⋯N (0.4), C⋯Br/Br⋯C (0.4%), N⋯O/O⋯N (0.3%) and N⋯C/C⋯N (0.1%).

[Figure 3]
Figure 3
Hirshfeld surface plotted over dnorm.
[Figure 4]
Figure 4
Curvedness surface of the title compound showing the ππ stacking.
[Figure 5]
Figure 5
Fingerprint plots for the title compound

4.1. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, last update April 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-bromo­anilinium cation gave 22 hits excluding metal complexes. Among these, 13 structures have this cation combined with various acid anions including [PO2(OH)2] (EBEFAV; Yoshii et al., 2015[Yoshii, Y., Hoshino, N., Takeda, T. & Akutagawa, T. (2015). J. Phys. Chem. C, 119, 20845-20854.]; UGISEI; Zhang et al., 2001[Zhang, B.-G., Gou, S.-H., Duan, C.-Y. & You, X.-Z. (2001). Wuhan Dax. Xuebao, Zir. Kex. 47, 425-427.]; UGISEI01; Yoshii et al., 2015[Yoshii, Y., Hoshino, N., Takeda, T. & Akutagawa, T. (2015). J. Phys. Chem. C, 119, 20845-20854.]), [HC2O4] (ROBXOY; Radhakrishnan & Jeyaperumal, 2019[Radhakrishnan, A. & Jeyaperumal, K. S. (2019). CSD Communication (refcode ROBXOY). CCDC, Cambridge, England.]), [C4H5O6] (ROPTEX; Yoshii et al., 2014[Yoshii, Y., Hoshino, N., Takeda, T., Moritomo, H., Kawamata, J., Nakamura, T. & Akutagawa, T. (2014). Chem. Eur. J. 20, 16279-16285.]) and [p-CH3C6H4SO3] (VUCBAY; Sivakumar et al., 2015[Sivakumar, P. K., Kumar, M. K., Kumar, R. M., Chakkaravarthi, G. & Kanagadurai, R. (2015). Acta Cryst. E71, o163-o164.]). Two more have amide anions [N(SO2R)2] [R = Me (TAJWOT; Jones et al., 2016[Jones, P. G., Blaschette, A. & Moers, O. (2016). CSD Communication (refcode TAJWOT). CCDC, Cambridge, England.]), 4-BrC6H4 (DOHSOJ; Lozano et al., 2008[Lozano, V., Freytag, M., Jones, P. G. & Blaschette, A. (2008). Z. Naturforsch. B, 63, 954-962.])]. The remainder have inorganic anions such as [SiF6]2− (PBANIL; Denne et al., 1971[Denne, W. A., Mathieson, A. & Mackay, M. F. (1971). J. Cryst. Mol. Struct. 1, 55-62.]), [PF6] (TUPWUX; Yang & Fu, 2010[Yang, Y. & Fu, X. (2010). Acta Cryst. E66, o1430.]) and chloride (TAWRAL; Portalone, 2005[Portalone, G. (2005). Acta Cryst. E61, o3083-o3085.]). Additionally, there is an unpublished structure of the title compound (ROCNOP; Anbarasan & Sundar, 2019[Anbarasan, R. & Sundar, J. K. (2019). CSD Communication (refcode ROCNOP). CCDC, Cambridge, England.]) of comparable quality to the present study but without the additional investigations presented here.

5. Synthesis and crystallization

The title salt was synthesized by dissolving analytical grade 4-bromo­aniline and nitric acid in a 1:1 stoichiometric ratio in methanol. The solution was stirred continuously for 2 h. Slow evaporation of this solution at room temperature yielded transparent colourless single crystals of the product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N). Reflection (100) was obscured by the beam stop and was omitted during the final refinement cycle.

Table 2
Experimental details

Crystal data
Chemical formula C6H7BrN+·NO3
Mr 235.04
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.7123 (8), 23.4964 (19), 7.6264 (6)
β (°) 97.052 (4)
V3) 1727.2 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.73
Crystal size (mm) 0.42 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS.])
Tmin, Tmax 0.374, 0.567
No. of measured, independent and observed [I > 2σ(I)] reflections 16821, 4609, 2355
Rint 0.058
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.183, 1.02
No. of reflections 4609
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.84
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

p-Bromoanilinium nitrate top
Crystal data top
C6H7BrN+·NO3F(000) = 928
Mr = 235.04Dx = 1.808 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4609 reflections
a = 9.7123 (8) Åθ = 2.6–29.1°
b = 23.4964 (19) ŵ = 4.73 mm1
c = 7.6264 (6) ÅT = 293 K
β = 97.052 (4)°Needle, colorless
V = 1727.2 (2) Å30.42 × 0.18 × 0.12 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
2355 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
ω and φ scanθmax = 29.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.374, Tmax = 0.567k = 2932
16821 measured reflectionsl = 810
4609 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0927P)2 + 0.2455P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.183(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.68 e Å3
4609 reflectionsΔρmin = 0.84 e Å3
218 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b)
0 restraintsExtinction coefficient: 0.0181 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.0463 (4)0.32338 (12)0.2075 (4)0.0513 (8)
H101.0835340.3514310.1505890.077*
H91.0636970.3291310.3234650.077*
H111.0829880.2903270.1800920.077*
N20.8383 (4)0.52952 (13)0.2737 (5)0.0571 (9)
H140.7987450.5563740.2021370.086*
H130.8801540.5455570.3717720.086*
H120.9005230.5107390.2195640.086*
N30.0880 (3)0.32409 (14)0.6621 (5)0.0481 (8)
N40.1286 (3)0.46630 (13)0.1594 (5)0.0531 (9)
O20.1085 (4)0.28155 (12)0.5705 (5)0.0762 (10)
O30.0604 (4)0.36877 (12)0.5772 (5)0.0891 (12)
O40.1736 (3)0.42637 (11)0.0733 (4)0.0613 (8)
O50.0995 (5)0.32142 (18)0.8212 (5)0.0941 (12)
O60.0681 (3)0.45499 (12)0.2920 (4)0.0656 (8)
O10.1429 (4)0.51579 (11)0.1125 (5)0.0766 (10)
C10.6768 (5)0.28047 (18)0.1770 (6)0.0632 (12)
H10.6222970.2536050.2255860.076*
C20.6166 (5)0.31894 (18)0.0536 (5)0.0549 (11)
C30.6968 (5)0.35869 (17)0.0173 (6)0.0611 (12)
H20.6558970.3846890.0996840.073*
C40.8371 (5)0.36032 (15)0.0328 (5)0.0539 (11)
H30.8915430.3871240.0162870.065*
C50.8970 (4)0.32216 (14)0.1558 (5)0.0449 (9)
C60.8179 (5)0.28202 (17)0.2278 (6)0.0576 (11)
H40.8592170.2560950.3101670.069*
C70.7319 (4)0.48981 (15)0.3193 (5)0.0466 (9)
C80.5964 (5)0.49725 (19)0.2493 (6)0.0638 (12)
H50.5714990.5274780.1731840.077*
C90.4971 (5)0.4596 (2)0.2925 (7)0.0779 (14)
H60.404650.4639540.2457940.094*
C100.5363 (5)0.4159 (2)0.4046 (6)0.0640 (12)
C110.6718 (5)0.40804 (19)0.4725 (6)0.0607 (11)
H70.6966450.3776890.5481050.073*
C120.7710 (4)0.44517 (19)0.4285 (5)0.0562 (11)
H80.8637520.4399850.4725980.067*
Br10.42315 (6)0.31590 (3)0.02005 (7)0.0826 (3)
Br20.40126 (7)0.36433 (3)0.47100 (8)0.1017 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.070 (2)0.0398 (16)0.0435 (19)0.0049 (16)0.0034 (17)0.0031 (14)
N20.056 (2)0.0473 (19)0.065 (2)0.0020 (16)0.0038 (17)0.0121 (17)
N30.0476 (19)0.0412 (18)0.054 (2)0.0059 (14)0.0019 (16)0.0022 (17)
N40.0414 (19)0.0379 (18)0.075 (3)0.0029 (15)0.0123 (17)0.0051 (18)
O20.113 (3)0.0430 (17)0.072 (2)0.0017 (16)0.010 (2)0.0044 (15)
O30.119 (3)0.0353 (16)0.103 (3)0.0007 (17)0.026 (2)0.0073 (17)
O40.0609 (19)0.0433 (15)0.079 (2)0.0103 (14)0.0043 (15)0.0019 (14)
O50.095 (3)0.140 (3)0.047 (2)0.007 (2)0.0077 (19)0.007 (2)
O60.067 (2)0.0597 (18)0.072 (2)0.0003 (15)0.0160 (17)0.0087 (16)
O10.097 (3)0.0328 (15)0.099 (3)0.0081 (15)0.007 (2)0.0106 (16)
C10.068 (3)0.065 (3)0.058 (3)0.006 (2)0.012 (2)0.015 (2)
C20.063 (3)0.060 (3)0.042 (2)0.008 (2)0.0049 (19)0.007 (2)
C30.084 (4)0.051 (2)0.048 (3)0.013 (2)0.006 (2)0.010 (2)
C40.073 (3)0.036 (2)0.053 (3)0.0020 (19)0.007 (2)0.0068 (18)
C50.062 (3)0.0344 (18)0.038 (2)0.0014 (17)0.0056 (18)0.0034 (16)
C60.070 (3)0.052 (2)0.050 (2)0.002 (2)0.004 (2)0.0139 (19)
C70.047 (2)0.047 (2)0.044 (2)0.0037 (18)0.0029 (17)0.0105 (18)
C80.054 (3)0.070 (3)0.066 (3)0.013 (2)0.002 (2)0.007 (2)
C90.042 (3)0.118 (4)0.071 (3)0.004 (3)0.005 (2)0.013 (3)
C100.060 (3)0.078 (3)0.056 (3)0.013 (2)0.014 (2)0.007 (2)
C110.063 (3)0.066 (3)0.054 (3)0.002 (2)0.008 (2)0.007 (2)
C120.048 (2)0.065 (3)0.053 (3)0.009 (2)0.005 (2)0.001 (2)
Br10.0635 (4)0.1164 (5)0.0676 (4)0.0127 (3)0.0060 (3)0.0013 (3)
Br20.0876 (5)0.1390 (6)0.0825 (5)0.0422 (4)0.0262 (3)0.0036 (3)
Geometric parameters (Å, º) top
N1—C51.456 (5)C2—Br11.895 (5)
N1—H100.89C3—C41.369 (6)
N1—H90.89C3—H20.93
N1—H110.89C4—C51.375 (5)
N2—C71.465 (5)C4—H30.93
N2—H140.89C5—C61.373 (6)
N2—H130.89C6—H40.93
N2—H120.89C7—C121.364 (6)
N3—O51.207 (5)C7—C81.370 (6)
N3—O31.245 (4)C8—C91.379 (7)
N3—O21.249 (4)C8—H50.93
N4—O11.229 (4)C9—C101.360 (7)
N4—O41.254 (4)C9—H60.93
N4—O61.258 (4)C10—C111.366 (6)
C1—C61.378 (7)C10—Br21.900 (4)
C1—C21.382 (6)C11—C121.372 (6)
C1—H10.93C11—H70.93
C2—C31.369 (6)C12—H80.93
C5—N1—H10109.5C3—C4—C5119.7 (4)
C5—N1—H9109.5C3—C4—H3120.2
H10—N1—H9109.5C5—C4—H3120.2
C5—N1—H11109.5C6—C5—C4120.7 (4)
H10—N1—H11109.5C6—C5—N1119.5 (3)
H9—N1—H11109.5C4—C5—N1119.8 (4)
C7—N2—H14109.5C5—C6—C1119.4 (4)
C7—N2—H13109.5C5—C6—H4120.3
H14—N2—H13109.5C1—C6—H4120.3
C7—N2—H12109.5C12—C7—C8121.2 (4)
H14—N2—H12109.5C12—C7—N2118.9 (4)
H13—N2—H12109.5C8—C7—N2119.9 (4)
O5—N3—O3123.7 (4)C7—C8—C9119.5 (4)
O5—N3—O2121.3 (4)C7—C8—H5120.3
O3—N3—O2115.0 (4)C9—C8—H5120.3
O1—N4—O4119.8 (4)C10—C9—C8119.0 (4)
O1—N4—O6120.9 (4)C10—C9—H6120.5
O4—N4—O6119.3 (3)C8—C9—H6120.5
C6—C1—C2119.8 (4)C9—C10—C11121.5 (4)
C6—C1—H1120.1C9—C10—Br2120.0 (4)
C2—C1—H1120.1C11—C10—Br2118.5 (4)
C3—C2—C1120.1 (5)C10—C11—C12119.6 (4)
C3—C2—Br1120.0 (3)C10—C11—H7120.2
C1—C2—Br1119.9 (4)C12—C11—H7120.2
C2—C3—C4120.3 (4)C7—C12—C11119.2 (4)
C2—C3—H2119.9C7—C12—H8120.4
C4—C3—H2119.9C11—C12—H8120.4
C6—C1—C2—C30.4 (7)C12—C7—C8—C91.2 (7)
C6—C1—C2—Br1178.7 (3)N2—C7—C8—C9179.8 (4)
C1—C2—C3—C40.4 (6)C7—C8—C9—C100.2 (7)
Br1—C2—C3—C4178.7 (3)C8—C9—C10—C111.1 (8)
C2—C3—C4—C50.6 (6)C8—C9—C10—Br2178.5 (4)
C3—C4—C5—C60.7 (6)C9—C10—C11—C120.6 (7)
C3—C4—C5—N1179.2 (3)Br2—C10—C11—C12179.1 (3)
C4—C5—C6—C10.6 (6)C8—C7—C12—C111.8 (6)
N1—C5—C6—C1179.2 (4)N2—C7—C12—C11179.6 (4)
C2—C1—C6—C50.4 (7)C10—C11—C12—C70.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H9···O2i0.892.192.930 (5)140
N1—H9···O3i0.892.153.002 (5)160
N1—H10···O4i0.892.082.957 (4)167
N1—H11···O2ii0.891.912.773 (4)162
N2—H12···O1i0.892.593.356 (6)145
N2—H12···O6i0.892.112.827 (5)137
N2—H12···O1iii0.892.593.158 (5)122
N2—H13···O3iv0.892.122.774 (5)130
N2—H13···O6iv0.892.553.345 (5)149
N2—H14···O4iii0.892.192.831 (5)129
C4—H3···O1iii0.932.413.129 (5)134
C12—H8···O3i0.932.593.410 (5)147
C12—H8···O6i0.932.583.1943 (3)124
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z1/2; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.
 

Funding information

RA gratefully acknowledges Periyar University for providing financial support under the University Research Fellowship (URF) scheme.

References

First citationAnbarasan, R. & Sundar, J. K. (2019). CSD Communication (refcode ROCNOP). CCDC, Cambridge, England.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenne, W. A., Mathieson, A. & Mackay, M. F. (1971). J. Cryst. Mol. Struct. 1, 55–62.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, X. (2010). Acta Cryst. E66, o1326.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276–o280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHartmann, J., Dou, S.-Q. & Weiss, A. (1990). Berichte der Bunsengesellschaft für physikalische Chemie, 94, 1110–1121.  Google Scholar
First citationJones, P. G., Blaschette, A. & Moers, O. (2016). CSD Communication (refcode TAJWOT). CCDC, Cambridge, England.  Google Scholar
First citationLozano, V., Freytag, M., Jones, P. G. & Blaschette, A. (2008). Z. Naturforsch. B, 63, 954–962.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G. (2005). Acta Cryst. E61, o3083–o3085.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRadhakrishnan, A. & Jeyaperumal, K. S. (2019). CSD Communication (refcode ROBXOY). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABSGoogle Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, P. K., Kumar, M. K., Kumar, R. M., Chakkaravarthi, G. & Kanagadurai, R. (2015). Acta Cryst. E71, o163–o164.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVivek, P. & Murugakoothan, P. (2014). Appl. Phys. A, 115, 1139–1146.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationYang, Y. & Fu, X. (2010). Acta Cryst. E66, o1430.  Google Scholar
First citationYoshii, Y., Hoshino, N., Takeda, T. & Akutagawa, T. (2015). J. Phys. Chem. C, 119, 20845–20854.  Google Scholar
First citationYoshii, Y., Hoshino, N., Takeda, T., Moritomo, H., Kawamata, J., Nakamura, T. & Akutagawa, T. (2014). Chem. Eur. J. 20, 16279–16285.  Google Scholar
First citationZhang, B.-G., Gou, S.-H., Duan, C.-Y. & You, X.-Z. (2001). Wuhan Dax. Xuebao, Zir. Kex. 47, 425–427.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds