research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Co-crystal structure, Hirshfeld surface analysis and DFT studies of 3,4-ethyl­ene­di­oxy­thio­phene solvated bis­­[1,3-bis­­(penta­fluoro­phen­yl)propane-1,3-dionato]copper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Graduate School of Engineering & Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan, and bCenter for Natural and Human Sciences (CCNH), Federal University of ABC, Santo Andre, Sao Paulo 09210-580, Brazil
*Correspondence e-mail: ahori@shibaura-it.ac.jp

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 15 April 2020; accepted 6 May 2020; online 15 May 2020)

The title complex, Cu(L)2 or [Cu(C15HF10O2)2], comprised of one copper ion and two fully fluorinated ligands (L), was crystallized with 3,4-ethyl­ene­dioxy­thio­phene (EDOT, C6H6O2S) as a guest mol­ecule to give in a di­chloro­methane solution a unique co-crystal, Cu(L)2·3C6H6O2S. In the crystal, the oxygen of one guest mol­ecule, EDOT-1, is coordinated to the metal to give an alternate linear arrangement, and the π-planes of the others, EDOT-2 and EDOT-3, inter­act weakly with the penta­fluoro­phenyl groups of the complex through arene–perfluoro­arene inter­actions. Head-to-tail columnar and head-to-head dimeric arrangements are observed for EDOT-2 and EDOT-3, respectively, in the crystal. The Hirshfeld surface analysis indicated that the most important contributions for the crystal packing are from the F⋯F (20.4%), F⋯H/H⋯F (24.5%) and F⋯C/C⋯F (9.6%) inter­actions. The density functional theory (DFT) optimized structure at the ωB97X-D 6–31G* level was compared with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

3,4-Ethyl­ene­dioxy­thio­phene, EDOT, is a familiar reagent for polythio­phene or oligo­thio­phene organic-active materials such as organic conductive macromolecules and optoelectronic materials. The corresponding poly-3,4-ethyl­ene­dioxy­thio­phene, PEDOT, is one of the typical organic conductive materials with a high conductivity, environmental stability, mechanical strength and visible light transmittance, thus showing wide ranges of applications (Skotheim et al., 1998[Skotheim, T. A., Elsenbaumer, R. L. & Reynolds, J. R. (1998). Handbook of Conducting Polymers, 2nd ed. New York: Marcel Dekker.]; Groenendaal et al., 2000[Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. (2000). Adv. Mater. 12, 481-494.]; Kirchmeyer & Reuter, 2005[Kirchmeyer, S. & Reuter, K. (2005). J. Mater. Chem. 15, 2077-2088.]). The affinity as a guest mol­ecule and the corresponding inter­molecular inter­actions in co-crystals of EDOT are crucial issues for chemists in order to understand the mol­ecular recognition and supra­molecular association events (Storsberg et al., 2000[Storsberg, J., Ritter, H., Pielartzik, H. & Groenendaal, L. (2000). Adv. Mater. 12, 567-569.]). The crystal packing and the relative inter­molecular inter­actions are estimated by the oxygen and sulfur atoms for coordination bonds and mol­ecular stacking of the π-inter­actions for the five-membered hetero-conjugated aromatic ring. On the other hand, mol­ecular crystals of fully fluorinated coordination complexes have been studied as hosts, showing flexible and responsive crystal-packing structures depending on the guest mol­ecules. Typically, the copper complex, Cu(L)2, produces unique co-crystals abundantly taken into benzene derivatives after crystallization and reversibly encapsulates their vapors (Hori et al., 2014[Hori, A., Nakajima, K., Akimoto, Y., Naganuma, K. & Yuge, H. (2014). CrystEngComm, 16, 8805-8817.]), while the corresponding single crystals of Cu(dbm)2 (dbm = di­benzoyl­methane) showed no inter­action with the guest mol­ecules. The driving forces of the mol­ecular recognition estimated a metal⋯π inter­action (Hunter, 1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]; Ma & Dougherty, 1997[Ma, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303-1324.]) induced by improvement of the cationic properties of the central metal as a result of the fluorine-withdrawing nature and arene–perfluoro­arene inter­action (Williams, 1993[Williams, J. H. (1993). Acc. Chem. Res. 26, 593-598.], 2017[Williams, J. H. (2017). Crystal Engineering: How Molecules Build Solids. San Rafael: Morgan & Claypool Publishers.]; Hori, 2012[Hori, A. (2012). Frontiers in Crystal Engineering, Vol. III, pp. 163-185. New York: John Wiley & Sons.]) induced by the exact opposite quadrupole moment between the penta­fluoro­phenyl ring of the complex and the aromatic ring of the guest mol­ecule.

[Scheme 1]

In this study, we examined the encapsulation of 3,4-ethyl­ene­dioxy­thio­phene for the title complex, Cu(L)2, indicating a new guest-encapsulated crystal, Cu(L)2·3EDOT (I)[link], as shown in the Scheme. The crystal of (I)[link] was prepared by previously reported protocols (Hori & Arii, 2007[Hori, A. & Arii, T. (2007). CrystEngComm, 9, 215-217.]). Typically, Cu(L)2 and an excess amount of EDOT in CH2Cl2 (or AcOEt) were slowly evaporated to yield green block-shaped crystals. The driving forces and the detailed weak inter­molecular inter­actions were investigated by Hirshfeld surface analysis and DFT calculations. Using the same procedure, the corresponding compound Pd(L)2·nEDOT was not obtained, then Pd(L)2 was separately crystallized, showing different metal characteristics and affinity for EDOT. The electrostatic potential of the metal ions is also discussed.

2. Structural commentary

The asymmetric unit of (I)[link] contains one entire complex mol­ecule and three EDOT mol­ecules. The complex is non-centrosymmetric and comprises one Cu2+ ion and two ligands (L) to give a mononuclear Cu2+ complex, as shown in Fig. 1[link]. The geometry around the metal center is pseudo-square planar; the bond distances Cu1—O1, Cu—O2, Cu—O3 and Cu1—O4 are 1.940 (2), 1.941 (2), 1.922 (2) and 1.928 (2) Å, respectively. The penta­fluoro­phenyl groups [rings AD (C1–C6, C10–C15, C16–C21 and C25–C30, respectively)] are highly twisted with respect to the coordination plane; the dihedral angle between ring A (or ring B) and Cu1/O1/C7–C9/O2 is 65.80 (13)° [or 36.24 (15)°] and the dihedral angle between ring C (or ring D) and Cu1/O3/C22–C24/O4 is 54.97 (14)° [or 51.22 (13)°], indicating that all these rings are crystallographically different. The flexible and twisted rings allow inter­molecular inter­actions with the EDOT mol­ecules to consolidate the crystal of (I)[link]. The oxygen atoms of EDOT-1 are coordinated with atom Cu1 of the complex mol­ecule; the lengths of the coordination bonds are 2.421 (2) and 2.711 (2) Å for Cu1—O6 and Cu1—O5i [symmetry code: (i) x + 1, y, z], respectively (Figs. 1[link] and 2[link]a). The EDOT-2 mol­ecule shows disorder, the occupancy of the major component, EDOT-2A, being 0.691 (4); EDOT-2A shows close inter­actions with ring C of Cu(L)2 through an arene–perfluoro­arene inter­action. The EDOT-3 mol­ecule shows no remarkable inter­actions in the crystal packing as discussed below. Each EDOT mol­ecule shows a π-localized structure as shown in the Scheme; the lengths of the C=C double bonds are 1.355 (5) and 1.351 (4) Å for EDOT-1, 1.46 (1) and 1.32 (1) Å for EDOT-2A, and 1.361 (6) and 1.365 (6) Å for EDOT-3. EDOT-2A has a large variation in the distance because of the structural disorder, while the analysis was performed without restricting the binding distance of the carbon-to-carbon bonds. For comparison of the mol­ecular recognitions of Cu(L)2, negative quadrupole moments of the mol­ecules, e.g., benzene and carbon dioxide, are reversibly recognized in the crystals, because of the positive quadrupole moments of the penta­flurophenyl groups (Hori et al. 2014[Hori, A., Nakajima, K., Akimoto, Y., Naganuma, K. & Yuge, H. (2014). CrystEngComm, 16, 8805-8817.], 2017[Hori, A., Gonda, R. & Rzeznicka, I. I. (2017). CrystEngComm, 19, 6263-6266.]). Thus, the crystal structure of (I)[link] indicates the possibility that the butadiene moiety, C=C—C=C, in EDOT also has a negative surface and inter­acts in the crystal of Cu(L)2 through electrostatic inter­actions.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] at 100 K, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The minor EDOT-2B component is omitted.
[Figure 2]
Figure 2
Views of part of the crystal structure of (I)[link]: (a) 1:1 alternating linear structure with EDOT-1 and Cu(L)2, (b) EDOT-2A and EDOT-3 in the void spaces of the linear chain with the (c) head-to-tail and (d) head-to-head arrangements in the crystal. Color scheme: C, gray; H, white; Cu, orange; F, light green; O, red; S, yellow.

3. Supra­molecular features

The partial view of the packing structure in Fig. 2[link]a clearly shows a one-dimensional linear chain orientation between the complex mol­ecule and EDOT-1. EDOT-1 coordinates to the copper ion of the complex to form a 1:1 alternating linear structure along the a-axis direction. The EDOT-2A and EDOT-3 mol­ecules are inserted in the voids of the linear chain along the a- and c-axis directions, respectively. EDOT-2A forms a head-to-tail one-dimensional chain (Fig. 2[link]c) with weak hydrogen bonds (Table 1[link]) between the sulfur atom and the aliphatic proton with DA distances of 3.051 (11) and 3.220 (9) Å for C41A—H41A⋯S2A and C42A—H42A⋯S2A, respectively, and the mol­ecule is further sandwiched by the penta­fluoro­phenyl rings of the complex. EDOT-3 forms discrete dimers (Fig. 2[link]d) in a head-to-head configuration between the aliphatic moieties, and the dimers are also surrounded by the penta­fluoro­phenyl rings of the complex mol­ecule. Short inter­molecular inter­actions between the centroids (Cg) of the penta­fluoro­phenyl ring in Cu(L)2 and the five-membered ring of EDOT are observed. The penta­fluoro­phenyl ring A (C1–C6) is sited on the adjacent EDOT-2Aii (S2A/C37A–C40A) [symmetry code: (ii) x, y, z + 1]: the centroid–centroid distance CgCg is 3.950 (4) Å and the shortest perpendicular distance of Cg (ring A) on the ring of EDOT-2Aii is 3.0832 (13) Å. Ring B (C10–C15) is sandwiched between two adjacent mol­ecules, EDOT-3iii and EDOT-3iv (S3/C43–C46) [symmetry code: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1]: the centroid–centroid distances are 3.906 (2) and 4.054 (2) Å, respectively, and the corresponding shortest perpendicular distances are 3.5236 (19) and 3.2687 (15) Å, respectively. Ring C (C16–C21) inter­acts with EDOT-2A (S2A/C37A–C40A) and EDOT-2B (minor disorder component; S2B/C37B–C40B); the centroid–centroid distances are 3.586 (3) and 3.684 (5) Å, respectively, and the corresponding shortest perpendicular distances are 3.5337 (14) and 3.299 (4) Å, respectively. Ring D (C25–C30) inter­acts with the adjacent EDOT-1i (S1/C31–C34) with centroid–centroid and perpendicular distances of 3.7052 (19) and 3.3405 (13) Å, respectively. The results indicate that a remarkable arene–perfluoro­arene inter­action is observed for EDOT-2A with a length close to the sum of the van der Waals radii. A notable intra­molecular C—F⋯π inter­action is observed between F5 and EDOT-1 [3.287 (2) Å] and inter­molecular C—F⋯π inter­actions occur between the penta­fluoro­phenyl rings as an F⋯π(hole) inter­action; the distances are 2.997 (2) and 3.175 (3) Å for F9⋯ring Aiv and F14⋯ring Dv, respectively [symmetry code: (v) x, −y + [{3\over 2}], z − [{1\over 2}]]. These aromatic inter­actions are estimated to be induced by the positive electron distribution and quadrupole moment of the penta­fluoro­phenyl rings.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯F17i 0.95 2.41 3.362 (4) 179
C31—H31⋯O1ii 0.95 2.57 3.351 (4) 139
C35—H35A⋯O8Bii 0.99 2.45 3.349 (16) 151
C37A—H37A⋯S1iii 0.95 2.77 3.590 (9) 145
C41A—H41A⋯S2Aiv 0.99 2.51 3.051 (11) 114
C42A—H42A⋯S2Aiv 0.99 2.57 3.220 (9) 123
C42A—H42A⋯F6iv 0.99 2.45 3.162 (8) 128
C48—H48B⋯F10v 0.99 2.51 3.326 (5) 140
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) x, y, z-1; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1.

4. Hirshfeld surface analysis

To understand all the inter­molecular inter­actions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). The HS of the complex mol­ecule mapped with de (the distance between the surface and external atoms) and the corresponding fingerprint plots are shown in Figs. 3[link] and 4[link], respectively. The complex Cu(L)2 is surrounded by EDOT and Cu(L)2 mol­ecules and the inter­molecular inter­actions are indicated in red (Fig. 3[link]). The main inter­actions for the whole structure are F⋯F and F⋯H/H⋯F, contributing 20.4% and 24.5%, respectively, to the overall crystal packing due to the high surface area of fluorine for the complex. The presence of ππ and C—H⋯π inter­actions is reflected in the contributions of the C⋯C (5.2%) and C⋯H/H⋯C (6.2%) contacts. The two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) of the independent Cu(L)2 and three EDOT mol­ecules are shown in Fig. 4[link]ad, together with the contributions of each element. For Cu(L)2, the contribution of the Cu atom indicates interaction only with the oxygen of EDOT-1 (1.2%). For the three EDOT mol­ecules, the main inter­actions are H⋯F contributing 23.6%, 25.3%, and 26.8% for EDOT-1, 2A and 3, respectively. The contribution of the ππ inter­actions through C⋯C inter­actions shows the relationship EDOT-2A (8.2%) > EDOT-3 (6.0%) > EDOT-1 (4.5%), which indicates good agreement of the arene–perfluoro­arene inter­actions in the crystal packing. For the sulfur in EDOT, the S⋯H inter­action is observed for EDOT-1 (8.1%) > EDOT-2A (7.6%), but no inter­action for EDOT-3 (0.0%) and the S⋯F inter­action is observed for EDOT-3 (16.1%) >> EDOT-2A (4.3%) > EDOT-1 (3.3%), which is also shown by the relationships of Figs. 2[link] and 3[link]. For the oxygen in EDOT, O⋯H inter­actions are observed [EDOT-2A (8.5%) > EDOT-3 (7.2%) > EDOT-1 (2.0%)] as well as O⋯F [EDOT-2A (6.1%) > EDOT-3 (2.2%) > EDOT-1 (1.2%)] and O⋯Cu inter­actions [EDOT-1 (4.5%) > EDOT-2A and 3 (0.0%)]. These results indicate that the main inter­molecular contributions without π-inter­actions are Cu⋯O and S⋯H for EDOT-1, O⋯H for EDOT-2A, and S⋯F for EDOT-3.

[Figure 3]
Figure 3
HS of the complex mapped with de.
[Figure 4]
Figure 4
Fingerprint plots for the Cu(L)2 and EDOT mol­ecules in (I)[link].

5. DFT calculations

The DFT calculations were performed to obtain qu­anti­tative values for the surface potential and inter­molecular inter­actions. The electrostatic potentials of Cu(L)2 and EDOT in (I)[link] range from −135.79 to +162.31 kJ mol−1, as shown in Fig. 5[link]. The highest electrostatic potential, in which the electron-poor region is shown in blue, is on the Cu atom, the edge of the ketonato hydrogen, the central part of the penta­fluoro­phenyl rings in Cu(L)2, and the aromatic and aliphatic hydrogen atoms of EDOT. The lowest electrostatic potential, shown in red, is around the oxygen atoms of Cu(L)2 and EDOT. The highest electrostatic potentials of the centers of the penta­fluoro­phenyl rings AD are approximately +97, +90, +91, +83 kJ mol−1, respectively, which is almost the same as the independently calculated value for Cu(L)2 (+97 kJ mol−1 for the penta­fluoro­phenyl ring), which was calculated using the currently reported crystal structure (Crowder et al., 2019[Crowder, J. M., Han, H., Wei, Z., Dikarev, E. V. & Petrukhina, M. A. (2019). Polyhedron, 157, 33-38.]). The lowest electrostatic potentials of the five-membered rings of EDOT are −77, −63, and −63 kJ mol−1 for EDOT-1, 2A and 3, respectively, indicating the electron distribution is slightly lower than that calculated independently for EDOT (−81 kJ mol−1) and used to estimate the inter­molecular inter­actions of Cu(L)2 and EDOT. The electrostatic potential maps of the EDOT mol­ecules are shown in Fig. 5[link]c. The left-hand structure, optimized and calculated for an independent mol­ecule, clearly indicates that the EDOT-2A has more positive surfaces. The lowest electrostatic potentials of the oxygen atoms are −117 and −118 kJ mol−1 for EDOT (calculated from the refined structure of a single component), −85 and −121 kJ mol−1 for EDOT-1, −109 and −63 kJ mol−1 for EDOT-2A, and −102 and −113 kJ mol−1 for EDOT-3. These values show the strength of the inter­molecular inter­actions of the oxygen atoms; one oxygen in EDOT-1 is an electron donor for the coordination bond with decreasing electron density (−85 kJ mol−1) and one oxygen in EDOT-2A is an electron donor for the hydrogen bond with decreasing electron density (−63 kJ mol−1). The highest electrostatic potential of the surface of the aliphatic H atoms is +162 kJ mol−1 in EDOT-2A and the values of each EDOT are +116, +112, and +123 kJ mol−1 for EDOT (calculated), EDOT-1, and EDOT-3, respectively. The lowest electrostatic potential on sulfur is −32 kJ mol−1 in EDOT-2A and the values of each EDOT are −79, −65, and −48 kJ mol−1 for EDOT (calculated), EDOT-1, and EDOT-3, respectively. These results show the outflowing of the surface electrons due to the formation of the co-crystal and the corresponding inter­molecular inter­actions.

[Figure 5]
Figure 5
(a) Structure and (b) the energy potential maps of Cu(L)2 with the surrounding EDOT mol­ecules and (c) the energy potential maps of independent EDOT and each solvated EDOT mol­ecule in (I)[link]. The color of the potential is shown between −120 kJ mol−1 (red) to +120 kJ mol−1 (blue).

6. Synthesis

To a solution of Cu(L)2 (15 mg, 17 µmol) in chloro­form (2 ml) was added an excess amount of EDOT. The solution was evaporated slowly to give green crystals of Cu(L)2·3EDOT (I)[link], which were separated by filtration and characterized by crystallographic and thermogravimetric (TG) analyses.

7. Thermogravimetric studies

In the TG analysis for (I)[link], the weight loss indicates an approximate one-step elimination (Fig. 6[link]); the total elimination of EDOT was found to be 33.6%, which is almost the same as the calculated value of 33.0% around 50–130°C. The release curve is gentle, and the coordinated EDOT and solvated EDOT are gradually separated from the crystals without being distinguished, confirming the weak coordination bond due to the Jahn–Teller effect of the Cu ion. In the complex, the positive electrostatic potential on the copper (+206.41 kJ mol−1) in the independent crystal of Cu(L)2 was higher than that of the corresponding non-fluorinated complex, +116.71 kJ mol−1 for Cu(dbm)2 (Kusakawa et al., 2020[Kusakawa, T., Goto, T. & Hori, A. (2020). CrystEngComm. In the press. doi: https://doi.org/10.1039/D0CE00416B.]) due to the substitution of the penta­fluoro­phenyl groups, indicating that the present EDOT recognition was induced. For the same procedure, Pd(L)2 and EDOT were combined to give brown needle-shaped crystals, which are clearly characterized as Pd(L)2 as a single component (Nakajima & Hori, 2014[Nakajima, K. & Hori, A. (2014). Cryst. Growth Des. 14, 3169-3173.]) and no guest release was observed by the brown crystals of Pd(L)2; the electrostatic potentials on the metal center of Pd(L)2 and Pd(dbm)2 are −1.0 and −73 kJ mol−1, respectively (Kusakawa et al., 2020[Kusakawa, T., Goto, T. & Hori, A. (2020). CrystEngComm. In the press. doi: https://doi.org/10.1039/D0CE00416B.]).

[Figure 6]
Figure 6
TG curves of (I)[link] showing the one-step elimination; the scan rate was 5.0°C min−1.

In summary, we have discussed the crystal structure and the inter­molecular inter­actions for three EDOT mol­ecules inserted in (I)[link], in which guest recognition is induced by the flexible orientations and positive electrostatic potentials of the penta­fluoro­phenyl groups and the enhanced positive potential on the copper ion of the fluorinated complex, Cu(L)2. The crystal structure clearly suggests that the alternate coordination polymer between the metal center of Cu(L)2 and the oxygen atom of EDOT-1 was obtained along the a axis through the weak coordination bond and the close stacking between the penta­fluoro­phenyl group of Cu(L)2 and the aromatic moiety of EDOT-2 and EDOT-3 was obtained through the arene–perfluoro­arene inter­actions.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in geometrically idealized positions and refined as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C15HF10O2)2]·3(C6H6O2S)
Mr 1296.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.7343 (3), 46.8973 (16), 13.2580 (5)
β (°) 99.211 (1)
V3) 4746.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.17 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker D8 Goniometer
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.88, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 54634, 8367, 7663
Rint 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.106, 1.06
No. of reflections 8367
No. of parameters 821
No. of restraints 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.74, −1.69
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3, SAINT, SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011).

Bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato]copper(II) 3,4-ethylenedioxythiophene trisolvate top
Crystal data top
[Cu(C15HF10O2)2]·3(C6H6O2S)F(000) = 2580
Mr = 1296.36Dx = 1.814 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7343 (3) ÅCell parameters from 9808 reflections
b = 46.8973 (16) Åθ = 2.6–26.4°
c = 13.2580 (5) ŵ = 0.73 mm1
β = 99.211 (1)°T = 100 K
V = 4746.9 (3) Å3Prismatic, green
Z = 40.17 × 0.17 × 0.11 mm
Data collection top
Bruker D8 Goniometer
diffractometer
7663 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.042
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
h = 99
Tmin = 0.88, Tmax = 0.93k = 5555
54634 measured reflectionsl = 1515
8367 independent reflections
Refinement top
Refinement on F2236 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0217P)2 + 17.5257P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
8367 reflectionsΔρmax = 1.74 e Å3
821 parametersΔρmin = 1.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7594 (4)0.57893 (7)0.7738 (3)0.0197 (7)
C20.7513 (5)0.56890 (7)0.8708 (3)0.0239 (7)
C30.5906 (5)0.56378 (7)0.8994 (2)0.0230 (7)
C40.4391 (4)0.56870 (7)0.8317 (3)0.0202 (7)
C50.4504 (4)0.57829 (6)0.7348 (2)0.0161 (6)
C60.6098 (4)0.58382 (6)0.7030 (2)0.0147 (6)
C70.6196 (4)0.59398 (6)0.5964 (2)0.0147 (6)
C80.5525 (4)0.57585 (7)0.5164 (2)0.0167 (6)
H80.5044560.5581070.5326510.020*
C90.5522 (4)0.58236 (6)0.4136 (2)0.0161 (6)
C100.4813 (4)0.56082 (7)0.3334 (2)0.0181 (7)
C110.3819 (5)0.56923 (7)0.2409 (3)0.0223 (7)
C120.3197 (5)0.55012 (8)0.1642 (3)0.0263 (8)
C130.3578 (5)0.52165 (8)0.1781 (3)0.0289 (8)
C140.4521 (5)0.51230 (7)0.2688 (3)0.0270 (8)
C150.5126 (4)0.53170 (7)0.3443 (3)0.0215 (7)
C160.5439 (4)0.69479 (7)0.1554 (3)0.0211 (7)
C170.5208 (5)0.70298 (8)0.0544 (3)0.0244 (7)
C180.6640 (5)0.71125 (8)0.0115 (3)0.0265 (8)
C190.8283 (5)0.71115 (7)0.0703 (3)0.0234 (7)
C200.8482 (4)0.70269 (7)0.1712 (2)0.0194 (7)
C210.7071 (4)0.69421 (6)0.2165 (2)0.0177 (7)
C220.7309 (4)0.68348 (7)0.3249 (2)0.0178 (7)
C230.8210 (4)0.70030 (7)0.4022 (2)0.0201 (7)
H230.8686450.7179110.3841860.024*
C240.8448 (4)0.69249 (7)0.5051 (2)0.0173 (7)
C250.9650 (4)0.71009 (6)0.5807 (2)0.0171 (7)
C260.9238 (4)0.71685 (7)0.6765 (3)0.0203 (7)
C271.0395 (5)0.73123 (7)0.7492 (2)0.0217 (7)
C281.2028 (5)0.73887 (7)0.7288 (3)0.0242 (8)
C291.2486 (4)0.73251 (7)0.6353 (3)0.0215 (7)
C301.1306 (4)0.71850 (7)0.5624 (2)0.0185 (7)
Cu10.68190 (5)0.63872 (2)0.46222 (3)0.01411 (10)
F10.9178 (2)0.58323 (5)0.74715 (16)0.0310 (5)
F20.8979 (3)0.56388 (5)0.93711 (16)0.0374 (5)
F30.5815 (3)0.55400 (5)0.99358 (14)0.0313 (5)
F40.2828 (3)0.56383 (5)0.85960 (15)0.0323 (5)
F50.3000 (2)0.58185 (4)0.66859 (14)0.0241 (4)
F60.3354 (3)0.59659 (4)0.22499 (15)0.0325 (5)
F70.2237 (3)0.55922 (5)0.07760 (15)0.0357 (5)
F80.3024 (3)0.50278 (5)0.10381 (17)0.0414 (6)
F90.4876 (3)0.48451 (4)0.28398 (18)0.0411 (6)
F100.6066 (3)0.52110 (4)0.43069 (15)0.0271 (5)
F110.4006 (3)0.68757 (5)0.19509 (15)0.0315 (5)
F120.3608 (3)0.70347 (5)0.00156 (16)0.0382 (5)
F130.6433 (3)0.71930 (6)0.08624 (16)0.0436 (6)
F140.9691 (3)0.71899 (5)0.02976 (16)0.0380 (6)
F151.0123 (2)0.70194 (4)0.22413 (14)0.0262 (4)
F160.7661 (3)0.71015 (4)0.69951 (15)0.0281 (5)
F170.9945 (3)0.73766 (4)0.83999 (15)0.0310 (5)
F181.3151 (3)0.75249 (5)0.79938 (16)0.0344 (5)
F191.4079 (3)0.73923 (5)0.61553 (17)0.0317 (5)
F201.1831 (2)0.71248 (4)0.47335 (14)0.0232 (4)
O10.6911 (3)0.61812 (4)0.58985 (16)0.0160 (5)
O20.6045 (3)0.60555 (5)0.37963 (16)0.0174 (5)
O30.6659 (3)0.65885 (5)0.33475 (16)0.0183 (5)
O40.7762 (3)0.67114 (4)0.54204 (16)0.0161 (5)
C310.1008 (4)0.64236 (7)0.6576 (3)0.0206 (7)
H310.0064580.6359780.6761580.025*
C320.1423 (4)0.64075 (7)0.5623 (2)0.0175 (6)
C330.3118 (4)0.65181 (7)0.5562 (2)0.0174 (7)
C340.3973 (4)0.66157 (7)0.6465 (3)0.0217 (7)
H340.5117920.6695150.6567350.026*
C350.1249 (4)0.62454 (7)0.3939 (3)0.0224 (7)
H35A0.0394070.6215910.3307230.027*
H35B0.1940580.6068080.4078710.027*
C360.2450 (4)0.64868 (7)0.3781 (2)0.0203 (7)
H36A0.2995770.6448950.3167420.024*
H36B0.1767520.6665650.3663930.024*
O50.0319 (3)0.63026 (5)0.47813 (17)0.0219 (5)
O60.3806 (3)0.65200 (5)0.46638 (17)0.0196 (5)
S10.26923 (11)0.65754 (2)0.74025 (6)0.02224 (19)
C37A0.6149 (13)0.63435 (13)0.0633 (7)0.081 (2)0.691 (4)
H37A0.5631490.6378540.1321520.097*0.691 (4)
C38A0.8040 (15)0.63579 (9)0.0290 (9)0.065 (2)0.691 (4)
C39A0.8335 (12)0.63070 (10)0.0769 (6)0.0505 (18)0.691 (4)
C40A0.6864 (13)0.62610 (15)0.1133 (9)0.070 (2)0.691 (4)
H40A0.6827490.6228290.1836690.084*0.691 (4)
C41A1.1061 (13)0.6324 (2)0.0266 (6)0.076 (2)0.691 (4)
H41A1.2000670.6404800.0606660.091*0.691 (4)
H41B1.1168490.6113770.0269510.091*0.691 (4)
C42A1.1269 (11)0.64274 (16)0.0798 (5)0.0560 (18)0.691 (4)
H42A1.2456760.6378290.1153660.067*0.691 (4)
H42B1.1155060.6637640.0797510.067*0.691 (4)
O7A0.9340 (10)0.64083 (11)0.0833 (4)0.0793 (18)0.691 (4)
O8A1.0018 (9)0.63079 (13)0.1331 (6)0.0464 (17)0.691 (4)
S2A0.5036 (4)0.62657 (5)0.0220 (3)0.0935 (11)0.691 (4)
C37B0.7270 (17)0.6447 (2)0.1070 (9)0.026 (2)0.309 (4)
H37B0.6291160.6427640.1598560.032*0.309 (4)
C38B0.741 (2)0.6349 (2)0.0184 (14)0.027 (3)0.309 (4)
C39B0.9021 (17)0.6392 (2)0.0503 (10)0.026 (2)0.309 (4)
C40B1.0267 (17)0.6549 (2)0.0030 (10)0.033 (3)0.309 (4)
H40B1.1429560.6594730.0336260.040*0.309 (4)
C41B0.644 (2)0.6146 (4)0.1222 (13)0.044 (3)0.309 (4)
H41C0.6190680.6319980.1597300.053*0.309 (4)
H41D0.5628120.5994810.1383700.053*0.309 (4)
C42B0.823 (2)0.6056 (3)0.1583 (11)0.048 (3)0.309 (4)
H42C0.8540160.5893770.1169390.058*0.309 (4)
H42D0.8355060.5994340.2305430.058*0.309 (4)
O7B0.6071 (13)0.6205 (2)0.0122 (8)0.043 (2)0.309 (4)
O8B0.9395 (18)0.6302 (3)0.1485 (12)0.035 (3)0.309 (4)
S2B0.9318 (6)0.66369 (8)0.1156 (3)0.0442 (12)0.309 (4)
C430.0201 (7)0.50447 (11)0.7530 (4)0.0524 (12)
H430.0187350.5237090.7510830.063*
C440.0114 (5)0.48559 (9)0.6737 (3)0.0328 (9)
C450.0687 (5)0.45912 (10)0.6969 (3)0.0356 (9)
C460.1565 (7)0.45771 (13)0.7943 (3)0.0626 (16)
H460.2187460.4413390.8224000.075*
C470.1409 (5)0.46667 (9)0.5206 (3)0.0311 (9)
H47A0.1792320.4723400.4486010.037*
H47B0.2397880.4565240.5437320.037*
C480.0045 (6)0.44703 (8)0.5246 (3)0.0366 (9)
H48A0.0310480.4305970.4791030.044*
H48B0.1037120.4566990.5001100.044*
O90.1054 (4)0.49163 (6)0.5800 (2)0.0412 (7)
O100.0591 (4)0.43703 (6)0.6276 (2)0.0443 (7)
S30.14290 (18)0.48766 (4)0.85819 (10)0.0653 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0169 (16)0.0194 (16)0.0221 (17)0.0026 (13)0.0010 (13)0.0019 (13)
C20.0243 (18)0.0256 (18)0.0186 (17)0.0002 (14)0.0061 (14)0.0014 (14)
C30.035 (2)0.0201 (17)0.0139 (16)0.0022 (15)0.0036 (14)0.0006 (13)
C40.0212 (17)0.0202 (17)0.0207 (17)0.0016 (13)0.0079 (13)0.0019 (13)
C50.0164 (16)0.0140 (15)0.0167 (16)0.0006 (12)0.0011 (12)0.0003 (12)
C60.0187 (16)0.0098 (14)0.0154 (15)0.0015 (12)0.0020 (12)0.0012 (12)
C70.0105 (14)0.0151 (15)0.0182 (16)0.0031 (12)0.0016 (12)0.0011 (12)
C80.0193 (16)0.0120 (15)0.0184 (16)0.0036 (12)0.0022 (13)0.0003 (12)
C90.0137 (15)0.0145 (16)0.0197 (16)0.0020 (12)0.0008 (12)0.0023 (13)
C100.0191 (16)0.0183 (16)0.0167 (16)0.0003 (13)0.0025 (13)0.0035 (13)
C110.0261 (18)0.0197 (17)0.0204 (17)0.0034 (14)0.0019 (14)0.0033 (14)
C120.0258 (19)0.034 (2)0.0176 (17)0.0021 (15)0.0022 (14)0.0024 (15)
C130.032 (2)0.028 (2)0.0238 (18)0.0012 (16)0.0025 (15)0.0154 (15)
C140.032 (2)0.0165 (17)0.031 (2)0.0015 (14)0.0003 (16)0.0069 (15)
C150.0210 (17)0.0215 (17)0.0201 (17)0.0011 (14)0.0025 (13)0.0037 (14)
C160.0208 (17)0.0191 (17)0.0236 (17)0.0019 (13)0.0040 (14)0.0001 (14)
C170.0236 (18)0.0260 (18)0.0217 (17)0.0009 (14)0.0023 (14)0.0026 (14)
C180.036 (2)0.0291 (19)0.0136 (16)0.0021 (16)0.0011 (15)0.0077 (14)
C190.0261 (18)0.0240 (18)0.0215 (17)0.0026 (14)0.0078 (14)0.0052 (14)
C200.0217 (17)0.0149 (16)0.0204 (16)0.0024 (13)0.0000 (13)0.0005 (13)
C210.0250 (17)0.0112 (15)0.0172 (16)0.0025 (13)0.0038 (13)0.0002 (12)
C220.0173 (16)0.0178 (16)0.0188 (16)0.0008 (13)0.0044 (13)0.0012 (13)
C230.0242 (17)0.0163 (16)0.0193 (16)0.0065 (13)0.0023 (13)0.0008 (13)
C240.0163 (16)0.0138 (15)0.0226 (17)0.0005 (12)0.0058 (13)0.0029 (13)
C250.0213 (17)0.0112 (15)0.0190 (16)0.0029 (12)0.0039 (13)0.0016 (12)
C260.0209 (17)0.0166 (16)0.0243 (17)0.0003 (13)0.0060 (14)0.0007 (13)
C270.033 (2)0.0153 (16)0.0167 (16)0.0019 (14)0.0044 (14)0.0025 (13)
C280.0309 (19)0.0133 (16)0.0254 (18)0.0023 (14)0.0047 (15)0.0032 (14)
C290.0193 (17)0.0165 (16)0.0287 (18)0.0025 (13)0.0033 (14)0.0006 (14)
C300.0238 (17)0.0137 (15)0.0187 (16)0.0000 (13)0.0058 (13)0.0002 (13)
Cu10.0160 (2)0.01277 (19)0.01372 (19)0.00238 (14)0.00286 (14)0.00015 (15)
F10.0151 (10)0.0467 (13)0.0298 (11)0.0041 (9)0.0011 (8)0.0100 (10)
F20.0266 (11)0.0555 (15)0.0250 (11)0.0015 (10)0.0108 (9)0.0114 (10)
F30.0435 (13)0.0369 (12)0.0134 (9)0.0006 (10)0.0042 (9)0.0057 (9)
F40.0260 (11)0.0471 (13)0.0263 (11)0.0014 (10)0.0118 (9)0.0063 (10)
F50.0156 (9)0.0345 (11)0.0211 (10)0.0014 (8)0.0002 (8)0.0049 (8)
F60.0462 (13)0.0219 (11)0.0243 (11)0.0109 (9)0.0097 (9)0.0028 (8)
F70.0414 (13)0.0422 (13)0.0187 (10)0.0043 (10)0.0100 (9)0.0043 (9)
F80.0543 (15)0.0360 (13)0.0294 (12)0.0026 (11)0.0068 (11)0.0208 (10)
F90.0602 (16)0.0167 (11)0.0412 (13)0.0042 (10)0.0074 (11)0.0109 (10)
F100.0333 (11)0.0185 (10)0.0253 (10)0.0031 (8)0.0076 (9)0.0014 (8)
F110.0209 (10)0.0467 (13)0.0270 (11)0.0044 (9)0.0046 (9)0.0059 (10)
F120.0258 (11)0.0569 (15)0.0278 (11)0.0003 (10)0.0077 (9)0.0093 (11)
F130.0419 (14)0.0681 (17)0.0195 (11)0.0015 (12)0.0010 (10)0.0185 (11)
F140.0329 (12)0.0576 (15)0.0250 (11)0.0105 (11)0.0098 (9)0.0122 (10)
F150.0215 (10)0.0346 (11)0.0217 (10)0.0065 (9)0.0007 (8)0.0056 (9)
F160.0272 (11)0.0320 (11)0.0280 (11)0.0053 (9)0.0137 (9)0.0078 (9)
F170.0468 (13)0.0271 (11)0.0201 (10)0.0019 (10)0.0088 (9)0.0092 (9)
F180.0379 (13)0.0307 (12)0.0301 (12)0.0077 (10)0.0080 (10)0.0086 (9)
F190.0208 (11)0.0341 (12)0.0399 (13)0.0107 (9)0.0037 (9)0.0027 (10)
F200.0252 (10)0.0256 (10)0.0208 (10)0.0040 (8)0.0100 (8)0.0015 (8)
O10.0170 (11)0.0142 (11)0.0162 (11)0.0026 (9)0.0014 (9)0.0004 (9)
O20.0213 (12)0.0161 (11)0.0150 (11)0.0010 (9)0.0035 (9)0.0015 (9)
O30.0220 (12)0.0165 (11)0.0163 (11)0.0056 (9)0.0026 (9)0.0000 (9)
O40.0182 (11)0.0157 (11)0.0154 (11)0.0027 (9)0.0051 (9)0.0010 (9)
C310.0172 (16)0.0221 (17)0.0230 (17)0.0004 (13)0.0047 (13)0.0009 (14)
C320.0159 (16)0.0167 (16)0.0194 (16)0.0023 (13)0.0016 (13)0.0002 (13)
C330.0151 (15)0.0193 (16)0.0184 (16)0.0038 (13)0.0051 (13)0.0018 (13)
C340.0166 (16)0.0272 (18)0.0217 (17)0.0008 (14)0.0043 (13)0.0008 (14)
C350.0213 (17)0.0259 (18)0.0210 (17)0.0008 (14)0.0063 (14)0.0072 (14)
C360.0200 (17)0.0234 (17)0.0172 (16)0.0025 (13)0.0018 (13)0.0010 (13)
O50.0159 (11)0.0301 (13)0.0200 (12)0.0033 (10)0.0037 (9)0.0073 (10)
O60.0147 (11)0.0276 (13)0.0172 (11)0.0006 (9)0.0046 (9)0.0011 (10)
S10.0212 (4)0.0292 (5)0.0160 (4)0.0024 (3)0.0019 (3)0.0007 (3)
C37A0.100 (5)0.031 (3)0.083 (4)0.006 (3)0.075 (4)0.007 (3)
C38A0.093 (5)0.028 (3)0.057 (4)0.002 (3)0.042 (4)0.001 (3)
C39A0.066 (4)0.029 (3)0.046 (4)0.007 (3)0.024 (3)0.008 (3)
C40A0.069 (5)0.044 (4)0.086 (5)0.013 (4)0.022 (4)0.036 (4)
C41A0.109 (5)0.072 (4)0.042 (4)0.027 (4)0.003 (4)0.008 (3)
C42A0.076 (4)0.054 (4)0.033 (3)0.014 (3)0.010 (3)0.011 (3)
O7A0.129 (4)0.057 (3)0.036 (3)0.016 (3)0.035 (3)0.015 (2)
O8A0.056 (4)0.047 (3)0.030 (3)0.003 (3)0.013 (3)0.006 (2)
S2A0.0765 (18)0.0582 (14)0.127 (2)0.0261 (12)0.0414 (16)0.0615 (15)
C37B0.033 (5)0.028 (5)0.017 (4)0.013 (4)0.001 (4)0.006 (4)
C38B0.026 (5)0.031 (5)0.027 (5)0.001 (4)0.016 (4)0.007 (4)
C39B0.027 (4)0.027 (4)0.024 (5)0.004 (4)0.006 (4)0.000 (4)
C40B0.036 (5)0.025 (5)0.038 (5)0.001 (4)0.002 (4)0.001 (4)
C41B0.050 (6)0.054 (6)0.033 (5)0.014 (5)0.022 (5)0.009 (5)
C42B0.061 (6)0.049 (5)0.034 (5)0.014 (5)0.004 (5)0.001 (5)
O7B0.025 (4)0.064 (5)0.048 (4)0.018 (4)0.033 (4)0.028 (4)
O8B0.041 (6)0.035 (5)0.024 (5)0.002 (4)0.006 (5)0.000 (4)
S2B0.070 (3)0.031 (2)0.0374 (19)0.0014 (16)0.0282 (17)0.0000 (15)
C430.067 (3)0.048 (3)0.045 (3)0.010 (2)0.017 (2)0.005 (2)
C440.031 (2)0.036 (2)0.030 (2)0.0056 (17)0.0020 (16)0.0027 (17)
C450.026 (2)0.053 (3)0.028 (2)0.0078 (18)0.0036 (16)0.0055 (18)
C460.054 (3)0.107 (5)0.025 (2)0.047 (3)0.000 (2)0.000 (2)
C470.0203 (18)0.048 (2)0.0249 (19)0.0103 (16)0.0036 (15)0.0028 (17)
C480.054 (3)0.027 (2)0.026 (2)0.0040 (18)0.0025 (18)0.0016 (16)
O90.0491 (18)0.0391 (16)0.0335 (15)0.0116 (14)0.0009 (13)0.0044 (13)
O100.058 (2)0.0410 (17)0.0328 (16)0.0137 (15)0.0037 (14)0.0049 (13)
S30.0512 (8)0.1075 (12)0.0347 (6)0.0080 (7)0.0008 (5)0.0211 (7)
Geometric parameters (Å, º) top
C1—F11.344 (4)C31—C321.355 (5)
C1—C21.380 (5)C31—S11.717 (3)
C1—C61.387 (4)C31—H310.9500
C2—F21.340 (4)C32—O51.382 (4)
C2—C31.377 (5)C32—C331.425 (4)
C3—F31.343 (4)C33—C341.351 (5)
C3—C41.377 (5)C33—O61.380 (4)
C4—F41.340 (4)C34—S11.719 (3)
C4—C51.377 (5)C34—H340.9500
C5—F51.350 (4)C35—O51.447 (4)
C5—C61.390 (4)C35—C361.501 (5)
C6—C71.505 (4)C35—H35A0.9900
C7—O11.269 (4)C35—H35B0.9900
C7—C81.393 (4)C36—O61.450 (4)
C8—C91.396 (4)C36—H36A0.9900
C8—H80.9500C36—H36B0.9900
C9—O21.268 (4)C37A—C38A1.463 (14)
C9—C101.505 (4)C37A—S2A1.570 (11)
C10—C151.390 (5)C37A—H37A0.9500
C10—C111.396 (5)C38A—O7A1.347 (14)
C11—F61.340 (4)C38A—C39A1.407 (14)
C11—C121.383 (5)C39A—C40A1.323 (14)
C12—F71.334 (4)C39A—O8A1.392 (11)
C12—C131.373 (5)C40A—S2A1.708 (9)
C13—F81.342 (4)C40A—H40A0.9500
C13—C141.375 (5)C41A—O7A1.474 (11)
C14—F91.340 (4)C41A—C42A1.476 (10)
C14—C151.378 (5)C41A—H41A0.9900
C15—F101.349 (4)C41A—H41B0.9900
C16—F111.343 (4)C42A—O8A1.403 (10)
C16—C171.378 (5)C42A—H42A0.9900
C16—C211.387 (5)C42A—H42B0.9900
C17—F121.337 (4)C37B—C38B1.25 (2)
C17—C181.379 (5)C37B—S2B1.836 (14)
C18—F131.335 (4)C37B—H37B0.9500
C18—C191.380 (5)C38B—O7B1.351 (16)
C19—F141.341 (4)C38B—C39B1.44 (2)
C19—C201.380 (5)C39B—O8B1.36 (2)
C20—F151.348 (4)C39B—C40B1.433 (19)
C20—C211.386 (5)C40B—S2B1.678 (13)
C21—C221.505 (4)C40B—H40B0.9500
C22—O31.274 (4)C41B—C42B1.46 (2)
C22—C231.389 (5)C41B—O7B1.47 (2)
C23—C241.396 (5)C41B—H41C0.9900
C23—H230.9500C41B—H41D0.9900
C24—O41.268 (4)C42B—O8B1.48 (2)
C24—C251.501 (4)C42B—H42C0.9900
C25—C261.394 (5)C42B—H42D0.9900
C25—C301.398 (5)C43—C441.365 (6)
C26—F161.341 (4)C43—S31.745 (5)
C26—C271.382 (5)C43—H430.9500
C27—F171.339 (4)C44—O91.365 (5)
C27—C281.381 (5)C44—C451.399 (6)
C28—F181.333 (4)C45—C461.361 (6)
C28—C291.375 (5)C45—O101.379 (5)
C29—F191.338 (4)C46—S31.652 (6)
C29—C301.384 (5)C46—H460.9500
C30—F201.339 (4)C47—O91.413 (5)
Cu1—O31.923 (2)C47—C481.448 (6)
Cu1—O41.928 (2)C47—H47A0.9900
Cu1—O11.940 (2)C47—H47B0.9900
Cu1—O21.941 (2)C48—O101.442 (5)
Cu1—O5i2.711 (2)C48—H48A0.9900
Cu1—O62.421 (2)C48—H48B0.9900
F1—C1—C2118.4 (3)C31—C32—O5124.4 (3)
F1—C1—C6119.6 (3)C31—C32—C33113.0 (3)
C2—C1—C6122.0 (3)O5—C32—C33122.6 (3)
F2—C2—C3119.7 (3)C34—C33—O6124.1 (3)
F2—C2—C1120.8 (3)C34—C33—C32113.4 (3)
C3—C2—C1119.6 (3)O6—C33—C32122.5 (3)
F3—C3—C4119.9 (3)C33—C34—S1110.2 (3)
F3—C3—C2120.0 (3)C33—C34—H34124.9
C4—C3—C2120.2 (3)S1—C34—H34124.9
F4—C4—C3120.2 (3)O5—C35—C36111.3 (3)
F4—C4—C5120.5 (3)O5—C35—H35A109.4
C3—C4—C5119.3 (3)C36—C35—H35A109.4
F5—C5—C4118.0 (3)O5—C35—H35B109.4
F5—C5—C6119.6 (3)C36—C35—H35B109.4
C4—C5—C6122.4 (3)H35A—C35—H35B108.0
C1—C6—C5116.6 (3)O6—C36—C35110.6 (3)
C1—C6—C7121.8 (3)O6—C36—H36A109.5
C5—C6—C7121.6 (3)C35—C36—H36A109.5
O1—C7—C8127.3 (3)O6—C36—H36B109.5
O1—C7—C6115.8 (3)C35—C36—H36B109.5
C8—C7—C6117.0 (3)H36A—C36—H36B108.1
C7—C8—C9123.5 (3)C32—O5—C35111.7 (2)
C7—C8—H8118.2C33—O6—C36111.5 (2)
C9—C8—H8118.2C33—O6—Cu1121.57 (18)
O2—C9—C8125.7 (3)C36—O6—Cu1121.90 (18)
O2—C9—C10115.2 (3)C31—S1—C3492.92 (16)
C8—C9—C10119.1 (3)C38A—C37A—S2A115.0 (8)
C15—C10—C11115.5 (3)C38A—C37A—H37A122.5
C15—C10—C9123.3 (3)S2A—C37A—H37A122.5
C11—C10—C9121.2 (3)O7A—C38A—C39A123.2 (9)
F6—C11—C12116.9 (3)O7A—C38A—C37A129.5 (10)
F6—C11—C10120.3 (3)C39A—C38A—C37A107.3 (11)
C12—C11—C10122.7 (3)C40A—C39A—O8A126.2 (9)
F7—C12—C13120.3 (3)C40A—C39A—C38A112.4 (9)
F7—C12—C11120.4 (3)O8A—C39A—C38A121.4 (10)
C13—C12—C11119.3 (3)C39A—C40A—S2A113.7 (9)
F8—C13—C12120.4 (3)C39A—C40A—H40A123.2
F8—C13—C14119.6 (3)S2A—C40A—H40A123.2
C12—C13—C14120.0 (3)O7A—C41A—C42A110.5 (8)
F9—C14—C13120.6 (3)O7A—C41A—H41A109.5
F9—C14—C15119.7 (3)C42A—C41A—H41A109.5
C13—C14—C15119.7 (3)O7A—C41A—H41B109.5
F10—C15—C14116.6 (3)C42A—C41A—H41B109.5
F10—C15—C10120.7 (3)H41A—C41A—H41B108.1
C14—C15—C10122.7 (3)O8A—C42A—C41A111.8 (7)
F11—C16—C17117.7 (3)O8A—C42A—H42A109.3
F11—C16—C21119.8 (3)C41A—C42A—H42A109.3
C17—C16—C21122.5 (3)O8A—C42A—H42B109.3
F12—C17—C16120.5 (3)C41A—C42A—H42B109.3
F12—C17—C18120.0 (3)H42A—C42A—H42B107.9
C16—C17—C18119.5 (3)C38A—O7A—C41A111.8 (6)
F13—C18—C17120.0 (3)C39A—O8A—C42A113.2 (7)
F13—C18—C19120.4 (3)C37A—S2A—C40A91.5 (6)
C17—C18—C19119.6 (3)C38B—C37B—S2B107.0 (11)
F14—C19—C20119.7 (3)C38B—C37B—H37B126.5
F14—C19—C18120.4 (3)S2B—C37B—H37B126.5
C20—C19—C18119.9 (3)C37B—C38B—O7B120.8 (17)
F15—C20—C19117.5 (3)C37B—C38B—C39B118.6 (14)
F15—C20—C21120.5 (3)O7B—C38B—C39B120.6 (15)
C19—C20—C21122.0 (3)O8B—C39B—C40B121.6 (13)
C20—C21—C16116.6 (3)O8B—C39B—C38B126.6 (14)
C20—C21—C22121.7 (3)C40B—C39B—C38B111.8 (12)
C16—C21—C22121.6 (3)C39B—C40B—S2B108.2 (10)
O3—C22—C23126.8 (3)C39B—C40B—H40B125.9
O3—C22—C21114.3 (3)S2B—C40B—H40B125.9
C23—C22—C21119.0 (3)C42B—C41B—O7B113.7 (12)
C22—C23—C24122.9 (3)C42B—C41B—H41C108.8
C22—C23—H23118.5O7B—C41B—H41C108.8
C24—C23—H23118.5C42B—C41B—H41D108.8
O4—C24—C23126.0 (3)O7B—C41B—H41D108.8
O4—C24—C25115.4 (3)H41C—C41B—H41D107.7
C23—C24—C25118.7 (3)C41B—C42B—O8B107.9 (13)
C26—C25—C30116.3 (3)C41B—C42B—H42C110.1
C26—C25—C24121.8 (3)O8B—C42B—H42C110.1
C30—C25—C24121.7 (3)C41B—C42B—H42D110.1
F16—C26—C27117.8 (3)O8B—C42B—H42D110.1
F16—C26—C25120.2 (3)H42C—C42B—H42D108.4
C27—C26—C25122.0 (3)C38B—O7B—C41B111.0 (13)
F17—C27—C28119.7 (3)C39B—O8B—C42B106.6 (13)
F17—C27—C26120.3 (3)C40B—S2B—C37B94.3 (6)
C28—C27—C26120.0 (3)C44—C43—S3109.2 (4)
F18—C28—C29120.2 (3)C44—C43—H43125.4
F18—C28—C27120.0 (3)S3—C43—H43125.4
C29—C28—C27119.7 (3)O9—C44—C43124.7 (4)
F19—C29—C28120.2 (3)O9—C44—C45122.4 (4)
F19—C29—C30120.0 (3)C43—C44—C45112.8 (4)
C28—C29—C30119.7 (3)C46—C45—O10124.1 (4)
F20—C30—C29117.2 (3)C46—C45—C44112.8 (4)
F20—C30—C25120.6 (3)O10—C45—C44123.1 (3)
C29—C30—C25122.2 (3)C45—C46—S3112.5 (4)
O3—Cu1—O493.47 (9)C45—C46—H46123.8
O3—Cu1—O1178.39 (9)S3—C46—H46123.8
O4—Cu1—O187.48 (9)O9—C47—C48115.2 (3)
O3—Cu1—O285.82 (9)O9—C47—H47A108.5
O4—Cu1—O2175.70 (9)C48—C47—H47A108.5
O1—Cu1—O293.32 (9)O9—C47—H47B108.5
O3—Cu1—O688.12 (9)C48—C47—H47B108.5
O4—Cu1—O693.75 (8)H47A—C47—H47B107.5
O1—Cu1—O690.53 (8)O10—C48—C47110.4 (3)
O2—Cu1—O690.46 (9)O10—C48—H48A109.6
C7—O1—Cu1123.3 (2)C47—C48—H48A109.6
C9—O2—Cu1125.0 (2)O10—C48—H48B109.6
C22—O3—Cu1124.4 (2)C47—C48—H48B109.6
C24—O4—Cu1123.7 (2)H48A—C48—H48B108.1
C32—C31—S1110.4 (2)C44—O9—C47111.3 (3)
C32—C31—H31124.8C45—O10—C48111.3 (3)
S1—C31—H31124.8C46—S3—C4392.6 (2)
F1—C1—C2—F20.8 (5)F16—C26—C27—F171.1 (5)
C6—C1—C2—F2178.8 (3)C25—C26—C27—F17179.2 (3)
F1—C1—C2—C3178.7 (3)F16—C26—C27—C28179.3 (3)
C6—C1—C2—C30.7 (5)C25—C26—C27—C281.3 (5)
F2—C2—C3—F30.4 (5)F17—C27—C28—F180.2 (5)
C1—C2—C3—F3180.0 (3)C26—C27—C28—F18179.3 (3)
F2—C2—C3—C4179.6 (3)F17—C27—C28—C29179.4 (3)
C1—C2—C3—C40.1 (5)C26—C27—C28—C291.0 (5)
F3—C3—C4—F40.2 (5)F18—C28—C29—F191.9 (5)
C2—C3—C4—F4179.7 (3)C27—C28—C29—F19178.5 (3)
F3—C3—C4—C5178.9 (3)F18—C28—C29—C30179.6 (3)
C2—C3—C4—C51.1 (5)C27—C28—C29—C300.0 (5)
F4—C4—C5—F51.7 (5)F19—C29—C30—F200.5 (5)
C3—C4—C5—F5177.4 (3)C28—C29—C30—F20179.0 (3)
F4—C4—C5—C6179.5 (3)F19—C29—C30—C25177.6 (3)
C3—C4—C5—C61.4 (5)C28—C29—C30—C250.9 (5)
F1—C1—C6—C5178.5 (3)C26—C25—C30—F20178.8 (3)
C2—C1—C6—C50.5 (5)C24—C25—C30—F204.0 (5)
F1—C1—C6—C70.2 (5)C26—C25—C30—C290.7 (5)
C2—C1—C6—C7178.2 (3)C24—C25—C30—C29174.1 (3)
F5—C5—C6—C1178.2 (3)C8—C7—O1—Cu112.6 (4)
C4—C5—C6—C10.6 (5)C6—C7—O1—Cu1168.61 (19)
F5—C5—C6—C70.5 (4)C8—C9—O2—Cu14.8 (4)
C4—C5—C6—C7179.3 (3)C10—C9—O2—Cu1173.90 (19)
C1—C6—C7—O161.9 (4)C23—C22—O3—Cu11.0 (5)
C5—C6—C7—O1119.4 (3)C21—C22—O3—Cu1177.7 (2)
C1—C6—C7—C8117.0 (3)C23—C24—O4—Cu119.4 (4)
C5—C6—C7—C861.6 (4)C25—C24—O4—Cu1159.1 (2)
O1—C7—C8—C91.3 (5)S1—C31—C32—O5178.2 (2)
C6—C7—C8—C9179.9 (3)S1—C31—C32—C330.2 (4)
C7—C8—C9—O23.1 (5)C31—C32—C33—C340.2 (4)
C7—C8—C9—C10178.2 (3)O5—C32—C33—C34178.6 (3)
O2—C9—C10—C15140.7 (3)C31—C32—C33—O6179.4 (3)
C8—C9—C10—C1540.5 (5)O5—C32—C33—O62.2 (5)
O2—C9—C10—C1137.6 (4)O6—C33—C34—S1179.7 (2)
C8—C9—C10—C11141.2 (3)C32—C33—C34—S10.5 (4)
C15—C10—C11—F6176.1 (3)O5—C35—C36—O663.7 (3)
C9—C10—C11—F65.5 (5)C31—C32—O5—C35165.6 (3)
C15—C10—C11—C120.7 (5)C33—C32—O5—C3516.2 (4)
C9—C10—C11—C12177.7 (3)C36—C35—O5—C3245.5 (4)
F6—C11—C12—F72.4 (5)C34—C33—O6—C36162.4 (3)
C10—C11—C12—F7179.2 (3)C32—C33—O6—C3618.6 (4)
F6—C11—C12—C13177.5 (3)C34—C33—O6—Cu142.2 (4)
C10—C11—C12—C130.7 (6)C32—C33—O6—Cu1136.9 (3)
F7—C12—C13—F81.6 (6)C35—C36—O6—C3347.5 (3)
C11—C12—C13—F8178.4 (3)C35—C36—O6—Cu1107.8 (3)
F7—C12—C13—C14177.9 (3)C32—C31—S1—C340.4 (3)
C11—C12—C13—C142.0 (6)C33—C34—S1—C310.5 (3)
F8—C13—C14—F90.7 (6)S2A—C37A—C38A—O7A177.3 (4)
C12—C13—C14—F9178.9 (4)S2A—C37A—C38A—C39A2.5 (4)
F8—C13—C14—C15178.5 (3)O7A—C38A—C39A—C40A179.5 (3)
C12—C13—C14—C151.9 (6)C37A—C38A—C39A—C40A0.3 (2)
F9—C14—C15—F100.2 (5)O7A—C38A—C39A—O8A0.5 (3)
C13—C14—C15—F10179.0 (3)C37A—C38A—C39A—O8A179.7 (2)
F9—C14—C15—C10179.7 (3)O8A—C39A—C40A—S2A178.3 (4)
C13—C14—C15—C100.5 (6)C38A—C39A—C40A—S2A1.8 (4)
C11—C10—C15—F10179.8 (3)O7A—C41A—C42A—O8A62.1 (9)
C9—C10—C15—F101.8 (5)C39A—C38A—O7A—C41A16.2 (6)
C11—C10—C15—C140.8 (5)C37A—C38A—O7A—C41A163.6 (5)
C9—C10—C15—C14177.6 (3)C42A—C41A—O7A—C38A45.8 (8)
F11—C16—C17—F120.4 (5)C40A—C39A—O8A—C42A165.9 (6)
C21—C16—C17—F12179.4 (3)C38A—C39A—O8A—C42A14.1 (6)
F11—C16—C17—C18178.4 (3)C41A—C42A—O8A—C39A44.6 (8)
C21—C16—C17—C180.6 (5)C38A—C37A—S2A—C40A3.0 (4)
F12—C17—C18—F131.0 (5)C39A—C40A—S2A—C37A2.8 (5)
C16—C17—C18—F13179.8 (3)S2B—C37B—C38B—O7B177.9 (5)
F12—C17—C18—C19178.9 (3)S2B—C37B—C38B—C39B2.2 (5)
C16—C17—C18—C190.1 (5)C37B—C38B—C39B—O8B179.6 (3)
F13—C18—C19—F140.4 (5)O7B—C38B—C39B—O8B0.5 (5)
C17—C18—C19—F14179.7 (3)C37B—C38B—C39B—C40B0.1 (3)
F13—C18—C19—C20179.8 (3)O7B—C38B—C39B—C40B179.8 (4)
C17—C18—C19—C200.3 (5)O8B—C39B—C40B—S2B177.2 (6)
F14—C19—C20—F151.9 (5)C38B—C39B—C40B—S2B2.5 (6)
C18—C19—C20—F15177.5 (3)O7B—C41B—C42B—O8B67.4 (17)
F14—C19—C20—C21179.6 (3)C37B—C38B—O7B—C41B171.9 (10)
C18—C19—C20—C210.1 (5)C39B—C38B—O7B—C41B8.2 (11)
F15—C20—C21—C16177.9 (3)C42B—C41B—O7B—C38B42.0 (16)
C19—C20—C21—C160.4 (5)C40B—C39B—O8B—C42B156.4 (10)
F15—C20—C21—C221.0 (5)C38B—C39B—O8B—C42B23.9 (10)
C19—C20—C21—C22176.6 (3)C41B—C42B—O8B—C39B53.7 (14)
F11—C16—C21—C20178.2 (3)C39B—C40B—S2B—C37B3.1 (7)
C17—C16—C21—C200.8 (5)C38B—C37B—S2B—C40B3.1 (7)
F11—C16—C21—C224.8 (5)S3—C43—C44—O9179.3 (3)
C17—C16—C21—C22176.2 (3)S3—C43—C44—C452.8 (5)
C20—C21—C22—O3124.5 (3)O9—C44—C45—C46179.6 (4)
C16—C21—C22—O352.3 (4)C43—C44—C45—C461.7 (6)
C20—C21—C22—C2354.3 (4)O9—C44—C45—O100.1 (6)
C16—C21—C22—C23129.0 (3)C43—C44—C45—O10178.1 (4)
O3—C22—C23—C243.4 (6)O10—C45—C46—S3179.9 (3)
C21—C22—C23—C24178.0 (3)C44—C45—C46—S30.4 (6)
C22—C23—C24—O46.9 (5)O9—C47—C48—O1061.2 (4)
C22—C23—C24—C25171.6 (3)C43—C44—O9—C47169.8 (4)
O4—C24—C25—C2642.2 (4)C45—C44—O9—C4712.5 (5)
C23—C24—C25—C26139.1 (3)C48—C47—O9—C4442.9 (4)
O4—C24—C25—C30132.2 (3)C46—C45—O10—C48162.8 (5)
C23—C24—C25—C3046.4 (4)C44—C45—O10—C4816.9 (5)
C30—C25—C26—F16178.4 (3)C47—C48—O10—C4544.6 (5)
C24—C25—C26—F166.8 (5)C45—C46—S3—C431.7 (4)
C30—C25—C26—C270.4 (5)C44—C43—S3—C462.6 (4)
C24—C25—C26—C27175.1 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···F17ii0.952.413.362 (4)179
C31—H31···O1iii0.952.573.351 (4)139
C35—H35A···O8Biii0.992.453.349 (16)151
C37A—H37A···S1iv0.952.773.590 (9)145
C41A—H41A···S2Ai0.992.513.051 (11)114
C42A—H42A···S2Ai0.992.573.220 (9)123
C42A—H42A···F6i0.992.453.162 (8)128
C48—H48B···F10v0.992.513.326 (5)140
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2; (iii) x1, y, z; (iv) x, y, z1; (v) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. 18 K05153).

References

First citationBruker (2018). APEX3, SAINT, SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrowder, J. M., Han, H., Wei, Z., Dikarev, E. V. & Petrukhina, M. A. (2019). Polyhedron, 157, 33–38.  CSD CrossRef CAS Google Scholar
First citationGroenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. (2000). Adv. Mater. 12, 481–494.  CrossRef CAS Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHori, A. (2012). Frontiers in Crystal Engineering, Vol. III, pp. 163–185. New York: John Wiley & Sons.  Google Scholar
First citationHori, A. & Arii, T. (2007). CrystEngComm, 9, 215–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationHori, A., Gonda, R. & Rzeznicka, I. I. (2017). CrystEngComm, 19, 6263–6266.  CSD CrossRef CAS Google Scholar
First citationHori, A., Nakajima, K., Akimoto, Y., Naganuma, K. & Yuge, H. (2014). CrystEngComm, 16, 8805–8817.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationKirchmeyer, S. & Reuter, K. (2005). J. Mater. Chem. 15, 2077–2088.  CrossRef CAS Google Scholar
First citationKusakawa, T., Goto, T. & Hori, A. (2020). CrystEngComm. In the press. doi: https://doi.org/10.1039/D0CE00416B.  Google Scholar
First citationMa, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303–1324.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNakajima, K. & Hori, A. (2014). Cryst. Growth Des. 14, 3169–3173.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkotheim, T. A., Elsenbaumer, R. L. & Reynolds, J. R. (1998). Handbook of Conducting Polymers, 2nd ed. New York: Marcel Dekker.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStorsberg, J., Ritter, H., Pielartzik, H. & Groenendaal, L. (2000). Adv. Mater. 12, 567–569.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWilliams, J. H. (1993). Acc. Chem. Res. 26, 593–598.  CrossRef CAS Web of Science Google Scholar
First citationWilliams, J. H. (2017). Crystal Engineering: How Molecules Build Solids. San Rafael: Morgan & Claypool Publishers.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds