research communications
and characterization of a new copper(II) chloride dimer with methyl(pyridin-2-ylmethylidene)amine
aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska str., Kyiv 01601, Ukraine, bInstitute for Sorption and Problems of Endoecology, The National Academy of Sciences of Ukraine, 13 General Naumova str., Kyiv 03164, Ukraine, and cSchool of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua
The new copper(II) complex, namely, di-μ-chlorido-bis{chlorido[methyl(pyridin-2-ylmethylidene)amine-κ2N,N′]copper(II)}, [Cu2Cl4(C7H8N2)2], (I), with the ligand 2-pyridylmethyl-N-methylimine (L, a product of Schiff base condensation between methylamine and 2-pyridinecarbaldehyde) is built of discrete centrosymmetric dimers. The coordination about the CuII ion can be described as distorted square pyramidal. The base of the pyramid consists of two nitrogen atoms from the bidentate chelate L [Cu—N = 2.0241 (9), 2.0374 (8) Å] and two chlorine atoms [Cu—Cl = 2.2500 (3), 2.2835 (3) Å]. The apical position is occupied by another Cl atom with the apical bond being significantly elongated at 2.6112 (3) Å. The trans angles of the base are 155.16 (3) and 173.79 (2)°. The Cu⋯Cu separation in the dimer is 3.4346 (3) Å. In the the loosely packed dimers are arranged in stacks propagating along the a axis. The X-band polycrystalline 77 K EPR spectrum of (I) demonstrates a typical axial pattern characteristic of mononuclear CuII complexes. Compound (I) is redox active and shows a cyclic voltammetric response with E1/2 = −0.037 V versus silver–silver chloride electrode (SSCE) assignable to the reduction peak of CuII/CuI in methanol as solvent.
CCDC reference: 1981381
1. Chemical context
The a]pyridinium cations. The first cation in the series, 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium, was obtained by the replacement of a conventional aqueous solution of methylamine with its solid hydrochloride salt in the reaction with 2-pyridinecarbaldehyde (2-PCA) in methanol (Buvaylo et al., 2015). The cation is a result of the acid-catalysed oxidative condensation–cyclization between two molecules of 2-PCA and one molecule of CH3NH2 with the acid added as an adduct of the amine. The prepared in situ organic cation forms a halometallate salt in the subsequent interaction with divalent metal halides (M = Mn, Co, Zn, Cd) or can be isolated in salt form with Cl−/NO3− anions (Buvaylo et al., 2015; Vassilyeva et al., 2019a,b, 2020).
of the title compound was determined as part of our ongoing research focused on the design and synthesis of the organic–inorganic halometallates with substituted imidazo[1,5-The burgeoning research in the field of organic–inorganic halometallate-based hybrids in search of new applications (Wheaton et al., 2018; Yangui et al., 2019; Szklarz et al., 2020) prompted us to extend the developed reaction to the possible preparation of a mixed-metal hybrid halometallate by combining two different metals with the organic precursors:
Cu – NiCl2·6H2O – CH3NH2·HCl – 2-PCA – CH3OH in air
Adhering to the direct synthesis approach (Kokozay et al., 2018), one of the metals was introduced in a zerovalent state. Our earlier studies showed that a metal powder was oxidized in solution to form a coordination compound in the presence of a proton-donating agent and dioxygen from the air, this being reduced to give H2O.
Such a complication of the reaction system had an adverse effect, precluding formation of the desired heterocycle with the imidazo[1,5-a]pyridinium skeleton but afforded the Schiff base 2-pyridylmethyl-N-methylimine (L) instead. The latter is a pale-yellow liquid usually accessible by a straightforward interaction of 2-PCA with a 40% aqueous solution of methylamine (Schulz et al., 2009). In the present work, the imine L was isolated as the copper(II) complex [CuLCl2]2, (I), the dimeric structure of which has been established by X-ray crystallography. The title compound was characterized by elemental analysis, IR and EPR spectroscopy as well as cyclic voltammetry.
2. Structural commentary
The title complex crystallizes in the triclinic P; the dimeric molecule is situated on a crystallographic inversion centre. The coordination about the Cu atom can be described as distorted square pyramidal. The angular structural index parameter, τ = (β − α)/60, evaluated from the two largest angles (α < β) in the five-coordinated geometry, which has ideal values of 1 for an equilateral bipyramid and 0 for a square pyramid, is equal to 0.31 (Table 1). The base of the pyramid consists of the two nitrogen atoms, N1, N22 from the bidentate chelate ligand L and the two chlorine atoms, Cl2 and the centrosymmetrically related Cl1 of the dimer (Fig. 1). Bond parameters are unexceptional (Table 1). The apical position is occupied by the Cl1 atom with the apical bond being significantly elongated at 2.6112 (3) Å compared to the Cu1—Cl1i bond length of 2.2835 (3) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z]. The trans angles of the base are N22—Cu1—Cl2 = 155.16 (3)° and N1—Cu1—Cl1i = 173.79 (2)°. The cis angles at the copper atom vary from 80.20 (3) to 108.803 (10)°. The Cu⋯Cui separation in the dimer is 3.4346 (3) Å.
3. Supramolecular features
In the a-axis direction and demonstrate loose packing (Fig. 2). The shortest distance between the Cl atoms of adjacent molecules is 4.4204 (5) Å for Cl2⋯Cl2ii [symmetry code: (ii) 1 − x, 2 − y, 2 − z] and the minimum separation between Cu atoms inside the stack is as long as 7.1550 (5) Å for Cu1⋯Cu1iii [symmetry code: (iii) −x, 1 − y, 1 − z]. The neighbouring pyridyl rings along the stack are coplanar, with the ring centroid distance being equal to the a-axis length [7.7054 (5) Å], which is too great for π–overlap.
the dimers are arranged in stacks propagating along the4. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.40, October 2019; Groom et al., 2016) reveals that crystal structures containing L as a ligand comprise seven examples of divalent Mn, Ni, Zn and Pd as well as tetravalent Sn compounds. Among these metal complexes, the ligand demonstrates the same coordination mode as in compound (I) both in monomeric Ni [CSD refcode ADIQOV (Bai et al., 2012); NEKYOT (Pioquinto-Mendoza et al., 2013)], Zn (BULSUX; Schulz et al., 2009), Pd (NEKYUZ; Pioquinto-Mendoza et al., 2013) and Sn coordination compounds (NELKAS and NELKEW; Guzmán-Percástegui et al., 2013) and Zn (BULSUX; Schulz et al., 2009) and Mn (VECDAJ; Bai et al., 2006) dimers. Out of all the L complexes, only the nickel ones accommodate two ligands in the coordination sphere of the metal ion.
5. IR and EPR spectroscopy measurements
A broad band centred at about 3440 cm−1 in the IR spectrum of (I) could be due to adsorbed water molecules (see supporting information). Several bands arising above and below 3000 cm−1 are assigned to aromatic =CH and alkyl –CH stretching, respectively. The characteristic ν(C=N) absorption of the Schiff base, which appears at 1652 cm−1 as a sharp and rather intense band in the IR spectrum of L (Schulz et al., 2009), is detected at 1648 cm−1 in the spectrum of (I). A number of sharp and intense absorptions are observed in the aromatic ring stretching (1600–1400 cm−1) and C—H out-of-plane bending regions (800–700 cm−1).
The X-band polycrystalline EPR spectra of (I) (Fig. 3) show a typical axial pattern characteristic for the mononuclear CuII complexes with no visible hyperfine structure. The spectra are almost temperature independent with a subtle change of their shapes seen between 295 and 77 K. The axial symmetry characteristics of (I), g|| = 2.26 and g⊥ = 2.06, with a g|| > g⊥ > 2.02 relation confirm a square-pyramidal coordination geometry for the metal centre suggested by the structural data. The additional low intensity lines at geff = 2.18, 2.16 and 2.12 may indicate exchange interactions between copper(II) ions in the dimer that are probably very weak.
6. Cyclic voltammetry
Compound (I) is redox active and shows a cyclic voltammetric response in the potential range of −0.12 – 0.047 V (E1/2 = −0.037 V vs SSCE), which is assignable to the reduction peak of CuII/CuI (Fig. 4). The complex exhibits quasi-reversible behaviour as indicated by the non-equivalent current intensity of cathodic and anodic peaks (ic/ia = 0.422) and a large separation between them (167 mV) (Crutchley et al., 1990). Since CuI prefers to be four-coordinate, the irreversibility of the CuII/CuI couple may be due to the dissociation of the dimers in solution. Reduction of copper(I) to copper(0) is associated with the irreversible peak II at −0.36 V vs SSCE. The latter process causes removal of the metal centre from the complex molecule. The resulting free ligand undergoes reduction at about −0.8 V, which is superimposed with the reduction peak of the solvent, as is evident from the comparison between the cyclic voltammograms of (I) and methanol solutions.
7. Synthesis and crystallization
2-PCA (0.19 ml, 2 mmol) was magnetically stirred with CH3NH2·HCl (0.27 g, 4 mmol) in 20 ml methanol in a 50 ml Erlenmeyer flask at room temperature (r.t.) for an hour. Dry NiCl2·6H2O (0.23 g, 1 mmol) and Cu powder (0.06 g, 1.0 mmol) were added to the resulting yellow solution of the preformed Schiff base. The mixture immediately turned green and was magnetically stirred at 323 K in open air to achieve dissolution of the metallic copper (4 h). The resulting solution was filtered and left to evaporate at r.t. Green plate-like crystals of (I) suitable for X-ray analysis deposited over two days. They were filtered off, washed with diethyl ether and finally dried in air. Yield (based on Cu): 71%. Analysis calculated for C14H16Cl4Cu2N4 (509.19): C 33.02, H 3.17, N 11.00%. Found: C 33.29, H 3.30, N 10.74%. IR (ν, cm−1, KBr): 3438br, 3092, 3068, 3022, 2992, 2922, 1648, 1598vs, 1568, 1474, 1434, 1364, 1300s, 1272, 1224, 1156s, 1108, 1050, 1024vs, 980, 946, 882, 782vs, 646, 514, 476, 420.
8. Refinement
Crystal data, data collection and structure . Anisotropic displacement parameters were employed for the non-hydrogen atoms. All hydrogen atoms were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1981381
https://doi.org/10.1107/S2056989020005903/pk2625sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020005903/pk2625Isup2.hkl
IR spectrum. DOI: https://doi.org/10.1107/S2056989020005903/pk2625sup3.pdf
Data collection: CrysAlis PRO (Rigaku OD, 2016); cell
CrysAlis PRO (Rigaku OD, 2016); data reduction: CrysAlis PRO (Rigaku OD, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999), Mercury (Macrae, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cu2Cl4(C7H8N2)2] | Z = 1 |
Mr = 509.19 | F(000) = 254 |
Triclinic, P1 | Dx = 1.884 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7054 (5) Å | Cell parameters from 7922 reflections |
b = 7.7240 (5) Å | θ = 4.0–37.5° |
c = 8.5606 (5) Å | µ = 2.97 mm−1 |
α = 103.659 (5)° | T = 100 K |
β = 98.803 (5)° | Plate, green |
γ = 110.273 (5)° | 0.56 × 0.41 × 0.16 mm |
V = 448.74 (5) Å3 |
Oxford Diffraction Gemini diffractometer | 4238 independent reflections |
Graphite monochromator | 3866 reflections with I > 2σ(I) |
Detector resolution: 10.4738 pixels mm-1 | Rint = 0.024 |
ω scans | θmax = 36.0°, θmin = 4.2° |
Absorption correction: analytical (CrysAlis Pro; Rigaku OD, 2016) | h = −12→12 |
Tmin = 0.367, Tmax = 0.669 | k = −12→12 |
13153 measured reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0232P)2 + 0.1399P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.054 | (Δ/σ)max = 0.002 |
S = 1.08 | Δρmax = 0.68 e Å−3 |
4238 reflections | Δρmin = −0.52 e Å−3 |
111 parameters | Extinction correction: SHELXL-2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.018 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. One low theta reflection was omitted from the refinement. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.50923 (2) | 0.72999 (2) | 0.57914 (2) | 0.01020 (4) | |
Cl1 | 0.73459 (3) | 0.54548 (3) | 0.59992 (3) | 0.01344 (5) | |
Cl2 | 0.36774 (3) | 0.72631 (3) | 0.79030 (3) | 0.01500 (5) | |
N1 | 0.73406 (12) | 0.98020 (12) | 0.71584 (10) | 0.01113 (13) | |
C2 | 0.82713 (14) | 1.08198 (14) | 0.62321 (12) | 0.01197 (15) | |
C21 | 0.74454 (15) | 0.99108 (15) | 0.44328 (12) | 0.01362 (16) | |
H21 | 0.797176 | 1.050864 | 0.36667 | 0.016* | |
N22 | 0.59926 (13) | 0.82859 (13) | 0.39284 (10) | 0.01293 (14) | |
C23 | 0.51841 (17) | 0.72996 (17) | 0.21469 (12) | 0.01786 (18) | |
H23A | 0.580724 | 0.81486 | 0.153155 | 0.027* | |
H23B | 0.380672 | 0.699047 | 0.18678 | 0.027* | |
H23C | 0.539512 | 0.609696 | 0.184401 | 0.027* | |
C3 | 0.98700 (15) | 1.25492 (15) | 0.69291 (13) | 0.01513 (17) | |
H3 | 1.047781 | 1.324625 | 0.625083 | 0.018* | |
C4 | 1.05621 (15) | 1.32381 (15) | 0.86576 (14) | 0.01670 (18) | |
H4 | 1.166445 | 1.441282 | 0.917816 | 0.02* | |
C5 | 0.96252 (15) | 1.21913 (15) | 0.96081 (13) | 0.01547 (17) | |
H5 | 1.008301 | 1.263236 | 1.078576 | 0.019* | |
C6 | 0.79997 (14) | 1.04805 (14) | 0.88085 (12) | 0.01344 (16) | |
H6 | 0.734271 | 0.977774 | 0.946118 | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01109 (6) | 0.00923 (6) | 0.00822 (5) | 0.00253 (4) | 0.00183 (4) | 0.00182 (4) |
Cl1 | 0.01209 (9) | 0.01174 (9) | 0.01270 (9) | 0.00393 (7) | −0.00076 (7) | 0.00086 (7) |
Cl2 | 0.01607 (10) | 0.01358 (10) | 0.01276 (9) | 0.00224 (8) | 0.00631 (8) | 0.00342 (7) |
N1 | 0.0127 (3) | 0.0098 (3) | 0.0105 (3) | 0.0037 (3) | 0.0030 (3) | 0.0034 (2) |
C2 | 0.0132 (4) | 0.0110 (4) | 0.0128 (4) | 0.0046 (3) | 0.0050 (3) | 0.0049 (3) |
C21 | 0.0170 (4) | 0.0150 (4) | 0.0125 (4) | 0.0082 (3) | 0.0061 (3) | 0.0065 (3) |
N22 | 0.0162 (4) | 0.0142 (4) | 0.0094 (3) | 0.0075 (3) | 0.0029 (3) | 0.0037 (3) |
C23 | 0.0238 (5) | 0.0209 (5) | 0.0087 (4) | 0.0100 (4) | 0.0027 (3) | 0.0037 (3) |
C3 | 0.0143 (4) | 0.0118 (4) | 0.0188 (4) | 0.0034 (3) | 0.0063 (3) | 0.0052 (3) |
C4 | 0.0136 (4) | 0.0119 (4) | 0.0200 (4) | 0.0021 (3) | 0.0033 (3) | 0.0020 (3) |
C5 | 0.0149 (4) | 0.0130 (4) | 0.0135 (4) | 0.0032 (3) | 0.0008 (3) | 0.0009 (3) |
C6 | 0.0148 (4) | 0.0120 (4) | 0.0102 (3) | 0.0029 (3) | 0.0015 (3) | 0.0024 (3) |
Cu1—N1 | 2.0241 (9) | N22—C23 | 1.4580 (13) |
Cu1—N22 | 2.0374 (8) | C23—H23A | 0.98 |
Cu1—Cl2 | 2.2500 (3) | C23—H23B | 0.98 |
Cu1—Cl1i | 2.2835 (3) | C23—H23C | 0.98 |
Cu1—Cl1 | 2.6112 (3) | C3—C4 | 1.3953 (15) |
N1—C6 | 1.3320 (12) | C3—H3 | 0.95 |
N1—C2 | 1.3561 (12) | C4—C5 | 1.3867 (15) |
C2—C3 | 1.3842 (14) | C4—H4 | 0.95 |
C2—C21 | 1.4663 (14) | C5—C6 | 1.3953 (14) |
C21—N22 | 1.2796 (13) | C5—H5 | 0.95 |
C21—H21 | 0.95 | C6—H6 | 0.95 |
N1—Cu1—N22 | 80.20 (3) | C21—N22—Cu1 | 114.21 (7) |
N1—Cu1—Cl2 | 92.29 (2) | C23—N22—Cu1 | 126.45 (7) |
N22—Cu1—Cl2 | 155.16 (3) | N22—C23—H23A | 109.5 |
N1—Cu1—Cl1i | 173.79 (2) | N22—C23—H23B | 109.5 |
N22—Cu1—Cl1i | 93.61 (3) | H23A—C23—H23B | 109.5 |
Cl2—Cu1—Cl1i | 93.600 (11) | N22—C23—H23C | 109.5 |
N1—Cu1—Cl1 | 88.81 (3) | H23A—C23—H23C | 109.5 |
N22—Cu1—Cl1 | 94.79 (3) | H23B—C23—H23C | 109.5 |
Cl2—Cu1—Cl1 | 108.803 (10) | C2—C3—C4 | 118.02 (9) |
Cl1i—Cu1—Cl1 | 91.137 (10) | C2—C3—H3 | 121 |
Cu1i—Cl1—Cu1 | 88.864 (11) | C4—C3—H3 | 121 |
C6—N1—C2 | 118.79 (8) | C5—C4—C3 | 119.36 (9) |
C6—N1—Cu1 | 127.36 (7) | C5—C4—H4 | 120.3 |
C2—N1—Cu1 | 113.81 (6) | C3—C4—H4 | 120.3 |
N1—C2—C3 | 122.78 (9) | C4—C5—C6 | 118.99 (10) |
N1—C2—C21 | 113.95 (8) | C4—C5—H5 | 120.5 |
C3—C2—C21 | 123.26 (9) | C6—C5—H5 | 120.5 |
N22—C21—C2 | 117.82 (8) | N1—C6—C5 | 122.05 (9) |
N22—C21—H21 | 121.1 | N1—C6—H6 | 119 |
C2—C21—H21 | 121.1 | C5—C6—H6 | 119 |
C21—N22—C23 | 119.31 (9) | ||
C6—N1—C2—C3 | −0.69 (15) | N1—C2—C3—C4 | 1.35 (16) |
Cu1—N1—C2—C3 | −178.63 (8) | C21—C2—C3—C4 | −177.87 (10) |
C6—N1—C2—C21 | 178.59 (9) | C2—C3—C4—C5 | −0.67 (16) |
Cu1—N1—C2—C21 | 0.66 (11) | C3—C4—C5—C6 | −0.57 (17) |
N1—C2—C21—N22 | −0.97 (14) | C2—N1—C6—C5 | −0.66 (15) |
C3—C2—C21—N22 | 178.31 (10) | Cu1—N1—C6—C5 | 176.97 (8) |
C2—C21—N22—C23 | −177.41 (9) | C4—C5—C6—N1 | 1.29 (17) |
C2—C21—N22—Cu1 | 0.77 (12) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (project No. 19BF037-05).
References
Bai, S. Q., Fang, C. J., He, Z., Gao, E. Q., Yan, C. H. & Hor, T. A. (2012). Dalton Trans. 41, 13379–13387. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bai, S. Q., Gao, E. Q., He, Z., Fang, C. J., Yue, Y. F. & Yan, C. H. (2006). Eur. J. Inorg. Chem. 2006, 407–415. Web of Science CSD CrossRef Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Buvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735–13744. Web of Science CSD CrossRef CAS PubMed Google Scholar
Crutchley, R. J., Hynes, R. & Gabe, E. J. (1990). Inorg. Chem. 29, 4921–4928. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guzmán-Percástegui, E., Reyes-Mata, C. A., Martínez-Otero, D., Andrade-López, N. & Alvarado-Rodríguez, J. G. (2013). Polyhedron, 50, 418–424. Google Scholar
Kokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183–237. Amsterdam: Elsevier. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pioquinto-Mendoza, J. R., Martínez-Otero, D., Andrade-López, N., Alvarado-Rodríguez, J. G., Salazar-Pereda, V., Sánchez-Cabrera, G. & Zuno-Cruz, F. J. (2013). Polyhedron, 50, 289–296. Google Scholar
Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Schulz, M., Klopfleisch, M., Görls, H., Kahnes, M. & Westerhausen, M. (2009). Inorg. Chim. Acta, 362, 4706–4712. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Szklarz, P., Jakubas, R., Gągor, A., Bator, G., Cichos, J. & Karbowiak, M. (2020). Inorg. Chem. Front. 7, 1780–1789. Web of Science CSD CrossRef CAS Google Scholar
Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Petrusenko, S. R., Melnyk, A. K. & Skelton, B. W. (2020). Acta Cryst. E76, 309–313. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W. & Sobolev, A. N. (2019b). Acta Cryst. E75, 1209–1214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vassilyeva, O. Yu., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, Y. & Boča, R. (2019a). Dalton Trans. 48, 11278–11284. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wheaton, A. M., Streep, M. E., Ohlhaver, C. M., Nicholas, A. D., Barnes, F. H., Patterson, H. H. & Pike, R. D. (2018). ACS Omega, 3, 15281–15292. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yangui, A., Roccanova, R., McWhorter, T. M., Wu, Y., Du, M. H. & Saparov, B. (2019). Chem. Mater. 31, 2983–2991. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.