research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of two manganese-based 12-metallacrown-4 complexes: Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6 and MnNa(3-chloro­benzoate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, United States, and bDepartment of Chemistry, Purdue University, West Lafayette, Indiana 479070, United States
*Correspondence e-mail: cmzaleski@ship.edu

Edited by J. T. Mague, Tulane University, USA (Received 1 May 2020; accepted 12 May 2020; online 19 May 2020)

Similar synthetic schemes yield two different metallacrown (MC) complexes: bis­(μ-3-chloro­benzoato)hexa­kis­(di­methyl­formamide)­tetra­kis­(μ4-N,2-dioxido­benzene-1-carboximidato)tetra­manganese(III)disodium(I), [Mn4Na2(C7H4ClO2)2(C7H4NO3)4(C3H7NO)6] or Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6, 1, and tetra-μ-aqua-tris­(μ-3-chloro­benzoato)(di­methyl­formamide)­tetra­kis­(μ4-N,2-dioxido­benzene-1-carboximidato)penta­manganese(III)sodi­um(I) di­methyl­formamide tetra­solvate 0.72-hydrate, [Mn5Na(C7H4ClO2)3(C7H4NO3)4(C3H7NO)(H2O)4]·4C3H7NO·0.718H2O or MnNa(3-chloro­benzo­ate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O, 2, where shi3− is salicyl­hydrox­imate and DMF is N,N-di­methyl­formamide. Both complexes have the same framework consisting of four MnIII ions in the MC ring and four shi3− ligands, resulting in an overall square-shaped mol­ecule. The MnIII ions are either five- or six-coordinate with elongated bond lengths in the apical or axial direction, respectively. The structure of 1 is nearly planar, and the MC binds two Na+ ions on opposite faces of the MC central cavity. The 3-chloro­benzoate anions also bind on opposite faces of the MC and form bridges between the central Na+ ions and the ring MnIII ions. For 1 the metallacrown mol­ecule, except for the central Na+ ion, exhibits whole mol­ecule disorder over two sets of sites. Both moieties are centrosymmetric and are related to each other by a pseudo-mirror operation with opposite sense of rotation around the Na⋯Na axis. The occupancy ratio of the main disorder of the metallacrown mol­ecules and 3-chloro­benzoate anions refined to 0.9276 (9):0.0724 (9). The structure of 2 is slightly domed, and the MC binds both an MnII ion and an Na+ ion in the MC central cavity. The MnII ion is located on the convex side of the MC, while the Na+ ion binds to the concave side. Complex 2 represents the first instance of a [12-MCMn(III)N(shi)-4] mol­ecule binding both 3d transition metal and alkali metal ions in the central cavity. In addition, three 3-chloro­benzoate anions bind on the convex side of the MC and connect the MnII ion to three of the ring MnIII ions.

1. Chemical context

The first 12-metallacrown-4 complex synthesized, Mn(acetate)2[12-MCMn(III)N(shi)-4], was based on the ligand salicyl­hydroxamic acid (H3shi) and manganese (Lah & Pecoraro, 1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]). In this complex, four MnIII ions are located in the metallacrown (MC) ring and an MnII ion is trapped in the central MC cavity produced by the four triply deprotonated salicyl­hydroximate (shi3−) ligands. The MnII ion is further bound by two acetate anions that serve to balance the charge of the mol­ecule and to bridge between the ring MnIII ions and the central MnII ion. Since this initial report in 1989, the [12-MCMn(III)N(shi)-4] framework has been used to encapsulate not only manganese(II) but also alkali, alkaline earth, and lanthanide ions in the MC cavity (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Lah & Pecoraro, 1991[Lah, M. S. & Pecoraro, V. L. (1991). Inorg. Chem. 30, 878-880.]; Koumousi et al., 2011[Koumousi, E. S., Mukherjee, S., Beavers, C. M., Teat, S. J., Christou, G. & Stamatatos, T. C. (2011). Chem. Commun. 47, 11128-11130.]; Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). When only Na+ or K+ ions are incorporated into the [12-MCMn(III)N(shi)-4] framework, the two metal ions and their counter-anions are typically bound on opposite faces of the MC (Gibney et al., 1996[Gibney, B. R., Wang, H., Kampf, J. W. & Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184-6193.]). When lanthanide ions are bound to the MC cavity, four carboxyl­ate anions serve to tether the LnIII ion to the MC and typically an alkali metal ion is bound to the opposite face of the MC for charge balance (Travis et al., 2015[Travis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300-1306.], 2016[Travis, J. R., Zeller, M. & Zaleski, C. M. (2016). Polyhedron, 114, 29-36.]). Furthermore, the bridging acetate anion of the original Mn(acetate)2[12-MCMn(III)N(shi)-4] mol­ecule can be substituted by other carboxyl­ate anions or even halide and pseudohalide anions (Gibney et al., 1996[Gibney, B. R., Wang, H., Kampf, J. W. & Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184-6193.]; Kessissoglou et al., 2002[Kessissoglou, D. P., Bodwin, J. J., Kampf, J., Dendrinou-Samara, C. & Pecoraro, V. L. (2002). Inorg. Chim. Acta, 331, 73-80.]; Dendrinou-Samara et al., 2005[Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.]; Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]) . This ability to substitute various components of the MC complex allows the properties of the mol­ecules to be tailored to a particular application. For instance, the single-mol­ecule magnet properties of a series of DyMX4[12-MCMn(III)N(shi)-4] complexes, where M is Na+ or K+ and X is either acetate, tri­methyl­acetate, benzoate, or salicylate, are dictated by the identity of the carboxyl­ate anion even though the structures of the mol­ecules are strikingly similar (Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]). Moreover, [12-MCMn(III)N(shi)-4] complexes can be used as building blocks to form larger structures. They can be linked together to form either dimeric and trimeric systems or one-dimensional chains, and some of these larger structures have SMM-like behavior (Mengle et al., 2015[Mengle, K. A., Longenecker, E. J., Zeller, M. & Zaleski, C. M. (2015). J. Chem. Crystallogr. 45, 36-43.]; Zaleski et al., 2015[Zaleski, C. M., Lutter, J. C. & Zeller, M. (2015). J. Chem. Crystallogr. 45, 142-150.]; Alaimo et al., 2017[Alaimo, A. A., Koumousi, E. S., Cunha-Silva, L., McCormick, L. J., Teat, S. J., Psycharis, V., Raptopoulou, C. P., Mukherjee, S., Li, C., Das Gupta, S., Escuer, A., Christou, G. & Stamatatos, T. C. (2017). Inorg. Chem. 56, 10760-10774.]; Wang et al., 2019[Wang, J., Lu, G., Liu, Y., Wu, S.-G., Huang, G.-Z., Liu, J.-L. & Tong, M.-L. (2019). Cryst. Growth Des. 19, 1896-1902.]).

Herein we present the first use of a halogenated benzoate anion to serve as the bridging ligand between the central cavity metal ion and the ring metal ions for a [12-MCMn(III)N(shi)-4] complex. The use of 3-chloro­benzoate leads to two different mol­ecules: Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6, 1, where DMF is N,N-di­methyl­form­­amide, and MnNa(3-chloro­benzoate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O, 2. Complex 1 is typical of other di-sodium MCs with the Na+ ions bonded to opposite faces of the MC. However, complex 2 represents a new structural motif in metallacrown chemistry. In 2 the central MnII ion is bonded to three carboxyl­ate anions as opposed to the typical number of two anions. This then facilitates the binding of an Na+ ion to the opposite face of the MC for charge-balance purposes. This is the first instance of a 3d transition metal ion and an alkali metal ion both binding to the central cavity of a 12-MC-4 complex.

2. Structural commentary

Both 1 and 2 are based on the same overall 12-MC-4 framework. Four salicyl­hydroximate ligands and four ring Mn ions combine to generate a Mn–N–O repeat unit that recurs four times in a cyclic fashion. The fused five- and six-membered rings of the shi3− ligands place the metal ions at 90° relative to each other, giving an overall square-shaped mol­ecule. The ring Mn ions are either five- or six-coordinate in the structures, and the ligand atoms in the basal/equatorial planes are the same, consisting of trans six- and five-membered chelate rings: each six-membered chelate ring is formed by the phenolate oxygen atom and oxime nitro­gen atom of a shi3− ligand and each five-membered chelate ring is formed by the carbonyl oxygen atom and the oxime oxygen atom of a different shi3− ligand. The four Mn ions of the MC ring are assigned a 3+ oxidation state based on average bond lengths, the presence of elongated axial bond lengths typical of a high-spin d4 electron configuration, bond-valence sum (BVS) values (Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]), and overall charge-balance considerations (Table 1[link]). The four MnIII ions and four shi3− ligands produce a neutral MC framework. The main differences between 1 and 2 are the metal ions bound to the central cavity and the number of the ancillary ligands that bind to the metal ions of the MC.

[Scheme 1]

Table 1
Average bond-length (Å) and bond-valence-sum (BVS) values (v. u.) used to support assigned oxidation states of the manganese ions of 1 and 2

  Avg. bond length BVS value Assigned oxidation state
1      
Mn1 1.944 3.05 3+
Mn2 2.027 3.12 3+
       
2      
Mn1 2.256 1.97 2+
Mn2 2.054 3.07 3+
Mn3 2.044 3.10 3+
Mn4 2.053 3.07 3+
Mn5 2.044 3.07 3+

For 1 the MC framework (ring MnIII ions and shi3− ligands) and the 3-chloro­benozate anions exhibit whole-mol­ecule disorder over two sets of sites. Both moieties are centrosymmetric and are related to each other by a pseudo-mirror operation with an opposite sense of rotation around the Na⋯Na axis. The occupancy ratio of the MC frameworks and 3-chloro­benzoate anions disorder refined to 0.9276 (9):0.0724 (9). In addition, the coordinated DMF mol­ecules show disorder as outlined in the Refinement section below. Thus, only the structures of the main moieties will be discussed. The MC framework is nearly planar, and the MC cavity, produced by the four oxime oxygen atoms of the four shi3− ligands, captures two Na+ ions on opposite faces of the MC (Fig. 1[link]). The charge of the Na+ ions is balanced by two 3-chloro­benzoate anions that are also located on opposite faces of the MC. Each 3-chloro­benzoate connects one Na+ to a ring MnIII ion (Mn1). The Na+ ion (Na1) is seven-coordinate, and the coordination environment consists of the four oxime oxygen atoms, a carboxyl­ate oxygen atom from a 3-chloro­benzoate anion, a carbonyl oxygen atom of a terminal DMF mol­ecule, and a μ-carbonyl oxygen atom of a DMF mol­ecule that also bridges to Mn2 of the MC ring. A SHAPE (SHAPE 2.1; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE, version 2.1. Barcelona, Spain.]) analysis (Table 2[link]) of the geometry yields the lowest continuous shape measure (CShM) values for a face-capped octa­hedron and a face-capped trigonal prism, 3.683 and 3.798, respectively (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE, version 2.1. Barcelona, Spain.]; Pinsky & Avnir, 1998[Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.]; Casanova et al., 2004[Casanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755-1763.]; Cirera et al., 2005[Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556-1562.]). Although the CShM value is lower for the face-capped octa­hedron, it is difficult to accurately assign the geometry as both CShM values are relatively close. In addition, both CShM values are well over 3.0, which is considered an upper threshold value at which significant distortions occur (Cirera et al., 2005[Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556-1562.]). The distortions may arise from the bonding nature of the MC framework. The four oxime oxygens of the MC cavity lie nearly in a plane due to the square shape of the mol­ecule imposed by the fused chelate rings of the shi3− ligands. Thus, this portion of the coordination environment is not flexible and likely leads to the distortion. Mn1 of the MC ring is five-coordinate with a basal ligand environment as described above. A carboxyl­ate oxygen atom of a 3-chloro­benzoate anion occupies the apical position. A SHAPE analysis (Table 3[link]) reveals the geometry can be best described as square-pyramidal and the calculated tau (τ) value of 0.15 supports this assignment, where τ = 0 for an ideal square pyramid and 1.0 for an ideal trigonal prism (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). Mn2 is six-coordinate with an elongated Jahn–Teller axis, and the SHAPE analysis confirms a tetra­gonally distorted octa­hedral geometry (Table 4[link]). The ligands along the axial axis consist of two carbonyl oxygen atoms of two DMF mol­ecules. The DMF mol­ecule associated with O9 binds in a terminal fashion, while the oxygen atom (O10) of the second DMF mol­ecule forms a one-atom μ-bridge to the central Na+ ion.

Table 2
Continuous shape measurement (CShM) values (SHAPE 2.1) for the seven-coordinate sodium ion of 1

Heptagon 34.157
Hexagonal pyramid 19.758
Penta­gonal bipyramid 8.496
Capped octa­hedron 3.683
Capped trigonal prism 3.798
Johnson penta­gonal bipyramid 12.331
Johnson elongated triangular pyramid 21.938

Table 3
Continuous shape measurement (CShM) values (SHAPE 2.1) for the five-coordinate manganese ion of 1

Penta­gon 28.077
Vacant octa­hedron 1.468
Trigonal bipyramid 4.930
Square pyramid 0.712
Johnson trigonal bipyramid 8.311

Table 4
Continuous shape measurement (CShM) values (SHAPE 2.1) for the six-coordinate manganese ion of 1

Hexagon 31.700
Penta­gonal pyramid 27.764
Octa­hedron 0.872
Trigonal prism 16.422
Johnson penta­gonal pyramid 30.863
[Figure 1]
Figure 1
The single-crystal X-ray structure of Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6, 1, with displacement ellipsoids at the 50% probability level [symmetry code: (i) −x + 1, −y + 1, −z + 1]. (a) side view with only the metal atoms and heteroatoms of the axial ligands labelled for clarity and (b) top view with the axial ligand atoms omitted for clarity. In addition, hydrogen atoms and disorder have been omitted for clarity. Color scheme: green – Mn, yellow – sodium, red – oxygen, dark blue – nitro­gen, gray – carbon, and light blue – chlorine. All figures were generated with the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

For 2 the MC is slightly domed with an Mn ion and Na ion bonded to opposite sides of the MC cavity. The Mn ion is bound on the convex side of the MC, and the Na ion is bonded to the concave side (Fig. 2[link]). The Mn1 ion is assigned a 2+ oxidation state based an average bond length of 2.256 Å, a BVS value of 1.97 valence units (v. u.), and overall charge-balance considerations (Table 1[link]). The total 3+ charge of the MnII and Na+ ions is counterbalanced by the presence of three 3-chloro­benzoate anions. The 3-chloro­benzoate anions bridge between Mn1 and three of the ring MnIII ions (Mn2, Mn4, and Mn5). The MnII ion is seven-coordinate with a coordination environment consisting of four oxime oxygen atoms from four different shi3− ligands and of three carboxyl­ate oxygen atoms from three different 3-chloro­benzoate anions. A SHAPE analysis of the geometry indicates that an unambiguous assignment is difficult as in the central Na+ ions in 1 (Table 5[link]). The geometry is either face-capped octa­hedral (CShM = 1.589) or face-capped trigonal prismatic (CShM = 1.807). The Na+ ion of 2 is eight-coordinate with four oxime oxygen atoms from the shi3− ligands and four water mol­ecules. The SHAPE analysis indicates that the geometry can best be described as a biaugmented trigonal prism, where two of the rectangular faces of a trigonal prism are capped by an atom (Table 6[link]). All of the ring MnIII ions are six-coordinate with an elongated Jahn–Teller axis. The SHAPE analysis confirms a tetra­gonally distorted octa­hedral geometry for each MnIII ion (Table 7[link]). The axial ligands of Mn2, Mn4, and Mn5 consist of a carboxyl­ate oxygen atom from a 3-chloro­benzoate anion and an oxygen atom of a water mol­ecule that forms a one-atom μ-bridge to the Na+ ion. The axial ligands of Mn3 are a carbonyl oxygen atom of a terminal DMF mol­ecule and also an oxygen atom of a water mol­ecule that forms a one-atom μ-bridge to the Na+ ion. Lastly, there are four DMF mol­ecules located in the lattice. One of the DMF mol­ecules (associated with O27) is disordered due to the presence of a partially occupied water mol­ecule [0.718 (6) occupancy]. The occupancy ratio of the disordered DMF mol­ecule refined to 0.718 (6):0.282 (6).

Table 5
Continuous shape measurement (CShM) values (SHAPE 2.1) for the seven-coordinate manganese ion of 2

Heptagon 32.707
Hexagonal pyramid 20.417
Penta­gonal bipyramid 5.626
Capped octa­hedron 1.589
Capped trigonal prism 1.807
Johnson penta­gonal bipyramid 9.086
Johnson elongated triangular pyramid 20.152

Table 6
Continuous shape measurement (CShM) values (SHAPE 2.1) for the eight-coordinate sodium ion of 2

Octa­gon 30.163
Heptagonal pyramid 25.281
Hexagonal bipyramid 13.805
Cube 6.579
Square anti­prism 3.022
Triangular dodeca­hedron 3.398
Johnson gyrobifastigium 16.071
Johnson elongated triangular bipyramid 28.948
Johnson biaugmented trigonal prism 4.411
Biaugmented trigonal prism 2.764
Snub diphenoid 6.604
Triakis tetra­hedron 7.183
Elongated trigonal bipyramid 24.722

Table 7
Continuous shape measurement (CShM) values (SHAPE 2.1) for the six-coordinate manganese ions of 2

  Mn2 Mn3 Mn4 Mn5
Hexagon 30.762 30.538 30.590 30.154
Penta­gonal pyramid 27.834 27.546 27.453 27.158
Octa­hedron 1.320 1.219 1.257 1.127
Trigonal prism 15.522 15.883 16.455 16.107
Johnson penta­gonal pyramid 30.664 29.844 30.430 30.100
[Figure 2]
Figure 2
The single-crystal X-ray structure of MnNa(3-chloro­benzoate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O, 2, with displacement ellipsoids at the 50% probability level. (a) side view with only the metal atoms and heteroatoms of the axial ligands labelled for clarity and (b) top view with the axial ligand atoms omitted for clarity. In addition, the lattice DMF mol­ecules, partially occupied water mol­ecule, hydrogen atoms, and disorder have been omitted for clarity. See Fig. 1[link] for additional display details.

3. Supra­molecular features

For 1, there are two intra­molecular C—H⋯O inter­actions and their symmetry equivalents per mol­ecule (Table 8[link]): one inter­action is between a methyl group of a coordinated DMF mol­ecule to a carbonyl oxygen atom of a second coordinated DMF mol­ecule [C26—H26A⋯O11i; symmetry code: (i) −x + 1, −y + 1, −z + 1] and the other inter­action is between a methyl group of a coordinated DMF mol­ecule and a phenolate oxygen atom of a shi3− ligand (C30—H30C⋯O6) (Fig. 3[link]). No strong directional inter­molecular forces are observed between the mol­ecules of 1; however, there are a few weak inter­molecular C—H⋯Cl inter­actions between the methyl groups of a coordinated DMF mol­ecule (associated with O11) and the chlorine atoms of 3-chloro­benzoate anions of neighboring MCs (Table 8[link]; Fig. 4[link]). These inter­actions generate a one-dimensional network, and these inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules.

Table 8
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26A⋯O11i 0.98 2.65 3.56 (2) 155
C29—H29A⋯Cl1ii 0.98 2.78 3.702 (10) 156
C30—H30A⋯Cl1ii 0.98 2.79 3.699 (14) 154
C30—H30C⋯O6 0.98 2.54 3.125 (16) 119
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z+1.
[Figure 3]
Figure 3
Intra­molecular C—H⋯O inter­actions in 1 between the hydrogen atoms (white) of the methyl groups of the coordinated DMF mol­ecules and the MC [symmetry code: (i) −x + 1, −y + 1, −z + 1]. For clarity the disorder has been omitted and only the atoms involved in the hydrogen bonding have been labeled. See Fig. 1[link] for additional display details.
[Figure 4]
Figure 4
Inter­molecular C—H⋯Cl inter­actions in 1 between the hydrogen atoms (white) of the methyl groups of the DMF associated with O11 and the chlorine atom of the neighboring 3-chloro­benzoate anion [symmetry code: (ii) x + 1, y, z + 1]. The inter­actions result in a one-dimensional network. For clarity the disorder has been omitted and only the atoms involved in the inter­actions have been labeled.

For 2 no strong directional inter­molecular inter­actions are observed between the mol­ecules, but several hydrogen bonds exist between the water mol­ecules coordinated to the Na+ ion and the carbonyl oxygen atoms of the DMF mol­ecules located in the lattice (Table 9[link]; Fig. 5[link]). In addition, the partially occupied water mol­ecule associated with O28 is hydrogen bonded to the phenolate oxygen atom of a shi3− ligand of one MC and to the chlorine atom of a 3-chloro­benzoate ligand of a neighboring MC (Fig. 6[link]). These hydrogen-bonding inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules.

Table 9
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O19—H19A⋯O24 0.80 (2) 2.00 (3) 2.749 (3) 155 (5)
O19—H19B⋯O27 0.83 (2) 2.03 (3) 2.826 (7) 161 (5)
O20—H20A⋯O24 0.83 (2) 2.00 (3) 2.788 (3) 160 (5)
O20—H20B⋯O25 0.86 (2) 1.96 (3) 2.751 (4) 153 (4)
O21—H21A⋯O26 0.83 (2) 1.96 (3) 2.737 (3) 155 (5)
O21—H21B⋯O25 0.86 (2) 2.10 (4) 2.787 (3) 136 (4)
O22—H22A⋯O26 0.84 (2) 1.93 (3) 2.729 (3) 158 (5)
O22—H22B⋯O27 0.84 (2) 1.90 (3) 2.705 (6) 160 (5)
O28—H28A⋯Cl3i 0.92 (2) 2.96 (2) 3.876 (5) 171 (6)
O28—H28B⋯O9 0.90 (2) 2.14 (2) 3.019 (5) 165 (8)
Symmetry code: (i) x-1, y, z.
[Figure 5]
Figure 5
Inter­molecular hydrogen bonding in 2 between the water mol­ecules coordinated to the Na+ ion and the carbonyl oxygen atoms of the lattice DMF mol­ecules. For clarity the inter­actions have been divided into two sections (a) and (b), only the hydrogen atoms (white) of the water mol­ecules have been included, the disorder and the partially occupied water mol­ecule have been omitted, and only the atoms involved in the inter­actions have been labeled. See Fig. 1[link] for additional display details.
[Figure 6]
Figure 6
Inter­molecular hydrogen bonding in 2 between the partially occupied water mol­ecule and two neighboring MCs [symmetry code: (i) x − 1, y, z]. For clarity only the hydrogen atoms (white) of the water mol­ecule associated with O28 have been included and only the atoms involved in the inter­action have been labeled. See Fig. 1[link] for additional display details.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update March 2020, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that there are 61 different structures with the [12-MCMn(III)N(shi)-4] framework as either a discrete mol­ecule or as a building block for a larger structure. Of those compounds, there are eight di-sodium MCs as in 1 and only five MCs with a central man­ganese ion as in 2. For the eight Na2X2[12-MCMn(III)N(shi)-4] structures, six MCs exist as individual mol­ecules with the counter-anions (X) of chloride (JILLOF; Lah & Pecoraro, 1991[Lah, M. S. & Pecoraro, V. L. (1991). Inorg. Chem. 30, 878-880.]), bromide (TOXNID; Gibney et al., 1996[Gibney, B. R., Wang, H., Kampf, J. W. & Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184-6193.]), thio­cyanate (UFIXOW; Kessissoglou et al., 2002[Kessissoglou, D. P., Bodwin, J. J., Kampf, J., Dendrinou-Samara, C. & Pecoraro, V. L. (2002). Inorg. Chim. Acta, 331, 73-80.]), acetate (TIWWON; Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]), chloro­acetate (ZOQTUW; Daly et al., 2014[Daly, C. I., Zeller, M. & Zaleski, C. M. (2014). Acta Cryst. E70, 494-498.]), and butyrate (DUCWAB; Mengle et al., 2015[Mengle, K. A., Longenecker, E. J., Zeller, M. & Zaleski, C. M. (2015). J. Chem. Crystallogr. 45, 36-43.]). The remaining two MCs are one-dimensional chains of Na2X2[12-MCMn(III)N(shi)-4] complexes with either propionate (DUCWIJ) or butyrate (DUCWEF) serving as linkers between the di-sodium MCs (Mengle et al., 2015[Mengle, K. A., Longenecker, E. J., Zeller, M. & Zaleski, C. M. (2015). J. Chem. Crystallogr. 45, 36-43.]).

For the five MnX2[12-MCMn(III)N(shi)-4] structures, the bridg­ing ligands between the central cavity MnII ions and the ring MnIII ions include two acetate-based MCs (SEDBOS; Lah & Pecoraro, 1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]; TODGAX; Marzaroli et al., 2019[Marzaroli, V., Spigolon, G., Lococciolo, G., Quaretti, M., Salviati, C., Kampf, J. W., Licini, G., Marchiò, L., Pecoraro, V. L. & Tegoni, M. (2019). Cryst. Growth Des. 19, 1954-1964.]), a benzoate-based MC (FILGAJ, Dendrinou-Samara et al., 2005[Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.]), a MC with formate ions that bind to the central cavity MnII ion and two 2-(2,4-di­chloro­phen­oxy)propionate ions that bind to another MnII ion located above the central cavity MnII ion (IDUYUB; Dendrinou-Samara et al., 2001[Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041-5051.]), and one MC dimer with both acetate and 1,2,4-triazolate anions (ZUCYAZ; Zaleski et al., 2015[Zaleski, C. M., Lutter, J. C. & Zeller, M. (2015). J. Chem. Crystallogr. 45, 142-150.]). None of these structures contains an Na+ ion opposite the MnII ion; thus, complex 2 is the first example of a [12-MCMn(III)N(shi)-4] that binds both a 3d transition metal ion and an Na+ ion in the central cavity along with three bridging carboxyl­ate-based ligands. Lastly, there are nineteen [12-MCMn(III)N(shi)-4] structures (CSD version 5.41, update March 2020, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with both LnIII ions and Na+ ions bound in the central cavity (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]; Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.];, Travis et al., 2016[Travis, J. R., Zeller, M. & Zaleski, C. M. (2016). Polyhedron, 114, 29-36.]; Wang et al., 2019[Wang, J., Lu, G., Liu, Y., Wu, S.-G., Huang, G.-Z., Liu, J.-L. & Tong, M.-L. (2019). Cryst. Growth Des. 19, 1896-1902.]) and two examples of a [12-MCMn(III)N(shi)-4] complex binding both the 4d transition metal ion YIII and a Na+ ion (TIWWIH; Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]; WUQNUT; Travis et al., 2015[Travis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300-1306.]).

5. Synthesis and crystallization

Materials

Manganese(II) acetate tetra­hydrate (99+%) and 3-chloro­benzoic acid (99+%) were purchased from Acros Organics. Salicyl­hydroxamic acid (99%) was purchased from Alfa Aesar. Sodium hydroxide (Certified ACS grade) was purchased from Fisher Scientific. N,N-Di­methyl­formamide (DMF, Certified ACS grade) was purchased from BDH Chemicals. All reagents were used as received without further purification.

Synthesis of Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6, 1.

Sodium hydroxide (0.1710 g, 4 mmol) and 3-chloro­benzoic acid (0.6271 g, 4 mmol) were mixed in 8 mL of DMF resulting in a clear and colorless solution. The NaOH did not com­pletely dissolve. In a separate vessel, salicyl­hydroxamic acid (H3shi; 0.3063 g, 2 mmol) was dissolved in 8 mL of DMF resulting in a clear and slightly yellow solution. In a third vessel, manganese(II) acetate tetra­hydrate (0.4907 g, 2 mmol) was dissolved in 8 mL of DMF resulting in a light-orange solution. The manganese(II) acetate solution was added to the H3shi solution resulting in a dark-brown color. The sodium hydroxide/3-chloro­benzoic acid mixture was then immediately added and no color change was observed. The solution was stirred overnight and then gravity filtered the next day. A dark-brown precipitate was recovered and discarded. Also, it was observed that not all of the NaOH had dissolved after stirring overnight. The filtrate was a dark-brown solution that was left for slow evaporation at room temperature. After seven days, dark-brown/black plate-shaped crystals were collected for X-ray analysis. The remaining crystals were collected, washed with cold DMF, and dried. The percentage yield of the reaction was 1% (0.0080 g, 0.0050 mmol) based on mangan­ese(II) acetate tetra­hydrate.

Synthesis of MnNa(3-chloro­benzoate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O, 2.

The stoichiometric ratios between the reactants and the volume of DMF were the same as for 1 with slightly different masses of the reactants: sodium hydroxide (0.1627 g, 4 mmol), 3-chloro­benzoic acid (0.6267 g, 4 mmol), H3shi (0.3072 g, 2 mmol), and manganese(II) acetate tetra­hydrate (0.4914 g, 2 mmol). In addition, the mixing order was altered: the sodium hydroxide/3-chloro­benzoic acid mixture was first added to the H3shi solution, followed by the addition of the manganese(II) acetate solution. Furthermore, when the solution was filtered after stirring overnight, no precipitate was recovered. It was also observed that not all of the NaOH had dissolved. The filtrate was a dark-brown solution that was left for slow evaporation at room temperature. After three days, dark-brown/black plate crystals were collected for X-ray analysis. The remaining crystals were collected, washed with cold DMF, and dried. The percentage yield of the reaction was 35% (0.2543 g, 0.1401 mmol) based on manganese(II) acetate tetra­hydrate.

6. Refinement

For 1, the metallacrown mol­ecule, except the central Na, exhibits whole mol­ecule disorder over two sets of sites. Both moieties are centrosymmetric and are related to each other by a pseudo-mirror operation with opposite sense of rotation around the Na⋯Na axis. The DMF mol­ecules of O9 and O10 of the major moiety are additionally disordered. The DMF mol­ecule associated with O11 was found to be disordered independently from the main disorder.

To assist in the refinement of the disorder, the geometries of the two metallacrowns (Mn and salicyl­hydroximate ligands), of the 3-chloro­benzoate anions, and of each DMF mol­ecule were restrained to be similar to their disordered partner(s) (esd = 0.02 Å, SAME commands in SHELXL). The distances between Mn2 and O9 and Mn2B and O9B were restrained to be similar (esd = 0.02 Å; SADI restraint in SHELXL). All atoms of the minor moiety of the 3-chloro­benzoate (C15B–C21B, Cl1B) as well as of the minor disordered DMF mol­ecules of O10 (associated with O10B and O10C) were restrained to lie in the same plane (esd = 0.01 Å; FLAT restraint in SHELXL). All disordered atoms were restrained to have similar Uij components of their ADPs (esd = 0.01 Å2; SIMU restraint in SHELXL). The ADPs of C11 and C11B of a salicyl­hydroximate were constrained to be identical. Lastly, occupancies were constrained to sum up to unity for all sites using SUMP commands. Subject to the above conditions, the occupancy ratio of the main disorder of the metallacrown mol­ecules and 3-chloro­benzoate anions refined to 0.9276 (9):0.0724 (9). The occupancy rates for the additionally split DMF of O9 refined to 0.799 (3) (O9) and 0.129 (3) (O9C), and those of the additionally split DMF mol­ecule of O10 refined to 0.498 (3) (O10) and 0.430 (3) (O10C). The occupancy ratio of the DMF mol­ecules associated with O11 refined to 0.516 (5):0.484 (5).

For 2, a partially occupied water mol­ecule (O28) induces disorder for a neighboring DMF mol­ecule (of O27). The two disordered moieties were restrained to have similar geometries, and the carbon, oxygen, and nitro­gen atoms of the DMF mol­ecule restrained to have similar Uij components of the ADPs (esd = 0.01 Å2; SIMU restraint in SHELXL). Subject to these conditions the occupancy ratio refined to 0.718 (6):0.282 (6). Water hydrogen-atom positions were refined and O—H and H⋯H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively. The water hydrogen-atom positions of partially occupied O28 were further restrained based on hydrogen-bonding considerations.

For 1 and 2, all other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms and 0.98 Å for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2-hybridized carbon atoms or 1.5 times for methyl carbon atoms). Additional crystallographic data and experimental parameters are provided in Table 10[link] and in the CIF.

Table 10
Experimental details

  1 2
Crystal data
Chemical formula [Mn4Na2(C7H4ClO2)2(C7H4NO3)4(C3H7NO)6] [Mn5Na(C7H4ClO2)3(C7H4NO3)4(C3H7NO)(H2O)4]·4C3H7NO·0.718H2O
Mr 1615.99 1815.30
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, Pn
Temperature (K) 150 150
a, b, c (Å) 12.0423 (8), 12.3722 (8), 12.6875 (9) 14.1955 (9), 16.3349 (11), 16.6144 (10)
α, β, γ (°) 102.839 (3), 111.628 (3), 90.722 (4) 90, 94.235 (2), 90
V3) 1704.0 (2) 3842.1 (4)
Z 1 2
Radiation type Cu Kα Mo Kα
μ (mm−1) 7.45 1.00
Crystal size (mm) 0.18 × 0.08 × 0.04 0.45 × 0.23 × 0.09
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD) Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.528, 0.754 0.636, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 22753, 6871, 5590 118654, 27291, 24179
Rint 0.048 0.038
(sin θ/λ)max−1) 0.640 0.771
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.12 0.034, 0.091, 1.03
No. of reflections 6871 27291
No. of parameters 999 1079
No. of restraints 2038 143
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.57 0.82, −0.69
Absolute structure Flack x determined using 10010 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.000 (2)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(µ-3-chlorobenzoato)hexakis(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium(I) (1) top
Crystal data top
[Mn4Na2(C7H4ClO2)2(C7H4NO3)4(C3H7NO)6]Z = 1
Mr = 1615.99F(000) = 828
Triclinic, P1Dx = 1.575 Mg m3
a = 12.0423 (8) ÅCu Kα radiation, λ = 1.54178 Å
b = 12.3722 (8) ÅCell parameters from 9922 reflections
c = 12.6875 (9) Åθ = 5.7–80.7°
α = 102.839 (3)°µ = 7.45 mm1
β = 111.628 (3)°T = 150 K
γ = 90.722 (4)°Plate, brown
V = 1704.0 (2) Å30.18 × 0.08 × 0.04 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
6871 independent reflections
Radiation source: I-mu-S microsource X-ray tube5590 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.048
Detector resolution: 7.4074 pixels mm-1θmax = 80.8°, θmin = 5.1°
ω and phi scansh = 1513
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1515
Tmin = 0.528, Tmax = 0.754l = 1616
22753 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.554P]
where P = (Fo2 + 2Fc2)/3
6871 reflections(Δ/σ)max = 0.001
999 parametersΔρmax = 0.49 e Å3
2038 restraintsΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The metallacrown molecule, except the central Na, exhibits whole molecule disorder over two sites. Both moieties are centrosymmetric and are related to each other by a pseudo-mirror operation with opposite sense of rotation around the Na···Na axis. The DMF molecules of O9 and O10 of the major moiety are additionally disordered. The DMF molecule associated with O11 was found to be disordered independently from the main disorder.

To assist in the refinement of the disorder, the geometries of the two metallacrowns (Mn and salicylhydroximate ligands), of the 3-chlorobenzoates, and of each DMF molecule were restrained to be similar to their disordered partner(s) (esd = 0.02 Angstrom, SAME commands in Shelxl). The distances between Mn2 and O9 and Mn2B and O9B were restrained to be similar (esd = 0.02 Angstrom; SADI restraint in Shexl). All atoms of the minor moiety of the 3-chlorobenzoate (C15B-C21B, Cl1B) as well as of the minor disordered DMF molecules of O10 (associated with O10B and O10C) were restrained to lie in the same plane (esd = 0.01 Angstrom; FLAT restraint in Shexl). All disordered atoms were restrained to have similar Uij components of their ADPs (esd = 0.01 Angstrom squared; SIMU restraint in Shexl). The ADPs of C11 and C11B of a salicylhydroximate were constrained to be identical. Occupancies were constrained to sum up to unity for all sites using SUMP commands.

Subject to the above conditions, the occupancy ratio of the main disorder of the metallacrown molecules and 3-chlorobenzoates refined to 0.9276 (9) to 0.0724 (9). The occupancy rates for the additionally split DMF of O9 refined to 0.799 (3) (O9) and 0.047 (3) (O9C), and those of the additionally split DMF molecule of O10 refined to 0.498 (3) (O10) and 0.430 (3) (O10C). The occupancy ratio of the DMF molecules associated with O11 refined to 0.516 (5) to 0.484 (5).

All hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C-H distances of 0.95 Angstrom for sp2 carbon atoms and 0.98 Angstrom for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms or 1.5 times for methyl carbon atoms).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.56999 (10)0.57176 (10)0.43966 (10)0.0414 (3)
Mn10.24955 (4)0.51893 (4)0.28749 (3)0.02874 (13)0.9276 (9)
O10.36731 (18)0.57424 (17)0.43743 (16)0.0344 (4)0.9276 (9)
N10.3344 (2)0.6609 (2)0.5069 (2)0.0305 (6)0.9276 (9)
O20.15555 (19)0.61826 (18)0.35629 (17)0.0362 (5)0.9276 (9)
C10.2226 (3)0.6782 (2)0.4602 (2)0.0314 (6)0.9276 (9)
C20.1718 (3)0.7641 (3)0.5235 (3)0.0335 (6)0.9276 (9)
C30.0508 (3)0.7792 (3)0.4687 (3)0.0402 (7)0.9276 (9)
H30.0054150.7330990.3933660.048*0.9276 (9)
C40.0042 (3)0.8584 (3)0.5202 (4)0.0502 (9)0.9276 (9)
H40.0866030.8667150.4815640.060*0.9276 (9)
C50.0625 (4)0.9261 (3)0.6294 (4)0.0550 (10)0.9276 (9)
H50.0259760.9823960.6654900.066*0.9276 (9)
C60.1820 (3)0.9124 (3)0.6865 (3)0.0479 (8)0.9276 (9)
H60.2258120.9588900.7621100.057*0.9276 (9)
C70.2394 (3)0.8323 (3)0.6359 (3)0.0348 (6)0.9276 (9)
O30.3544 (2)0.82499 (18)0.69636 (19)0.0408 (5)0.9276 (9)
Mn20.45555 (4)0.72084 (3)0.66609 (4)0.02969 (13)0.9276 (9)
O40.55221 (18)0.61023 (17)0.63426 (16)0.0354 (5)0.9276 (9)
N20.6542 (3)0.6066 (3)0.7316 (2)0.0311 (5)0.9276 (9)
O50.58685 (18)0.75588 (16)0.81973 (17)0.0341 (4)0.9276 (9)
C80.6678 (3)0.6852 (2)0.8243 (2)0.0282 (5)0.9276 (9)
C90.7740 (3)0.6954 (2)0.9320 (2)0.0311 (6)0.9276 (9)
C100.7776 (3)0.7720 (3)1.0336 (3)0.0376 (7)0.9276 (9)
H100.7108560.8130581.0308070.045*0.9276 (9)
C110.8760 (4)0.7888 (3)1.1372 (3)0.0433 (8)0.9276 (9)
H110.8772460.8409701.2051490.052*0.9276 (9)
C120.9734 (3)0.7283 (3)1.1409 (3)0.0411 (8)0.9276 (9)
H121.0416410.7393551.2119400.049*0.9276 (9)
C130.9720 (3)0.6520 (3)1.0422 (3)0.0371 (7)0.9276 (9)
H131.0395850.6119521.0458760.045*0.9276 (9)
C140.8715 (3)0.6334 (2)0.9365 (2)0.0327 (6)0.9276 (9)
O60.87716 (18)0.55919 (17)0.84463 (17)0.0351 (4)0.9276 (9)
O70.4914 (2)0.6448 (2)0.2744 (2)0.0493 (6)0.9276 (9)
O80.2903 (2)0.62890 (18)0.20310 (19)0.0416 (5)0.9276 (9)
C150.3932 (3)0.6717 (3)0.2175 (3)0.0425 (8)0.9276 (9)
C160.3907 (4)0.7686 (3)0.1615 (3)0.0490 (8)0.9276 (9)
C170.4971 (4)0.8206 (4)0.1678 (4)0.0609 (10)0.9276 (9)
H170.5714520.7928590.2035960.073*0.9276 (9)
C180.4945 (5)0.9129 (4)0.1219 (4)0.0722 (11)0.9276 (9)
H180.5670920.9470970.1249450.087*0.9276 (9)
C190.3878 (4)0.9554 (4)0.0721 (4)0.0695 (11)0.9276 (9)
H190.3864441.0198930.0429210.083*0.9276 (9)
C200.2836 (4)0.9034 (3)0.0653 (4)0.0623 (10)0.9276 (9)
Cl10.14996 (15)0.96107 (12)0.00820 (17)0.0925 (5)0.9276 (9)
C210.2836 (4)0.8100 (3)0.1093 (3)0.0511 (9)0.9276 (9)
H210.2101930.7749620.1033650.061*0.9276 (9)
Mn1B0.7452 (6)0.3952 (5)0.6294 (5)0.0326 (14)0.0724 (9)
O1B0.6406 (18)0.5042 (16)0.6240 (17)0.037 (3)0.0724 (9)
N1B0.672 (4)0.586 (4)0.727 (3)0.033 (3)0.0724 (9)
O2B0.8412 (18)0.4978 (17)0.7831 (16)0.036 (4)0.0724 (9)
C1B0.776 (2)0.577 (2)0.8025 (19)0.034 (3)0.0724 (9)
C2B0.824 (3)0.655 (3)0.919 (2)0.032 (3)0.0724 (9)
C3B0.935 (3)0.635 (3)0.995 (3)0.034 (3)0.0724 (9)
H3B0.9764490.5769090.9694090.041*0.0724 (9)
C4B0.984 (3)0.699 (4)1.106 (3)0.036 (4)0.0724 (9)
H4B1.0637590.6917641.1539580.043*0.0724 (9)
C5B0.918 (4)0.773 (4)1.149 (3)0.040 (4)0.0724 (9)
H5B0.9478150.8071981.2307340.048*0.0724 (9)
C6B0.810 (3)0.797 (3)1.076 (3)0.036 (3)0.0724 (9)
H6B0.7715590.8578681.1021850.044*0.0724 (9)
C7B0.757 (2)0.732 (3)0.962 (2)0.032 (3)0.0724 (9)
O3B0.6462 (18)0.7482 (19)0.8949 (14)0.038 (3)0.0724 (9)
Mn2B0.5604 (5)0.7006 (5)0.7338 (5)0.0350 (13)0.0724 (9)
O4B0.4731 (17)0.6419 (17)0.5750 (13)0.033 (3)0.0724 (9)
N2B0.362 (2)0.683 (3)0.538 (2)0.030 (3)0.0724 (9)
O5B0.4275 (17)0.7945 (18)0.7235 (16)0.035 (3)0.0724 (9)
C8B0.3431 (19)0.754 (2)0.6197 (19)0.032 (3)0.0724 (9)
C9B0.225 (2)0.797 (3)0.588 (3)0.035 (3)0.0724 (9)
C10B0.218 (3)0.887 (4)0.674 (3)0.043 (3)0.0724 (9)
H10B0.2886800.9197780.7400710.051*0.0724 (9)
C11B0.111 (4)0.926 (4)0.664 (4)0.049 (4)0.0724 (9)
H11B0.1015340.9746170.7286000.059*0.0724 (9)
C12B0.016 (4)0.895 (4)0.556 (4)0.047 (4)0.0724 (9)
H12B0.0538060.9345020.5431320.056*0.0724 (9)
C13B0.020 (3)0.808 (4)0.469 (4)0.040 (4)0.0724 (9)
H13B0.0488730.7828220.3987040.048*0.0724 (9)
C14B0.127 (3)0.758 (3)0.484 (2)0.035 (3)0.0724 (9)
O6B0.129 (2)0.677 (2)0.3929 (19)0.037 (3)0.0724 (9)
O7B0.490 (3)0.696 (3)0.318 (3)0.051 (4)0.0724 (9)
O8B0.300 (2)0.709 (2)0.276 (2)0.047 (4)0.0724 (9)
C15B0.390 (3)0.696 (3)0.241 (3)0.047 (3)0.0724 (9)
C16B0.382 (3)0.7623 (18)0.1506 (19)0.051 (3)0.0724 (9)
C17B0.470 (3)0.780 (2)0.108 (2)0.054 (3)0.0724 (9)
H17B0.5437080.7488790.1359720.065*0.0724 (9)
C18B0.452 (3)0.842 (3)0.025 (3)0.060 (3)0.0724 (9)
H18B0.5132370.8533170.0034990.071*0.0724 (9)
C19B0.345 (3)0.887 (2)0.016 (3)0.065 (4)0.0724 (9)
H19B0.3313010.9293250.0722290.078*0.0724 (9)
C20B0.257 (2)0.8705 (18)0.025 (2)0.070 (3)0.0724 (9)
Cl1B0.115 (2)0.9218 (18)0.018 (3)0.0925 (5)0.0724 (9)
C21B0.275 (3)0.8083 (19)0.108 (2)0.056 (4)0.0724 (9)
H21B0.2135240.7974560.1356970.067*0.0724 (9)
O90.5419 (5)0.8294 (3)0.5924 (3)0.0481 (10)0.799 (3)
C220.6216 (4)0.9054 (4)0.6379 (4)0.0489 (10)0.799 (3)
H220.6535290.9288590.7208480.059*0.799 (3)
N30.6678 (6)0.9585 (6)0.5808 (6)0.0517 (10)0.799 (3)
C230.6266 (5)0.9227 (5)0.4543 (5)0.0600 (12)0.799 (3)
H23A0.5617260.8619420.4248760.090*0.799 (3)
H23B0.6933780.8966880.4323530.090*0.799 (3)
H23C0.5967370.9855110.4201970.090*0.799 (3)
C240.7588 (6)1.0515 (5)0.6389 (6)0.0757 (15)0.799 (3)
H24A0.8216581.0422750.6068560.113*0.799 (3)
H24B0.7939681.0551630.7228460.113*0.799 (3)
H24C0.7228571.1206180.6267930.113*0.799 (3)
O9B0.660 (3)0.834 (2)0.700 (2)0.049 (4)0.0724 (9)
C22B0.632 (5)0.861 (4)0.609 (3)0.052 (3)0.0724 (9)
H22B0.5713300.8127290.5427120.062*0.0724 (9)
N3B0.677 (6)0.951 (7)0.590 (5)0.058 (3)0.0724 (9)
C23B0.796 (4)1.006 (5)0.676 (4)0.064 (4)0.0724 (9)
H23D0.8181780.9759470.7455560.097*0.0724 (9)
H23E0.7910731.0864090.6984930.097*0.0724 (9)
H23F0.8560790.9923140.6412920.097*0.0724 (9)
C24B0.642 (6)0.973 (5)0.477 (4)0.060 (3)0.0724 (9)
H24D0.5886670.9102680.4180780.089*0.0724 (9)
H24E0.7138520.9847540.4599560.089*0.0724 (9)
H24F0.6003701.0407850.4763740.089*0.0724 (9)
O9C0.548 (4)0.856 (3)0.622 (2)0.047 (3)0.129 (3)
C22C0.565 (2)0.8569 (19)0.534 (2)0.052 (3)0.129 (3)
H22C0.5287040.7946080.4698420.063*0.129 (3)
N3C0.629 (3)0.9370 (19)0.518 (3)0.055 (3)0.129 (3)
C23C0.635 (3)0.924 (3)0.401 (2)0.061 (4)0.129 (3)
H23G0.6311050.8449360.3641790.091*0.129 (3)
H23H0.7109690.9626290.4093990.091*0.129 (3)
H23I0.5676810.9568550.3516250.091*0.129 (3)
C24C0.682 (3)1.042 (2)0.598 (3)0.063 (3)0.129 (3)
H24G0.7691821.0460280.6218570.094*0.129 (3)
H24H0.6607821.0492990.6664400.094*0.129 (3)
H24I0.6511171.1016180.5591810.094*0.129 (3)
O100.3646 (15)0.5947 (13)0.7207 (11)0.050 (2)0.498 (3)
C250.3844 (9)0.5822 (9)0.8165 (9)0.0508 (17)0.498 (3)
H250.4447750.6337880.8789170.061*0.498 (3)
N40.3337 (8)0.5069 (8)0.8461 (7)0.0573 (16)0.498 (3)
C260.2464 (14)0.4197 (11)0.7651 (10)0.061 (2)0.498 (3)
H26A0.2393600.4193620.6855920.074*0.498 (3)
H26B0.1686890.4312410.7718280.074*0.498 (3)
H26C0.2707840.3480770.7819150.074*0.498 (3)
C270.3757 (10)0.4926 (8)0.9663 (7)0.078 (2)0.498 (3)
H27A0.3073970.4907050.9905500.118*0.498 (3)
H27B0.4351190.5550541.0190880.118*0.498 (3)
H27C0.4124800.4225810.9693520.118*0.498 (3)
O10B0.430 (3)0.565 (3)0.746 (3)0.052 (3)0.0724 (9)
C25B0.403 (3)0.574 (4)0.829 (3)0.054 (3)0.0724 (9)
H25B0.4254820.6450230.8829240.064*0.0724 (9)
N4B0.346 (3)0.500 (4)0.855 (3)0.061 (3)0.0724 (9)
C26B0.304 (6)0.389 (4)0.786 (4)0.060 (4)0.0724 (9)
H26D0.2689020.3892970.7029610.072*0.0724 (9)
H26E0.2437590.3573630.8082270.072*0.0724 (9)
H26F0.3719860.3431900.7989210.072*0.0724 (9)
C27B0.320 (6)0.525 (5)0.961 (4)0.064 (4)0.0724 (9)
H27D0.3764870.5869701.0186560.096*0.0724 (9)
H27E0.3271250.4592070.9926930.096*0.0724 (9)
H27F0.2376280.5461130.9416610.096*0.0724 (9)
O10C0.3646 (16)0.5782 (15)0.7088 (13)0.044 (2)0.430 (3)
C25C0.3444 (9)0.5894 (10)0.7974 (11)0.055 (2)0.430 (3)
H25C0.3723760.6581210.8546510.066*0.430 (3)
N4C0.2856 (7)0.5110 (8)0.8186 (8)0.0576 (18)0.430 (3)
C26C0.2425 (17)0.4073 (12)0.7344 (10)0.057 (2)0.430 (3)
H26G0.2118980.4203720.6556760.068*0.430 (3)
H26H0.1776170.3704390.7470590.068*0.430 (3)
H26I0.3080840.3597830.7422990.068*0.430 (3)
C27C0.2624 (11)0.5265 (10)0.9256 (8)0.078 (2)0.430 (3)
H27G0.1764930.5315020.9073830.117*0.430 (3)
H27H0.3082190.5953490.9810140.117*0.430 (3)
H27I0.2870250.4630770.9602650.117*0.430 (3)
O110.7624 (12)0.6718 (11)0.5247 (13)0.070 (2)0.516 (5)
C280.8618 (9)0.6462 (9)0.5798 (8)0.081 (2)0.516 (5)
H280.8883050.5810810.5446580.098*0.516 (5)
N50.9360 (7)0.7053 (7)0.6879 (6)0.0660 (17)0.516 (5)
C290.9012 (9)0.7930 (8)0.7480 (8)0.085 (2)0.516 (5)
H29A0.9628900.8187320.8269300.102*0.516 (5)
H29B0.8253220.7704720.7530810.102*0.516 (5)
H29C0.8899150.8534400.7077670.102*0.516 (5)
C301.0409 (11)0.7016 (12)0.7730 (12)0.111 (3)0.516 (5)
H30A1.0499790.7592350.8433000.133*0.516 (5)
H30B1.1065990.7146290.7477370.133*0.516 (5)
H30C1.0432520.6281280.7903830.133*0.516 (5)
O11B0.7653 (12)0.6424 (12)0.5394 (12)0.071 (3)0.484 (5)
C28B0.8447 (8)0.6931 (9)0.6316 (8)0.0738 (19)0.484 (5)
H28B0.8334960.7578370.6816520.089*0.484 (5)
N5B0.9554 (8)0.6444 (9)0.6556 (9)0.085 (2)0.484 (5)
C29B0.9812 (11)0.5603 (10)0.5813 (10)0.101 (3)0.484 (5)
H29D0.9981500.4957750.6155370.121*0.484 (5)
H29E1.0515860.5854010.5684250.121*0.484 (5)
H29F0.9123250.5392350.5065230.121*0.484 (5)
C30B1.0546 (10)0.6572 (10)0.7364 (10)0.083 (2)0.484 (5)
H30D1.1096590.6116260.7099000.100*0.484 (5)
H30E1.0462750.6343240.8024840.100*0.484 (5)
H30F1.0865560.7358930.7608850.100*0.484 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0352 (6)0.0476 (6)0.0379 (6)0.0037 (5)0.0062 (5)0.0175 (5)
Mn10.0276 (2)0.0299 (2)0.0214 (2)0.00225 (18)0.00067 (18)0.00714 (17)
O10.0329 (11)0.0366 (10)0.0249 (9)0.0039 (8)0.0045 (8)0.0014 (8)
N10.0294 (13)0.0317 (14)0.0247 (13)0.0010 (11)0.0054 (10)0.0048 (10)
O20.0320 (12)0.0387 (11)0.0277 (10)0.0003 (9)0.0011 (9)0.0058 (8)
C10.0313 (14)0.0330 (13)0.0267 (12)0.0014 (11)0.0049 (11)0.0118 (10)
C20.0333 (16)0.0316 (13)0.0340 (15)0.0014 (12)0.0096 (12)0.0109 (12)
C30.0362 (18)0.0388 (17)0.0414 (15)0.0029 (13)0.0102 (14)0.0093 (13)
C40.0359 (18)0.046 (2)0.057 (2)0.0055 (15)0.0095 (16)0.0043 (16)
C50.040 (2)0.0463 (18)0.066 (2)0.0065 (17)0.0161 (18)0.0051 (18)
C60.0374 (19)0.0424 (18)0.0506 (18)0.0011 (15)0.0107 (16)0.0041 (15)
C70.0334 (15)0.0308 (14)0.0375 (15)0.0004 (12)0.0106 (13)0.0081 (12)
O30.0346 (11)0.0403 (11)0.0347 (11)0.0007 (9)0.0042 (9)0.0004 (9)
Mn20.0302 (3)0.0294 (2)0.0228 (2)0.00059 (18)0.00305 (18)0.00582 (17)
O40.0301 (10)0.0379 (10)0.0232 (9)0.0036 (8)0.0044 (8)0.0035 (8)
N20.0299 (14)0.0313 (16)0.0221 (11)0.0011 (10)0.0012 (10)0.0066 (9)
O50.0354 (11)0.0318 (10)0.0268 (10)0.0016 (8)0.0036 (9)0.0052 (8)
C80.0324 (14)0.0261 (12)0.0225 (11)0.0014 (10)0.0050 (10)0.0086 (9)
C90.0330 (15)0.0289 (14)0.0252 (13)0.0055 (11)0.0026 (12)0.0095 (11)
C100.0452 (18)0.0338 (15)0.0247 (15)0.0036 (13)0.0028 (13)0.0078 (12)
C110.054 (2)0.0376 (17)0.0245 (15)0.0037 (15)0.0004 (15)0.0060 (12)
C120.0431 (18)0.0389 (19)0.0249 (15)0.0089 (15)0.0050 (14)0.0074 (12)
C130.0368 (17)0.0365 (15)0.0255 (15)0.0095 (13)0.0036 (12)0.0108 (13)
C140.0335 (16)0.0305 (13)0.0234 (13)0.0082 (11)0.0028 (12)0.0100 (11)
O60.0314 (11)0.0370 (10)0.0260 (10)0.0012 (8)0.0001 (8)0.0060 (8)
O70.0480 (14)0.0542 (15)0.0490 (14)0.0048 (12)0.0149 (12)0.0253 (12)
O80.0453 (13)0.0394 (11)0.0360 (11)0.0052 (10)0.0067 (10)0.0172 (9)
C150.0537 (19)0.0391 (16)0.0358 (16)0.0008 (15)0.0160 (14)0.0133 (13)
C160.056 (2)0.0463 (17)0.0471 (17)0.0025 (15)0.0187 (15)0.0193 (14)
C170.064 (2)0.062 (2)0.062 (2)0.0036 (18)0.0241 (19)0.0258 (18)
C180.080 (3)0.069 (2)0.076 (3)0.012 (2)0.032 (2)0.031 (2)
C190.090 (3)0.055 (2)0.076 (2)0.002 (2)0.036 (2)0.0341 (19)
C200.075 (2)0.0500 (19)0.067 (2)0.0059 (18)0.0235 (19)0.0303 (17)
Cl10.0912 (11)0.0753 (9)0.1192 (12)0.0196 (7)0.0257 (9)0.0640 (10)
C210.058 (2)0.0462 (17)0.0495 (18)0.0017 (16)0.0162 (16)0.0212 (15)
Mn1B0.035 (3)0.030 (3)0.026 (3)0.005 (2)0.004 (2)0.008 (2)
O1B0.032 (5)0.035 (5)0.028 (5)0.003 (5)0.004 (5)0.005 (5)
N1B0.031 (5)0.032 (5)0.024 (4)0.000 (4)0.002 (4)0.007 (4)
O2B0.030 (6)0.038 (6)0.027 (6)0.003 (5)0.004 (5)0.006 (5)
C1B0.034 (4)0.032 (4)0.024 (4)0.002 (4)0.001 (4)0.006 (4)
C2B0.032 (4)0.032 (4)0.022 (4)0.004 (4)0.001 (4)0.008 (4)
C3B0.036 (5)0.034 (4)0.023 (5)0.005 (4)0.002 (4)0.008 (4)
C4B0.041 (5)0.034 (5)0.023 (5)0.002 (5)0.001 (5)0.009 (5)
C5B0.045 (5)0.037 (5)0.025 (5)0.004 (5)0.002 (5)0.007 (5)
C6B0.041 (5)0.035 (5)0.024 (5)0.004 (5)0.002 (5)0.007 (5)
C7B0.034 (4)0.029 (4)0.024 (4)0.002 (4)0.002 (4)0.008 (4)
O3B0.038 (4)0.035 (4)0.030 (4)0.000 (4)0.002 (4)0.006 (4)
Mn2B0.033 (2)0.034 (2)0.030 (2)0.005 (2)0.004 (2)0.006 (2)
O4B0.030 (4)0.032 (4)0.027 (4)0.007 (4)0.003 (4)0.002 (4)
N2B0.029 (4)0.032 (4)0.025 (4)0.002 (4)0.007 (4)0.005 (4)
O5B0.036 (5)0.032 (5)0.025 (4)0.005 (4)0.009 (4)0.008 (4)
C8B0.030 (4)0.031 (4)0.029 (4)0.000 (4)0.007 (4)0.006 (4)
C9B0.032 (4)0.034 (4)0.035 (4)0.001 (4)0.009 (4)0.006 (4)
C10B0.035 (5)0.039 (5)0.046 (5)0.003 (5)0.011 (5)0.001 (4)
C11B0.037 (5)0.041 (5)0.054 (5)0.005 (5)0.009 (5)0.003 (5)
C12B0.037 (5)0.041 (5)0.052 (5)0.005 (5)0.011 (5)0.002 (5)
C13B0.034 (5)0.037 (5)0.043 (5)0.003 (5)0.010 (5)0.008 (5)
C14B0.033 (4)0.034 (4)0.035 (4)0.000 (4)0.010 (4)0.010 (4)
O6B0.036 (5)0.036 (5)0.033 (5)0.002 (5)0.005 (4)0.009 (4)
O7B0.055 (6)0.048 (6)0.047 (6)0.000 (6)0.012 (6)0.021 (6)
O8B0.053 (6)0.042 (6)0.044 (6)0.001 (6)0.012 (6)0.018 (5)
C15B0.053 (4)0.046 (4)0.044 (4)0.001 (4)0.016 (4)0.021 (4)
C16B0.059 (4)0.049 (4)0.051 (4)0.001 (4)0.020 (4)0.022 (4)
C17B0.063 (5)0.055 (5)0.057 (5)0.005 (5)0.029 (5)0.028 (5)
C18B0.072 (5)0.058 (5)0.065 (5)0.007 (5)0.035 (5)0.032 (5)
C19B0.079 (5)0.057 (5)0.071 (5)0.003 (5)0.032 (5)0.034 (5)
C20B0.079 (4)0.059 (4)0.081 (4)0.004 (4)0.026 (4)0.040 (4)
Cl1B0.0912 (11)0.0753 (9)0.1192 (12)0.0196 (7)0.0257 (9)0.0640 (10)
C21B0.065 (5)0.050 (5)0.058 (5)0.001 (5)0.021 (5)0.026 (5)
O90.0485 (17)0.051 (2)0.044 (2)0.0092 (17)0.0126 (18)0.0199 (15)
C220.051 (2)0.049 (2)0.046 (2)0.0063 (19)0.0210 (17)0.0076 (17)
N30.053 (2)0.050 (2)0.056 (2)0.0056 (17)0.0258 (17)0.0119 (16)
C230.062 (3)0.063 (2)0.057 (3)0.004 (2)0.019 (2)0.024 (2)
C240.071 (3)0.069 (3)0.083 (3)0.019 (3)0.033 (3)0.006 (3)
O9B0.050 (5)0.046 (5)0.048 (5)0.002 (5)0.015 (5)0.014 (5)
C22B0.053 (4)0.051 (4)0.051 (4)0.005 (4)0.019 (4)0.014 (4)
N3B0.057 (4)0.057 (4)0.059 (4)0.008 (4)0.024 (4)0.013 (4)
C23B0.061 (6)0.062 (6)0.067 (6)0.010 (6)0.025 (6)0.010 (6)
C24B0.060 (5)0.058 (5)0.060 (5)0.005 (5)0.021 (5)0.015 (5)
O9C0.051 (5)0.044 (5)0.046 (5)0.001 (5)0.015 (5)0.018 (5)
C22C0.054 (4)0.051 (4)0.053 (4)0.005 (4)0.020 (4)0.015 (4)
N3C0.057 (4)0.055 (4)0.058 (4)0.007 (4)0.025 (4)0.015 (4)
C23C0.063 (6)0.059 (6)0.061 (6)0.000 (6)0.023 (6)0.020 (6)
C24C0.060 (4)0.062 (4)0.063 (4)0.007 (4)0.022 (4)0.013 (4)
O100.052 (3)0.047 (4)0.045 (4)0.013 (3)0.008 (3)0.017 (3)
C250.067 (4)0.047 (3)0.041 (3)0.011 (3)0.025 (3)0.010 (2)
N40.082 (4)0.049 (2)0.050 (3)0.012 (3)0.035 (3)0.012 (2)
C260.075 (4)0.057 (4)0.058 (5)0.011 (3)0.034 (4)0.011 (4)
C270.111 (5)0.072 (4)0.053 (3)0.022 (4)0.036 (4)0.012 (3)
O10B0.063 (5)0.049 (5)0.042 (5)0.012 (5)0.019 (5)0.010 (5)
C25B0.068 (4)0.049 (4)0.043 (4)0.012 (4)0.022 (4)0.010 (4)
N4B0.082 (4)0.055 (4)0.048 (4)0.016 (4)0.032 (4)0.009 (4)
C26B0.080 (6)0.057 (5)0.049 (5)0.015 (5)0.034 (5)0.009 (5)
C27B0.090 (6)0.058 (5)0.048 (5)0.016 (5)0.034 (5)0.010 (5)
O10C0.050 (3)0.044 (4)0.036 (3)0.008 (3)0.015 (3)0.014 (3)
C25C0.069 (4)0.049 (3)0.044 (4)0.015 (3)0.019 (3)0.009 (3)
N4C0.080 (4)0.053 (3)0.042 (3)0.018 (3)0.029 (3)0.007 (3)
C26C0.077 (4)0.058 (4)0.041 (4)0.019 (4)0.036 (4)0.002 (3)
C27C0.110 (5)0.069 (4)0.054 (4)0.025 (4)0.038 (4)0.003 (3)
O110.061 (3)0.075 (5)0.073 (4)0.030 (3)0.024 (3)0.020 (3)
C280.083 (4)0.086 (4)0.078 (4)0.026 (4)0.033 (3)0.024 (3)
N50.068 (3)0.075 (4)0.058 (3)0.018 (3)0.025 (3)0.025 (3)
C290.087 (5)0.091 (5)0.081 (5)0.015 (4)0.034 (4)0.028 (4)
C300.098 (5)0.114 (6)0.110 (6)0.022 (5)0.025 (5)0.035 (5)
O11B0.059 (4)0.089 (6)0.060 (4)0.041 (4)0.023 (3)0.008 (4)
C28B0.081 (4)0.083 (4)0.063 (4)0.031 (4)0.037 (3)0.014 (3)
N5B0.085 (4)0.088 (5)0.084 (4)0.020 (4)0.029 (3)0.035 (4)
C29B0.100 (5)0.103 (6)0.114 (6)0.006 (5)0.047 (5)0.043 (5)
C30B0.078 (4)0.086 (5)0.104 (5)0.011 (4)0.046 (4)0.042 (4)
Geometric parameters (Å, º) top
Na1—O11B2.272 (12)C13B—C14B1.409 (19)
Na1—O72.347 (3)C13B—H13B0.9500
Na1—O112.357 (12)C14B—O6B1.351 (18)
Na1—O7B2.38 (3)O7B—C15B1.241 (19)
Na1—O4B2.430 (19)O8B—C15B1.307 (19)
Na1—O12.431 (2)C15B—C16B1.525 (18)
Na1—O1Bi2.46 (2)C16B—C21B1.381 (18)
Na1—O4i2.465 (2)C16B—C17B1.392 (19)
Na1—O42.498 (2)C17B—C18B1.395 (19)
Na1—O1B2.51 (2)C17B—H17B0.9500
Na1—O10Bi2.57 (3)C18B—C19B1.38 (2)
Na1—O1i2.585 (2)C18B—H18B0.9500
Mn1—O6i1.852 (2)C19B—C20B1.367 (19)
Mn1—O11.873 (2)C19B—H19B0.9500
Mn1—O21.960 (2)C20B—C21B1.392 (19)
Mn1—N2i1.974 (3)C20B—Cl1B1.760 (18)
Mn1—O82.063 (2)C21B—H21B0.9500
O1—N11.389 (3)O9—C221.211 (6)
N1—C11.299 (4)C22—N31.329 (6)
N1—Mn21.973 (2)C22—H220.9500
O2—C11.306 (3)N3—C241.437 (7)
C1—C21.465 (4)N3—C231.453 (8)
C2—C31.400 (5)C23—H23A0.9800
C2—C71.414 (4)C23—H23B0.9800
C3—C41.370 (5)C23—H23C0.9800
C3—H30.9500C24—H24A0.9800
C4—C51.383 (5)C24—H24B0.9800
C4—H40.9500C24—H24C0.9800
C5—C61.384 (5)O9B—C22B1.20 (2)
C5—H50.9500C22B—N3B1.34 (2)
C6—C71.392 (5)C22B—H22B0.9500
C6—H60.9500N3B—C24B1.43 (2)
C7—O31.328 (4)N3B—C23B1.48 (2)
O3—Mn21.859 (2)C23B—H23D0.9800
Mn2—O41.879 (2)C23B—H23E0.9800
Mn2—O51.955 (2)C23B—H23F0.9800
Mn2—O92.236 (4)C24B—H24D0.9800
Mn2—O102.261 (15)C24B—H24E0.9800
O4—N21.394 (3)C24B—H24F0.9800
N2—C81.305 (4)O9C—C22C1.208 (18)
O5—C81.311 (3)C22C—N3C1.348 (17)
C8—C91.467 (4)C22C—H22C0.9500
C9—C141.401 (4)N3C—C24C1.419 (19)
C9—C101.406 (4)N3C—C23C1.49 (2)
C10—C111.378 (5)C23C—H23G0.9800
C10—H100.9500C23C—H23H0.9800
C11—C121.392 (5)C23C—H23I0.9800
C11—H110.9500C24C—H24G0.9800
C12—C131.385 (5)C24C—H24H0.9800
C12—H120.9500C24C—H24I0.9800
C13—C141.405 (4)O10—C251.196 (10)
C13—H130.9500C25—N41.301 (9)
C14—O61.339 (4)C25—H250.9500
O7—C151.232 (4)N4—C261.417 (11)
O8—C151.274 (4)N4—C271.472 (9)
C15—C161.518 (4)C26—H26A0.9800
C16—C211.380 (5)C26—H26B0.9800
C16—C171.394 (6)C26—H26C0.9800
C17—C181.389 (6)C27—H27A0.9800
C17—H170.9500C27—H27B0.9800
C18—C191.376 (7)C27—H27C0.9800
C18—H180.9500O10B—C25B1.197 (18)
C19—C201.367 (6)C25B—N4B1.305 (17)
C19—H190.9500C25B—H25B0.9500
C20—C211.390 (5)N4B—C26B1.426 (18)
C20—Cl11.739 (4)N4B—C27B1.461 (17)
C21—H210.9500C26B—H26D0.9800
Mn1B—O6Bi1.85 (3)C26B—H26E0.9800
Mn1B—O1B1.852 (15)C26B—H26F0.9800
Mn1B—O2B1.988 (16)C27B—H27D0.9800
Mn1B—N2Bi2.04 (2)C27B—H27E0.9800
Mn1B—O8Bi2.13 (3)C27B—H27F0.9800
O1B—N1B1.378 (18)O10C—C25C1.214 (12)
N1B—C1B1.290 (18)C25C—N4C1.324 (10)
N1B—Mn2B1.981 (15)C25C—H25C0.9500
O2B—C1B1.299 (17)N4C—C26C1.422 (11)
C1B—C2B1.472 (17)N4C—C27C1.456 (10)
C2B—C3B1.394 (19)C26C—H26G0.9800
C2B—C7B1.395 (18)C26C—H26H0.9800
C3B—C4B1.35 (2)C26C—H26I0.9800
C3B—H3B0.9500C27C—H27G0.9800
C4B—C5B1.37 (2)C27C—H27H0.9800
C4B—H4B0.9500C27C—H27I0.9800
C5B—C6B1.38 (2)O11—C281.230 (14)
C5B—H5B0.9500C28—N51.359 (10)
C6B—C7B1.393 (19)C28—H280.9500
C6B—H6B0.9500N5—C301.335 (11)
C7B—O3B1.342 (18)N5—C291.347 (11)
O3B—Mn2B1.867 (15)C29—H29A0.9800
Mn2B—O4B1.860 (15)C29—H29B0.9800
Mn2B—O5B1.971 (15)C29—H29C0.9800
Mn2B—O9B2.233 (18)C30—H30A0.9800
Mn2B—O10B2.35 (3)C30—H30B0.9800
O4B—N2B1.388 (18)C30—H30C0.9800
N2B—C8B1.291 (18)O11B—C28B1.229 (13)
O5B—C8B1.314 (18)C28B—N5B1.427 (12)
C8B—C9B1.470 (17)C28B—H28B0.9500
C9B—C14B1.388 (18)N5B—C30B1.234 (11)
C9B—C10B1.402 (19)N5B—C29B1.362 (12)
C10B—C11B1.36 (2)C29B—H29D0.9800
C10B—H10B0.9500C29B—H29E0.9800
C11B—C12B1.39 (2)C29B—H29F0.9800
C11B—H11B0.9500C30B—H30D0.9800
C12B—C13B1.38 (2)C30B—H30E0.9800
C12B—H12B0.9500C30B—H30F0.9800
O7—Na1—O1198.5 (3)Na1—O4B—Na1i83.3 (5)
O11B—Na1—O7B103.5 (8)C8B—N2B—O4B113.9 (17)
O11B—Na1—O4B104.1 (7)C8B—O5B—Mn2B106.1 (12)
O7B—Na1—O4B95.0 (10)N2B—C8B—O5B122.5 (17)
O7—Na1—O184.47 (9)N2B—C8B—C9B116.9 (17)
O11—Na1—O1143.6 (5)O5B—C8B—C9B120.3 (17)
O7—Na1—O1Bi82.6 (5)C14B—C9B—C10B120.7 (19)
O11—Na1—O1Bi169.1 (6)C14B—C9B—C8B126 (2)
O1—Na1—O1Bi25.5 (4)C10B—C9B—C8B113 (2)
O7—Na1—O4i100.06 (9)C11B—C10B—C9B120 (2)
O11—Na1—O4i148.2 (4)C11B—C10B—H10B120.0
O1—Na1—O4i64.14 (7)C9B—C10B—H10B120.0
O7—Na1—O4134.56 (10)C10B—C11B—C12B119 (2)
O11—Na1—O490.7 (4)C10B—C11B—H11B120.5
O1—Na1—O463.73 (7)C12B—C11B—H11B120.5
O4i—Na1—O494.37 (7)C13B—C12B—C11B121 (2)
O11B—Na1—O1B73.7 (6)C13B—C12B—H12B119.6
O7B—Na1—O1B157.2 (10)C11B—C12B—H12B119.6
O4B—Na1—O1B64.6 (6)C12B—C13B—C14B120 (2)
O1Bi—Na1—O1B94.6 (5)C12B—C13B—H13B120.1
O7—Na1—O10Bi68.1 (8)C14B—C13B—H13B120.1
O11—Na1—O10Bi104.5 (9)O6B—C14B—C9B125 (2)
O1—Na1—O10Bi110.1 (8)O6B—C14B—C13B117 (2)
O4i—Na1—O10Bi60.0 (7)C9B—C14B—C13B118.1 (19)
O4—Na1—O10Bi151.2 (7)C15B—O7B—Na1133 (2)
O7—Na1—O1i159.24 (10)O7B—C15B—O8B116 (3)
O11—Na1—O1i93.7 (3)O7B—C15B—C16B118 (2)
O1—Na1—O1i95.56 (7)O8B—C15B—C16B112 (2)
O4i—Na1—O1i61.99 (7)C21B—C16B—C17B117.9 (19)
O4—Na1—O1i61.49 (7)C21B—C16B—C15B115 (2)
O6i—Mn1—O1166.65 (9)C17B—C16B—C15B127 (2)
O6i—Mn1—O297.56 (9)C16B—C17B—C18B122 (2)
O1—Mn1—O281.08 (8)C16B—C17B—H17B119.2
O6i—Mn1—N2i88.87 (10)C18B—C17B—H17B119.2
O1—Mn1—N2i87.74 (10)C19B—C18B—C17B119 (2)
O2—Mn1—N2i157.65 (14)C19B—C18B—H18B120.6
O6i—Mn1—O893.89 (9)C17B—C18B—H18B120.6
O1—Mn1—O899.46 (9)C20B—C19B—C18B120 (2)
O2—Mn1—O895.44 (9)C20B—C19B—H19B119.8
N2i—Mn1—O8105.50 (15)C18B—C19B—H19B119.8
O6i—Mn1—Na1146.74 (7)C19B—C20B—C21B120 (2)
O1—Mn1—Na138.59 (7)C19B—C20B—Cl1B126 (2)
O2—Mn1—Na1115.38 (6)C21B—C20B—Cl1B114.1 (19)
N2i—Mn1—Na162.51 (10)C16B—C21B—C20B121 (2)
O8—Mn1—Na179.18 (7)C16B—C21B—H21B119.6
N1—O1—Mn1114.10 (16)C20B—C21B—H21B119.6
N1—O1—Na1122.13 (17)C22—O9—Mn2132.4 (3)
Mn1—O1—Na1112.69 (9)O9—C22—N3125.0 (5)
N1—O1—Na1i104.77 (17)O9—C22—H22117.5
Mn1—O1—Na1i114.52 (10)N3—C22—H22117.5
Na1—O1—Na1i84.44 (7)C22—N3—C24122.8 (6)
C1—N1—O1113.2 (2)C22—N3—C23119.9 (6)
C1—N1—Mn2130.7 (2)C24—N3—C23117.3 (5)
O1—N1—Mn2115.42 (18)N3—C23—H23A109.5
C1—O2—Mn1111.39 (18)N3—C23—H23B109.5
N1—C1—O2119.4 (3)H23A—C23—H23B109.5
N1—C1—C2120.4 (3)N3—C23—H23C109.5
O2—C1—C2120.2 (3)H23A—C23—H23C109.5
C3—C2—C7119.0 (3)H23B—C23—H23C109.5
C3—C2—C1117.8 (3)N3—C24—H24A109.5
C7—C2—C1123.1 (3)N3—C24—H24B109.5
C4—C3—C2122.1 (3)H24A—C24—H24B109.5
C4—C3—H3118.9N3—C24—H24C109.5
C2—C3—H3118.9H24A—C24—H24C109.5
C3—C4—C5118.8 (3)H24B—C24—H24C109.5
C3—C4—H4120.6C22B—O9B—Mn2B126 (2)
C5—C4—H4120.6O9B—C22B—N3B127 (3)
C4—C5—C6120.5 (3)O9B—C22B—H22B116.5
C4—C5—H5119.7N3B—C22B—H22B116.5
C6—C5—H5119.7C22B—N3B—C24B123 (4)
C5—C6—C7121.5 (3)C22B—N3B—C23B118 (3)
C5—C6—H6119.2C24B—N3B—C23B115 (3)
C7—C6—H6119.2N3B—C23B—H23D109.5
O3—C7—C6117.7 (3)N3B—C23B—H23E109.5
O3—C7—C2124.3 (3)H23D—C23B—H23E109.5
C6—C7—C2118.0 (3)N3B—C23B—H23F109.5
C7—O3—Mn2130.2 (2)H23D—C23B—H23F109.5
O3—Mn2—O4177.31 (10)H23E—C23B—H23F109.5
O3—Mn2—O599.21 (9)N3B—C24B—H24D109.5
O4—Mn2—O581.99 (8)N3B—C24B—H24E109.5
O3—Mn2—N190.03 (10)H24D—C24B—H24E109.5
O4—Mn2—N188.64 (9)N3B—C24B—H24F109.5
O5—Mn2—N1170.20 (10)H24D—C24B—H24F109.5
O3—Mn2—O994.22 (15)H24E—C24B—H24F109.5
O4—Mn2—O988.08 (15)O9C—C22C—N3C127 (2)
O5—Mn2—O994.23 (13)O9C—C22C—H22C116.6
N1—Mn2—O988.30 (14)N3C—C22C—H22C116.6
O3—Mn2—O1090.2 (4)C22C—N3C—C24C127 (2)
O4—Mn2—O1087.3 (4)C22C—N3C—C23C118 (2)
O5—Mn2—O1090.4 (4)C24C—N3C—C23C114.3 (19)
N1—Mn2—O1086.3 (4)N3C—C23C—H23G109.5
O9—Mn2—O10173.0 (4)N3C—C23C—H23H109.5
O3—Mn2—Na1i135.89 (7)H23G—C23C—H23H109.5
O4—Mn2—Na1i41.44 (7)N3C—C23C—H23I109.5
O5—Mn2—Na1i105.92 (6)H23G—C23C—H23I109.5
N1—Mn2—Na1i64.73 (8)H23H—C23C—H23I109.5
O9—Mn2—Na1i118.86 (11)N3C—C24C—H24G109.5
O10—Mn2—Na1i54.6 (4)N3C—C24C—H24H109.5
N2—O4—Mn2113.37 (16)H24G—C24C—H24H109.5
N2—O4—Na1i109.1 (2)N3C—C24C—H24I109.5
Mn2—O4—Na1i108.25 (10)H24G—C24C—H24I109.5
N2—O4—Na1117.9 (2)H24H—C24C—H24I109.5
Mn2—O4—Na1118.03 (9)C25—O10—Mn2129.0 (12)
Na1i—O4—Na185.62 (7)C25—O10—Na1i118.5 (11)
C8—N2—O4113.7 (2)Mn2—O10—Na1i85.8 (4)
C8—N2—Mn1i129.8 (2)O10—C25—N4128.2 (11)
O4—N2—Mn1i116.43 (18)O10—C25—H25115.9
C8—O5—Mn2111.17 (17)N4—C25—H25115.9
N2—C8—O5119.5 (2)C25—N4—C26124.1 (8)
N2—C8—C9120.0 (3)C25—N4—C27122.8 (8)
O5—C8—C9120.4 (2)C26—N4—C27112.4 (8)
C14—C9—C10119.4 (3)N4—C26—H26A109.5
C14—C9—C8122.6 (3)N4—C26—H26B109.5
C10—C9—C8118.0 (3)H26A—C26—H26B109.5
C11—C10—C9121.4 (3)N4—C26—H26C109.5
C11—C10—H10119.3H26A—C26—H26C109.5
C9—C10—H10119.3H26B—C26—H26C109.5
C10—C11—C12119.1 (3)N4—C27—H27A109.5
C10—C11—H11120.5N4—C27—H27B109.5
C12—C11—H11120.5H27A—C27—H27B109.5
C13—C12—C11120.7 (3)N4—C27—H27C109.5
C13—C12—H12119.6H27A—C27—H27C109.5
C11—C12—H12119.6H27B—C27—H27C109.5
C12—C13—C14120.6 (3)C25B—O10B—Mn2B122 (3)
C12—C13—H13119.7O10B—C25B—N4B128 (3)
C14—C13—H13119.7O10B—C25B—H25B115.8
O6—C14—C9124.0 (3)N4B—C25B—H25B115.8
O6—C14—C13117.1 (3)C25B—N4B—C26B125 (2)
C9—C14—C13118.9 (3)C25B—N4B—C27B122 (2)
C14—O6—Mn1i127.7 (2)C26B—N4B—C27B113 (2)
C15—O7—Na1136.2 (2)N4B—C26B—H26D109.5
C15—O8—Mn1128.5 (2)N4B—C26B—H26E109.5
O7—C15—O8126.6 (3)H26D—C26B—H26E109.5
O7—C15—C16118.6 (3)N4B—C26B—H26F109.5
O8—C15—C16114.8 (3)H26D—C26B—H26F109.5
C21—C16—C17119.2 (3)H26E—C26B—H26F109.5
C21—C16—C15120.3 (3)N4B—C27B—H27D109.5
C17—C16—C15120.4 (4)N4B—C27B—H27E109.5
C18—C17—C16120.0 (4)H27D—C27B—H27E109.5
C18—C17—H17120.0N4B—C27B—H27F109.5
C16—C17—H17120.0H27D—C27B—H27F109.5
C19—C18—C17120.6 (4)H27E—C27B—H27F109.5
C19—C18—H18119.7O10C—C25C—N4C123.6 (13)
C17—C18—H18119.7O10C—C25C—H25C118.2
C20—C19—C18119.1 (4)N4C—C25C—H25C118.2
C20—C19—H19120.5C25C—N4C—C26C119.4 (9)
C18—C19—H19120.5C25C—N4C—C27C122.6 (9)
C19—C20—C21121.5 (4)C26C—N4C—C27C118.0 (9)
C19—C20—Cl1118.8 (3)N4C—C26C—H26G109.5
C21—C20—Cl1119.6 (3)N4C—C26C—H26H109.5
C16—C21—C20119.7 (4)H26G—C26C—H26H109.5
C16—C21—H21120.2N4C—C26C—H26I109.5
C20—C21—H21120.2H26G—C26C—H26I109.5
O6Bi—Mn1B—O1B157.3 (13)H26H—C26C—H26I109.5
O6Bi—Mn1B—O2B97.0 (9)N4C—C27C—H27G109.5
O1B—Mn1B—O2B82.3 (7)N4C—C27C—H27H109.5
O6Bi—Mn1B—Na1123.3 (8)H27G—C27C—H27H109.5
O1B—Mn1B—Na137.8 (7)N4C—C27C—H27I109.5
O2B—Mn1B—Na1106.4 (6)H27G—C27C—H27I109.5
N2Bi—Mn1B—Na162.9 (11)H27H—C27C—H27I109.5
O8Bi—Mn1B—Na1133.0 (8)C28—O11—Na1131.9 (9)
Na1i—Mn1B—Na154.83 (9)O11—C28—N5124.1 (14)
N1B—O1B—Mn1B114.0 (12)O11—C28—H28117.9
N1B—O1B—Na1116 (3)N5—C28—H28117.9
Mn1B—O1B—Na1115.3 (10)C30—N5—C2996.8 (8)
Na1i—O1B—Na185.4 (5)C30—N5—C28141.0 (10)
C1B—N1B—O1B112.7 (14)C29—N5—C28121.7 (9)
C1B—N1B—Mn2B129.9 (15)N5—C29—H29A109.5
O1B—N1B—Mn2B117.2 (12)C30—C29—H29A68.1
C1B—O2B—Mn1B107.6 (13)N5—C29—H29B109.5
N1B—C1B—O2B122.6 (16)C30—C29—H29B124.3
N1B—C1B—C2B120.6 (17)H29A—C29—H29B109.5
O2B—C1B—C2B116.7 (16)N5—C29—H29C109.5
C3B—C2B—C7B119.3 (18)C30—C29—H29C124.1
C3B—C2B—C1B116 (2)H29A—C29—H29C109.5
C7B—C2B—C1B124 (2)H29B—C29—H29C109.5
C4B—C3B—C2B120 (2)N5—C30—H30A109.5
C4B—C3B—H3B119.9C29—C30—H30A67.7
C2B—C3B—H3B119.9N5—C30—H30B109.5
C3B—C4B—C5B121 (2)C29—C30—H30B122.9
C3B—C4B—H4B119.7H30A—C30—H30B109.5
C5B—C4B—H4B119.7N5—C30—H30C109.5
C4B—C5B—C6B120 (2)C29—C30—H30C125.5
C4B—C5B—H5B119.9H30A—C30—H30C109.5
C6B—C5B—H5B119.9H30B—C30—H30C109.5
C5B—C6B—C7B119 (2)C28B—O11B—Na1148.6 (14)
C5B—C6B—H6B120.4O11B—C28B—N5B112.8 (13)
C7B—C6B—H6B120.4O11B—C28B—H28B123.6
O3B—C7B—C6B119 (2)N5B—C28B—H28B123.6
O3B—C7B—C2B122 (2)C30B—N5B—C29B96.1 (9)
C6B—C7B—C2B119.1 (19)C30B—N5B—C28B137.8 (11)
C7B—O3B—Mn2B130.8 (17)C29B—N5B—C28B126.2 (10)
O4B—Mn2B—O3B175.4 (11)N5B—C29B—H29D109.5
O4B—Mn2B—O5B84.3 (7)C30B—C29B—H29D89.2
O3B—Mn2B—O5B97.7 (8)N5B—C29B—H29E109.5
O4B—Mn2B—N1B88.4 (8)C30B—C29B—H29E86.1
O3B—Mn2B—N1B89.1 (9)H29D—C29B—H29E109.5
O5B—Mn2B—N1B170.3 (15)N5B—C29B—H29F109.5
O4B—Mn2B—O9B92.2 (11)C30B—C29B—H29F148.8
O3B—Mn2B—O9B91.9 (11)H29D—C29B—H29F109.5
O5B—Mn2B—O9B89.5 (12)H29E—C29B—H29F109.5
N1B—Mn2B—O9B97 (2)N5B—C30B—H30D109.5
O4B—Mn2B—O10B80.9 (12)C29B—C30B—H30D65.3
O3B—Mn2B—O10B95.2 (12)N5B—C30B—H30E109.5
O5B—Mn2B—O10B84.4 (13)C29B—C30B—H30E119.3
N1B—Mn2B—O10B88 (2)H30D—C30B—H30E109.5
O9B—Mn2B—O10B171.2 (12)N5B—C30B—H30F109.5
N2B—O4B—Mn2B111.7 (13)C29B—C30B—H30F129.9
N2B—O4B—Na1121.3 (16)H30D—C30B—H30F109.5
Mn2B—O4B—Na1122.1 (9)H30E—C30B—H30F109.5
O6i—Mn1—O1—N193.3 (4)Mn1B—O1B—N1B—C1B8 (7)
O2—Mn1—O1—N18.2 (2)Na1i—O1B—N1B—C1B136 (5)
N2i—Mn1—O1—N1168.8 (2)Na1—O1B—N1B—C1B130 (4)
O8—Mn1—O1—N185.9 (2)Mn1B—O1B—N1B—Mn2B176 (3)
Na1—Mn1—O1—N1144.9 (2)Na1i—O1B—N1B—Mn2B48 (5)
O6i—Mn1—O1—Na1121.7 (4)Na1—O1B—N1B—Mn2B47 (5)
O2—Mn1—O1—Na1153.16 (11)O1B—N1B—C1B—O2B2 (8)
N2i—Mn1—O1—Na146.26 (16)Mn2B—N1B—C1B—O2B178 (4)
O8—Mn1—O1—Na159.08 (11)O1B—N1B—C1B—C2B178 (4)
O6i—Mn1—O1—Na1i27.4 (4)Mn2B—N1B—C1B—C2B6 (9)
O2—Mn1—O1—Na1i112.53 (11)Mn1B—O2B—C1B—N1B4 (6)
N2i—Mn1—O1—Na1i48.05 (16)Mn1B—O2B—C1B—C2B172 (3)
O8—Mn1—O1—Na1i153.39 (10)N1B—C1B—C2B—C3B177 (5)
Na1—Mn1—O1—Na1i94.32 (11)O2B—C1B—C2B—C3B1 (6)
Mn1—O1—N1—C18.2 (3)N1B—C1B—C2B—C7B9 (7)
Na1—O1—N1—C1149.4 (2)O2B—C1B—C2B—C7B168 (4)
Na1i—O1—N1—C1117.9 (2)C7B—C2B—C3B—C4B8 (7)
Mn1—O1—N1—Mn2179.54 (12)C1B—C2B—C3B—C4B177 (4)
Na1—O1—N1—Mn239.2 (3)C2B—C3B—C4B—C5B9 (8)
Na1i—O1—N1—Mn253.5 (2)C3B—C4B—C5B—C6B11 (9)
O1—N1—C1—O22.0 (4)C4B—C5B—C6B—C7B12 (9)
Mn2—N1—C1—O2171.8 (2)C5B—C6B—C7B—O3B173 (5)
O1—N1—C1—C2178.0 (3)C5B—C6B—C7B—C2B10 (7)
Mn2—N1—C1—C28.2 (5)C3B—C2B—C7B—O3B175 (4)
Mn1—O2—C1—N14.7 (3)C1B—C2B—C7B—O3B6 (7)
Mn1—O2—C1—C2175.3 (2)C3B—C2B—C7B—C6B8 (7)
N1—C1—C2—C3179.8 (3)C1B—C2B—C7B—C6B177 (4)
O2—C1—C2—C30.2 (4)C6B—C7B—O3B—Mn2B166 (3)
N1—C1—C2—C70.3 (5)C2B—C7B—O3B—Mn2B11 (6)
O2—C1—C2—C7179.7 (3)C7B—O3B—Mn2B—O5B168 (3)
C7—C2—C3—C40.4 (5)C7B—O3B—Mn2B—N1B19 (4)
C1—C2—C3—C4179.1 (3)C7B—O3B—Mn2B—O9B79 (3)
C2—C3—C4—C50.5 (6)C7B—O3B—Mn2B—O10B106 (3)
C3—C4—C5—C61.3 (7)C7B—O3B—Mn2B—Na1i72 (4)
C4—C5—C6—C71.1 (7)O5B—Mn2B—O4B—N2B6 (3)
C5—C6—C7—O3179.7 (4)N1B—Mn2B—O4B—N2B168 (3)
C5—C6—C7—C20.2 (6)O9B—Mn2B—O4B—N2B95 (3)
C3—C2—C7—O3179.6 (3)O10B—Mn2B—O4B—N2B79 (3)
C1—C2—C7—O30.9 (5)Na1i—Mn2B—O4B—N2B114 (3)
C3—C2—C7—C60.6 (5)O5B—Mn2B—O4B—Na1149.3 (15)
C1—C2—C7—C6178.9 (3)N1B—Mn2B—O4B—Na137 (2)
C6—C7—O3—Mn2172.7 (3)O9B—Mn2B—O4B—Na160.0 (14)
C2—C7—O3—Mn27.5 (5)O10B—Mn2B—O4B—Na1125.4 (15)
C7—O3—Mn2—O5165.5 (3)Na1i—Mn2B—O4B—Na190.4 (10)
C7—O3—Mn2—N111.2 (3)O5B—Mn2B—O4B—Na1i120.3 (11)
C7—O3—Mn2—O999.5 (3)N1B—Mn2B—O4B—Na1i53 (2)
C7—O3—Mn2—O1075.1 (5)O9B—Mn2B—O4B—Na1i150.4 (10)
C7—O3—Mn2—Na1i41.0 (3)O10B—Mn2B—O4B—Na1i35.1 (11)
O5—Mn2—O4—N24.1 (3)Mn2B—O4B—N2B—C8B1 (5)
N1—Mn2—O4—N2173.0 (3)Na1—O4B—N2B—C8B155 (3)
O9—Mn2—O4—N298.6 (3)Na1i—O4B—N2B—C8B113 (4)
O10—Mn2—O4—N286.7 (4)Mn2B—O4B—N2B—Mn1Bi171.8 (18)
Na1i—Mn2—O4—N2121.2 (3)Na1—O4B—N2B—Mn1Bi33 (4)
O5—Mn2—O4—Na1i125.30 (10)Na1i—O4B—N2B—Mn1Bi60 (3)
N1—Mn2—O4—Na1i51.81 (11)O4B—N2B—C8B—O5B10 (6)
O9—Mn2—O4—Na1i140.15 (12)Mn1Bi—N2B—C8B—O5B180 (3)
O10—Mn2—O4—Na1i34.6 (4)O4B—N2B—C8B—C9B177 (4)
O5—Mn2—O4—Na1139.85 (12)Mn1Bi—N2B—C8B—C9B6 (7)
N1—Mn2—O4—Na143.04 (13)Mn2B—O5B—C8B—N2B14 (5)
O9—Mn2—O4—Na145.30 (14)Mn2B—O5B—C8B—C9B173 (3)
O10—Mn2—O4—Na1129.4 (4)N2B—C8B—C9B—C14B9 (7)
Na1i—Mn2—O4—Na194.85 (11)O5B—C8B—C9B—C14B177 (4)
Mn2—O4—N2—C84.4 (4)N2B—C8B—C9B—C10B169 (4)
Na1i—O4—N2—C8125.2 (3)O5B—C8B—C9B—C10B5 (6)
Na1—O4—N2—C8139.5 (3)C14B—C9B—C10B—C11B9 (8)
Mn2—O4—N2—Mn1i172.36 (18)C8B—C9B—C10B—C11B172 (5)
Na1i—O4—N2—Mn1i51.6 (3)C9B—C10B—C11B—C12B15 (9)
Na1—O4—N2—Mn1i43.7 (4)C10B—C11B—C12B—C13B13 (10)
O4—N2—C8—O51.8 (5)C11B—C12B—C13B—C14B6 (9)
Mn1i—N2—C8—O5174.4 (3)C10B—C9B—C14B—O6B175 (4)
O4—N2—C8—C9177.1 (3)C8B—C9B—C14B—O6B3 (8)
Mn1i—N2—C8—C96.6 (6)C10B—C9B—C14B—C13B2 (8)
Mn2—O5—C8—N21.5 (4)C8B—C9B—C14B—C13B180 (4)
Mn2—O5—C8—C9179.5 (2)C12B—C13B—C14B—O6B176 (5)
N2—C8—C9—C149.0 (5)C12B—C13B—C14B—C9B1 (8)
O5—C8—C9—C14170.0 (3)C9B—C14B—O6B—Mn1Bi6 (7)
N2—C8—C9—C10172.1 (3)C13B—C14B—O6B—Mn1Bi171 (3)
O5—C8—C9—C108.9 (4)Na1—O7B—C15B—O8B65 (5)
C14—C9—C10—C111.0 (5)Na1—O7B—C15B—C16B158 (2)
C8—C9—C10—C11177.9 (3)Mn1Bi—O8B—C15B—O7B55 (4)
C9—C10—C11—C120.1 (5)Mn1Bi—O8B—C15B—C16B165.6 (15)
C10—C11—C12—C130.1 (6)O7B—C15B—C16B—C21B149 (3)
C11—C12—C13—C140.7 (5)O8B—C15B—C16B—C21B9 (3)
C10—C9—C14—O6179.5 (3)O7B—C15B—C16B—C17B31 (3)
C8—C9—C14—O60.6 (5)O8B—C15B—C16B—C17B170 (3)
C10—C9—C14—C131.7 (4)C21B—C16B—C17B—C18B0.0 (4)
C8—C9—C14—C13177.1 (3)C15B—C16B—C17B—C18B179.9 (3)
C12—C13—C14—O6179.5 (3)C16B—C17B—C18B—C19B0.0 (7)
C12—C13—C14—C91.6 (5)C17B—C18B—C19B—C20B0.0 (9)
C9—C14—O6—Mn1i24.5 (4)C18B—C19B—C20B—C21B0.0 (10)
C13—C14—O6—Mn1i157.7 (2)C18B—C19B—C20B—Cl1B179.8 (6)
Na1—O7—C15—O830.3 (6)C17B—C16B—C21B—C20B0.1 (7)
Na1—O7—C15—C16147.0 (3)C15B—C16B—C21B—C20B179.9 (5)
Mn1—O8—C15—O710.4 (5)C19B—C20B—C21B—C16B0.1 (9)
Mn1—O8—C15—C16167.0 (2)Cl1B—C20B—C21B—C16B179.8 (5)
O7—C15—C16—C21172.1 (4)Mn2—O9—C22—N3176.2 (6)
O8—C15—C16—C215.5 (5)O9—C22—N3—C24177.2 (7)
O7—C15—C16—C174.4 (6)O9—C22—N3—C233.0 (11)
O8—C15—C16—C17178.1 (4)Mn2B—O9B—C22B—N3B168 (7)
C21—C16—C17—C180.0 (6)O9B—C22B—N3B—C24B177 (7)
C15—C16—C17—C18176.5 (4)O9B—C22B—N3B—C23B20 (13)
C16—C17—C18—C191.4 (7)O9C—C22C—N3C—C24C6 (6)
C17—C18—C19—C201.9 (7)O9C—C22C—N3C—C23C178 (4)
C18—C19—C20—C211.1 (7)Mn2—O10—C25—N4177.7 (9)
C18—C19—C20—Cl1177.2 (4)Na1i—O10—C25—N468.3 (17)
C17—C16—C21—C200.8 (6)O10—C25—N4—C263 (2)
C15—C16—C21—C20175.7 (4)O10—C25—N4—C27172.9 (15)
C19—C20—C21—C160.2 (7)Mn2B—O10B—C25B—N4B170 (3)
Cl1—C20—C21—C16175.8 (3)Na1i—O10B—C25B—N4B4 (5)
O6Bi—Mn1B—O1B—N1B97 (4)O10B—C25B—N4B—C26B0.0 (4)
O2B—Mn1B—O1B—N1B8 (4)O10B—C25B—N4B—C27B180.0 (4)
N2Bi—Mn1B—O1B—N1B178 (4)Na1i—O10C—C25C—N4C40.6 (17)
O8Bi—Mn1B—O1B—N1B77 (4)O10C—C25C—N4C—C26C0.2 (4)
Na1i—Mn1B—O1B—N1B126 (4)O10C—C25C—N4C—C27C179.9 (4)
Na1—Mn1B—O1B—N1B138 (4)Na1—O11—C28—N5125.3 (14)
O6Bi—Mn1B—O1B—Na1i136 (2)O11—C28—N5—C30175.4 (15)
O2B—Mn1B—O1B—Na1i134.1 (13)O11—C28—N5—C295.8 (15)
N2Bi—Mn1B—O1B—Na1i52.0 (16)C28—N5—C29—C30173.4 (12)
O8Bi—Mn1B—O1B—Na1i49.0 (13)C28—N5—C30—C29171.1 (16)
Na1—Mn1B—O1B—Na1i96.1 (11)Na1—O11B—C28B—N5B137.6 (17)
O6Bi—Mn1B—O1B—Na140 (3)O11B—C28B—N5B—C30B173.2 (14)
O2B—Mn1B—O1B—Na1129.8 (13)O11B—C28B—N5B—C29B8.4 (15)
N2Bi—Mn1B—O1B—Na144.1 (16)C28B—N5B—C29B—C30B178.9 (14)
O8Bi—Mn1B—O1B—Na1145.1 (12)C28B—N5B—C30B—C29B178.6 (17)
Na1i—Mn1B—O1B—Na196.1 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26A···O11i0.982.653.56 (2)155
C29—H29A···Cl1ii0.982.783.702 (10)156
C30—H30A···Cl1ii0.982.793.699 (14)154
C30—H30C···O60.982.543.125 (16)119
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Tetra-µ-aqua-tris(µ-3-chlorobenzoato)(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)pentamanganese(III)sodium(I) dimethylformamide tetraolvate 0.72-hydrate (2) top
Crystal data top
[Mn5Na(C7H4ClO2)3(C7H4NO3)4(C3H7NO)(H2O)4]·4C3H7NO·0.718H2OF(000) = 1856
Mr = 1815.30Dx = 1.569 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 14.1955 (9) ÅCell parameters from 9812 reflections
b = 16.3349 (11) Åθ = 2.8–33.2°
c = 16.6144 (10) ŵ = 1.00 mm1
β = 94.235 (2)°T = 150 K
V = 3842.1 (4) Å3Plate, brown
Z = 20.45 × 0.23 × 0.09 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
27291 independent reflections
Radiation source: fine focus sealed tube X-ray source24179 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.038
Detector resolution: 10.4167 pixels mm-1θmax = 33.3°, θmin = 2.3°
ω and phi scansh = 2121
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2425
Tmin = 0.636, Tmax = 0.747l = 2525
118654 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.9214P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
27291 reflectionsΔρmax = 0.82 e Å3
1079 parametersΔρmin = 0.69 e Å3
143 restraintsAbsolute structure: Flack x determined using 10010 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A partially occupied water molecule (O28) induces disorder for a neighboring DMF molecule (of O27). The two disordered moieties were restrained to have similar geometries, and the carbon, oxygen, and nitrogen atoms of the DMF molecule restrained to have similar Uij components of the ADPs (esd = 0.01 Angstrom squared; SIMU restraint in Shexl). Subject to these conditions the occupancy ratio refined to 0.718 (6) to 0.282 (6).

Water H atom positions were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. The water H atom positions of partially occupied O28 were further restrained based on hydrogen bonding considerations.

All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C-H distances of 0.95 Angstrom for sp2 carbon atoms and 0.98 Angstrom for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms or 1.5 times for methyl carbon atoms).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.94848 (3)0.74796 (2)0.12192 (2)0.01712 (7)
Mn20.88182 (3)0.55381 (2)0.20529 (2)0.01784 (7)
Mn30.84120 (3)0.80306 (2)0.32631 (2)0.02092 (8)
Mn40.79257 (3)0.92045 (2)0.07682 (2)0.01758 (7)
Mn50.80131 (3)0.66570 (2)0.04269 (2)0.01977 (7)
Cl11.43537 (7)0.72511 (8)0.22049 (9)0.0627 (3)
Cl21.36255 (7)0.88134 (7)0.04017 (8)0.0566 (3)
Cl31.37297 (7)0.65953 (6)0.00448 (8)0.0499 (2)
Na10.72158 (8)0.72202 (7)0.14880 (7)0.0237 (2)
O10.87675 (13)0.66896 (10)0.22245 (10)0.0181 (3)
O20.87704 (14)0.55137 (12)0.32112 (11)0.0224 (3)
O30.82492 (18)0.77918 (14)0.43375 (12)0.0327 (5)
O40.85092 (14)0.82488 (11)0.21559 (11)0.0221 (4)
O50.79567 (16)0.91481 (12)0.32656 (11)0.0263 (4)
O60.74502 (16)1.02397 (12)0.09454 (11)0.0259 (4)
O70.82177 (13)0.80836 (11)0.05780 (10)0.0174 (3)
O80.75439 (13)0.91719 (11)0.03804 (11)0.0197 (3)
O90.73472 (17)0.67929 (12)0.14280 (12)0.0279 (4)
O100.85109 (13)0.65224 (11)0.06581 (10)0.0188 (3)
O110.80267 (15)0.54635 (11)0.03933 (12)0.0239 (4)
O120.87122 (16)0.44136 (11)0.19019 (12)0.0256 (4)
O131.06930 (15)0.68575 (14)0.17489 (15)0.0333 (5)
O141.03540 (14)0.55599 (13)0.20912 (13)0.0266 (4)
O151.01555 (14)0.86423 (12)0.12682 (12)0.0250 (4)
O160.93343 (15)0.96135 (13)0.05707 (13)0.0286 (4)
O171.01332 (17)0.73627 (14)0.00900 (13)0.0314 (4)
O180.93645 (17)0.66595 (14)0.09162 (13)0.0304 (4)
O190.70789 (16)0.57678 (14)0.19746 (13)0.0282 (4)
H19A0.686 (3)0.571 (3)0.2404 (19)0.042*
H19B0.672 (3)0.551 (3)0.165 (2)0.042*
O200.68174 (15)0.76328 (14)0.28274 (13)0.0281 (4)
H20A0.665 (3)0.725 (2)0.310 (3)0.042*
H20B0.645 (3)0.804 (2)0.289 (3)0.042*
O210.63857 (15)0.85442 (15)0.10221 (13)0.0299 (4)
H21A0.602 (3)0.850 (3)0.061 (2)0.045*
H21B0.599 (3)0.882 (3)0.127 (3)0.045*
O220.65301 (15)0.66842 (13)0.02323 (14)0.0281 (4)
H22A0.615 (3)0.699 (3)0.004 (3)0.042*
H22B0.626 (3)0.6235 (19)0.028 (3)0.042*
O230.98758 (19)0.84110 (16)0.36432 (15)0.0389 (5)
O240.63713 (17)0.61014 (15)0.34356 (13)0.0329 (4)
O250.56256 (19)0.89325 (19)0.24735 (16)0.0446 (6)
O260.54987 (17)0.79780 (16)0.03879 (16)0.0369 (5)
O280.5391 (3)0.6059 (3)0.1628 (3)0.0623 (14)0.718 (6)
H28A0.497 (5)0.6239 (18)0.127 (4)0.093*0.718 (6)
H28B0.598 (3)0.624 (6)0.148 (5)0.093*0.718 (6)
N10.87138 (15)0.68908 (13)0.30410 (12)0.0173 (3)
N20.81668 (16)0.90282 (13)0.19300 (12)0.0195 (4)
N30.79729 (15)0.78406 (12)0.02184 (11)0.0163 (3)
N40.86362 (15)0.57017 (12)0.08839 (12)0.0174 (3)
N51.1422 (2)0.86518 (17)0.34591 (17)0.0360 (6)
N60.61309 (18)0.59868 (17)0.47635 (15)0.0290 (5)
N70.4892 (3)1.0103 (3)0.2817 (2)0.0583 (11)
N80.4921 (2)0.86435 (19)0.1525 (2)0.0380 (6)
C10.86952 (16)0.62440 (15)0.35126 (14)0.0187 (4)
C20.86233 (18)0.63451 (17)0.43869 (14)0.0210 (4)
C30.8751 (2)0.56420 (18)0.48703 (16)0.0261 (5)
H30.8846870.5127730.4622180.031*
C40.8740 (2)0.5686 (2)0.57046 (17)0.0321 (6)
H40.8823710.5207320.6026960.038*
C50.8604 (2)0.6443 (2)0.60579 (17)0.0358 (7)
H50.8611960.6482340.6628860.043*
C60.8456 (2)0.7142 (2)0.55925 (16)0.0332 (6)
H60.8355770.7651910.5847980.040*
C70.8454 (2)0.71057 (18)0.47441 (15)0.0248 (5)
C80.78751 (19)0.94529 (15)0.25412 (15)0.0213 (4)
C90.7475 (2)1.02746 (16)0.24081 (15)0.0231 (5)
C100.7290 (3)1.07315 (19)0.30896 (18)0.0354 (7)
H100.7405871.0495070.3609920.042*
C110.6941 (4)1.1521 (2)0.3022 (2)0.0518 (11)
H110.6823791.1826910.3490580.062*
C120.6762 (3)1.1862 (2)0.2253 (2)0.0452 (9)
H120.6523361.2403650.2199190.054*
C130.6930 (2)1.14180 (17)0.15718 (17)0.0305 (6)
H130.6795191.1655800.1054260.037*
C140.7298 (2)1.06154 (15)0.16324 (15)0.0217 (4)
C150.76197 (17)0.84357 (14)0.06743 (13)0.0163 (4)
C160.73348 (17)0.82784 (15)0.15250 (14)0.0188 (4)
C170.7173 (2)0.89589 (17)0.20221 (16)0.0266 (5)
H170.7238890.9491590.1795530.032*
C180.6918 (3)0.8877 (2)0.28359 (18)0.0364 (7)
H180.6834750.9345200.3172350.044*
C190.6785 (3)0.8092 (2)0.31541 (18)0.0370 (7)
H190.6585350.8028550.3708950.044*
C200.6938 (2)0.74110 (18)0.26811 (16)0.0278 (5)
H200.6845010.6882700.2912650.033*
C210.72295 (18)0.74846 (15)0.18567 (14)0.0197 (4)
C220.83631 (17)0.51901 (15)0.03055 (15)0.0190 (4)
C230.84626 (17)0.43050 (14)0.04471 (15)0.0197 (4)
C240.8402 (2)0.37860 (16)0.02240 (17)0.0245 (5)
H240.8299000.4015640.0748390.029*
C250.8490 (2)0.29459 (17)0.0142 (2)0.0306 (6)
H250.8447320.2601760.0604640.037*
C260.8642 (2)0.26108 (17)0.0632 (2)0.0319 (6)
H260.8697400.2034750.0698470.038*
C270.8711 (2)0.31183 (17)0.13012 (19)0.0297 (6)
H270.8812450.2882620.1823180.036*
C280.86365 (18)0.39730 (15)0.12278 (16)0.0208 (4)
C291.09125 (18)0.61447 (17)0.19911 (16)0.0231 (5)
C301.19483 (18)0.59768 (17)0.21915 (16)0.0232 (5)
C311.2604 (2)0.66010 (19)0.20837 (19)0.0291 (5)
H311.2402500.7114230.1863830.035*
C321.3555 (2)0.6458 (2)0.2304 (2)0.0343 (6)
C331.3867 (2)0.5711 (2)0.26120 (19)0.0326 (6)
H331.4520440.5621140.2751180.039*
C341.3216 (2)0.5096 (2)0.27153 (18)0.0296 (6)
H341.3422800.4582200.2929750.036*
C351.2258 (2)0.52263 (18)0.25067 (17)0.0256 (5)
H351.1816050.4801220.2579830.031*
C361.00847 (19)0.92630 (16)0.08202 (16)0.0229 (5)
C371.09942 (19)0.96143 (16)0.05575 (15)0.0228 (5)
C381.1799 (2)0.91298 (18)0.06101 (17)0.0275 (5)
H381.1772350.8583810.0804100.033*
C391.2644 (2)0.9450 (2)0.0377 (2)0.0318 (6)
C401.2704 (2)1.0247 (2)0.01019 (18)0.0318 (6)
H401.3288911.0463050.0043900.038*
C411.1894 (2)1.07257 (18)0.00434 (17)0.0291 (6)
H411.1924731.1271020.0151570.035*
C421.1037 (2)1.04164 (17)0.02669 (16)0.0255 (5)
H421.0485821.0747730.0222360.031*
C431.0099 (2)0.69213 (16)0.05311 (17)0.0267 (5)
C441.1038 (2)0.66875 (17)0.08435 (17)0.0273 (5)
C451.1853 (2)0.67586 (18)0.0333 (2)0.0311 (6)
H451.1820750.6964970.0198910.037*
C461.2717 (2)0.65257 (19)0.0605 (2)0.0353 (7)
C471.2781 (3)0.6242 (2)0.1388 (2)0.0407 (8)
H471.3375750.6098790.1574220.049*
C481.1958 (3)0.6172 (2)0.1893 (2)0.0375 (7)
H481.1993140.5979530.2429820.045*
C491.1085 (3)0.63816 (18)0.16235 (18)0.0318 (6)
H491.0524870.6316540.1967700.038*
C501.0534 (3)0.8454 (2)0.3205 (2)0.0372 (7)
H501.0404510.8339920.2647710.045*
C511.1663 (3)0.8825 (2)0.4306 (2)0.0439 (8)
H51A1.1974630.9360110.4358340.066*
H51B1.2091590.8400910.4534510.066*
H51C1.1087090.8831970.4596040.066*
C521.2180 (3)0.8640 (3)0.2919 (3)0.0493 (9)
H52A1.1944790.8412590.2396470.074*
H52B1.2699130.8299320.3152770.074*
H52C1.2408040.9198630.2843720.074*
C530.6344 (2)0.56990 (19)0.40588 (18)0.0287 (5)
H530.6489140.5132540.4029790.034*
C540.5930 (3)0.6854 (3)0.4853 (3)0.0496 (10)
H54A0.6524250.7155610.4951980.074*
H54B0.5538870.6933450.5308270.074*
H54C0.5591590.7058390.4357300.074*
C550.6146 (3)0.5472 (3)0.5480 (2)0.0473 (9)
H55A0.6304610.4908950.5336840.071*
H55B0.5522730.5480740.5697260.071*
H55C0.6620570.5679080.5887800.071*
C560.5413 (3)0.9439 (3)0.2970 (3)0.0561 (12)
H560.5640730.9348550.3514750.067*
C570.4582 (5)1.0323 (4)0.1996 (3)0.0798 (19)
H57A0.4859070.9943400.1621630.120*
H57B0.4786951.0882130.1885770.120*
H57C0.3891961.0291370.1923490.120*
C580.4721 (4)1.0682 (5)0.3470 (4)0.086 (2)
H58A0.4923931.1231060.3320170.129*
H58B0.5079171.0509390.3967830.129*
H58C0.4045301.0690580.3556170.129*
C590.5163 (2)0.7986 (2)0.1100 (2)0.0371 (7)
H590.5073640.7471530.1361440.045*
C600.5023 (3)0.9463 (2)0.1198 (3)0.0470 (9)
H60A0.5464870.9773470.1506360.071*
H60B0.5265990.9433630.0631530.071*
H60C0.4406670.9736270.1236320.071*
C610.4571 (4)0.8571 (3)0.2372 (3)0.0595 (12)
H61A0.4842380.9007890.2685360.089*
H61B0.3880590.8617440.2416170.089*
H61C0.4754460.8037580.2580930.089*
O270.6052 (6)0.5130 (3)0.0592 (4)0.0320 (11)0.718 (6)
C620.6006 (3)0.4733 (3)0.0046 (3)0.0298 (8)0.718 (6)
H620.5946570.5025320.0541640.036*0.718 (6)
N90.6034 (3)0.3918 (2)0.0072 (2)0.0237 (7)0.718 (6)
C630.6113 (4)0.3432 (3)0.0650 (3)0.0378 (10)0.718 (6)
H63A0.5661560.2977830.0597000.057*0.718 (6)
H63B0.5975310.3772710.1112360.057*0.718 (6)
H63C0.6755880.3213780.0733290.057*0.718 (6)
C640.6022 (12)0.3530 (7)0.0877 (6)0.045 (3)0.718 (6)
H64A0.5947190.3952880.1295590.067*0.718 (6)
H64B0.5493860.3143720.0942510.067*0.718 (6)
H64C0.6617270.3236910.0927310.067*0.718 (6)
O27B0.616 (2)0.5054 (13)0.0773 (14)0.061 (6)0.282 (6)
C62B0.6184 (8)0.4417 (9)0.0424 (8)0.041 (2)0.282 (6)
H62B0.6356820.3961910.0759050.049*0.282 (6)
N9B0.6016 (8)0.4235 (9)0.0353 (8)0.047 (3)0.282 (6)
C63B0.5828 (10)0.4949 (11)0.0902 (9)0.057 (4)0.282 (6)
H63D0.6428360.5172170.1059150.085*0.282 (6)
H63E0.5486780.5371520.0622870.085*0.282 (6)
H63F0.5444880.4770960.1385700.085*0.282 (6)
C64B0.599 (2)0.3423 (13)0.0723 (17)0.035 (5)0.282 (6)
H64D0.5577960.3435150.1223570.052*0.282 (6)
H64E0.5742430.3025990.0349280.052*0.282 (6)
H64F0.6628420.3262070.0844740.052*0.282 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02092 (15)0.01406 (15)0.01640 (14)0.00043 (12)0.00155 (11)0.00134 (12)
Mn20.02549 (16)0.01237 (15)0.01608 (15)0.00079 (12)0.00443 (12)0.00244 (12)
Mn30.03305 (19)0.01683 (16)0.01285 (14)0.00786 (14)0.00139 (13)0.00027 (12)
Mn40.02744 (17)0.01202 (15)0.01300 (14)0.00354 (13)0.00050 (12)0.00084 (11)
Mn50.03203 (19)0.01313 (15)0.01381 (14)0.00237 (13)0.00060 (13)0.00134 (12)
Cl10.0331 (4)0.0563 (6)0.0964 (9)0.0184 (4)0.0115 (5)0.0191 (6)
Cl20.0388 (4)0.0540 (6)0.0789 (8)0.0107 (4)0.0175 (5)0.0049 (5)
Cl30.0371 (4)0.0388 (5)0.0747 (7)0.0005 (3)0.0096 (4)0.0113 (4)
Na10.0287 (5)0.0207 (5)0.0222 (5)0.0017 (4)0.0046 (4)0.0016 (4)
O10.0289 (8)0.0132 (7)0.0126 (7)0.0023 (6)0.0039 (6)0.0002 (5)
O20.0317 (9)0.0178 (8)0.0180 (8)0.0020 (7)0.0046 (7)0.0030 (6)
O30.0571 (14)0.0270 (10)0.0143 (8)0.0167 (10)0.0049 (8)0.0022 (7)
O40.0367 (10)0.0145 (8)0.0152 (7)0.0095 (7)0.0035 (7)0.0020 (6)
O50.0431 (11)0.0203 (9)0.0152 (8)0.0099 (8)0.0007 (7)0.0009 (6)
O60.0463 (11)0.0153 (8)0.0157 (8)0.0106 (8)0.0002 (7)0.0002 (6)
O70.0257 (8)0.0144 (7)0.0118 (6)0.0013 (6)0.0005 (6)0.0025 (5)
O80.0293 (9)0.0135 (7)0.0159 (7)0.0018 (6)0.0009 (6)0.0003 (6)
O90.0475 (12)0.0165 (8)0.0183 (8)0.0005 (8)0.0062 (8)0.0019 (7)
O100.0296 (8)0.0117 (7)0.0149 (7)0.0012 (6)0.0012 (6)0.0013 (6)
O110.0376 (10)0.0144 (8)0.0193 (8)0.0025 (7)0.0003 (7)0.0017 (6)
O120.0425 (11)0.0133 (8)0.0218 (9)0.0002 (7)0.0077 (8)0.0034 (6)
O130.0239 (9)0.0294 (11)0.0461 (13)0.0035 (8)0.0003 (9)0.0146 (9)
O140.0233 (9)0.0235 (9)0.0331 (10)0.0012 (7)0.0031 (7)0.0009 (8)
O150.0310 (9)0.0206 (9)0.0230 (9)0.0066 (7)0.0004 (7)0.0021 (7)
O160.0293 (9)0.0240 (10)0.0323 (10)0.0050 (7)0.0006 (8)0.0030 (8)
O170.0374 (11)0.0285 (10)0.0305 (10)0.0010 (8)0.0170 (9)0.0079 (8)
O180.0393 (11)0.0305 (11)0.0226 (9)0.0025 (8)0.0097 (8)0.0028 (8)
O190.0326 (10)0.0308 (11)0.0220 (9)0.0035 (8)0.0083 (8)0.0001 (8)
O200.0267 (9)0.0295 (10)0.0286 (10)0.0059 (8)0.0052 (7)0.0044 (8)
O210.0283 (10)0.0340 (11)0.0275 (10)0.0060 (8)0.0022 (8)0.0021 (8)
O220.0306 (10)0.0203 (9)0.0334 (10)0.0040 (7)0.0025 (8)0.0017 (8)
O230.0461 (13)0.0329 (12)0.0356 (12)0.0029 (10)0.0113 (10)0.0017 (9)
O240.0390 (11)0.0357 (12)0.0248 (9)0.0002 (9)0.0075 (8)0.0008 (8)
O250.0397 (13)0.0560 (17)0.0387 (13)0.0115 (11)0.0076 (10)0.0007 (12)
O260.0323 (11)0.0356 (12)0.0420 (13)0.0004 (9)0.0024 (9)0.0028 (10)
O280.047 (2)0.061 (3)0.081 (3)0.008 (2)0.015 (2)0.015 (2)
N10.0230 (9)0.0170 (9)0.0120 (8)0.0031 (7)0.0019 (7)0.0005 (7)
N20.0312 (10)0.0126 (8)0.0145 (8)0.0060 (7)0.0009 (7)0.0001 (7)
N30.0245 (9)0.0141 (8)0.0103 (7)0.0009 (7)0.0006 (6)0.0010 (6)
N40.0235 (9)0.0118 (8)0.0171 (8)0.0011 (6)0.0035 (7)0.0019 (7)
N50.0488 (15)0.0284 (13)0.0294 (12)0.0025 (11)0.0073 (11)0.0042 (10)
N60.0276 (11)0.0357 (13)0.0244 (11)0.0027 (9)0.0074 (9)0.0019 (9)
N70.0481 (18)0.080 (3)0.0462 (19)0.0328 (19)0.0014 (15)0.0175 (18)
N80.0335 (13)0.0356 (15)0.0437 (16)0.0034 (11)0.0053 (11)0.0023 (12)
C10.0184 (9)0.0215 (11)0.0165 (9)0.0029 (8)0.0022 (7)0.0029 (8)
C20.0212 (10)0.0259 (12)0.0160 (9)0.0046 (9)0.0030 (8)0.0040 (8)
C30.0286 (12)0.0286 (13)0.0214 (11)0.0037 (10)0.0044 (9)0.0083 (10)
C40.0385 (15)0.0379 (16)0.0204 (11)0.0077 (12)0.0059 (11)0.0113 (11)
C50.0440 (16)0.0474 (19)0.0166 (11)0.0171 (14)0.0059 (11)0.0078 (11)
C60.0454 (16)0.0395 (16)0.0147 (10)0.0142 (13)0.0025 (10)0.0024 (10)
C70.0301 (12)0.0301 (13)0.0142 (10)0.0083 (10)0.0021 (9)0.0042 (9)
C80.0321 (12)0.0159 (10)0.0157 (9)0.0051 (9)0.0005 (8)0.0011 (8)
C90.0345 (12)0.0169 (10)0.0174 (10)0.0075 (9)0.0002 (9)0.0033 (8)
C100.061 (2)0.0251 (14)0.0201 (12)0.0167 (13)0.0028 (12)0.0035 (10)
C110.100 (3)0.0296 (16)0.0257 (14)0.0324 (19)0.0044 (17)0.0060 (12)
C120.085 (3)0.0230 (14)0.0272 (14)0.0277 (16)0.0026 (16)0.0030 (11)
C130.0494 (17)0.0179 (12)0.0242 (12)0.0126 (11)0.0020 (11)0.0003 (9)
C140.0322 (12)0.0134 (10)0.0189 (10)0.0045 (8)0.0013 (9)0.0019 (8)
C150.0216 (10)0.0140 (9)0.0135 (9)0.0001 (7)0.0026 (7)0.0006 (7)
C160.0248 (10)0.0180 (10)0.0136 (9)0.0005 (8)0.0018 (8)0.0015 (8)
C170.0436 (15)0.0191 (11)0.0164 (10)0.0021 (10)0.0033 (10)0.0022 (8)
C180.061 (2)0.0290 (15)0.0179 (11)0.0055 (13)0.0065 (12)0.0041 (10)
C190.064 (2)0.0288 (15)0.0163 (11)0.0072 (14)0.0078 (12)0.0019 (10)
C200.0434 (15)0.0240 (12)0.0153 (10)0.0023 (11)0.0020 (10)0.0038 (9)
C210.0256 (11)0.0198 (11)0.0136 (9)0.0003 (8)0.0016 (8)0.0016 (8)
C220.0223 (10)0.0154 (10)0.0199 (10)0.0006 (8)0.0047 (8)0.0018 (8)
C230.0214 (10)0.0133 (9)0.0248 (11)0.0006 (8)0.0043 (8)0.0010 (8)
C240.0290 (12)0.0165 (10)0.0283 (12)0.0010 (9)0.0046 (10)0.0027 (9)
C250.0383 (15)0.0153 (11)0.0380 (15)0.0002 (10)0.0023 (12)0.0064 (10)
C260.0429 (16)0.0138 (11)0.0396 (16)0.0000 (10)0.0070 (13)0.0009 (10)
C270.0413 (15)0.0142 (11)0.0345 (14)0.0010 (10)0.0087 (12)0.0026 (10)
C280.0234 (10)0.0138 (10)0.0258 (11)0.0003 (8)0.0065 (9)0.0016 (8)
C290.0234 (11)0.0234 (12)0.0224 (11)0.0018 (9)0.0007 (9)0.0004 (9)
C300.0216 (10)0.0260 (12)0.0220 (11)0.0029 (9)0.0010 (8)0.0006 (9)
C310.0282 (12)0.0247 (13)0.0339 (14)0.0010 (10)0.0012 (10)0.0050 (11)
C320.0263 (13)0.0376 (16)0.0382 (16)0.0050 (11)0.0038 (11)0.0041 (13)
C330.0244 (12)0.0424 (17)0.0304 (14)0.0055 (11)0.0023 (10)0.0014 (12)
C340.0322 (13)0.0312 (14)0.0254 (12)0.0096 (11)0.0025 (10)0.0016 (10)
C350.0289 (12)0.0237 (12)0.0246 (11)0.0038 (9)0.0051 (9)0.0026 (9)
C360.0296 (12)0.0185 (11)0.0204 (10)0.0057 (9)0.0003 (9)0.0017 (8)
C370.0306 (12)0.0196 (11)0.0180 (10)0.0062 (9)0.0008 (9)0.0018 (8)
C380.0340 (13)0.0227 (12)0.0261 (12)0.0026 (10)0.0044 (10)0.0004 (10)
C390.0318 (14)0.0326 (15)0.0322 (14)0.0012 (11)0.0103 (11)0.0008 (11)
C400.0350 (14)0.0359 (15)0.0255 (12)0.0101 (12)0.0092 (11)0.0029 (11)
C410.0420 (15)0.0256 (13)0.0206 (11)0.0092 (11)0.0079 (10)0.0003 (9)
C420.0360 (13)0.0203 (11)0.0204 (11)0.0047 (10)0.0032 (10)0.0003 (9)
C430.0395 (14)0.0190 (11)0.0238 (11)0.0041 (10)0.0165 (10)0.0035 (9)
C440.0375 (14)0.0185 (11)0.0280 (12)0.0046 (10)0.0171 (11)0.0038 (9)
C450.0392 (15)0.0206 (12)0.0354 (14)0.0032 (10)0.0163 (12)0.0011 (10)
C460.0390 (15)0.0218 (13)0.0471 (18)0.0033 (11)0.0157 (14)0.0017 (12)
C470.0508 (19)0.0258 (14)0.0492 (19)0.0122 (13)0.0282 (16)0.0025 (13)
C480.057 (2)0.0253 (14)0.0334 (15)0.0121 (13)0.0249 (14)0.0018 (11)
C490.0488 (17)0.0207 (12)0.0277 (13)0.0092 (11)0.0158 (12)0.0046 (10)
C500.055 (2)0.0286 (15)0.0258 (13)0.0032 (13)0.0120 (13)0.0041 (11)
C510.062 (2)0.0400 (19)0.0284 (15)0.0055 (16)0.0091 (15)0.0044 (13)
C520.059 (2)0.042 (2)0.048 (2)0.0021 (17)0.0097 (18)0.0092 (16)
C530.0343 (14)0.0271 (13)0.0252 (12)0.0022 (10)0.0069 (10)0.0024 (10)
C540.048 (2)0.046 (2)0.057 (2)0.0014 (16)0.0213 (18)0.0219 (18)
C550.048 (2)0.066 (3)0.0284 (15)0.0069 (18)0.0088 (14)0.0098 (16)
C560.051 (2)0.083 (3)0.0343 (18)0.029 (2)0.0017 (16)0.0045 (19)
C570.098 (4)0.087 (4)0.051 (3)0.052 (4)0.015 (3)0.008 (3)
C580.073 (3)0.118 (5)0.066 (3)0.053 (4)0.001 (3)0.040 (3)
C590.0301 (14)0.0285 (15)0.052 (2)0.0021 (11)0.0044 (13)0.0048 (13)
C600.057 (2)0.0282 (16)0.055 (2)0.0054 (15)0.0016 (18)0.0017 (15)
C610.054 (2)0.072 (3)0.050 (2)0.017 (2)0.0142 (19)0.010 (2)
O270.036 (3)0.0222 (17)0.038 (3)0.0084 (14)0.003 (2)0.0039 (16)
C620.0279 (17)0.0263 (19)0.035 (2)0.0040 (14)0.0005 (15)0.0004 (16)
N90.0237 (14)0.0196 (15)0.0271 (16)0.0022 (12)0.0025 (12)0.0004 (12)
C630.037 (2)0.031 (2)0.045 (3)0.0007 (17)0.0017 (18)0.0116 (19)
C640.041 (5)0.055 (5)0.037 (4)0.002 (4)0.002 (3)0.006 (3)
O27B0.049 (8)0.073 (10)0.061 (10)0.017 (8)0.004 (8)0.041 (8)
C62B0.029 (4)0.043 (5)0.049 (5)0.006 (4)0.006 (4)0.004 (5)
N9B0.029 (4)0.050 (6)0.063 (6)0.004 (4)0.002 (4)0.020 (5)
C63B0.034 (6)0.090 (11)0.045 (7)0.007 (6)0.002 (5)0.022 (7)
C64B0.030 (7)0.024 (6)0.051 (11)0.010 (5)0.015 (8)0.023 (8)
Geometric parameters (Å, º) top
Mn1—O152.123 (2)C11—C121.400 (5)
Mn1—O132.127 (2)C11—H110.9500
Mn1—O172.158 (2)C12—C131.379 (4)
Mn1—O102.2439 (19)C12—H120.9500
Mn1—O72.2496 (18)C13—C141.412 (4)
Mn1—O12.3965 (17)C13—H130.9500
Mn1—O42.4973 (18)C15—C161.464 (3)
Mn1—Na13.3115 (12)C16—C171.394 (3)
Mn2—O121.8585 (19)C16—C211.412 (3)
Mn2—O11.9047 (17)C17—C181.380 (4)
Mn2—O21.9310 (19)C17—H170.9500
Mn2—N41.959 (2)C18—C191.394 (5)
Mn2—O142.177 (2)C18—H180.9500
Mn2—O192.491 (2)C19—C201.370 (4)
Mn2—Na13.6455 (12)C19—H190.9500
Mn3—O31.858 (2)C20—C211.407 (3)
Mn3—O41.8888 (18)C20—H200.9500
Mn3—O51.9366 (19)C22—C231.470 (3)
Mn3—N11.952 (2)C23—C241.398 (4)
Mn3—O232.216 (3)C23—C281.411 (4)
Mn3—O202.414 (2)C24—C251.384 (4)
Mn3—Na13.5489 (12)C24—H240.9500
Mn4—O61.8523 (19)C25—C261.400 (5)
Mn4—O71.9088 (17)C25—H250.9500
Mn4—O81.9457 (18)C26—C271.384 (4)
Mn4—N21.957 (2)C26—H260.9500
Mn4—O162.156 (2)C27—C281.405 (4)
Mn4—O212.501 (2)C27—H270.9500
Mn4—Na13.6236 (12)C29—C301.509 (4)
Mn5—O91.865 (2)C30—C351.392 (4)
Mn5—O101.8997 (18)C30—C311.401 (4)
Mn5—O111.9504 (18)C31—C321.393 (4)
Mn5—N31.966 (2)C31—H310.9500
Mn5—O182.138 (2)C32—C331.383 (5)
Mn5—O222.444 (2)C33—C341.385 (5)
Mn5—Na13.5750 (11)C33—H330.9500
Cl1—C321.737 (3)C34—C351.394 (4)
Cl2—C391.737 (3)C34—H340.9500
Cl3—C461.737 (4)C35—H350.9500
Na1—O222.401 (3)C36—C371.507 (4)
Na1—O202.432 (2)C37—C381.387 (4)
Na1—O192.519 (3)C37—C421.399 (4)
Na1—O212.556 (3)C38—C391.390 (4)
Na1—O72.572 (2)C38—H380.9500
Na1—O12.589 (2)C39—C401.385 (5)
Na1—O102.637 (2)C40—C411.387 (5)
Na1—O42.669 (2)C40—H400.9500
O1—N11.403 (2)C41—C421.393 (4)
O2—C11.301 (3)C41—H410.9500
O3—C71.330 (3)C42—H420.9500
O4—N21.404 (3)C43—C441.514 (4)
O5—C81.300 (3)C44—C451.388 (5)
O6—C141.328 (3)C44—C491.395 (4)
O7—N31.400 (2)C45—C461.391 (4)
O8—C151.305 (3)C45—H450.9500
O9—C211.339 (3)C46—C471.389 (5)
O10—N41.400 (3)C47—C481.393 (6)
O11—C221.301 (3)C47—H470.9500
O12—C281.329 (3)C48—C491.392 (4)
O13—C291.263 (3)C48—H480.9500
O14—C291.260 (3)C49—H490.9500
O15—C361.257 (3)C50—H500.9500
O16—C361.253 (4)C51—H51A0.9800
O17—C431.257 (3)C51—H51B0.9800
O18—C431.257 (4)C51—H51C0.9800
O19—H19A0.80 (2)C52—H52A0.9800
O19—H19B0.83 (2)C52—H52B0.9800
O20—H20A0.83 (2)C52—H52C0.9800
O20—H20B0.86 (2)C53—H530.9500
O21—H21A0.83 (2)C54—H54A0.9800
O21—H21B0.86 (2)C54—H54B0.9800
O22—H22A0.84 (2)C54—H54C0.9800
O22—H22B0.84 (2)C55—H55A0.9800
O23—C501.228 (5)C55—H55B0.9800
O24—C531.229 (4)C55—H55C0.9800
O25—C561.221 (5)C56—H560.9500
O26—C591.242 (4)C57—H57A0.9800
O28—H28A0.92 (2)C57—H57B0.9800
O28—H28B0.90 (2)C57—H57C0.9800
N1—C11.317 (3)C58—H58A0.9800
N2—C81.321 (3)C58—H58B0.9800
N3—C151.309 (3)C58—H58C0.9800
N4—C221.310 (3)C59—H590.9500
N5—C501.338 (5)C60—H60A0.9800
N5—C511.451 (4)C60—H60B0.9800
N5—C521.451 (5)C60—H60C0.9800
N6—C531.317 (4)C61—H61A0.9800
N6—C541.455 (5)C61—H61B0.9800
N6—C551.457 (5)C61—H61C0.9800
N7—C561.327 (6)O27—C621.240 (7)
N7—C571.448 (6)C62—N91.334 (5)
N7—C581.472 (6)C62—H620.9500
N8—C591.317 (5)N9—C631.435 (6)
N8—C601.447 (5)N9—C641.479 (10)
N8—C611.462 (5)C63—H63A0.9800
C1—C21.473 (3)C63—H63B0.9800
C2—C71.405 (4)C63—H63C0.9800
C2—C31.405 (4)C64—H64A0.9800
C3—C41.389 (4)C64—H64B0.9800
C3—H30.9500C64—H64C0.9800
C4—C51.388 (5)O27B—C62B1.193 (19)
C4—H40.9500C62B—N9B1.329 (16)
C5—C61.387 (4)C62B—H62B0.9500
C5—H50.9500N9B—C64B1.462 (17)
C6—C71.411 (4)N9B—C63B1.492 (19)
C6—H60.9500C63B—H63D0.9800
C8—C91.468 (4)C63B—H63E0.9800
C9—C101.397 (4)C63B—H63F0.9800
C9—C141.409 (4)C64B—H64D0.9800
C10—C111.383 (4)C64B—H64E0.9800
C10—H100.9500C64B—H64F0.9800
O15—Mn1—O1393.78 (9)C50—N5—C52121.7 (3)
O15—Mn1—O1783.90 (8)C51—N5—C52118.0 (3)
O13—Mn1—O1786.26 (10)C53—N6—C54119.8 (3)
O15—Mn1—O10154.16 (7)C53—N6—C55122.0 (3)
O13—Mn1—O10106.98 (8)C54—N6—C55118.1 (3)
O17—Mn1—O1082.32 (8)C56—N7—C57120.6 (4)
O15—Mn1—O788.08 (7)C56—N7—C58120.3 (4)
O13—Mn1—O7175.86 (9)C57—N7—C58118.7 (4)
O17—Mn1—O790.26 (8)C59—N8—C60122.6 (3)
O10—Mn1—O770.26 (6)C59—N8—C61120.4 (3)
O15—Mn1—O1131.86 (7)C60—N8—C61117.0 (4)
O13—Mn1—O179.95 (8)O2—C1—N1120.1 (2)
O17—Mn1—O1142.05 (7)O2—C1—C2119.7 (2)
O10—Mn1—O168.52 (6)N1—C1—C2120.2 (2)
O7—Mn1—O1101.55 (6)C7—C2—C3120.0 (2)
O15—Mn1—O478.10 (7)C7—C2—C1122.8 (2)
O13—Mn1—O4116.73 (8)C3—C2—C1117.2 (2)
O17—Mn1—O4151.39 (8)C4—C3—C2121.2 (3)
O10—Mn1—O4104.86 (7)C4—C3—H3119.4
O7—Mn1—O467.28 (6)C2—C3—H3119.4
O1—Mn1—O463.44 (6)C5—C4—C3118.7 (3)
O15—Mn1—Na1123.17 (6)C5—C4—H4120.7
O13—Mn1—Na1130.21 (6)C3—C4—H4120.7
O17—Mn1—Na1125.97 (7)C6—C5—C4121.2 (3)
O10—Mn1—Na152.50 (5)C6—C5—H5119.4
O7—Mn1—Na150.83 (5)C4—C5—H5119.4
O1—Mn1—Na150.92 (5)C5—C6—C7120.8 (3)
O4—Mn1—Na152.46 (5)C5—C6—H6119.6
O12—Mn2—O1173.08 (9)C7—C6—H6119.6
O12—Mn2—O296.07 (8)O3—C7—C2124.6 (2)
O1—Mn2—O282.34 (8)O3—C7—C6117.1 (3)
O12—Mn2—N489.86 (8)C2—C7—C6118.1 (3)
O1—Mn2—N490.57 (8)O5—C8—N2119.9 (2)
O2—Mn2—N4168.31 (8)O5—C8—C9119.8 (2)
O12—Mn2—O1495.23 (9)N2—C8—C9120.3 (2)
O1—Mn2—O1491.62 (8)C10—C9—C14119.9 (2)
O2—Mn2—O1494.59 (8)C10—C9—C8117.4 (2)
N4—Mn2—O1494.89 (8)C14—C9—C8122.7 (2)
O12—Mn2—O1994.11 (9)C11—C10—C9121.3 (3)
O1—Mn2—O1979.10 (8)C11—C10—H10119.3
O2—Mn2—O1986.99 (8)C9—C10—H10119.3
N4—Mn2—O1982.53 (8)C10—C11—C12119.0 (3)
O14—Mn2—O19170.31 (8)C10—C11—H11120.5
O12—Mn2—Na1131.87 (7)C12—C11—H11120.5
O1—Mn2—Na142.64 (6)C13—C12—C11120.6 (3)
O2—Mn2—Na1101.83 (6)C13—C12—H12119.7
N4—Mn2—Na166.90 (6)C11—C12—H12119.7
O14—Mn2—Na1126.85 (6)C12—C13—C14121.0 (3)
O19—Mn2—Na143.60 (5)C12—C13—H13119.5
O3—Mn3—O4176.78 (11)C14—C13—H13119.5
O3—Mn3—O597.50 (9)O6—C14—C9125.0 (2)
O4—Mn3—O582.68 (8)O6—C14—C13116.8 (2)
O3—Mn3—N191.49 (9)C9—C14—C13118.2 (2)
O4—Mn3—N187.88 (8)O8—C15—N3120.4 (2)
O5—Mn3—N1167.83 (8)O8—C15—C16119.9 (2)
O3—Mn3—O2388.03 (11)N3—C15—C16119.7 (2)
O4—Mn3—O2395.18 (10)C17—C16—C21119.5 (2)
O5—Mn3—O2392.36 (10)C17—C16—C15117.0 (2)
N1—Mn3—O2396.15 (9)C21—C16—C15123.5 (2)
O3—Mn3—O2092.93 (10)C18—C17—C16121.5 (3)
O4—Mn3—O2083.86 (8)C18—C17—H17119.2
O5—Mn3—O2087.05 (9)C16—C17—H17119.2
N1—Mn3—O2084.30 (8)C17—C18—C19118.6 (3)
O23—Mn3—O20178.93 (9)C17—C18—H18120.7
O3—Mn3—Na1129.36 (9)C19—C18—H18120.7
O4—Mn3—Na147.62 (7)C20—C19—C18121.2 (3)
O5—Mn3—Na1102.36 (6)C20—C19—H19119.4
N1—Mn3—Na165.50 (6)C18—C19—H19119.4
O23—Mn3—Na1136.27 (7)C19—C20—C21120.8 (3)
O20—Mn3—Na143.10 (5)C19—C20—H20119.6
O6—Mn4—O7171.16 (9)C21—C20—H20119.6
O6—Mn4—O895.88 (8)O9—C21—C20117.5 (2)
O7—Mn4—O881.92 (7)O9—C21—C16124.2 (2)
O6—Mn4—N290.97 (8)C20—C21—C16118.3 (2)
O7—Mn4—N289.88 (8)O11—C22—N4120.3 (2)
O8—Mn4—N2168.33 (9)O11—C22—C23120.3 (2)
O6—Mn4—O1695.41 (9)N4—C22—C23119.3 (2)
O7—Mn4—O1693.26 (8)C24—C23—C28119.8 (2)
O8—Mn4—O1693.06 (8)C24—C23—C22118.0 (2)
N2—Mn4—O1695.69 (9)C28—C23—C22122.2 (2)
O6—Mn4—O2191.92 (9)C25—C24—C23121.6 (3)
O7—Mn4—O2179.48 (8)C25—C24—H24119.2
O8—Mn4—O2188.28 (8)C23—C24—H24119.2
N2—Mn4—O2182.04 (9)C24—C25—C26119.0 (3)
O16—Mn4—O21172.37 (8)C24—C25—H25120.5
O6—Mn4—Na1130.59 (7)C26—C25—H25120.5
O7—Mn4—Na142.75 (6)C27—C26—C25120.1 (3)
O8—Mn4—Na1103.60 (6)C27—C26—H26120.0
N2—Mn4—Na164.87 (7)C25—C26—H26120.0
O16—Mn4—Na1127.67 (6)C26—C27—C28121.7 (3)
O21—Mn4—Na144.83 (6)C26—C27—H27119.2
O9—Mn5—O10171.38 (10)C28—C27—H27119.2
O9—Mn5—O1198.50 (9)O12—C28—C27117.7 (2)
O10—Mn5—O1181.66 (8)O12—C28—C23124.4 (2)
O9—Mn5—N391.18 (8)C27—C28—C23118.0 (2)
O10—Mn5—N387.72 (8)O14—C29—O13126.7 (3)
O11—Mn5—N3168.08 (8)O14—C29—C30116.5 (2)
O9—Mn5—O1894.05 (10)O13—C29—C30116.8 (2)
O10—Mn5—O1894.57 (9)C35—C30—C31119.6 (3)
O11—Mn5—O1890.32 (9)C35—C30—C29121.3 (2)
N3—Mn5—O1895.95 (9)C31—C30—C29119.0 (2)
O9—Mn5—O2290.05 (9)C32—C31—C30119.0 (3)
O10—Mn5—O2281.33 (8)C32—C31—H31120.5
O11—Mn5—O2290.71 (8)C30—C31—H31120.5
N3—Mn5—O2282.29 (8)C33—C32—C31121.5 (3)
O18—Mn5—O22175.58 (8)C33—C32—Cl1120.0 (2)
O9—Mn5—Na1126.17 (7)C31—C32—Cl1118.5 (3)
O10—Mn5—Na146.01 (6)C32—C33—C34119.1 (3)
O11—Mn5—Na1103.58 (6)C32—C33—H33120.4
N3—Mn5—Na164.84 (6)C34—C33—H33120.4
O18—Mn5—Na1133.61 (6)C33—C34—C35120.4 (3)
O22—Mn5—Na141.99 (6)C33—C34—H34119.8
O22—Na1—O20142.14 (9)C35—C34—H34119.8
O22—Na1—O1984.23 (8)C30—C35—C34120.2 (3)
O20—Na1—O1986.48 (8)C30—C35—H35119.9
O22—Na1—O2184.10 (8)C34—C35—H35119.9
O20—Na1—O2184.80 (8)O16—C36—O15126.4 (3)
O19—Na1—O21148.18 (9)O16—C36—C37117.1 (2)
O22—Na1—O784.00 (7)O15—C36—C37116.5 (2)
O20—Na1—O7124.20 (8)C38—C37—C42120.0 (3)
O19—Na1—O7139.85 (8)C38—C37—C36118.9 (2)
O21—Na1—O767.70 (7)C42—C37—C36121.1 (3)
O22—Na1—O1124.38 (8)C37—C38—C39119.4 (3)
O20—Na1—O184.69 (7)C37—C38—H38120.3
O19—Na1—O167.42 (7)C39—C38—H38120.3
O21—Na1—O1141.60 (8)C40—C39—C38121.4 (3)
O7—Na1—O188.47 (6)C40—C39—Cl2120.2 (2)
O22—Na1—O1069.00 (7)C38—C39—Cl2118.4 (2)
O20—Na1—O10144.74 (8)C39—C40—C41118.8 (3)
O19—Na1—O1080.45 (7)C39—C40—H40120.6
O21—Na1—O10122.08 (7)C41—C40—H40120.6
O7—Na1—O1059.51 (6)C40—C41—C42120.8 (3)
O1—Na1—O1060.05 (6)C40—C41—H41119.6
O22—Na1—O4144.38 (8)C42—C41—H41119.6
O20—Na1—O469.17 (7)C41—C42—C37119.5 (3)
O19—Na1—O4121.77 (8)C41—C42—H42120.2
O21—Na1—O483.15 (7)C37—C42—H42120.2
O7—Na1—O460.39 (6)O17—C43—O18126.4 (3)
O1—Na1—O458.61 (6)O17—C43—C44116.4 (3)
O10—Na1—O490.27 (6)O18—C43—C44117.2 (2)
O22—Na1—Mn1105.39 (6)C45—C44—C49120.2 (3)
O20—Na1—Mn1112.47 (7)C45—C44—C43119.0 (3)
O19—Na1—Mn1105.23 (6)C49—C44—C43120.8 (3)
O21—Na1—Mn1106.39 (6)C44—C45—C46119.6 (3)
O7—Na1—Mn142.69 (4)C44—C45—H45120.2
O1—Na1—Mn145.93 (4)C46—C45—H45120.2
O10—Na1—Mn142.46 (4)C47—C46—C45121.0 (4)
O4—Na1—Mn147.89 (4)C47—C46—Cl3119.7 (3)
O22—Na1—Mn3175.12 (7)C45—C46—Cl3119.3 (3)
O20—Na1—Mn342.72 (6)C46—C47—C48118.8 (3)
O19—Na1—Mn397.36 (6)C46—C47—H47120.6
O21—Na1—Mn396.76 (6)C48—C47—H47120.6
O7—Na1—Mn391.86 (5)C49—C48—C47120.9 (3)
O1—Na1—Mn352.69 (4)C49—C48—H48119.6
O10—Na1—Mn3106.64 (5)C47—C48—H48119.6
O4—Na1—Mn331.51 (4)C48—C49—C44119.5 (3)
Mn1—Na1—Mn369.75 (2)C48—C49—H49120.3
O22—Na1—Mn542.92 (6)C44—C49—H49120.3
O20—Na1—Mn5174.94 (7)O23—C50—N5124.6 (3)
O19—Na1—Mn594.60 (6)O23—C50—H50117.7
O21—Na1—Mn596.74 (6)N5—C50—H50117.7
O7—Na1—Mn552.62 (4)N5—C51—H51A109.5
O1—Na1—Mn591.16 (5)N5—C51—H51B109.5
O10—Na1—Mn531.21 (4)H51A—C51—H51B109.5
O4—Na1—Mn5106.18 (5)N5—C51—H51C109.5
Mn1—Na1—Mn562.48 (2)H51A—C51—H51C109.5
Mn3—Na1—Mn5132.22 (3)H51B—C51—H51C109.5
O22—Na1—Mn498.29 (6)N5—C52—H52A109.5
O20—Na1—Mn498.23 (6)N5—C52—H52B109.5
O19—Na1—Mn4168.10 (7)H52A—C52—H52B109.5
O21—Na1—Mn443.63 (5)N5—C52—H52C109.5
O7—Na1—Mn430.25 (4)H52A—C52—H52C109.5
O1—Na1—Mn4101.99 (5)H52B—C52—H52C109.5
O10—Na1—Mn489.57 (5)O24—C53—N6125.5 (3)
O4—Na1—Mn451.29 (4)O24—C53—H53117.2
Mn1—Na1—Mn462.87 (2)N6—C53—H53117.2
Mn3—Na1—Mn479.22 (3)N6—C54—H54A109.5
Mn5—Na1—Mn479.77 (2)N6—C54—H54B109.5
N1—O1—Mn2112.41 (13)H54A—C54—H54B109.5
N1—O1—Mn1127.14 (13)N6—C54—H54C109.5
Mn2—O1—Mn1113.88 (7)H54A—C54—H54C109.5
N1—O1—Na1105.87 (13)H54B—C54—H54C109.5
Mn2—O1—Na1107.46 (8)N6—C55—H55A109.5
Mn1—O1—Na183.15 (6)N6—C55—H55B109.5
C1—O2—Mn2112.00 (15)H55A—C55—H55B109.5
C7—O3—Mn3128.82 (18)N6—C55—H55C109.5
N2—O4—Mn3112.50 (13)H55A—C55—H55C109.5
N2—O4—Mn1119.12 (13)H55B—C55—H55C109.5
Mn3—O4—Mn1126.57 (8)O25—C56—N7125.9 (4)
N2—O4—Na1104.23 (14)O25—C56—H56117.0
Mn3—O4—Na1100.87 (8)N7—C56—H56117.0
Mn1—O4—Na179.65 (6)N7—C57—H57A109.5
C8—O5—Mn3111.48 (16)N7—C57—H57B109.5
C14—O6—Mn4130.01 (16)H57A—C57—H57B109.5
N3—O7—Mn4112.74 (13)N7—C57—H57C109.5
N3—O7—Mn1117.20 (13)H57A—C57—H57C109.5
Mn4—O7—Mn1121.20 (8)H57B—C57—H57C109.5
N3—O7—Na1106.89 (13)N7—C58—H58A109.5
Mn4—O7—Na1107.00 (8)N7—C58—H58B109.5
Mn1—O7—Na186.48 (6)H58A—C58—H58B109.5
C15—O8—Mn4111.56 (15)N7—C58—H58C109.5
C21—O9—Mn5127.58 (17)H58A—C58—H58C109.5
N4—O10—Mn5113.34 (13)H58B—C58—H58C109.5
N4—O10—Mn1119.59 (14)O26—C59—N8125.8 (3)
Mn5—O10—Mn1119.22 (8)O26—C59—H59117.1
N4—O10—Na1110.70 (13)N8—C59—H59117.1
Mn5—O10—Na1102.78 (8)N8—C60—H60A109.5
Mn1—O10—Na185.04 (6)N8—C60—H60B109.5
C22—O11—Mn5111.76 (16)H60A—C60—H60B109.5
C28—O12—Mn2130.52 (16)N8—C60—H60C109.5
C29—O13—Mn1138.1 (2)H60A—C60—H60C109.5
C29—O14—Mn2130.32 (18)H60B—C60—H60C109.5
C36—O15—Mn1133.04 (17)N8—C61—H61A109.5
C36—O16—Mn4125.69 (18)N8—C61—H61B109.5
C43—O17—Mn1140.5 (2)H61A—C61—H61B109.5
C43—O18—Mn5122.73 (17)N8—C61—H61C109.5
Mn2—O19—Na193.38 (8)H61A—C61—H61C109.5
Mn2—O19—H19A112 (3)H61B—C61—H61C109.5
Na1—O19—H19A116 (3)O27—C62—N9123.4 (5)
Mn2—O19—H19B122 (3)O27—C62—H62118.3
Na1—O19—H19B109 (3)N9—C62—H62118.3
H19A—O19—H19B105 (5)C62—N9—C63121.7 (4)
Mn3—O20—Na194.17 (8)C62—N9—C64117.3 (6)
Mn3—O20—H20A110 (3)C63—N9—C64120.9 (6)
Na1—O20—H20A113 (3)N9—C63—H63A109.5
Mn3—O20—H20B109 (3)N9—C63—H63B109.5
Na1—O20—H20B120 (3)H63A—C63—H63B109.5
H20A—O20—H20B109 (5)N9—C63—H63C109.5
Mn4—O21—Na191.54 (7)H63A—C63—H63C109.5
Mn4—O21—H21A113 (3)H63B—C63—H63C109.5
Na1—O21—H21A115 (3)N9—C64—H64A109.5
Mn4—O21—H21B118 (3)N9—C64—H64B109.5
Na1—O21—H21B127 (3)H64A—C64—H64B109.5
H21A—O21—H21B93 (4)N9—C64—H64C109.5
Na1—O22—Mn595.09 (8)H64A—C64—H64C109.5
Na1—O22—H22A118 (3)H64B—C64—H64C109.5
Mn5—O22—H22A108 (3)O27B—C62B—N9B131.0 (18)
Na1—O22—H22B113 (3)O27B—C62B—H62B114.5
Mn5—O22—H22B117 (3)N9B—C62B—H62B114.5
H22A—O22—H22B107 (4)C62B—N9B—C64B127.5 (18)
C50—O23—Mn3125.9 (2)C62B—N9B—C63B115.5 (12)
H28A—O28—H28B111 (8)C64B—N9B—C63B117.0 (16)
C1—N1—O1113.09 (19)N9B—C63B—H63D109.5
C1—N1—Mn3129.69 (16)N9B—C63B—H63E109.5
O1—N1—Mn3115.75 (14)H63D—C63B—H63E109.5
C8—N2—O4113.12 (19)N9B—C63B—H63F109.5
C8—N2—Mn4129.71 (17)H63D—C63B—H63F109.5
O4—N2—Mn4115.41 (14)H63E—C63B—H63F109.5
C15—N3—O7113.19 (18)N9B—C64B—H64D109.5
C15—N3—Mn5130.03 (16)N9B—C64B—H64E109.5
O7—N3—Mn5115.91 (14)H64D—C64B—H64E109.5
C22—N4—O10112.91 (19)N9B—C64B—H64F109.5
C22—N4—Mn2130.57 (17)H64D—C64B—H64F109.5
O10—N4—Mn2113.66 (14)H64E—C64B—H64F109.5
C50—N5—C51120.1 (3)
O5—Mn3—O3—C7178.3 (3)C12—C13—C14—O6179.0 (3)
N1—Mn3—O3—C79.9 (3)C12—C13—C14—C91.0 (5)
O23—Mn3—O3—C786.2 (3)Mn4—O8—C15—N33.9 (3)
O20—Mn3—O3—C794.3 (3)Mn4—O8—C15—C16177.92 (17)
Na1—Mn3—O3—C768.9 (3)O7—N3—C15—O81.4 (3)
O5—Mn3—O4—N23.66 (17)Mn5—N3—C15—O8170.19 (17)
N1—Mn3—O4—N2168.64 (17)O7—N3—C15—C16179.62 (19)
O23—Mn3—O4—N295.38 (18)Mn5—N3—C15—C1611.6 (3)
O20—Mn3—O4—N284.15 (17)O8—C15—C16—C1712.6 (3)
Na1—Mn3—O4—N2110.51 (18)N3—C15—C16—C17165.6 (2)
O5—Mn3—O4—Mn1160.73 (13)O8—C15—C16—C21168.0 (2)
N1—Mn3—O4—Mn126.98 (12)N3—C15—C16—C2113.8 (4)
O23—Mn3—O4—Mn169.01 (13)C21—C16—C17—C180.5 (4)
O20—Mn3—O4—Mn1111.47 (12)C15—C16—C17—C18178.8 (3)
Na1—Mn3—O4—Mn185.10 (11)C16—C17—C18—C192.6 (5)
O5—Mn3—O4—Na1114.17 (9)C17—C18—C19—C202.5 (6)
N1—Mn3—O4—Na158.13 (8)C18—C19—C20—C210.3 (5)
O23—Mn3—O4—Na1154.11 (9)Mn5—O9—C21—C20162.5 (2)
O20—Mn3—O4—Na126.36 (7)Mn5—O9—C21—C1620.8 (4)
O8—Mn4—O6—C14165.9 (2)C19—C20—C21—O9178.7 (3)
N2—Mn4—O6—C144.7 (3)C19—C20—C21—C161.8 (4)
O16—Mn4—O6—C14100.5 (3)C17—C16—C21—O9178.4 (3)
O21—Mn4—O6—C1477.4 (3)C15—C16—C21—O92.3 (4)
Na1—Mn4—O6—C1452.3 (3)C17—C16—C21—C201.7 (4)
O11—Mn5—O9—C21168.8 (2)C15—C16—C21—C20179.0 (2)
N3—Mn5—O9—C2118.2 (2)Mn5—O11—C22—N40.5 (3)
O18—Mn5—O9—C2177.8 (2)Mn5—O11—C22—C23177.99 (18)
O22—Mn5—O9—C21100.5 (2)O10—N4—C22—O110.7 (3)
Na1—Mn5—O9—C2177.5 (2)Mn2—N4—C22—O11159.98 (19)
O11—Mn5—O10—N41.38 (15)O10—N4—C22—C23179.1 (2)
N3—Mn5—O10—N4175.94 (16)Mn2—N4—C22—C2321.6 (3)
O18—Mn5—O10—N488.27 (16)O11—C22—C23—C2414.8 (4)
O22—Mn5—O10—N493.39 (15)N4—C22—C23—C24163.7 (2)
Na1—Mn5—O10—N4119.51 (17)O11—C22—C23—C28166.7 (2)
O11—Mn5—O10—Mn1150.42 (11)N4—C22—C23—C2814.8 (4)
N3—Mn5—O10—Mn135.02 (10)C28—C23—C24—C251.4 (4)
O18—Mn5—O10—Mn160.77 (11)C22—C23—C24—C25179.9 (3)
O22—Mn5—O10—Mn1117.57 (10)C23—C24—C25—C260.0 (4)
Na1—Mn5—O10—Mn191.45 (10)C24—C25—C26—C270.6 (5)
O11—Mn5—O10—Na1118.13 (9)C25—C26—C27—C280.2 (5)
N3—Mn5—O10—Na156.43 (8)Mn2—O12—C28—C27170.5 (2)
O18—Mn5—O10—Na1152.22 (8)Mn2—O12—C28—C2311.2 (4)
O22—Mn5—O10—Na126.12 (7)C26—C27—C28—O12180.0 (3)
O2—Mn2—O12—C28175.4 (2)C26—C27—C28—C231.6 (4)
N4—Mn2—O12—C285.4 (2)C24—C23—C28—O12179.5 (2)
O14—Mn2—O12—C2889.4 (2)C22—C23—C28—O121.1 (4)
O19—Mn2—O12—C2888.0 (2)C24—C23—C28—C272.1 (4)
Na1—Mn2—O12—C2863.5 (3)C22—C23—C28—C27179.4 (2)
Mn2—O1—N1—C11.0 (2)Mn2—O14—C29—O138.8 (4)
Mn1—O1—N1—C1150.50 (16)Mn2—O14—C29—C30170.39 (17)
Na1—O1—N1—C1116.06 (17)Mn1—O13—C29—O1411.7 (5)
Mn2—O1—N1—Mn3168.51 (10)Mn1—O13—C29—C30169.1 (2)
Mn1—O1—N1—Mn342.0 (2)O14—C29—C30—C353.0 (4)
Na1—O1—N1—Mn351.46 (16)O13—C29—C30—C35176.3 (3)
Mn3—O4—N2—C81.8 (3)O14—C29—C30—C31179.3 (3)
Mn1—O4—N2—C8163.82 (18)O13—C29—C30—C311.4 (4)
Na1—O4—N2—C8110.2 (2)C35—C30—C31—C320.7 (4)
Mn3—O4—N2—Mn4164.55 (11)C29—C30—C31—C32177.1 (3)
Mn1—O4—N2—Mn429.8 (2)C30—C31—C32—C331.1 (5)
Na1—O4—N2—Mn456.15 (16)C30—C31—C32—Cl1177.4 (2)
Mn4—O7—N3—C151.8 (2)C31—C32—C33—C341.0 (5)
Mn1—O7—N3—C15146.06 (16)Cl1—C32—C33—C34177.5 (3)
Na1—O7—N3—C15119.13 (17)C32—C33—C34—C350.4 (5)
Mn4—O7—N3—Mn5168.60 (9)C31—C30—C35—C340.1 (4)
Mn1—O7—N3—Mn543.51 (18)C29—C30—C35—C34177.6 (3)
Na1—O7—N3—Mn551.30 (16)C33—C34—C35—C300.0 (4)
Mn5—O10—N4—C221.5 (2)Mn4—O16—C36—O154.6 (4)
Mn1—O10—N4—C22150.44 (16)Mn4—O16—C36—C37175.17 (17)
Na1—O10—N4—C22113.35 (18)Mn1—O15—C36—O1650.2 (4)
Mn5—O10—N4—Mn2164.47 (9)Mn1—O15—C36—C37129.6 (2)
Mn1—O10—N4—Mn246.61 (19)O16—C36—C37—C38161.2 (3)
Na1—O10—N4—Mn249.60 (16)O15—C36—C37—C3818.6 (4)
Mn2—O2—C1—N13.8 (3)O16—C36—C37—C4219.1 (4)
Mn2—O2—C1—C2178.39 (17)O15—C36—C37—C42161.2 (2)
O1—N1—C1—O23.2 (3)C42—C37—C38—C390.4 (4)
Mn3—N1—C1—O2168.57 (18)C36—C37—C38—C39179.4 (3)
O1—N1—C1—C2179.0 (2)C37—C38—C39—C400.9 (5)
Mn3—N1—C1—C213.6 (3)C37—C38—C39—Cl2176.9 (2)
O2—C1—C2—C7174.0 (2)C38—C39—C40—C411.5 (5)
N1—C1—C2—C78.2 (4)Cl2—C39—C40—C41176.2 (2)
O2—C1—C2—C37.2 (3)C39—C40—C41—C420.9 (4)
N1—C1—C2—C3170.6 (2)C40—C41—C42—C370.3 (4)
C7—C2—C3—C41.8 (4)C38—C37—C42—C410.9 (4)
C1—C2—C3—C4176.9 (3)C36—C37—C42—C41178.8 (2)
C2—C3—C4—C50.3 (5)Mn1—O17—C43—O1842.8 (5)
C3—C4—C5—C61.7 (5)Mn1—O17—C43—C44137.4 (3)
C4—C5—C6—C70.9 (5)Mn5—O18—C43—O1716.1 (4)
Mn3—O3—C7—C216.7 (5)Mn5—O18—C43—C44164.12 (18)
Mn3—O3—C7—C6166.4 (2)O17—C43—C44—C4518.1 (4)
C3—C2—C7—O3174.3 (3)O18—C43—C44—C45162.1 (3)
C1—C2—C7—O37.0 (4)O17—C43—C44—C49163.8 (3)
C3—C2—C7—C62.6 (4)O18—C43—C44—C4916.0 (4)
C1—C2—C7—C6176.1 (3)C49—C44—C45—C460.2 (4)
C5—C6—C7—O3175.9 (3)C43—C44—C45—C46178.3 (3)
C5—C6—C7—C21.2 (5)C44—C45—C46—C471.7 (5)
Mn3—O5—C8—N25.5 (3)C44—C45—C46—Cl3178.6 (2)
Mn3—O5—C8—C9175.6 (2)C45—C46—C47—C481.8 (5)
O4—N2—C8—O52.5 (4)Cl3—C46—C47—C48178.5 (3)
Mn4—N2—C8—O5166.5 (2)C46—C47—C48—C490.0 (5)
O4—N2—C8—C9178.6 (2)C47—C48—C49—C441.9 (5)
Mn4—N2—C8—C914.7 (4)C45—C44—C49—C482.0 (4)
O5—C8—C9—C106.6 (4)C43—C44—C49—C48180.0 (3)
N2—C8—C9—C10172.2 (3)Mn3—O23—C50—N5176.9 (2)
O5—C8—C9—C14174.9 (3)C51—N5—C50—O230.6 (5)
N2—C8—C9—C146.3 (4)C52—N5—C50—O23175.9 (4)
C14—C9—C10—C110.6 (6)C54—N6—C53—O241.9 (5)
C8—C9—C10—C11178.0 (4)C55—N6—C53—O24177.9 (3)
C9—C10—C11—C120.7 (7)C57—N7—C56—O255.2 (9)
C10—C11—C12—C130.1 (8)C58—N7—C56—O25177.5 (6)
C11—C12—C13—C141.0 (7)C60—N8—C59—O260.1 (6)
Mn4—O6—C14—C90.4 (4)C61—N8—C59—O26177.3 (4)
Mn4—O6—C14—C13179.6 (2)O27—C62—N9—C630.6 (8)
C10—C9—C14—O6179.8 (3)O27—C62—N9—C64176.8 (9)
C8—C9—C14—O61.3 (5)O27B—C62B—N9B—C64B174 (3)
C10—C9—C14—C130.3 (4)O27B—C62B—N9B—C63B5 (3)
C8—C9—C14—C13178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O19—H19A···O240.80 (2)2.00 (3)2.749 (3)155 (5)
O19—H19B···O270.83 (2)2.03 (3)2.826 (7)161 (5)
O20—H20A···O240.83 (2)2.00 (3)2.788 (3)160 (5)
O20—H20B···O250.86 (2)1.96 (3)2.751 (4)153 (4)
O21—H21A···O260.83 (2)1.96 (3)2.737 (3)155 (5)
O21—H21B···O250.86 (2)2.10 (4)2.787 (3)136 (4)
O22—H22A···O260.84 (2)1.93 (3)2.729 (3)158 (5)
O22—H22B···O270.84 (2)1.90 (3)2.705 (6)160 (5)
O28—H28A···Cl3i0.92 (2)2.96 (2)3.876 (5)171 (6)
O28—H28B···O90.90 (2)2.14 (2)3.019 (5)165 (8)
Symmetry code: (i) x1, y, z.
Average bond-length (Å) and bond-valence-sum (BVS) values (v. u.) used to support assigned oxidation states of the manganese ions of 1 and 2 top
Avg. bond lengthBVS valueAssigned oxidation state
1
Mn11.9443.053+
Mn22.0273.123+
2
Mn12.2561.972+
Mn22.0543.073+
Mn32.0443.103+
Mn42.0533.073+
Mn52.0443.073+
Continuous shape measurement (CShM) values (SHAPE 2.1) for the seven-coordinate sodium ion of 1 top
Heptagon34.157
Hexagonal pyramid19.758
Pentagonal bipyramid8.496
Capped octahedron3.683
Capped trigonal prism3.798
Johnson pentagonal bipyramid12.331
Johnson elongated triangular Pyramid21.938
Continuous shape measurement (CShM) values (SHAPE 2.1) for the five-coordinate manganese ion of 1 top
Pentagon28.077
Vacant octahedron1.468
Trigonal bipyramid4.930
Square pyramid0.712
Johnson trigonal bipyramid8.311
Continuous shape measurement (CShM) values (SHAPE 2.1) for the six-coordinate manganese ion of 1 top
Hexagon31.700
Pentagonal pyramid27.764
Octahedron0.872
Trigonal prism16.422
Johnson pentagonal pyramid30.863
Continuous shape measurement (CShM) values (SHAPE 2.1) for the seven-coordinate manganese ion of 2 top
Heptagon32.707
Hexagonal pyramid20.417
Pentagonal bipyramid5.626
Capped octahedron1.589
Capped trigonal prism1.807
Johnson pentagonal bipyramid9.086
Johnson elongated triangular pyramid20.152
Continuous shape measurement (CShM) values (SHAPE 2.1) for the eight-coordinate sodium ion of 2 top
Octagon30.163
Heptagonal pyramid25.281
Hexagonal bipyramid13.805
Cube6.579
Square antiprism3.022
Triangular dodecahedron3.398
Johnson gyrobifastigium16.071
Johnson elongated triangular bipyramid28.948
Johnson biaugmented trigonal prism4.411
Biaugmented trigonal prism2.764
Snub diphenoid6.604
Triakis tetrahedron7.183
Elongated trigonal bipyramid24.722
Continuous shape measurement (CShM) values (SHAPE 2.1) for the six-coordinate manganese ions of 2 top
Mn2Mn3Mn4Mn5
Hexagon30.76230.53830.59030.154
Pentagonal pyramid27.83427.54627.45327.158
Octahedron1.3201.2191.2571.127
Trigonal prism15.52215.88316.45516.107
Johnson pentagonal pyramid30.66429.84430.43030.100
 

Acknowledgements

CMZ thanks the Department of Chemistry and Biochemistry for continued support.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE 1625543 to M. Zeller).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAlaimo, A. A., Koumousi, E. S., Cunha-Silva, L., McCormick, L. J., Teat, S. J., Psycharis, V., Raptopoulou, C. P., Mukherjee, S., Li, C., Das Gupta, S., Escuer, A., Christou, G. & Stamatatos, T. C. (2017). Inorg. Chem. 56, 10760–10774.  CSD CrossRef CAS PubMed Google Scholar
First citationAzar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742.  CSD CrossRef CAS PubMed Google Scholar
First citationBoron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597–10607.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755–1763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562.  Web of Science CrossRef CAS Google Scholar
First citationDaly, C. I., Zeller, M. & Zaleski, C. M. (2014). Acta Cryst. E70, 494–498.  CSD CrossRef IUCr Journals Google Scholar
First citationDendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864–875.  Web of Science PubMed CAS Google Scholar
First citationDendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041–5051.  CrossRef PubMed CAS Google Scholar
First citationGibney, B. R., Wang, H., Kampf, J. W. & Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184–6193.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKessissoglou, D. P., Bodwin, J. J., Kampf, J., Dendrinou-Samara, C. & Pecoraro, V. L. (2002). Inorg. Chim. Acta, 331, 73–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoumousi, E. S., Mukherjee, S., Beavers, C. M., Teat, S. J., Christou, G. & Stamatatos, T. C. (2011). Chem. Commun. 47, 11128–11130.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.  CSD CrossRef CAS Web of Science Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1991). Inorg. Chem. 30, 878–880.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE, version 2.1. Barcelona, Spain.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarzaroli, V., Spigolon, G., Lococciolo, G., Quaretti, M., Salviati, C., Kampf, J. W., Licini, G., Marchiò, L., Pecoraro, V. L. & Tegoni, M. (2019). Cryst. Growth Des. 19, 1954–1964.  CSD CrossRef CAS Google Scholar
First citationMengle, K. A., Longenecker, E. J., Zeller, M. & Zaleski, C. M. (2015). J. Chem. Crystallogr. 45, 36–43.  CSD CrossRef CAS Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTravis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300–1306.  CSD CrossRef IUCr Journals Google Scholar
First citationTravis, J. R., Zeller, M. & Zaleski, C. M. (2016). Polyhedron, 114, 29–36.  CSD CrossRef CAS Google Scholar
First citationWang, J., Lu, G., Liu, Y., Wu, S.-G., Huang, G.-Z., Liu, J.-L. & Tong, M.-L. (2019). Cryst. Growth Des. 19, 1896–1902.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaleski, C. M., Lutter, J. C. & Zeller, M. (2015). J. Chem. Crystallogr. 45, 142–150.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds