research communications
structure, Hirshfeld surface analysis and DFT studies of 3,4-ethylenedioxythiophene solvated bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato]copper(II)
aDepartment of Applied Chemistry, Graduate School of Engineering & Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan, and bCenter for Natural and Human Sciences (CCNH), Federal University of ABC, Santo Andre, Sao Paulo 09210-580, Brazil
*Correspondence e-mail: ahori@shibaura-it.ac.jp
The title complex, Cu(L)2 or [Cu(C15HF10O2)2], comprised of one copper ion and two fully fluorinated ligands (L−), was crystallized with 3,4-ethylenedioxythiophene (EDOT, C6H6O2S) as a guest molecule to give in a dichloromethane solution a unique Cu(L)2·3C6H6O2S. In the crystal, the oxygen of one guest molecule, EDOT-1, is coordinated to the metal to give an alternate linear arrangement, and the π-planes of the others, EDOT-2 and EDOT-3, interact weakly with the pentafluorophenyl groups of the complex through arene–perfluoroarene interactions. Head-to-tail columnar and head-to-head dimeric arrangements are observed for EDOT-2 and EDOT-3, respectively, in the crystal. The Hirshfeld surface analysis indicated that the most important contributions for the crystal packing are from the F⋯F (20.4%), F⋯H/H⋯F (24.5%) and F⋯C/C⋯F (9.6%) interactions. The density functional theory (DFT) optimized structure at the ωB97X-D 6–31G* level was compared with the experimentally determined molecular structure in the solid state.
Keywords: crystal structure; co-crystal; Hirshfeld surface analysis; 3,4-ethylenedioxythiophene; EDOT.
CCDC reference: 2001277
1. Chemical context
3,4-Ethylenedioxythiophene, EDOT, is a familiar reagent for polythiophene or oligothiophene organic-active materials such as organic conductive macromolecules and optoelectronic materials. The corresponding poly-3,4-ethylenedioxythiophene, PEDOT, is one of the typical organic conductive materials with a high conductivity, environmental stability, mechanical strength and visible light transmittance, thus showing wide ranges of applications (Skotheim et al., 1998; Groenendaal et al., 2000; Kirchmeyer & Reuter, 2005). The affinity as a guest molecule and the corresponding intermolecular interactions in co-crystals of EDOT are crucial issues for chemists in order to understand the molecular recognition and supramolecular association events (Storsberg et al., 2000). The crystal packing and the relative intermolecular interactions are estimated by the oxygen and sulfur atoms for coordination bonds and molecular stacking of the π-interactions for the five-membered hetero-conjugated aromatic ring. On the other hand, molecular crystals of fully fluorinated coordination complexes have been studied as hosts, showing flexible and responsive crystal-packing structures depending on the guest molecules. Typically, the copper complex, Cu(L)2, produces unique co-crystals abundantly taken into benzene derivatives after crystallization and reversibly encapsulates their vapors (Hori et al., 2014), while the corresponding single crystals of Cu(dbm)2 (dbm = dibenzoylmethane) showed no interaction with the guest molecules. The driving forces of the molecular recognition estimated a metal⋯π interaction (Hunter, 1994; Ma & Dougherty, 1997) induced by improvement of the cationic properties of the central metal as a result of the fluorine-withdrawing nature and arene–perfluoroarene interaction (Williams, 1993, 2017; Hori, 2012) induced by the exact opposite quadrupole moment between the pentafluorophenyl ring of the complex and the aromatic ring of the guest molecule.
In this study, we examined the encapsulation of 3,4-ethylenedioxythiophene for the title complex, Cu(L)2, indicating a new guest-encapsulated crystal, Cu(L)2·3EDOT (I), as shown in the Scheme. The crystal of (I) was prepared by previously reported protocols (Hori & Arii, 2007). Typically, Cu(L)2 and an excess amount of EDOT in CH2Cl2 (or AcOEt) were slowly evaporated to yield green block-shaped crystals. The driving forces and the detailed weak intermolecular interactions were investigated by Hirshfeld surface analysis and DFT calculations. Using the same procedure, the corresponding compound Pd(L)2·nEDOT was not obtained, then Pd(L)2 was separately crystallized, showing different metal characteristics and affinity for EDOT. The electrostatic potential of the metal ions is also discussed.
2. Structural commentary
The contains one entire complex molecule and three EDOT molecules. The complex is non-centrosymmetric and comprises one Cu2+ ion and two ligands (L) to give a mononuclear Cu2+ complex, as shown in Fig. 1. The geometry around the metal center is pseudo-square planar; the bond distances Cu1—O1, Cu—O2, Cu—O3 and Cu1—O4 are 1.940 (2), 1.941 (2), 1.922 (2) and 1.928 (2) Å, respectively. The pentafluorophenyl groups [rings A–D (C1–C6, C10–C15, C16–C21 and C25–C30, respectively)] are highly twisted with respect to the coordination plane; the dihedral angle between ring A (or ring B) and Cu1/O1/C7–C9/O2 is 65.80 (13)° [or 36.24 (15)°] and the dihedral angle between ring C (or ring D) and Cu1/O3/C22–C24/O4 is 54.97 (14)° [or 51.22 (13)°], indicating that all these rings are crystallographically different. The flexible and twisted rings allow intermolecular interactions with the EDOT molecules to consolidate the crystal of (I). The oxygen atoms of EDOT-1 are coordinated with atom Cu1 of the complex molecule; the lengths of the coordination bonds are 2.421 (2) and 2.711 (2) Å for Cu1—O6 and Cu1—O5i [symmetry code: (i) x + 1, y, z], respectively (Figs. 1 and 2a). The EDOT-2 molecule shows disorder, the occupancy of the major component, EDOT-2A, being 0.691 (4); EDOT-2A shows close interactions with ring C of Cu(L)2 through an arene–perfluoroarene interaction. The EDOT-3 molecule shows no remarkable interactions in the crystal packing as discussed below. Each EDOT molecule shows a π-localized structure as shown in the Scheme; the lengths of the C=C double bonds are 1.355 (5) and 1.351 (4) Å for EDOT-1, 1.46 (1) and 1.32 (1) Å for EDOT-2A, and 1.361 (6) and 1.365 (6) Å for EDOT-3. EDOT-2A has a large variation in the distance because of the structural disorder, while the analysis was performed without restricting the binding distance of the carbon-to-carbon bonds. For comparison of the molecular recognitions of Cu(L)2, negative quadrupole moments of the molecules, e.g., benzene and carbon dioxide, are reversibly recognized in the crystals, because of the positive quadrupole moments of the pentaflurophenyl groups (Hori et al. 2014, 2017). Thus, the of (I) indicates the possibility that the butadiene moiety, C=C—C=C, in EDOT also has a negative surface and interacts in the crystal of Cu(L)2 through electrostatic interactions.
of (I)3. Supramolecular features
The partial view of the packing structure in Fig. 2a clearly shows a one-dimensional linear chain orientation between the complex molecule and EDOT-1. EDOT-1 coordinates to the copper ion of the complex to form a 1:1 alternating linear structure along the a-axis direction. The EDOT-2A and EDOT-3 molecules are inserted in the voids of the linear chain along the a- and c-axis directions, respectively. EDOT-2A forms a head-to-tail one-dimensional chain (Fig. 2c) with weak hydrogen bonds (Table 1) between the sulfur atom and the aliphatic proton with D⋯A distances of 3.051 (11) and 3.220 (9) Å for C41A—H41A⋯S2A and C42A—H42A⋯S2A, respectively, and the molecule is further sandwiched by the pentafluorophenyl rings of the complex. EDOT-3 forms discrete dimers (Fig. 2d) in a head-to-head configuration between the aliphatic moieties, and the dimers are also surrounded by the pentafluorophenyl rings of the complex molecule. Short intermolecular interactions between the centroids (Cg) of the pentafluorophenyl ring in Cu(L)2 and the five-membered ring of EDOT are observed. The pentafluorophenyl ring A (C1–C6) is sited on the adjacent EDOT-2Aii (S2A/C37A–C40A) [symmetry code: (ii) x, y, z + 1]: the centroid–centroid distance Cg⋯Cg is 3.950 (4) Å and the shortest perpendicular distance of Cg (ring A) on the ring of EDOT-2Aii is 3.0832 (13) Å. Ring B (C10–C15) is sandwiched between two adjacent molecules, EDOT-3iii and EDOT-3iv (S3/C43–C46) [symmetry code: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1]: the centroid–centroid distances are 3.906 (2) and 4.054 (2) Å, respectively, and the corresponding shortest perpendicular distances are 3.5236 (19) and 3.2687 (15) Å, respectively. Ring C (C16–C21) interacts with EDOT-2A (S2A/C37A–C40A) and EDOT-2B (minor disorder component; S2B/C37B–C40B); the centroid–centroid distances are 3.586 (3) and 3.684 (5) Å, respectively, and the corresponding shortest perpendicular distances are 3.5337 (14) and 3.299 (4) Å, respectively. Ring D (C25–C30) interacts with the adjacent EDOT-1i (S1/C31–C34) with centroid–centroid and perpendicular distances of 3.7052 (19) and 3.3405 (13) Å, respectively. The results indicate that a remarkable arene–perfluoroarene interaction is observed for EDOT-2A with a length close to the sum of the van der Waals radii. A notable intramolecular C—F⋯π interaction is observed between F5 and EDOT-1 [3.287 (2) Å] and intermolecular C—F⋯π interactions occur between the pentafluorophenyl rings as an F⋯π(hole) interaction; the distances are 2.997 (2) and 3.175 (3) Å for F9⋯ring Aiv and F14⋯ring Dv, respectively [symmetry code: (v) x, −y + , z − ]. These aromatic interactions are estimated to be induced by the positive electron distribution and quadrupole moment of the pentafluorophenyl rings.
4. Hirshfeld surface analysis
To understand all the intermolecular interactions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). The HS of the complex molecule mapped with de (the distance between the surface and external atoms) and the corresponding fingerprint plots are shown in Figs. 3 and 4, respectively. The complex Cu(L)2 is surrounded by EDOT and Cu(L)2 molecules and the intermolecular interactions are indicated in red (Fig. 3). The main interactions for the whole structure are F⋯F and F⋯H/H⋯F, contributing 20.4% and 24.5%, respectively, to the overall crystal packing due to the high surface area of fluorine for the complex. The presence of π–π and C—H⋯π interactions is reflected in the contributions of the C⋯C (5.2%) and C⋯H/H⋯C (6.2%) contacts. The two-dimensional fingerprint plots (McKinnon et al., 2007) of the independent Cu(L)2 and three EDOT molecules are shown in Fig. 4a–d, together with the contributions of each element. For Cu(L)2, the contribution of the Cu atom indicates interaction only with the oxygen of EDOT-1 (1.2%). For the three EDOT molecules, the main interactions are H⋯F contributing 23.6%, 25.3%, and 26.8% for EDOT-1, 2A and 3, respectively. The contribution of the π–π interactions through C⋯C interactions shows the relationship EDOT-2A (8.2%) > EDOT-3 (6.0%) > EDOT-1 (4.5%), which indicates good agreement of the arene–perfluoroarene interactions in the crystal packing. For the sulfur in EDOT, the S⋯H interaction is observed for EDOT-1 (8.1%) > EDOT-2A (7.6%), but no interaction for EDOT-3 (0.0%) and the S⋯F interaction is observed for EDOT-3 (16.1%) >> EDOT-2A (4.3%) > EDOT-1 (3.3%), which is also shown by the relationships of Figs. 2 and 3. For the oxygen in EDOT, O⋯H interactions are observed [EDOT-2A (8.5%) > EDOT-3 (7.2%) > EDOT-1 (2.0%)] as well as O⋯F [EDOT-2A (6.1%) > EDOT-3 (2.2%) > EDOT-1 (1.2%)] and O⋯Cu interactions [EDOT-1 (4.5%) > EDOT-2A and 3 (0.0%)]. These results indicate that the main intermolecular contributions without π-interactions are Cu⋯O and S⋯H for EDOT-1, O⋯H for EDOT-2A, and S⋯F for EDOT-3.
5. DFT calculations
The DFT calculations were performed to obtain quantitative values for the L)2 and EDOT in (I) range from −135.79 to +162.31 kJ mol−1, as shown in Fig. 5. The highest electrostatic potential, in which the electron-poor region is shown in blue, is on the Cu atom, the edge of the ketonato hydrogen, the central part of the pentafluorophenyl rings in Cu(L)2, and the aromatic and aliphatic hydrogen atoms of EDOT. The lowest electrostatic potential, shown in red, is around the oxygen atoms of Cu(L)2 and EDOT. The highest electrostatic potentials of the centers of the pentafluorophenyl rings A–D are approximately +97, +90, +91, +83 kJ mol−1, respectively, which is almost the same as the independently calculated value for Cu(L)2 (+97 kJ mol−1 for the pentafluorophenyl ring), which was calculated using the currently reported (Crowder et al., 2019). The lowest electrostatic potentials of the five-membered rings of EDOT are −77, −63, and −63 kJ mol−1 for EDOT-1, 2A and 3, respectively, indicating the electron distribution is slightly lower than that calculated independently for EDOT (−81 kJ mol−1) and used to estimate the intermolecular interactions of Cu(L)2 and EDOT. The electrostatic potential maps of the EDOT molecules are shown in Fig. 5c. The left-hand structure, optimized and calculated for an independent molecule, clearly indicates that the EDOT-2A has more positive surfaces. The lowest electrostatic potentials of the oxygen atoms are −117 and −118 kJ mol−1 for EDOT (calculated from the refined structure of a single component), −85 and −121 kJ mol−1 for EDOT-1, −109 and −63 kJ mol−1 for EDOT-2A, and −102 and −113 kJ mol−1 for EDOT-3. These values show the strength of the intermolecular interactions of the oxygen atoms; one oxygen in EDOT-1 is an for the coordination bond with decreasing electron density (−85 kJ mol−1) and one oxygen in EDOT-2A is an for the hydrogen bond with decreasing electron density (−63 kJ mol−1). The highest electrostatic potential of the surface of the aliphatic H atoms is +162 kJ mol−1 in EDOT-2A and the values of each EDOT are +116, +112, and +123 kJ mol−1 for EDOT (calculated), EDOT-1, and EDOT-3, respectively. The lowest electrostatic potential on sulfur is −32 kJ mol−1 in EDOT-2A and the values of each EDOT are −79, −65, and −48 kJ mol−1 for EDOT (calculated), EDOT-1, and EDOT-3, respectively. These results show the outflowing of the surface electrons due to the formation of the and the corresponding intermolecular interactions.
and intermolecular interactions. The electrostatic potentials of Cu(6. Synthesis
To a solution of Cu(L)2 (15 mg, 17 µmol) in chloroform (2 ml) was added an excess amount of EDOT. The solution was evaporated slowly to give green crystals of Cu(L)2·3EDOT (I), which were separated by filtration and characterized by crystallographic and thermogravimetric (TG) analyses.
7. Thermogravimetric studies
In the TG analysis for (I), the weight loss indicates an approximate one-step elimination (Fig. 6); the total elimination of EDOT was found to be 33.6%, which is almost the same as the calculated value of 33.0% around 50–130°C. The release curve is gentle, and the coordinated EDOT and solvated EDOT are gradually separated from the crystals without being distinguished, confirming the weak coordination bond due to the Jahn–Teller effect of the Cu ion. In the complex, the positive electrostatic potential on the copper (+206.41 kJ mol−1) in the independent crystal of Cu(L)2 was higher than that of the corresponding non-fluorinated complex, +116.71 kJ mol−1 for Cu(dbm)2 (Kusakawa et al., 2020) due to the substitution of the pentafluorophenyl groups, indicating that the present EDOT recognition was induced. For the same procedure, Pd(L)2 and EDOT were combined to give brown needle-shaped crystals, which are clearly characterized as Pd(L)2 as a single component (Nakajima & Hori, 2014) and no guest release was observed by the brown crystals of Pd(L)2; the electrostatic potentials on the metal center of Pd(L)2 and Pd(dbm)2 are −1.0 and −73 kJ mol−1, respectively (Kusakawa et al., 2020).
In summary, we have discussed the , in which guest recognition is induced by the flexible orientations and positive electrostatic potentials of the pentafluorophenyl groups and the enhanced positive potential on the copper ion of the fluorinated complex, Cu(L)2. The clearly suggests that the alternate coordination polymer between the metal center of Cu(L)2 and the oxygen atom of EDOT-1 was obtained along the a axis through the weak coordination bond and the close stacking between the pentafluorophenyl group of Cu(L)2 and the aromatic moiety of EDOT-2 and EDOT-3 was obtained through the arene–perfluoroarene interactions.
and the intermolecular interactions for three EDOT molecules inserted in (I)8. Refinement
Crystal data, data collection and structure . H atoms were placed in geometrically idealized positions and refined as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2001277
https://doi.org/10.1107/S2056989020006155/tx2020sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020006155/tx2020Isup3.hkl
Data collection: APEX3 (Bruker, 2018); cell
APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011).[Cu(C15HF10O2)2]·3(C6H6O2S) | F(000) = 2580 |
Mr = 1296.36 | Dx = 1.814 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7343 (3) Å | Cell parameters from 9808 reflections |
b = 46.8973 (16) Å | θ = 2.6–26.4° |
c = 13.2580 (5) Å | µ = 0.73 mm−1 |
β = 99.211 (1)° | T = 100 K |
V = 4746.9 (3) Å3 | Prismatic, green |
Z = 4 | 0.17 × 0.17 × 0.11 mm |
Bruker D8 Goniometer diffractometer | 7663 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.042 |
φ and ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | h = −9→9 |
Tmin = 0.88, Tmax = 0.93 | k = −55→55 |
54634 measured reflections | l = −15→15 |
8367 independent reflections |
Refinement on F2 | 236 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0217P)2 + 17.5257P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
8367 reflections | Δρmax = 1.74 e Å−3 |
821 parameters | Δρmin = −1.69 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.7594 (4) | 0.57893 (7) | 0.7738 (3) | 0.0197 (7) | |
C2 | 0.7513 (5) | 0.56890 (7) | 0.8708 (3) | 0.0239 (7) | |
C3 | 0.5906 (5) | 0.56378 (7) | 0.8994 (2) | 0.0230 (7) | |
C4 | 0.4391 (4) | 0.56870 (7) | 0.8317 (3) | 0.0202 (7) | |
C5 | 0.4504 (4) | 0.57829 (6) | 0.7348 (2) | 0.0161 (6) | |
C6 | 0.6098 (4) | 0.58382 (6) | 0.7030 (2) | 0.0147 (6) | |
C7 | 0.6196 (4) | 0.59398 (6) | 0.5964 (2) | 0.0147 (6) | |
C8 | 0.5525 (4) | 0.57585 (7) | 0.5164 (2) | 0.0167 (6) | |
H8 | 0.504456 | 0.558107 | 0.532651 | 0.020* | |
C9 | 0.5522 (4) | 0.58236 (6) | 0.4136 (2) | 0.0161 (6) | |
C10 | 0.4813 (4) | 0.56082 (7) | 0.3334 (2) | 0.0181 (7) | |
C11 | 0.3819 (5) | 0.56923 (7) | 0.2409 (3) | 0.0223 (7) | |
C12 | 0.3197 (5) | 0.55012 (8) | 0.1642 (3) | 0.0263 (8) | |
C13 | 0.3578 (5) | 0.52165 (8) | 0.1781 (3) | 0.0289 (8) | |
C14 | 0.4521 (5) | 0.51230 (7) | 0.2688 (3) | 0.0270 (8) | |
C15 | 0.5126 (4) | 0.53170 (7) | 0.3443 (3) | 0.0215 (7) | |
C16 | 0.5439 (4) | 0.69479 (7) | 0.1554 (3) | 0.0211 (7) | |
C17 | 0.5208 (5) | 0.70298 (8) | 0.0544 (3) | 0.0244 (7) | |
C18 | 0.6640 (5) | 0.71125 (8) | 0.0115 (3) | 0.0265 (8) | |
C19 | 0.8283 (5) | 0.71115 (7) | 0.0703 (3) | 0.0234 (7) | |
C20 | 0.8482 (4) | 0.70269 (7) | 0.1712 (2) | 0.0194 (7) | |
C21 | 0.7071 (4) | 0.69421 (6) | 0.2165 (2) | 0.0177 (7) | |
C22 | 0.7309 (4) | 0.68348 (7) | 0.3249 (2) | 0.0178 (7) | |
C23 | 0.8210 (4) | 0.70030 (7) | 0.4022 (2) | 0.0201 (7) | |
H23 | 0.868645 | 0.717911 | 0.384186 | 0.024* | |
C24 | 0.8448 (4) | 0.69249 (7) | 0.5051 (2) | 0.0173 (7) | |
C25 | 0.9650 (4) | 0.71009 (6) | 0.5807 (2) | 0.0171 (7) | |
C26 | 0.9238 (4) | 0.71685 (7) | 0.6765 (3) | 0.0203 (7) | |
C27 | 1.0395 (5) | 0.73123 (7) | 0.7492 (2) | 0.0217 (7) | |
C28 | 1.2028 (5) | 0.73887 (7) | 0.7288 (3) | 0.0242 (8) | |
C29 | 1.2486 (4) | 0.73251 (7) | 0.6353 (3) | 0.0215 (7) | |
C30 | 1.1306 (4) | 0.71850 (7) | 0.5624 (2) | 0.0185 (7) | |
Cu1 | 0.68190 (5) | 0.63872 (2) | 0.46222 (3) | 0.01411 (10) | |
F1 | 0.9178 (2) | 0.58323 (5) | 0.74715 (16) | 0.0310 (5) | |
F2 | 0.8979 (3) | 0.56388 (5) | 0.93711 (16) | 0.0374 (5) | |
F3 | 0.5815 (3) | 0.55400 (5) | 0.99358 (14) | 0.0313 (5) | |
F4 | 0.2828 (3) | 0.56383 (5) | 0.85960 (15) | 0.0323 (5) | |
F5 | 0.3000 (2) | 0.58185 (4) | 0.66859 (14) | 0.0241 (4) | |
F6 | 0.3354 (3) | 0.59659 (4) | 0.22499 (15) | 0.0325 (5) | |
F7 | 0.2237 (3) | 0.55922 (5) | 0.07760 (15) | 0.0357 (5) | |
F8 | 0.3024 (3) | 0.50278 (5) | 0.10381 (17) | 0.0414 (6) | |
F9 | 0.4876 (3) | 0.48451 (4) | 0.28398 (18) | 0.0411 (6) | |
F10 | 0.6066 (3) | 0.52110 (4) | 0.43069 (15) | 0.0271 (5) | |
F11 | 0.4006 (3) | 0.68757 (5) | 0.19509 (15) | 0.0315 (5) | |
F12 | 0.3608 (3) | 0.70347 (5) | −0.00156 (16) | 0.0382 (5) | |
F13 | 0.6433 (3) | 0.71930 (6) | −0.08624 (16) | 0.0436 (6) | |
F14 | 0.9691 (3) | 0.71899 (5) | 0.02976 (16) | 0.0380 (6) | |
F15 | 1.0123 (2) | 0.70194 (4) | 0.22413 (14) | 0.0262 (4) | |
F16 | 0.7661 (3) | 0.71015 (4) | 0.69951 (15) | 0.0281 (5) | |
F17 | 0.9945 (3) | 0.73766 (4) | 0.83999 (15) | 0.0310 (5) | |
F18 | 1.3151 (3) | 0.75249 (5) | 0.79938 (16) | 0.0344 (5) | |
F19 | 1.4079 (3) | 0.73923 (5) | 0.61553 (17) | 0.0317 (5) | |
F20 | 1.1831 (2) | 0.71248 (4) | 0.47335 (14) | 0.0232 (4) | |
O1 | 0.6911 (3) | 0.61812 (4) | 0.58985 (16) | 0.0160 (5) | |
O2 | 0.6045 (3) | 0.60555 (5) | 0.37963 (16) | 0.0174 (5) | |
O3 | 0.6659 (3) | 0.65885 (5) | 0.33475 (16) | 0.0183 (5) | |
O4 | 0.7762 (3) | 0.67114 (4) | 0.54204 (16) | 0.0161 (5) | |
C31 | 0.1008 (4) | 0.64236 (7) | 0.6576 (3) | 0.0206 (7) | |
H31 | −0.006458 | 0.635978 | 0.676158 | 0.025* | |
C32 | 0.1423 (4) | 0.64075 (7) | 0.5623 (2) | 0.0175 (6) | |
C33 | 0.3118 (4) | 0.65181 (7) | 0.5562 (2) | 0.0174 (7) | |
C34 | 0.3973 (4) | 0.66157 (7) | 0.6465 (3) | 0.0217 (7) | |
H34 | 0.511792 | 0.669515 | 0.656735 | 0.026* | |
C35 | 0.1249 (4) | 0.62454 (7) | 0.3939 (3) | 0.0224 (7) | |
H35A | 0.039407 | 0.621591 | 0.330723 | 0.027* | |
H35B | 0.194058 | 0.606808 | 0.407871 | 0.027* | |
C36 | 0.2450 (4) | 0.64868 (7) | 0.3781 (2) | 0.0203 (7) | |
H36A | 0.299577 | 0.644895 | 0.316742 | 0.024* | |
H36B | 0.176752 | 0.666565 | 0.366393 | 0.024* | |
O5 | 0.0319 (3) | 0.63026 (5) | 0.47813 (17) | 0.0219 (5) | |
O6 | 0.3806 (3) | 0.65200 (5) | 0.46638 (17) | 0.0196 (5) | |
S1 | 0.26923 (11) | 0.65754 (2) | 0.74025 (6) | 0.02224 (19) | |
C37A | 0.6149 (13) | 0.63435 (13) | −0.0633 (7) | 0.081 (2) | 0.691 (4) |
H37A | 0.563149 | 0.637854 | −0.132152 | 0.097* | 0.691 (4) |
C38A | 0.8040 (15) | 0.63579 (9) | −0.0290 (9) | 0.065 (2) | 0.691 (4) |
C39A | 0.8335 (12) | 0.63070 (10) | 0.0769 (6) | 0.0505 (18) | 0.691 (4) |
C40A | 0.6864 (13) | 0.62610 (15) | 0.1133 (9) | 0.070 (2) | 0.691 (4) |
H40A | 0.682749 | 0.622829 | 0.183669 | 0.084* | 0.691 (4) |
C41A | 1.1061 (13) | 0.6324 (2) | −0.0266 (6) | 0.076 (2) | 0.691 (4) |
H41A | 1.200067 | 0.640480 | −0.060666 | 0.091* | 0.691 (4) |
H41B | 1.116849 | 0.611377 | −0.026951 | 0.091* | 0.691 (4) |
C42A | 1.1269 (11) | 0.64274 (16) | 0.0798 (5) | 0.0560 (18) | 0.691 (4) |
H42A | 1.245676 | 0.637829 | 0.115366 | 0.067* | 0.691 (4) |
H42B | 1.115506 | 0.663764 | 0.079751 | 0.067* | 0.691 (4) |
O7A | 0.9340 (10) | 0.64083 (11) | −0.0833 (4) | 0.0793 (18) | 0.691 (4) |
O8A | 1.0018 (9) | 0.63079 (13) | 0.1331 (6) | 0.0464 (17) | 0.691 (4) |
S2A | 0.5036 (4) | 0.62657 (5) | 0.0220 (3) | 0.0935 (11) | 0.691 (4) |
C37B | 0.7270 (17) | 0.6447 (2) | −0.1070 (9) | 0.026 (2) | 0.309 (4) |
H37B | 0.629116 | 0.642764 | −0.159856 | 0.032* | 0.309 (4) |
C38B | 0.741 (2) | 0.6349 (2) | −0.0184 (14) | 0.027 (3) | 0.309 (4) |
C39B | 0.9021 (17) | 0.6392 (2) | 0.0503 (10) | 0.026 (2) | 0.309 (4) |
C40B | 1.0267 (17) | 0.6549 (2) | 0.0030 (10) | 0.033 (3) | 0.309 (4) |
H40B | 1.142956 | 0.659473 | 0.033626 | 0.040* | 0.309 (4) |
C41B | 0.644 (2) | 0.6146 (4) | 0.1222 (13) | 0.044 (3) | 0.309 (4) |
H41C | 0.619068 | 0.631998 | 0.159730 | 0.053* | 0.309 (4) |
H41D | 0.562812 | 0.599481 | 0.138370 | 0.053* | 0.309 (4) |
C42B | 0.823 (2) | 0.6056 (3) | 0.1583 (11) | 0.048 (3) | 0.309 (4) |
H42C | 0.854016 | 0.589377 | 0.116939 | 0.058* | 0.309 (4) |
H42D | 0.835506 | 0.599434 | 0.230543 | 0.058* | 0.309 (4) |
O7B | 0.6071 (13) | 0.6205 (2) | 0.0122 (8) | 0.043 (2) | 0.309 (4) |
O8B | 0.9395 (18) | 0.6302 (3) | 0.1485 (12) | 0.035 (3) | 0.309 (4) |
S2B | 0.9318 (6) | 0.66369 (8) | −0.1156 (3) | 0.0442 (12) | 0.309 (4) |
C43 | 0.0201 (7) | 0.50447 (11) | 0.7530 (4) | 0.0524 (12) | |
H43 | −0.018735 | 0.523709 | 0.751083 | 0.063* | |
C44 | −0.0114 (5) | 0.48559 (9) | 0.6737 (3) | 0.0328 (9) | |
C45 | 0.0687 (5) | 0.45912 (10) | 0.6969 (3) | 0.0356 (9) | |
C46 | 0.1565 (7) | 0.45771 (13) | 0.7943 (3) | 0.0626 (16) | |
H46 | 0.218746 | 0.441339 | 0.822400 | 0.075* | |
C47 | −0.1409 (5) | 0.46667 (9) | 0.5206 (3) | 0.0311 (9) | |
H47A | −0.179232 | 0.472340 | 0.448601 | 0.037* | |
H47B | −0.239788 | 0.456524 | 0.543732 | 0.037* | |
C48 | 0.0045 (6) | 0.44703 (8) | 0.5246 (3) | 0.0366 (9) | |
H48A | −0.031048 | 0.430597 | 0.479103 | 0.044* | |
H48B | 0.103712 | 0.456699 | 0.500110 | 0.044* | |
O9 | −0.1054 (4) | 0.49163 (6) | 0.5800 (2) | 0.0412 (7) | |
O10 | 0.0591 (4) | 0.43703 (6) | 0.6276 (2) | 0.0443 (7) | |
S3 | 0.14290 (18) | 0.48766 (4) | 0.85819 (10) | 0.0653 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0169 (16) | 0.0194 (16) | 0.0221 (17) | −0.0026 (13) | 0.0010 (13) | 0.0019 (13) |
C2 | 0.0243 (18) | 0.0256 (18) | 0.0186 (17) | −0.0002 (14) | −0.0061 (14) | 0.0014 (14) |
C3 | 0.035 (2) | 0.0201 (17) | 0.0139 (16) | −0.0022 (15) | 0.0036 (14) | −0.0006 (13) |
C4 | 0.0212 (17) | 0.0202 (17) | 0.0207 (17) | −0.0016 (13) | 0.0079 (13) | −0.0019 (13) |
C5 | 0.0164 (16) | 0.0140 (15) | 0.0167 (16) | 0.0006 (12) | −0.0011 (12) | −0.0003 (12) |
C6 | 0.0187 (16) | 0.0098 (14) | 0.0154 (15) | −0.0015 (12) | 0.0020 (12) | −0.0012 (12) |
C7 | 0.0105 (14) | 0.0151 (15) | 0.0182 (16) | 0.0031 (12) | 0.0016 (12) | 0.0011 (12) |
C8 | 0.0193 (16) | 0.0120 (15) | 0.0184 (16) | −0.0036 (12) | 0.0022 (13) | −0.0003 (12) |
C9 | 0.0137 (15) | 0.0145 (16) | 0.0197 (16) | 0.0020 (12) | 0.0008 (12) | −0.0023 (13) |
C10 | 0.0191 (16) | 0.0183 (16) | 0.0167 (16) | −0.0003 (13) | 0.0025 (13) | −0.0035 (13) |
C11 | 0.0261 (18) | 0.0197 (17) | 0.0204 (17) | 0.0034 (14) | 0.0019 (14) | −0.0033 (14) |
C12 | 0.0258 (19) | 0.034 (2) | 0.0176 (17) | 0.0021 (15) | −0.0022 (14) | −0.0024 (15) |
C13 | 0.032 (2) | 0.028 (2) | 0.0238 (18) | −0.0012 (16) | −0.0025 (15) | −0.0154 (15) |
C14 | 0.032 (2) | 0.0165 (17) | 0.031 (2) | 0.0015 (14) | 0.0003 (16) | −0.0069 (15) |
C15 | 0.0210 (17) | 0.0215 (17) | 0.0201 (17) | 0.0011 (14) | −0.0025 (13) | −0.0037 (14) |
C16 | 0.0208 (17) | 0.0191 (17) | 0.0236 (17) | −0.0019 (13) | 0.0040 (14) | 0.0001 (14) |
C17 | 0.0236 (18) | 0.0260 (18) | 0.0217 (17) | 0.0009 (14) | −0.0023 (14) | 0.0026 (14) |
C18 | 0.036 (2) | 0.0291 (19) | 0.0136 (16) | 0.0021 (16) | 0.0011 (15) | 0.0077 (14) |
C19 | 0.0261 (18) | 0.0240 (18) | 0.0215 (17) | −0.0026 (14) | 0.0078 (14) | 0.0052 (14) |
C20 | 0.0217 (17) | 0.0149 (16) | 0.0204 (16) | −0.0024 (13) | 0.0000 (13) | 0.0005 (13) |
C21 | 0.0250 (17) | 0.0112 (15) | 0.0172 (16) | −0.0025 (13) | 0.0038 (13) | 0.0002 (12) |
C22 | 0.0173 (16) | 0.0178 (16) | 0.0188 (16) | −0.0008 (13) | 0.0044 (13) | 0.0012 (13) |
C23 | 0.0242 (17) | 0.0163 (16) | 0.0193 (16) | −0.0065 (13) | 0.0023 (13) | 0.0008 (13) |
C24 | 0.0163 (16) | 0.0138 (15) | 0.0226 (17) | 0.0005 (12) | 0.0058 (13) | −0.0029 (13) |
C25 | 0.0213 (17) | 0.0112 (15) | 0.0190 (16) | −0.0029 (12) | 0.0039 (13) | 0.0016 (12) |
C26 | 0.0209 (17) | 0.0166 (16) | 0.0243 (17) | 0.0003 (13) | 0.0060 (14) | −0.0007 (13) |
C27 | 0.033 (2) | 0.0153 (16) | 0.0167 (16) | 0.0019 (14) | 0.0044 (14) | −0.0025 (13) |
C28 | 0.0309 (19) | 0.0133 (16) | 0.0254 (18) | −0.0023 (14) | −0.0047 (15) | −0.0032 (14) |
C29 | 0.0193 (17) | 0.0165 (16) | 0.0287 (18) | −0.0025 (13) | 0.0033 (14) | 0.0006 (14) |
C30 | 0.0238 (17) | 0.0137 (15) | 0.0187 (16) | 0.0000 (13) | 0.0058 (13) | −0.0002 (13) |
Cu1 | 0.0160 (2) | 0.01277 (19) | 0.01372 (19) | −0.00238 (14) | 0.00286 (14) | −0.00015 (15) |
F1 | 0.0151 (10) | 0.0467 (13) | 0.0298 (11) | −0.0041 (9) | −0.0011 (8) | 0.0100 (10) |
F2 | 0.0266 (11) | 0.0555 (15) | 0.0250 (11) | 0.0015 (10) | −0.0108 (9) | 0.0114 (10) |
F3 | 0.0435 (13) | 0.0369 (12) | 0.0134 (9) | 0.0006 (10) | 0.0042 (9) | 0.0057 (9) |
F4 | 0.0260 (11) | 0.0471 (13) | 0.0263 (11) | −0.0014 (10) | 0.0118 (9) | 0.0063 (10) |
F5 | 0.0156 (9) | 0.0345 (11) | 0.0211 (10) | 0.0014 (8) | −0.0002 (8) | 0.0049 (8) |
F6 | 0.0462 (13) | 0.0219 (11) | 0.0243 (11) | 0.0109 (9) | −0.0097 (9) | −0.0028 (8) |
F7 | 0.0414 (13) | 0.0422 (13) | 0.0187 (10) | 0.0043 (10) | −0.0100 (9) | −0.0043 (9) |
F8 | 0.0543 (15) | 0.0360 (13) | 0.0294 (12) | −0.0026 (11) | −0.0068 (11) | −0.0208 (10) |
F9 | 0.0602 (16) | 0.0167 (11) | 0.0412 (13) | 0.0042 (10) | −0.0074 (11) | −0.0109 (10) |
F10 | 0.0333 (11) | 0.0185 (10) | 0.0253 (10) | 0.0031 (8) | −0.0076 (9) | −0.0014 (8) |
F11 | 0.0209 (10) | 0.0467 (13) | 0.0270 (11) | −0.0044 (9) | 0.0046 (9) | 0.0059 (10) |
F12 | 0.0258 (11) | 0.0569 (15) | 0.0278 (11) | −0.0003 (10) | −0.0077 (9) | 0.0093 (11) |
F13 | 0.0419 (14) | 0.0681 (17) | 0.0195 (11) | −0.0015 (12) | 0.0010 (10) | 0.0185 (11) |
F14 | 0.0329 (12) | 0.0576 (15) | 0.0250 (11) | −0.0105 (11) | 0.0098 (9) | 0.0122 (10) |
F15 | 0.0215 (10) | 0.0346 (11) | 0.0217 (10) | −0.0065 (9) | 0.0007 (8) | 0.0056 (9) |
F16 | 0.0272 (11) | 0.0320 (11) | 0.0280 (11) | −0.0053 (9) | 0.0137 (9) | −0.0078 (9) |
F17 | 0.0468 (13) | 0.0271 (11) | 0.0201 (10) | −0.0019 (10) | 0.0088 (9) | −0.0092 (9) |
F18 | 0.0379 (13) | 0.0307 (12) | 0.0301 (12) | −0.0077 (10) | −0.0080 (10) | −0.0086 (9) |
F19 | 0.0208 (11) | 0.0341 (12) | 0.0399 (13) | −0.0107 (9) | 0.0037 (9) | −0.0027 (10) |
F20 | 0.0252 (10) | 0.0256 (10) | 0.0208 (10) | −0.0040 (8) | 0.0100 (8) | −0.0015 (8) |
O1 | 0.0170 (11) | 0.0142 (11) | 0.0162 (11) | −0.0026 (9) | 0.0014 (9) | 0.0004 (9) |
O2 | 0.0213 (12) | 0.0161 (11) | 0.0150 (11) | −0.0010 (9) | 0.0035 (9) | −0.0015 (9) |
O3 | 0.0220 (12) | 0.0165 (11) | 0.0163 (11) | −0.0056 (9) | 0.0026 (9) | 0.0000 (9) |
O4 | 0.0182 (11) | 0.0157 (11) | 0.0154 (11) | −0.0027 (9) | 0.0051 (9) | −0.0010 (9) |
C31 | 0.0172 (16) | 0.0221 (17) | 0.0230 (17) | 0.0004 (13) | 0.0047 (13) | 0.0009 (14) |
C32 | 0.0159 (16) | 0.0167 (16) | 0.0194 (16) | 0.0023 (13) | 0.0016 (13) | −0.0002 (13) |
C33 | 0.0151 (15) | 0.0193 (16) | 0.0184 (16) | 0.0038 (13) | 0.0051 (13) | 0.0018 (13) |
C34 | 0.0166 (16) | 0.0272 (18) | 0.0217 (17) | 0.0008 (14) | 0.0043 (13) | −0.0008 (14) |
C35 | 0.0213 (17) | 0.0259 (18) | 0.0210 (17) | −0.0008 (14) | 0.0063 (14) | −0.0072 (14) |
C36 | 0.0200 (17) | 0.0234 (17) | 0.0172 (16) | 0.0025 (13) | 0.0018 (13) | −0.0010 (13) |
O5 | 0.0159 (11) | 0.0301 (13) | 0.0200 (12) | −0.0033 (10) | 0.0037 (9) | −0.0073 (10) |
O6 | 0.0147 (11) | 0.0276 (13) | 0.0172 (11) | −0.0006 (9) | 0.0046 (9) | −0.0011 (10) |
S1 | 0.0212 (4) | 0.0292 (5) | 0.0160 (4) | 0.0024 (3) | 0.0019 (3) | −0.0007 (3) |
C37A | 0.100 (5) | 0.031 (3) | 0.083 (4) | 0.006 (3) | −0.075 (4) | −0.007 (3) |
C38A | 0.093 (5) | 0.028 (3) | 0.057 (4) | −0.002 (3) | −0.042 (4) | −0.001 (3) |
C39A | 0.066 (4) | 0.029 (3) | 0.046 (4) | 0.007 (3) | −0.024 (3) | −0.008 (3) |
C40A | 0.069 (5) | 0.044 (4) | 0.086 (5) | 0.013 (4) | −0.022 (4) | −0.036 (4) |
C41A | 0.109 (5) | 0.072 (4) | 0.042 (4) | −0.027 (4) | −0.003 (4) | 0.008 (3) |
C42A | 0.076 (4) | 0.054 (4) | 0.033 (3) | −0.014 (3) | −0.010 (3) | 0.011 (3) |
O7A | 0.129 (4) | 0.057 (3) | 0.036 (3) | −0.016 (3) | −0.035 (3) | 0.015 (2) |
O8A | 0.056 (4) | 0.047 (3) | 0.030 (3) | −0.003 (3) | −0.013 (3) | 0.006 (2) |
S2A | 0.0765 (18) | 0.0582 (14) | 0.127 (2) | 0.0261 (12) | −0.0414 (16) | −0.0615 (15) |
C37B | 0.033 (5) | 0.028 (5) | 0.017 (4) | 0.013 (4) | −0.001 (4) | −0.006 (4) |
C38B | 0.026 (5) | 0.031 (5) | 0.027 (5) | 0.001 (4) | 0.016 (4) | −0.007 (4) |
C39B | 0.027 (4) | 0.027 (4) | 0.024 (5) | 0.004 (4) | 0.006 (4) | 0.000 (4) |
C40B | 0.036 (5) | 0.025 (5) | 0.038 (5) | −0.001 (4) | 0.002 (4) | 0.001 (4) |
C41B | 0.050 (6) | 0.054 (6) | 0.033 (5) | −0.014 (5) | 0.022 (5) | −0.009 (5) |
C42B | 0.061 (6) | 0.049 (5) | 0.034 (5) | −0.014 (5) | 0.004 (5) | 0.001 (5) |
O7B | 0.025 (4) | 0.064 (5) | 0.048 (4) | −0.018 (4) | 0.033 (4) | −0.028 (4) |
O8B | 0.041 (6) | 0.035 (5) | 0.024 (5) | −0.002 (4) | −0.006 (5) | 0.000 (4) |
S2B | 0.070 (3) | 0.031 (2) | 0.0374 (19) | −0.0014 (16) | 0.0282 (17) | 0.0000 (15) |
C43 | 0.067 (3) | 0.048 (3) | 0.045 (3) | −0.010 (2) | 0.017 (2) | −0.005 (2) |
C44 | 0.031 (2) | 0.036 (2) | 0.030 (2) | −0.0056 (17) | 0.0020 (16) | 0.0027 (17) |
C45 | 0.026 (2) | 0.053 (3) | 0.028 (2) | 0.0078 (18) | 0.0036 (16) | 0.0055 (18) |
C46 | 0.054 (3) | 0.107 (5) | 0.025 (2) | 0.047 (3) | 0.000 (2) | 0.000 (2) |
C47 | 0.0203 (18) | 0.048 (2) | 0.0249 (19) | −0.0103 (16) | 0.0036 (15) | −0.0028 (17) |
C48 | 0.054 (3) | 0.027 (2) | 0.026 (2) | −0.0040 (18) | −0.0025 (18) | 0.0016 (16) |
O9 | 0.0491 (18) | 0.0391 (16) | 0.0335 (15) | 0.0116 (14) | 0.0009 (13) | 0.0044 (13) |
O10 | 0.058 (2) | 0.0410 (17) | 0.0328 (16) | 0.0137 (15) | 0.0037 (14) | 0.0049 (13) |
S3 | 0.0512 (8) | 0.1075 (12) | 0.0347 (6) | 0.0080 (7) | −0.0008 (5) | −0.0211 (7) |
C1—F1 | 1.344 (4) | C31—C32 | 1.355 (5) |
C1—C2 | 1.380 (5) | C31—S1 | 1.717 (3) |
C1—C6 | 1.387 (4) | C31—H31 | 0.9500 |
C2—F2 | 1.340 (4) | C32—O5 | 1.382 (4) |
C2—C3 | 1.377 (5) | C32—C33 | 1.425 (4) |
C3—F3 | 1.343 (4) | C33—C34 | 1.351 (5) |
C3—C4 | 1.377 (5) | C33—O6 | 1.380 (4) |
C4—F4 | 1.340 (4) | C34—S1 | 1.719 (3) |
C4—C5 | 1.377 (5) | C34—H34 | 0.9500 |
C5—F5 | 1.350 (4) | C35—O5 | 1.447 (4) |
C5—C6 | 1.390 (4) | C35—C36 | 1.501 (5) |
C6—C7 | 1.505 (4) | C35—H35A | 0.9900 |
C7—O1 | 1.269 (4) | C35—H35B | 0.9900 |
C7—C8 | 1.393 (4) | C36—O6 | 1.450 (4) |
C8—C9 | 1.396 (4) | C36—H36A | 0.9900 |
C8—H8 | 0.9500 | C36—H36B | 0.9900 |
C9—O2 | 1.268 (4) | C37A—C38A | 1.463 (14) |
C9—C10 | 1.505 (4) | C37A—S2A | 1.570 (11) |
C10—C15 | 1.390 (5) | C37A—H37A | 0.9500 |
C10—C11 | 1.396 (5) | C38A—O7A | 1.347 (14) |
C11—F6 | 1.340 (4) | C38A—C39A | 1.407 (14) |
C11—C12 | 1.383 (5) | C39A—C40A | 1.323 (14) |
C12—F7 | 1.334 (4) | C39A—O8A | 1.392 (11) |
C12—C13 | 1.373 (5) | C40A—S2A | 1.708 (9) |
C13—F8 | 1.342 (4) | C40A—H40A | 0.9500 |
C13—C14 | 1.375 (5) | C41A—O7A | 1.474 (11) |
C14—F9 | 1.340 (4) | C41A—C42A | 1.476 (10) |
C14—C15 | 1.378 (5) | C41A—H41A | 0.9900 |
C15—F10 | 1.349 (4) | C41A—H41B | 0.9900 |
C16—F11 | 1.343 (4) | C42A—O8A | 1.403 (10) |
C16—C17 | 1.378 (5) | C42A—H42A | 0.9900 |
C16—C21 | 1.387 (5) | C42A—H42B | 0.9900 |
C17—F12 | 1.337 (4) | C37B—C38B | 1.25 (2) |
C17—C18 | 1.379 (5) | C37B—S2B | 1.836 (14) |
C18—F13 | 1.335 (4) | C37B—H37B | 0.9500 |
C18—C19 | 1.380 (5) | C38B—O7B | 1.351 (16) |
C19—F14 | 1.341 (4) | C38B—C39B | 1.44 (2) |
C19—C20 | 1.380 (5) | C39B—O8B | 1.36 (2) |
C20—F15 | 1.348 (4) | C39B—C40B | 1.433 (19) |
C20—C21 | 1.386 (5) | C40B—S2B | 1.678 (13) |
C21—C22 | 1.505 (4) | C40B—H40B | 0.9500 |
C22—O3 | 1.274 (4) | C41B—C42B | 1.46 (2) |
C22—C23 | 1.389 (5) | C41B—O7B | 1.47 (2) |
C23—C24 | 1.396 (5) | C41B—H41C | 0.9900 |
C23—H23 | 0.9500 | C41B—H41D | 0.9900 |
C24—O4 | 1.268 (4) | C42B—O8B | 1.48 (2) |
C24—C25 | 1.501 (4) | C42B—H42C | 0.9900 |
C25—C26 | 1.394 (5) | C42B—H42D | 0.9900 |
C25—C30 | 1.398 (5) | C43—C44 | 1.365 (6) |
C26—F16 | 1.341 (4) | C43—S3 | 1.745 (5) |
C26—C27 | 1.382 (5) | C43—H43 | 0.9500 |
C27—F17 | 1.339 (4) | C44—O9 | 1.365 (5) |
C27—C28 | 1.381 (5) | C44—C45 | 1.399 (6) |
C28—F18 | 1.333 (4) | C45—C46 | 1.361 (6) |
C28—C29 | 1.375 (5) | C45—O10 | 1.379 (5) |
C29—F19 | 1.338 (4) | C46—S3 | 1.652 (6) |
C29—C30 | 1.384 (5) | C46—H46 | 0.9500 |
C30—F20 | 1.339 (4) | C47—O9 | 1.413 (5) |
Cu1—O3 | 1.923 (2) | C47—C48 | 1.448 (6) |
Cu1—O4 | 1.928 (2) | C47—H47A | 0.9900 |
Cu1—O1 | 1.940 (2) | C47—H47B | 0.9900 |
Cu1—O2 | 1.941 (2) | C48—O10 | 1.442 (5) |
Cu1—O5i | 2.711 (2) | C48—H48A | 0.9900 |
Cu1—O6 | 2.421 (2) | C48—H48B | 0.9900 |
F1—C1—C2 | 118.4 (3) | C31—C32—O5 | 124.4 (3) |
F1—C1—C6 | 119.6 (3) | C31—C32—C33 | 113.0 (3) |
C2—C1—C6 | 122.0 (3) | O5—C32—C33 | 122.6 (3) |
F2—C2—C3 | 119.7 (3) | C34—C33—O6 | 124.1 (3) |
F2—C2—C1 | 120.8 (3) | C34—C33—C32 | 113.4 (3) |
C3—C2—C1 | 119.6 (3) | O6—C33—C32 | 122.5 (3) |
F3—C3—C4 | 119.9 (3) | C33—C34—S1 | 110.2 (3) |
F3—C3—C2 | 120.0 (3) | C33—C34—H34 | 124.9 |
C4—C3—C2 | 120.2 (3) | S1—C34—H34 | 124.9 |
F4—C4—C3 | 120.2 (3) | O5—C35—C36 | 111.3 (3) |
F4—C4—C5 | 120.5 (3) | O5—C35—H35A | 109.4 |
C3—C4—C5 | 119.3 (3) | C36—C35—H35A | 109.4 |
F5—C5—C4 | 118.0 (3) | O5—C35—H35B | 109.4 |
F5—C5—C6 | 119.6 (3) | C36—C35—H35B | 109.4 |
C4—C5—C6 | 122.4 (3) | H35A—C35—H35B | 108.0 |
C1—C6—C5 | 116.6 (3) | O6—C36—C35 | 110.6 (3) |
C1—C6—C7 | 121.8 (3) | O6—C36—H36A | 109.5 |
C5—C6—C7 | 121.6 (3) | C35—C36—H36A | 109.5 |
O1—C7—C8 | 127.3 (3) | O6—C36—H36B | 109.5 |
O1—C7—C6 | 115.8 (3) | C35—C36—H36B | 109.5 |
C8—C7—C6 | 117.0 (3) | H36A—C36—H36B | 108.1 |
C7—C8—C9 | 123.5 (3) | C32—O5—C35 | 111.7 (2) |
C7—C8—H8 | 118.2 | C33—O6—C36 | 111.5 (2) |
C9—C8—H8 | 118.2 | C33—O6—Cu1 | 121.57 (18) |
O2—C9—C8 | 125.7 (3) | C36—O6—Cu1 | 121.90 (18) |
O2—C9—C10 | 115.2 (3) | C31—S1—C34 | 92.92 (16) |
C8—C9—C10 | 119.1 (3) | C38A—C37A—S2A | 115.0 (8) |
C15—C10—C11 | 115.5 (3) | C38A—C37A—H37A | 122.5 |
C15—C10—C9 | 123.3 (3) | S2A—C37A—H37A | 122.5 |
C11—C10—C9 | 121.2 (3) | O7A—C38A—C39A | 123.2 (9) |
F6—C11—C12 | 116.9 (3) | O7A—C38A—C37A | 129.5 (10) |
F6—C11—C10 | 120.3 (3) | C39A—C38A—C37A | 107.3 (11) |
C12—C11—C10 | 122.7 (3) | C40A—C39A—O8A | 126.2 (9) |
F7—C12—C13 | 120.3 (3) | C40A—C39A—C38A | 112.4 (9) |
F7—C12—C11 | 120.4 (3) | O8A—C39A—C38A | 121.4 (10) |
C13—C12—C11 | 119.3 (3) | C39A—C40A—S2A | 113.7 (9) |
F8—C13—C12 | 120.4 (3) | C39A—C40A—H40A | 123.2 |
F8—C13—C14 | 119.6 (3) | S2A—C40A—H40A | 123.2 |
C12—C13—C14 | 120.0 (3) | O7A—C41A—C42A | 110.5 (8) |
F9—C14—C13 | 120.6 (3) | O7A—C41A—H41A | 109.5 |
F9—C14—C15 | 119.7 (3) | C42A—C41A—H41A | 109.5 |
C13—C14—C15 | 119.7 (3) | O7A—C41A—H41B | 109.5 |
F10—C15—C14 | 116.6 (3) | C42A—C41A—H41B | 109.5 |
F10—C15—C10 | 120.7 (3) | H41A—C41A—H41B | 108.1 |
C14—C15—C10 | 122.7 (3) | O8A—C42A—C41A | 111.8 (7) |
F11—C16—C17 | 117.7 (3) | O8A—C42A—H42A | 109.3 |
F11—C16—C21 | 119.8 (3) | C41A—C42A—H42A | 109.3 |
C17—C16—C21 | 122.5 (3) | O8A—C42A—H42B | 109.3 |
F12—C17—C16 | 120.5 (3) | C41A—C42A—H42B | 109.3 |
F12—C17—C18 | 120.0 (3) | H42A—C42A—H42B | 107.9 |
C16—C17—C18 | 119.5 (3) | C38A—O7A—C41A | 111.8 (6) |
F13—C18—C17 | 120.0 (3) | C39A—O8A—C42A | 113.2 (7) |
F13—C18—C19 | 120.4 (3) | C37A—S2A—C40A | 91.5 (6) |
C17—C18—C19 | 119.6 (3) | C38B—C37B—S2B | 107.0 (11) |
F14—C19—C20 | 119.7 (3) | C38B—C37B—H37B | 126.5 |
F14—C19—C18 | 120.4 (3) | S2B—C37B—H37B | 126.5 |
C20—C19—C18 | 119.9 (3) | C37B—C38B—O7B | 120.8 (17) |
F15—C20—C19 | 117.5 (3) | C37B—C38B—C39B | 118.6 (14) |
F15—C20—C21 | 120.5 (3) | O7B—C38B—C39B | 120.6 (15) |
C19—C20—C21 | 122.0 (3) | O8B—C39B—C40B | 121.6 (13) |
C20—C21—C16 | 116.6 (3) | O8B—C39B—C38B | 126.6 (14) |
C20—C21—C22 | 121.7 (3) | C40B—C39B—C38B | 111.8 (12) |
C16—C21—C22 | 121.6 (3) | C39B—C40B—S2B | 108.2 (10) |
O3—C22—C23 | 126.8 (3) | C39B—C40B—H40B | 125.9 |
O3—C22—C21 | 114.3 (3) | S2B—C40B—H40B | 125.9 |
C23—C22—C21 | 119.0 (3) | C42B—C41B—O7B | 113.7 (12) |
C22—C23—C24 | 122.9 (3) | C42B—C41B—H41C | 108.8 |
C22—C23—H23 | 118.5 | O7B—C41B—H41C | 108.8 |
C24—C23—H23 | 118.5 | C42B—C41B—H41D | 108.8 |
O4—C24—C23 | 126.0 (3) | O7B—C41B—H41D | 108.8 |
O4—C24—C25 | 115.4 (3) | H41C—C41B—H41D | 107.7 |
C23—C24—C25 | 118.7 (3) | C41B—C42B—O8B | 107.9 (13) |
C26—C25—C30 | 116.3 (3) | C41B—C42B—H42C | 110.1 |
C26—C25—C24 | 121.8 (3) | O8B—C42B—H42C | 110.1 |
C30—C25—C24 | 121.7 (3) | C41B—C42B—H42D | 110.1 |
F16—C26—C27 | 117.8 (3) | O8B—C42B—H42D | 110.1 |
F16—C26—C25 | 120.2 (3) | H42C—C42B—H42D | 108.4 |
C27—C26—C25 | 122.0 (3) | C38B—O7B—C41B | 111.0 (13) |
F17—C27—C28 | 119.7 (3) | C39B—O8B—C42B | 106.6 (13) |
F17—C27—C26 | 120.3 (3) | C40B—S2B—C37B | 94.3 (6) |
C28—C27—C26 | 120.0 (3) | C44—C43—S3 | 109.2 (4) |
F18—C28—C29 | 120.2 (3) | C44—C43—H43 | 125.4 |
F18—C28—C27 | 120.0 (3) | S3—C43—H43 | 125.4 |
C29—C28—C27 | 119.7 (3) | O9—C44—C43 | 124.7 (4) |
F19—C29—C28 | 120.2 (3) | O9—C44—C45 | 122.4 (4) |
F19—C29—C30 | 120.0 (3) | C43—C44—C45 | 112.8 (4) |
C28—C29—C30 | 119.7 (3) | C46—C45—O10 | 124.1 (4) |
F20—C30—C29 | 117.2 (3) | C46—C45—C44 | 112.8 (4) |
F20—C30—C25 | 120.6 (3) | O10—C45—C44 | 123.1 (3) |
C29—C30—C25 | 122.2 (3) | C45—C46—S3 | 112.5 (4) |
O3—Cu1—O4 | 93.47 (9) | C45—C46—H46 | 123.8 |
O3—Cu1—O1 | 178.39 (9) | S3—C46—H46 | 123.8 |
O4—Cu1—O1 | 87.48 (9) | O9—C47—C48 | 115.2 (3) |
O3—Cu1—O2 | 85.82 (9) | O9—C47—H47A | 108.5 |
O4—Cu1—O2 | 175.70 (9) | C48—C47—H47A | 108.5 |
O1—Cu1—O2 | 93.32 (9) | O9—C47—H47B | 108.5 |
O3—Cu1—O6 | 88.12 (9) | C48—C47—H47B | 108.5 |
O4—Cu1—O6 | 93.75 (8) | H47A—C47—H47B | 107.5 |
O1—Cu1—O6 | 90.53 (8) | O10—C48—C47 | 110.4 (3) |
O2—Cu1—O6 | 90.46 (9) | O10—C48—H48A | 109.6 |
C7—O1—Cu1 | 123.3 (2) | C47—C48—H48A | 109.6 |
C9—O2—Cu1 | 125.0 (2) | O10—C48—H48B | 109.6 |
C22—O3—Cu1 | 124.4 (2) | C47—C48—H48B | 109.6 |
C24—O4—Cu1 | 123.7 (2) | H48A—C48—H48B | 108.1 |
C32—C31—S1 | 110.4 (2) | C44—O9—C47 | 111.3 (3) |
C32—C31—H31 | 124.8 | C45—O10—C48 | 111.3 (3) |
S1—C31—H31 | 124.8 | C46—S3—C43 | 92.6 (2) |
F1—C1—C2—F2 | 0.8 (5) | F16—C26—C27—F17 | 1.1 (5) |
C6—C1—C2—F2 | 178.8 (3) | C25—C26—C27—F17 | 179.2 (3) |
F1—C1—C2—C3 | −178.7 (3) | F16—C26—C27—C28 | −179.3 (3) |
C6—C1—C2—C3 | −0.7 (5) | C25—C26—C27—C28 | −1.3 (5) |
F2—C2—C3—F3 | 0.4 (5) | F17—C27—C28—F18 | 0.2 (5) |
C1—C2—C3—F3 | 180.0 (3) | C26—C27—C28—F18 | −179.3 (3) |
F2—C2—C3—C4 | −179.6 (3) | F17—C27—C28—C29 | −179.4 (3) |
C1—C2—C3—C4 | −0.1 (5) | C26—C27—C28—C29 | 1.0 (5) |
F3—C3—C4—F4 | 0.2 (5) | F18—C28—C29—F19 | 1.9 (5) |
C2—C3—C4—F4 | −179.7 (3) | C27—C28—C29—F19 | −178.5 (3) |
F3—C3—C4—C5 | −178.9 (3) | F18—C28—C29—C30 | −179.6 (3) |
C2—C3—C4—C5 | 1.1 (5) | C27—C28—C29—C30 | 0.0 (5) |
F4—C4—C5—F5 | −1.7 (5) | F19—C29—C30—F20 | −0.5 (5) |
C3—C4—C5—F5 | 177.4 (3) | C28—C29—C30—F20 | −179.0 (3) |
F4—C4—C5—C6 | 179.5 (3) | F19—C29—C30—C25 | 177.6 (3) |
C3—C4—C5—C6 | −1.4 (5) | C28—C29—C30—C25 | −0.9 (5) |
F1—C1—C6—C5 | 178.5 (3) | C26—C25—C30—F20 | 178.8 (3) |
C2—C1—C6—C5 | 0.5 (5) | C24—C25—C30—F20 | 4.0 (5) |
F1—C1—C6—C7 | −0.2 (5) | C26—C25—C30—C29 | 0.7 (5) |
C2—C1—C6—C7 | −178.2 (3) | C24—C25—C30—C29 | −174.1 (3) |
F5—C5—C6—C1 | −178.2 (3) | C8—C7—O1—Cu1 | 12.6 (4) |
C4—C5—C6—C1 | 0.6 (5) | C6—C7—O1—Cu1 | −168.61 (19) |
F5—C5—C6—C7 | 0.5 (4) | C8—C9—O2—Cu1 | −4.8 (4) |
C4—C5—C6—C7 | 179.3 (3) | C10—C9—O2—Cu1 | 173.90 (19) |
C1—C6—C7—O1 | −61.9 (4) | C23—C22—O3—Cu1 | −1.0 (5) |
C5—C6—C7—O1 | 119.4 (3) | C21—C22—O3—Cu1 | 177.7 (2) |
C1—C6—C7—C8 | 117.0 (3) | C23—C24—O4—Cu1 | 19.4 (4) |
C5—C6—C7—C8 | −61.6 (4) | C25—C24—O4—Cu1 | −159.1 (2) |
O1—C7—C8—C9 | −1.3 (5) | S1—C31—C32—O5 | −178.2 (2) |
C6—C7—C8—C9 | 179.9 (3) | S1—C31—C32—C33 | 0.2 (4) |
C7—C8—C9—O2 | −3.1 (5) | C31—C32—C33—C34 | 0.2 (4) |
C7—C8—C9—C10 | 178.2 (3) | O5—C32—C33—C34 | 178.6 (3) |
O2—C9—C10—C15 | 140.7 (3) | C31—C32—C33—O6 | 179.4 (3) |
C8—C9—C10—C15 | −40.5 (5) | O5—C32—C33—O6 | −2.2 (5) |
O2—C9—C10—C11 | −37.6 (4) | O6—C33—C34—S1 | −179.7 (2) |
C8—C9—C10—C11 | 141.2 (3) | C32—C33—C34—S1 | −0.5 (4) |
C15—C10—C11—F6 | 176.1 (3) | O5—C35—C36—O6 | 63.7 (3) |
C9—C10—C11—F6 | −5.5 (5) | C31—C32—O5—C35 | −165.6 (3) |
C15—C10—C11—C12 | −0.7 (5) | C33—C32—O5—C35 | 16.2 (4) |
C9—C10—C11—C12 | 177.7 (3) | C36—C35—O5—C32 | −45.5 (4) |
F6—C11—C12—F7 | 2.4 (5) | C34—C33—O6—C36 | −162.4 (3) |
C10—C11—C12—F7 | 179.2 (3) | C32—C33—O6—C36 | 18.6 (4) |
F6—C11—C12—C13 | −177.5 (3) | C34—C33—O6—Cu1 | 42.2 (4) |
C10—C11—C12—C13 | −0.7 (6) | C32—C33—O6—Cu1 | −136.9 (3) |
F7—C12—C13—F8 | 1.6 (6) | C35—C36—O6—C33 | −47.5 (3) |
C11—C12—C13—F8 | −178.4 (3) | C35—C36—O6—Cu1 | 107.8 (3) |
F7—C12—C13—C14 | −177.9 (3) | C32—C31—S1—C34 | −0.4 (3) |
C11—C12—C13—C14 | 2.0 (6) | C33—C34—S1—C31 | 0.5 (3) |
F8—C13—C14—F9 | −0.7 (6) | S2A—C37A—C38A—O7A | 177.3 (4) |
C12—C13—C14—F9 | 178.9 (4) | S2A—C37A—C38A—C39A | −2.5 (4) |
F8—C13—C14—C15 | 178.5 (3) | O7A—C38A—C39A—C40A | −179.5 (3) |
C12—C13—C14—C15 | −1.9 (6) | C37A—C38A—C39A—C40A | 0.3 (2) |
F9—C14—C15—F10 | 0.2 (5) | O7A—C38A—C39A—O8A | 0.5 (3) |
C13—C14—C15—F10 | −179.0 (3) | C37A—C38A—C39A—O8A | −179.7 (2) |
F9—C14—C15—C10 | 179.7 (3) | O8A—C39A—C40A—S2A | −178.3 (4) |
C13—C14—C15—C10 | 0.5 (6) | C38A—C39A—C40A—S2A | 1.8 (4) |
C11—C10—C15—F10 | −179.8 (3) | O7A—C41A—C42A—O8A | 62.1 (9) |
C9—C10—C15—F10 | 1.8 (5) | C39A—C38A—O7A—C41A | 16.2 (6) |
C11—C10—C15—C14 | 0.8 (5) | C37A—C38A—O7A—C41A | −163.6 (5) |
C9—C10—C15—C14 | −177.6 (3) | C42A—C41A—O7A—C38A | −45.8 (8) |
F11—C16—C17—F12 | −0.4 (5) | C40A—C39A—O8A—C42A | −165.9 (6) |
C21—C16—C17—F12 | −179.4 (3) | C38A—C39A—O8A—C42A | 14.1 (6) |
F11—C16—C17—C18 | 178.4 (3) | C41A—C42A—O8A—C39A | −44.6 (8) |
C21—C16—C17—C18 | −0.6 (5) | C38A—C37A—S2A—C40A | 3.0 (4) |
F12—C17—C18—F13 | −1.0 (5) | C39A—C40A—S2A—C37A | −2.8 (5) |
C16—C17—C18—F13 | −179.8 (3) | S2B—C37B—C38B—O7B | 177.9 (5) |
F12—C17—C18—C19 | 178.9 (3) | S2B—C37B—C38B—C39B | −2.2 (5) |
C16—C17—C18—C19 | 0.1 (5) | C37B—C38B—C39B—O8B | 179.6 (3) |
F13—C18—C19—F14 | −0.4 (5) | O7B—C38B—C39B—O8B | −0.5 (5) |
C17—C18—C19—F14 | 179.7 (3) | C37B—C38B—C39B—C40B | −0.1 (3) |
F13—C18—C19—C20 | −179.8 (3) | O7B—C38B—C39B—C40B | 179.8 (4) |
C17—C18—C19—C20 | 0.3 (5) | O8B—C39B—C40B—S2B | −177.2 (6) |
F14—C19—C20—F15 | −1.9 (5) | C38B—C39B—C40B—S2B | 2.5 (6) |
C18—C19—C20—F15 | 177.5 (3) | O7B—C41B—C42B—O8B | 67.4 (17) |
F14—C19—C20—C21 | −179.6 (3) | C37B—C38B—O7B—C41B | −171.9 (10) |
C18—C19—C20—C21 | −0.1 (5) | C39B—C38B—O7B—C41B | 8.2 (11) |
F15—C20—C21—C16 | −177.9 (3) | C42B—C41B—O7B—C38B | −42.0 (16) |
C19—C20—C21—C16 | −0.4 (5) | C40B—C39B—O8B—C42B | −156.4 (10) |
F15—C20—C21—C22 | −1.0 (5) | C38B—C39B—O8B—C42B | 23.9 (10) |
C19—C20—C21—C22 | 176.6 (3) | C41B—C42B—O8B—C39B | −53.7 (14) |
F11—C16—C21—C20 | −178.2 (3) | C39B—C40B—S2B—C37B | −3.1 (7) |
C17—C16—C21—C20 | 0.8 (5) | C38B—C37B—S2B—C40B | 3.1 (7) |
F11—C16—C21—C22 | 4.8 (5) | S3—C43—C44—O9 | 179.3 (3) |
C17—C16—C21—C22 | −176.2 (3) | S3—C43—C44—C45 | −2.8 (5) |
C20—C21—C22—O3 | −124.5 (3) | O9—C44—C45—C46 | 179.6 (4) |
C16—C21—C22—O3 | 52.3 (4) | C43—C44—C45—C46 | 1.7 (6) |
C20—C21—C22—C23 | 54.3 (4) | O9—C44—C45—O10 | −0.1 (6) |
C16—C21—C22—C23 | −129.0 (3) | C43—C44—C45—O10 | −178.1 (4) |
O3—C22—C23—C24 | −3.4 (6) | O10—C45—C46—S3 | −179.9 (3) |
C21—C22—C23—C24 | 178.0 (3) | C44—C45—C46—S3 | 0.4 (6) |
C22—C23—C24—O4 | −6.9 (5) | O9—C47—C48—O10 | 61.2 (4) |
C22—C23—C24—C25 | 171.6 (3) | C43—C44—O9—C47 | −169.8 (4) |
O4—C24—C25—C26 | −42.2 (4) | C45—C44—O9—C47 | 12.5 (5) |
C23—C24—C25—C26 | 139.1 (3) | C48—C47—O9—C44 | −42.9 (4) |
O4—C24—C25—C30 | 132.2 (3) | C46—C45—O10—C48 | −162.8 (5) |
C23—C24—C25—C30 | −46.4 (4) | C44—C45—O10—C48 | 16.9 (5) |
C30—C25—C26—F16 | 178.4 (3) | C47—C48—O10—C45 | −44.6 (5) |
C24—C25—C26—F16 | −6.8 (5) | C45—C46—S3—C43 | −1.7 (4) |
C30—C25—C26—C27 | 0.4 (5) | C44—C43—S3—C46 | 2.6 (4) |
C24—C25—C26—C27 | 175.1 (3) |
Symmetry code: (i) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C23—H23···F17ii | 0.95 | 2.41 | 3.362 (4) | 179 |
C31—H31···O1iii | 0.95 | 2.57 | 3.351 (4) | 139 |
C35—H35A···O8Biii | 0.99 | 2.45 | 3.349 (16) | 151 |
C37A—H37A···S1iv | 0.95 | 2.77 | 3.590 (9) | 145 |
C41A—H41A···S2Ai | 0.99 | 2.51 | 3.051 (11) | 114 |
C42A—H42A···S2Ai | 0.99 | 2.57 | 3.220 (9) | 123 |
C42A—H42A···F6i | 0.99 | 2.45 | 3.162 (8) | 128 |
C48—H48B···F10v | 0.99 | 2.51 | 3.326 (5) | 140 |
Symmetry codes: (i) x+1, y, z; (ii) x, −y+3/2, z−1/2; (iii) x−1, y, z; (iv) x, y, z−1; (v) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: JSPS KAKENHI (grant No. 18 K05153).
References
Bruker (2018). APEX3, SAINT, SADABS . Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crowder, J. M., Han, H., Wei, Z., Dikarev, E. V. & Petrukhina, M. A. (2019). Polyhedron, 157, 33–38. CSD CrossRef CAS Google Scholar
Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. (2000). Adv. Mater. 12, 481–494. CrossRef CAS Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hori, A. (2012). Frontiers in Crystal Engineering, Vol. III, pp. 163–185. New York: John Wiley & Sons. Google Scholar
Hori, A. & Arii, T. (2007). CrystEngComm, 9, 215–217. Web of Science CSD CrossRef CAS Google Scholar
Hori, A., Gonda, R. & Rzeznicka, I. I. (2017). CrystEngComm, 19, 6263–6266. CSD CrossRef CAS Google Scholar
Hori, A., Nakajima, K., Akimoto, Y., Naganuma, K. & Yuge, H. (2014). CrystEngComm, 16, 8805–8817. Web of Science CSD CrossRef CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109. CrossRef CAS Web of Science Google Scholar
Kirchmeyer, S. & Reuter, K. (2005). J. Mater. Chem. 15, 2077–2088. CrossRef CAS Google Scholar
Kusakawa, T., Goto, T. & Hori, A. (2020). CrystEngComm. In the press. doi: https://doi.org/10.1039/D0CE00416B. Google Scholar
Ma, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303–1324. CrossRef PubMed CAS Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nakajima, K. & Hori, A. (2014). Cryst. Growth Des. 14, 3169–3173. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skotheim, T. A., Elsenbaumer, R. L. & Reynolds, J. R. (1998). Handbook of Conducting Polymers, 2nd ed. New York: Marcel Dekker. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Storsberg, J., Ritter, H., Pielartzik, H. & Groenendaal, L. (2000). Adv. Mater. 12, 567–569. CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Williams, J. H. (1993). Acc. Chem. Res. 26, 593–598. CrossRef CAS Web of Science Google Scholar
Williams, J. H. (2017). Crystal Engineering: How Molecules Build Solids. San Rafael: Morgan & Claypool Publishers. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.