research communications
In situ synthesis, crystal structures, topology and photoluminescent properties of poly[di-μ-aqua-diaqua[μ3-4-(1H-tetrazol-1-id-5-yl)benzoato-κ4O:O,O′:O′′]barium(II)] and poly[μ-aqua-diaqua[μ3-4-(1H-tetrazol-1-id-5-yl)benzoato-κ4O:O,O′:O′]strontium(II)]
aEnvironmental, Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria
*Correspondence e-mail: bensegueni.abdellatif@gmail.com
Two alkaline-earth coordination compounds, [Ba(C8H4N4O2)(H2O)4]n, (I), and [Sr(C8H4N4O2)(H2O)3]n, (II), from the one-pot hydrolysis transformation of benzoyl chloride and the in situ self-assembled [2 + 3] cycloaddition of nitrile are presented. These coordination compounds are prepared by reacting 4-cyanobenzoyl chloride with divalent alkaline-earth salts (BaCl2 and SrCl2) in aqueous solution under hydrothermal conditions. The mononuclear coordination compounds (I) and (II) show the same mode of coordination of the organic ligands. The cohesion of the crystalline structures is provided by hydrogen bonds and π-stacking interactions, thus forming three-dimensional supramolecular networks. The two compounds have a three-dimensional (3,6)-connected topology, and the structural differences between them is in the number of water molecules around the alkaline earth metals. Having the same emission frequencies, the compounds exhibit properties with a downward absorption value from (I) to (II).
1. Chemical context
In recent years, studies on a wide variety of tetrazolyl-5-substituted coordination compounds have proliferated (Klapötke & Stierstorfer, 2009; Fischer et al., 2011). The extension from the synthetic approach developed by Demko and Sharpless (2001) to that of Zhao and colleagues (Zhao et al., 2008) is the main reason for this new interest. Chemists have focused on transition-metal compounds, while studies with alkaline-earth metal–tetrazol coordination compounds remain scarce. This led us to further explore this type of compound, and to study their topological and physical properties.
The choice of ligand is essential in the design of new coordination compounds. In our study we selected a (tetrazol-carboxylate) bifunctional ligand, which is able to adopt several coordination modes, resulting in a variety of crystal structures (Ouellette et al., 2012; Sun et al., 2013; Wei et al., 2012).
The complexation and formation of both the tetrazole and carboxylate groups occurred in situ under hydrothermal conditions from a 4-cyano-benzoyl chloride and the alkaline earth salts BaCl2·2H2O and SrCl2·6H2O, giving the title compounds poly[di-μ-aqua-diaqua[μ3-5-(4-carboxylatophenyl)-1H-1,2,3,4-tetrazol-1-ido-κ4O:O,O′:O′′]barium(II)] (I) and poly[μ-aqua-diaqua[μ3-4-(1H-tetrazol-1-id-5-yl)benzoato-κ4O:O,O′:O′]strontium(II)] (II). The two compounds form one-dimensional crystalline chains, in which the coordination is ensured by chelating carboxylate groups. The two compounds were characterized by FT–IR, TGA and single-crystal X-ray A topological study was performed and the photoluminescent properties were also studied.
2. Structural commentary
Compound (I) crystallizes in the orthorhombic Imma while compound (II) crystallizes in Pmna. In these two coordination compounds, the comprises half of a crystallographically independent alkaline-earth metal ion, half of a deprotonated 4-(tetrrazol-5-yl)benzoate anion (ttzbenz), and two halves of water molecules in compound (I) and three halves of water molecules in compound (II) (Fig. 1). The bond distances and angles of the ligands are comparable to those found in the literature for similar systems (Zheng et al., 2009; Jiang et al., 2007; Yu et al., 2009).
The crystal structures of compounds (I) and (II) show similar topologies, the main difference being the around the metal center. In compound (I), a slightly distorted BaO10 sphenocorona coordination geometry (Casanova et al., 2005) is observed (Fig. 2). The geometry deviates by 4.424 compared to the theoretical model as proposed by SHAPE 2.1 software (Casanova et al., 2005; see Table S1 in the supporting information). In (I), the barium cation is decacoordinated by four oxygen atoms from three ttzbenz ligands, two independent oxygen atoms from two terminal water molecules (O2 and O3) and four additional oxygens from bridging water molecules. In compound (II), the Sr2+ ion is eightfold coordinated, being surrounded by four bridging water molecules and by four oxygen atoms from three symmetry-related ttzbenz ligands (Fig. 2), thus generating a triangular dodecahedral SrO8 coordination geometry; this geometry deviates by 3.426 compared to the theoretical model proposed by SHAPE 2.1 software (Casanova et al., 2005; see Table S1 in the supporting information).
The bond angles (Tables 1 and 2) around the Ae2+ ion (Ae2+ = Ba2+ and Sr2+) range between 42.49 (6) and 142.50 (2)° in compound (I), and between 48.93 (6) and 148.91 (4)° in compound (II). The Ba—O bond lengths are 2.821 (2) and 2.875 (1) Å for the coordinated water molecule, and 2.660 (2) and 3.016 (2) Å for the ttzbenz oxygen atom (Table 2), and these distances are slightly longer than that in an analogous compound (Fu et al., 2010). The Sr—O bond lengths are 2.501 (2) and 2.660 (1) Å for the ttzbenz oxygen atom, and 2.549 (2) and 2.676 (2) Å for the coordinated water molecule (Table 2). The Ba—O bonds are longer than Sr—O bonds; this is due not only to the nature of the metal, but also, in part, to the measurement temperature [room temperature for compound (I), but 150K for compound (II). These bond-length values are close to those observed in similar compounds based on Ae2+ one-dimensional coordination polymers: Ba—O = 2.647–3.179 Å, Sr—O = 2.486–2.843 Å in [C24H28N2O13Cl2CuSr]n and [C24H28N2O13Cl2CuBa]n (Hari, et al., 2017), and in the compounds [C8H16N16O19Sr4]n and [C8H20N16O18Sr4]n where the Sr—O distances range from 2.570–2.700 Å and 2.541–2.633 Å, respectively. In the two-dimensional coordination compound [C2H6BaN4O5]n, the Ba—O distances are 2.790 and 2.902 Å (Hartdegen et al., 2009), while in the three-dimensional polymers [Ba2M(HCOO)6(H2O)4]n, Ba—O = 2.801 (2)–3.6143 (2) Å for M = Ni, Ba—O = 2.797 (2)–2.999 (2) Å for M = Zn, and Ba—O = 2.801 (2)–3.004 (2) Å for M = Co (Baggio et al., 2004), and in the strontium complex C6H12SrN6O10, Sr—O = 2.506–2.724 Å (Divya et al., 2017).
|
The ttzbenz ligand can adopt several coordination modes by involving the tetrazole ring (Yao et al., 2013), or the carboxylate group as in our case, where the two compounds use the ttzbenz anion to coordinate two adjacent Ae2+ cations in a bidentate chelate manner, thus forming a polyatomic bridge and binding neighboring Ae2+ ions in a zigzag manner, resulting in the formation of binuclear units [Ae–O1–Ae–O1] with a Ba⋯Ba distance of 4.0089 (4) Å for compound (I) and an Sr⋯Sr distance of 3.866 (2) Å for compound (II) (Fig. 3).
3. Supramolecular features
In compound (I), hydrogen bonds between two coordinated water molecules and two nitrogen atoms of the tetrazole ring of the ttzbenz ligand are observed (Table 3), ensuring cohesion between the tetrazole rings and the inorganic [Ba2O2]n chains. In addition to hydrogen bonds, π-stacking interactions between phenyl rings are observed (Fig. 4) with a centroid–centroid distance of 4.035 (1) Å, which enhance the cohesion of the crystal structure.
|
In compound (II), as well as the strong O—H⋯N hydrogen bonds (Table 4), weak intramolecular π-stacking interactions are observed, reinforcing the cohesion in the between the tetrazole rings (centroid Cg1) and the phenyl rings (centroid Cg2) with centroid–centroid distances Cg1⋯Cg2 = 3.622 (3) Å and Cg2⋯Cg2 = 3.897 (3) Å (Fig. 4).
4. Topological study
To simplify the crystalline structure of the title compounds, we used the standard representation of valence-bound CPs (CP = coordination polymer) to obtain the underlying network. In such models, only metal centers and the centroids of organic ligands are considered as structural units (Alexandrov et al., 2011). The simplification of the of the two compounds by this procedure and the topological classification of the two studied compounds led to the same topological network, identified as a 3.6-c net with stoichiometry (3-C)2(6-C), which can be represented by the point symbol {43}2{46.66.83}. Thus the two structures consist of planar layers running parallel to (100) (Fig. 5).
5. Database survey
A search for 4-(tetrazol-5-yl) benzoate in the Cambridge Structural Database (CSD Version 5.40; Groom et al., 2016) gave 81 hits for the ligand, alone or with co-ligands. The ttzbenz ligand has proved to be an excellent component for the assembly of new coordination complexes and polymers, whether through a bridging and/or chelating coordination mode, mono or polydentate, and as an acceptor of hydrogen bonds through the two carboxylate and tetrazolate groups. This has led to structural diversity with interesting physicochemical properties, as seen in the structures with metal ions: copper (Ouellette et al., 2009), cobalt (Ouellette et al., 2012), zinc (Wei et al., 2012; Jiang et al., 2007; Zheng et al., 2009), lead (Sun et al., 2013), manganese and cadmium (Cheng et al., 2016; Yu et al., 2009), europium, terbium (Wang et al., 2011). Finally, with bipyridine co-ligands (Yang et al., 2017; Gao et al., 2016), (terpyridinyl)benzoate (Zhang et al., 2016), phenanthroline (Werrett et al., 2015), 3,5-dimethyl-1,2,4-triazolato (Sheng et al., 2016), and N,N-dimethylacetamide (Wang et al., 2015).
6. Synthesis and crystallization
Colorless crystals suitable for X-ray diffraction were obtained by hydrothermal synthesis in an aqueous solution according to a literature procedure (Demko & Sharpless, 2001; Zhao et al., 2008), where an aqueous solution (10 ml) of sodium azide (0.065 g, 1 mmol) and 4-cyanobenzoyl chloride (0.165 g, 1 mmol) was added dropwise to an aqueous solution (5 ml) of BaCl2·2H2O (0.244 g, 1mmol) for (I) and SrCl2·6H2O (0.266g, 1 mmol) for (II) under constant stirring for a few minutes. The resulting solution was sealed in a 25ml teflon-lined stainless steel autoclave and heated at 453 K for 3 d.
The FT–IR spectra for compounds (I) and (II) were recorded in the frequency range 4000–400 cm−1 on a Perkin Elmer FT–IR spectrophotometer Spectrum 1000. The ν, γ and δ modes are: stretching, out-of-plane bending, and in-plane bending, respectively. The absence of bands in the two regions: 2200–2280 cm−1 and 2100–2270 cm−1 corresponding to the functions –CN and N3−, respectively, confirms that the [2 + 3] cycloaddition reaction between the cyano group and the azide anions occurred and the tetrazolate ligand was formed (Hammerl et al., 2002, 2003; Damavarapu et al., 2010; Zhang et al., 2013)
FT–IR of (I) (ATR, cm−1): 3300 ν(O—H)water, 3100 ν(C—H)Ph, 1435 νsym (C—C), 1523 ν(N—N)ring, 1603 ν(C—N)ring, 628–1050 γ,δ (tetrazole).
FT–IR of (II) (ATR, cm−1): 3600 ν(O—H)water, 3200 ν(C—H)Ph, 1408 νsym (C—C), 1530 ν(N—N)ring, 1585 ν(C—N)ring, 654–1009 γ, δ (tetrazole) (see Fig. S1 in the supporting information).
The thermogravimetric analysis (TGA) was performed in the range 25–600°C under air atmosphere at a flow rate of 5°C/min (Fig. 6). The pyrolytic processes for compound (I) occurs in two main steps. The first step corresponds to the release of four water molecules (2 bridging water molecules and 2 monodentate) (scheme1) between 90°C and 200°C, which corresponds to approximately 18% of the weight of (I). Subsequently, the ligands undergo to result in decomposition (32% by weight) in the range of 200 to 600°C. In compound (II), the pyrolytic processes also go through two stages. The first step corresponds to the release of three water molecules (1 bridging water molecule and 2 monodentate) (scheme1) between 100°C and 160°C, which corresponds to approximately 16% of the weight of (II). The second step corresponding to a weight loss of 44% of (II) is attributed to the decomposition of the ligand 160 and 600°C.
7. Thermogravimetric analysis
The thermogravimetric analysis (TGA) was performed in the range 25–600°C under an air atmosphere at a flow rate of 5°C min−1 (Fig. 6). The pyrolytic processes for compound (I) occur in two main steps. The first step corresponds to the release of four water molecules (two bridging water molecules and two monodentate) between 90°C and 200°C, which corresponds to approximately 18% of the weight of (I). Subsequently, the ligands undergo to result in decomposition (32% by weight) in the range 200–600°C. In compound (II), the pyrolytic processes also go through two stages. The first step corresponds to the release of three water molecules (one bridging water molecule and two monodentate) between 100°C and 160°C, which corresponds to approximately 16% of the weight of (II). The second step corresponding to a weight loss of 44% of (II) is attributed to the decomposition of the ligand between 160 and 600°C.
8. Fluorescence properties
The fluorescence properties of compounds (I) and (II) were determined from the emission spectra at the same excitation wavelength (eX = 322 nm) on an Agilent Cary Eclipse Fluorescence Spectrophotometer at room temperature. Excitation of the two compounds after dissolution in DMSO leads to similar fluorescence emission spectra. The emission maximum of (I) is observed to shift from 368 to 377 nm and from 371 to 378 nm for II (see Fig. S2 in the supporting information), probably corresponding to π* → π or π*→n electronic transition of the aromatic ring ttzbenz ligands (Koşar et al., 2012), due to the close resemblance of the emission band of the two compounds. We also note downward absorption values ranging from compound (I) to (II), which may be due to the increase in the from Sr2+ to Ba2+.
9. Refinement
Crystal data, data collection and structure . The water H atoms were located in a difference-Fourier map and their positions and isotropic displacement parameters were refined. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93 Å) with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989020006386/tx2021sup1.cif
contains datablocks TTZBENZ_AE, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020006386/tx2021Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020006386/tx2021IIsup3.hkl
Infrared spectra. DOI: https://doi.org/10.1107/S2056989020006386/tx2021sup4.jpg
Photoluminescent spectra. DOI: https://doi.org/10.1107/S2056989020006386/tx2021sup5.jpg
Table S1. Comparative shape analysis of two polymers. DOI: https://doi.org/10.1107/S2056989020006386/tx2021sup6.doc
For both structures, data collection: APEX2 (Bruker, 2011). Cell
SAINT (Bruker, 2011) for (I); CrysAlis PRO (Rigaku OD, 2015) for (II). Data reduction: SAINT (Bruker, 2011) for (I); CrysAlis PRO (Rigaku OD, 2015) for (II). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (I); SIR92 (Altomare et al., 1993) for (II). Program(s) used to refine structure: SHELXL (Sheldrick, 2015b) for (I); SHELXL97 (Sheldrick, 2008) for (II). Molecular graphics: OLEX2 (Dolomanov et al., 2009) for (I); ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020) for (II). Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for (I); PLATON (Spek, 2020); publCIF (Westrip, 2010) for (II).[Ba(C8H4N4O2)(H2O)4] | F(000) = 768 |
Mr = 397.55 | Dx = 1.991 Mg m−3 |
Orthorhombic, Imma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 2b 2 | Cell parameters from 9092 reflections |
a = 7.5012 (1) Å | θ = 4.3–51.0° |
b = 7.1444 (1) Å | µ = 3.02 mm−1 |
c = 24.7457 (5) Å | T = 298 K |
V = 1326.16 (4) Å3 | Block, colorless |
Z = 4 | 0.6 × 0.5 × 0.22 mm |
Bruker APEXII CCD diffractometer | 920 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.032 |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | θmax = 28.3°, θmin = 4.9° |
Tmin = 0.670, Tmax = 0.747 | h = −10→7 |
5216 measured reflections | k = −9→7 |
952 independent reflections | l = −30→32 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | Hydrogen site location: mixed |
wR(F2) = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0155P)2 + 1.5691P] where P = (Fo2 + 2Fc2)/3 |
937 reflections | (Δ/σ)max = 0.002 |
70 parameters | Δρmax = 0.91 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.5000 | 0.7500 | 0.462655 (6) | 0.02050 (7) | |
O2 | 0.7739 (2) | 0.5000 | 0.5000 | 0.0309 (3) | |
O1 | 0.5000 | 0.4029 (2) | 0.42376 (7) | 0.0385 (4) | |
O3 | 0.2356 (3) | 0.7500 | 0.38160 (10) | 0.0458 (5) | |
N2 | 0.5000 | 0.1584 (3) | 0.08485 (7) | 0.0312 (4) | |
C1 | 0.5000 | 0.2500 | 0.39934 (11) | 0.0197 (5) | |
N1 | 0.5000 | 0.0959 (3) | 0.13588 (7) | 0.0313 (4) | |
C2 | 0.5000 | 0.2500 | 0.33851 (11) | 0.0221 (5) | |
C3 | 0.5000 | 0.0832 (3) | 0.31016 (9) | 0.0343 (5) | |
H3A | 0.5000 | −0.0298 | 0.3288 | 0.041* | |
C5 | 0.5000 | 0.2500 | 0.22580 (12) | 0.0243 (6) | |
C6 | 0.5000 | 0.2500 | 0.16639 (12) | 0.0233 (5) | |
C4 | 0.5000 | 0.0829 (3) | 0.25423 (9) | 0.0369 (6) | |
H4 | 0.5000 | −0.0302 | 0.2356 | 0.044* | |
H3 | 0.175 (4) | 0.665 (4) | 0.3725 (13) | 0.072 (9)* | |
H2 | 0.834 (3) | 0.464 (4) | 0.4761 (9) | 0.046 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.02865 (11) | 0.01345 (10) | 0.01940 (11) | 0.000 | 0.000 | 0.000 |
O2 | 0.0294 (7) | 0.0369 (9) | 0.0265 (8) | 0.000 | 0.000 | −0.0053 (7) |
O1 | 0.0744 (12) | 0.0226 (8) | 0.0184 (7) | 0.000 | 0.000 | −0.0041 (6) |
O3 | 0.0508 (11) | 0.0293 (9) | 0.0571 (13) | 0.000 | −0.0202 (10) | 0.000 |
N2 | 0.0469 (11) | 0.0283 (10) | 0.0183 (8) | 0.000 | 0.000 | −0.0020 (7) |
C1 | 0.0246 (12) | 0.0172 (12) | 0.0173 (13) | 0.000 | 0.000 | 0.000 |
N1 | 0.0527 (11) | 0.0240 (9) | 0.0171 (8) | 0.000 | 0.000 | −0.0010 (7) |
C2 | 0.0319 (14) | 0.0213 (13) | 0.0132 (12) | 0.000 | 0.000 | 0.000 |
C3 | 0.0659 (15) | 0.0190 (9) | 0.0180 (10) | 0.000 | 0.000 | 0.0022 (8) |
C5 | 0.0337 (14) | 0.0231 (14) | 0.0162 (13) | 0.000 | 0.000 | 0.000 |
C6 | 0.0298 (13) | 0.0223 (13) | 0.0179 (13) | 0.000 | 0.000 | 0.000 |
C4 | 0.0718 (17) | 0.0193 (9) | 0.0196 (10) | 0.000 | 0.000 | −0.0033 (8) |
Ba1—O1 | 2.6598 (17) | N2—N1 | 1.339 (3) |
Ba1—O1i | 2.6598 (17) | C1—O1iv | 1.249 (2) |
Ba1—O3i | 2.821 (2) | C1—C2 | 1.505 (4) |
Ba1—O3 | 2.821 (2) | N1—C6 | 1.335 (2) |
Ba1—O2ii | 2.8750 (12) | C2—C3iv | 1.383 (3) |
Ba1—O2 | 2.8750 (12) | C2—C3 | 1.383 (3) |
Ba1—O2iii | 2.8750 (12) | C3—C4 | 1.384 (3) |
Ba1—O2i | 2.8750 (12) | C3—H3A | 0.9300 |
Ba1—O1ii | 3.0157 (17) | C5—C4 | 1.386 (3) |
Ba1—O1iii | 3.0157 (17) | C5—C4iv | 1.386 (3) |
O2—H2 | 0.78 (2) | C5—C6 | 1.470 (4) |
O1—C1 | 1.249 (2) | C6—N1iv | 1.335 (2) |
O3—H3 | 0.80 (3) | C4—H4 | 0.9300 |
N2—N2iv | 1.308 (4) | ||
O1—Ba1—O1i | 137.57 (7) | Ba1iii—O2—Ba1 | 88.77 (5) |
O1—Ba1—O3i | 75.09 (3) | Ba1v—O2—H2 | 117 (2) |
O1i—Ba1—O3i | 75.09 (3) | Ba1vi—O2—H2 | 117 (2) |
O1—Ba1—O3 | 75.09 (3) | Ba1vii—O2—H2 | 117 (2) |
O1i—Ba1—O3 | 75.09 (3) | Ba1iii—O2—H2 | 117 (2) |
O3i—Ba1—O3 | 89.36 (11) | Ba1—O2—H2 | 111.5 (19) |
O1—Ba1—O2ii | 134.06 (2) | C1—O1—Ba1 | 172.27 (16) |
O1i—Ba1—O2ii | 62.43 (2) | C1—O1—Ba1v | 97.70 (14) |
O3i—Ba1—O2ii | 74.10 (4) | Ba1—O1—Ba1v | 90.03 (5) |
O3—Ba1—O2ii | 136.98 (2) | C1—O1—Ba1vii | 97.70 (14) |
O1—Ba1—O2 | 62.43 (2) | Ba1—O1—Ba1vii | 90.03 (5) |
O1i—Ba1—O2 | 134.06 (2) | C1—O1—Ba1iii | 97.70 (14) |
O3i—Ba1—O2 | 74.10 (4) | Ba1—O1—Ba1iii | 90.03 (5) |
O3—Ba1—O2 | 136.98 (2) | C1—O1—Ba1vi | 97.70 (14) |
O2ii—Ba1—O2 | 76.81 (4) | Ba1—O1—Ba1vi | 90.03 (5) |
O1—Ba1—O2iii | 62.43 (2) | Ba1—O3—H3 | 127 (2) |
O1i—Ba1—O2iii | 134.06 (2) | N2iv—N2—N1 | 109.49 (12) |
O3i—Ba1—O2iii | 136.98 (2) | O1—C1—O1iv | 122.1 (3) |
O3—Ba1—O2iii | 74.10 (4) | O1—C1—C2 | 118.95 (13) |
O2ii—Ba1—O2iii | 142.501 (17) | O1iv—C1—C2 | 118.95 (13) |
O2—Ba1—O2iii | 91.23 (5) | O1—C1—Ba1vii | 61.05 (13) |
O1—Ba1—O2i | 134.06 (2) | O1iv—C1—Ba1vii | 61.05 (13) |
O1i—Ba1—O2i | 62.43 (2) | C2—C1—Ba1vii | 180.0 |
O3i—Ba1—O2i | 136.98 (2) | O1—C1—Ba1iii | 61.05 (13) |
O3—Ba1—O2i | 74.10 (4) | O1iv—C1—Ba1iii | 61.05 (13) |
O2ii—Ba1—O2i | 91.23 (5) | C2—C1—Ba1iii | 180.0 |
O2—Ba1—O2i | 142.501 (17) | O1—C1—Ba1vi | 61.05 (13) |
O2iii—Ba1—O2i | 76.81 (4) | O1iv—C1—Ba1vi | 61.05 (13) |
O1—Ba1—O1ii | 132.46 (5) | C2—C1—Ba1vi | 180.0 |
O1i—Ba1—O1ii | 89.97 (5) | O1—C1—Ba1v | 61.05 (13) |
O3i—Ba1—O1ii | 131.51 (5) | O1iv—C1—Ba1v | 61.05 (13) |
O3—Ba1—O1ii | 131.51 (5) | C2—C1—Ba1v | 180.0 |
O2ii—Ba1—O1ii | 58.35 (2) | C6—N1—N2 | 104.94 (19) |
O2—Ba1—O1ii | 85.73 (2) | C3iv—C2—C3 | 119.0 (3) |
O2iii—Ba1—O1ii | 85.73 (2) | C3iv—C2—C1 | 120.48 (13) |
O2i—Ba1—O1ii | 58.35 (2) | C3—C2—C1 | 120.48 (13) |
O1—Ba1—O1iii | 89.97 (5) | C2—C3—C4 | 120.6 (2) |
O1i—Ba1—O1iii | 132.46 (5) | C2—C3—H3A | 119.7 |
O3i—Ba1—O1iii | 131.51 (5) | C4—C3—H3A | 119.7 |
O3—Ba1—O1iii | 131.51 (5) | C4—C5—C4iv | 119.0 (3) |
O2ii—Ba1—O1iii | 85.73 (2) | C4—C5—C6 | 120.50 (14) |
O2—Ba1—O1iii | 58.35 (2) | C4iv—C5—C6 | 120.50 (14) |
O2iii—Ba1—O1iii | 58.35 (2) | N1iv—C6—N1 | 111.1 (3) |
O2i—Ba1—O1iii | 85.73 (2) | N1iv—C6—C5 | 124.44 (13) |
O1ii—Ba1—O1iii | 42.49 (6) | N1—C6—C5 | 124.44 (13) |
Ba1v—O2—Ba1 | 88.77 (5) | C3—C4—C5 | 120.4 (2) |
Ba1vi—O2—Ba1 | 88.77 (5) | C3—C4—H4 | 119.8 |
Ba1vii—O2—Ba1 | 88.77 (5) | C5—C4—H4 | 119.8 |
O1—Ba1—O2—Ba1v | −57.76 (3) | O1ii—Ba1—O2—Ba1vii | 85.62 (2) |
O1i—Ba1—O2—Ba1v | 171.44 (5) | O1iii—Ba1—O2—Ba1vii | 50.97 (3) |
O3i—Ba1—O2—Ba1v | −138.96 (4) | O1—Ba1—O2—Ba1iii | −57.76 (3) |
O3—Ba1—O2—Ba1v | −67.75 (7) | O1i—Ba1—O2—Ba1iii | 171.44 (5) |
O2ii—Ba1—O2—Ba1v | 144.096 (12) | O3i—Ba1—O2—Ba1iii | −138.96 (4) |
O2i—Ba1—O2—Ba1v | 69.71 (4) | O3—Ba1—O2—Ba1iii | −67.75 (7) |
O1ii—Ba1—O2—Ba1v | 85.62 (2) | O2ii—Ba1—O2—Ba1iii | 144.096 (12) |
O1iii—Ba1—O2—Ba1v | 50.97 (3) | O2i—Ba1—O2—Ba1iii | 69.71 (4) |
O1—Ba1—O2—Ba1vi | −57.76 (3) | O1ii—Ba1—O2—Ba1iii | 85.62 (2) |
O1i—Ba1—O2—Ba1vi | 171.44 (5) | O1iii—Ba1—O2—Ba1iii | 50.97 (3) |
O3i—Ba1—O2—Ba1vi | −138.96 (4) | O3i—Ba1—O1—Ba1v | 133.31 (5) |
O3—Ba1—O2—Ba1vi | −67.75 (7) | O2ii—Ba1—O1—Ba1v | 84.02 (4) |
O2ii—Ba1—O2—Ba1vi | 144.096 (12) | O2—Ba1—O1—Ba1v | 53.73 (3) |
O2i—Ba1—O2—Ba1vi | 69.71 (4) | O3i—Ba1—O1—Ba1vii | 133.31 (5) |
O1ii—Ba1—O2—Ba1vi | 85.62 (2) | O2ii—Ba1—O1—Ba1vii | 84.02 (4) |
O1iii—Ba1—O2—Ba1vi | 50.97 (3) | O2—Ba1—O1—Ba1vii | 53.73 (3) |
O1—Ba1—O2—Ba1vii | −57.76 (3) | O3i—Ba1—O1—Ba1iii | 133.31 (5) |
O1i—Ba1—O2—Ba1vii | 171.44 (5) | O2ii—Ba1—O1—Ba1iii | 84.02 (4) |
O3i—Ba1—O2—Ba1vii | −138.96 (4) | O2—Ba1—O1—Ba1iii | 53.73 (3) |
O3—Ba1—O2—Ba1vii | −67.75 (7) | O3i—Ba1—O1—Ba1vi | 133.31 (5) |
O2ii—Ba1—O2—Ba1vii | 144.096 (12) | O2ii—Ba1—O1—Ba1vi | 84.02 (4) |
O2i—Ba1—O2—Ba1vii | 69.71 (4) | O2—Ba1—O1—Ba1vi | 53.73 (3) |
Symmetry codes: (i) −x+1, −y+3/2, z; (ii) x, y+1/2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1/2, z; (v) −x+1, y−1/2, −z+1; (vi) x, y−1/2, −z+1; (vii) x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N2viii | 0.79 (2) | 2.14 (2) | 2.927 (2) | 175 (3) |
O3—H3···N1ix | 0.79 (3) | 2.29 (3) | 3.069 (2) | 169 (3) |
Symmetry codes: (viii) x+1/2, −y+1/2, −z+1/2; (ix) x−1/2, −y+1/2, −z+1/2. |
[Sr(C8H4N4O2)(H2O)3] | F(000) = 656 |
Mr = 329.82 | Dx = 1.874 Mg m−3 |
Orthorhombic, Pmna | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2 | Cell parameters from 10707 reflections |
a = 6.914 (6) Å | θ = 4.9–34.3° |
b = 7.018 (7) Å | µ = 4.62 mm−1 |
c = 24.164 (2) Å | T = 150 K |
V = 1172.5 (16) Å3 | Prism, colorless |
Z = 4 | 0.20 × 0.1 × 0.07 mm |
Bruker APEXII CCD diffractometer | 2091 independent reflections |
Radiation source: fine-focus sealed tube | 1740 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
φ and ω scans | θmax = 31.5°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −10→8 |
Tmin = 0.67, Tmax = 0.747 | k = −10→8 |
9495 measured reflections | l = −34→35 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0253P)2 + 0.7105P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.062 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.65 e Å−3 |
2091 reflections | Δρmin = −0.44 e Å−3 |
105 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sr | 0.5000 | 0.41161 (3) | 0.285826 (9) | 0.01071 (7) | |
O4 | 0.7500 | 0.6752 (3) | 0.2500 | 0.0148 (4) | |
O2 | 0.5000 | 0.0703 (3) | 0.32193 (13) | 0.0341 (6) | |
O3 | 0.5000 | 0.6090 (3) | 0.37304 (8) | 0.0201 (4) | |
O1 | 0.84065 (19) | 0.3310 (2) | 0.31160 (5) | 0.0157 (3) | |
C2 | 1.0000 | 0.2947 (3) | 0.39842 (10) | 0.0112 (5) | |
N1 | 1.1596 (2) | 0.1898 (2) | 0.60389 (6) | 0.0155 (3) | |
C4 | 0.8268 (3) | 0.2547 (3) | 0.48414 (7) | 0.0166 (4) | |
H4A | 0.7101 | 0.2459 | 0.5031 | 0.020* | |
C5 | 1.0000 | 0.2407 (4) | 0.51296 (10) | 0.0120 (5) | |
N2 | 1.0952 (2) | 0.1577 (2) | 0.65534 (6) | 0.0167 (3) | |
C6 | 1.0000 | 0.2079 (3) | 0.57327 (10) | 0.0120 (5) | |
C3 | 0.8269 (3) | 0.2818 (3) | 0.42714 (7) | 0.0166 (4) | |
H3A | 0.7102 | 0.2912 | 0.4082 | 0.020* | |
C1 | 1.0000 | 0.3206 (4) | 0.33702 (10) | 0.0113 (5) | |
H3 | 0.600 (3) | 0.668 (4) | 0.3839 (10) | 0.037 (7)* | |
H4 | 0.709 (4) | 0.743 (4) | 0.2212 (9) | 0.036 (8)* | |
H2 | 0.584 (4) | 0.014 (5) | 0.3353 (12) | 0.058 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr | 0.00658 (11) | 0.01630 (11) | 0.00923 (10) | 0.000 | 0.000 | 0.00006 (10) |
O4 | 0.0141 (10) | 0.0173 (8) | 0.0131 (9) | 0.000 | −0.0015 (7) | 0.000 |
O2 | 0.0211 (13) | 0.0223 (12) | 0.0590 (18) | 0.000 | 0.000 | 0.0144 (12) |
O3 | 0.0102 (10) | 0.0302 (11) | 0.0200 (10) | 0.000 | 0.000 | −0.0087 (9) |
O1 | 0.0088 (6) | 0.0258 (7) | 0.0124 (6) | 0.0014 (6) | −0.0017 (5) | 0.0045 (5) |
C2 | 0.0120 (12) | 0.0107 (10) | 0.0107 (11) | 0.000 | 0.000 | 0.0017 (9) |
N1 | 0.0144 (8) | 0.0215 (8) | 0.0106 (7) | −0.0015 (6) | −0.0014 (6) | 0.0002 (6) |
C4 | 0.0101 (9) | 0.0251 (9) | 0.0146 (8) | 0.0019 (8) | 0.0022 (7) | 0.0017 (7) |
C5 | 0.0140 (12) | 0.0126 (11) | 0.0093 (11) | 0.000 | 0.000 | −0.0019 (9) |
N2 | 0.0186 (8) | 0.0206 (7) | 0.0110 (7) | −0.0015 (7) | −0.0010 (6) | 0.0000 (6) |
C6 | 0.0134 (12) | 0.0112 (10) | 0.0114 (11) | 0.000 | 0.000 | −0.0019 (9) |
C3 | 0.0102 (9) | 0.0260 (9) | 0.0137 (8) | 0.0023 (7) | −0.0009 (7) | 0.0026 (7) |
C1 | 0.0084 (12) | 0.0124 (11) | 0.0132 (11) | 0.000 | 0.000 | 0.0007 (9) |
Sr—O1 | 2.501 (2) | C2—C3 | 1.387 (2) |
Sr—O1i | 2.501 (2) | C2—C1 | 1.495 (3) |
Sr—O3 | 2.522 (2) | N1—C6 | 1.335 (2) |
Sr—O2 | 2.549 (3) | N1—N2 | 1.340 (2) |
Sr—O1ii | 2.6602 (14) | C4—C5 | 1.389 (2) |
Sr—O1iii | 2.6602 (14) | C4—C3 | 1.390 (2) |
Sr—O4 | 2.6757 (18) | C4—H4A | 0.9300 |
Sr—O4ii | 2.6757 (18) | C5—C4iv | 1.389 (2) |
O4—H4 | 0.89 (2) | C5—C6 | 1.475 (3) |
O2—H2 | 0.77 (3) | N2—N2iv | 1.316 (4) |
O3—H3 | 0.846 (16) | C6—N1iv | 1.335 (2) |
O1—C1 | 1.2635 (19) | C3—H3A | 0.9300 |
C2—C3iv | 1.387 (2) | C1—O1iv | 1.2635 (19) |
O1—Sr—O1i | 140.67 (7) | O4ii—Sr—Srii | 43.74 (4) |
O1—Sr—O3 | 85.19 (4) | C1ii—Sr—Srii | 64.037 (19) |
O1i—Sr—O3 | 85.20 (4) | O1—Sr—Srv | 43.07 (4) |
O1—Sr—O2 | 72.67 (4) | O1i—Sr—Srv | 162.46 (3) |
O1i—Sr—O2 | 72.67 (4) | O3—Sr—Srv | 111.97 (2) |
O3—Sr—O2 | 103.31 (9) | O2—Sr—Srv | 98.82 (3) |
O1—Sr—O1ii | 124.21 (4) | O1ii—Sr—Srv | 88.51 (4) |
O1i—Sr—O1ii | 77.42 (5) | O1iii—Sr—Srv | 39.95 (3) |
O3—Sr—O1ii | 148.91 (4) | O4—Sr—Srv | 43.74 (4) |
O2—Sr—O1ii | 95.91 (7) | O4ii—Sr—Srv | 115.64 (3) |
O1—Sr—O1iii | 77.42 (5) | C1ii—Sr—Srv | 64.037 (19) |
O1i—Sr—O1iii | 124.21 (5) | Srii—Sr—Srv | 126.79 (4) |
O3—Sr—O1iii | 148.91 (4) | Sr—O4—Srv | 92.52 (8) |
O2—Sr—O1iii | 95.91 (7) | Sr—O4—H4 | 114.6 (18) |
O1ii—Sr—O1iii | 48.93 (6) | Srv—O4—H4 | 108.9 (17) |
O1—Sr—O4 | 68.20 (5) | Sr—O2—H2 | 129 (2) |
O1i—Sr—O4 | 147.71 (5) | Sr—O3—H3 | 121.9 (18) |
O3—Sr—O4 | 83.72 (5) | C1—O1—Sr | 162.79 (14) |
O2—Sr—O4 | 139.50 (4) | C1—O1—Srv | 94.66 (12) |
O1ii—Sr—O4 | 97.37 (4) | Sr—O1—Srv | 96.98 (5) |
O1iii—Sr—O4 | 66.00 (5) | C3iv—C2—C3 | 119.4 (2) |
O1—Sr—O4ii | 147.71 (5) | C3iv—C2—C1 | 120.32 (11) |
O1i—Sr—O4ii | 68.20 (5) | C3—C2—C1 | 120.32 (11) |
O3—Sr—O4ii | 83.72 (5) | C6—N1—N2 | 104.81 (16) |
O2—Sr—O4ii | 139.50 (4) | C5—C4—C3 | 120.41 (18) |
O1ii—Sr—O4ii | 66.00 (5) | C5—C4—H4A | 119.8 |
O1iii—Sr—O4ii | 97.37 (4) | C3—C4—H4A | 119.8 |
O4—Sr—O4ii | 80.48 (7) | C4—C5—C4iv | 119.1 (2) |
O1—Sr—C1ii | 101.29 (3) | C4—C5—C6 | 120.42 (11) |
O1i—Sr—C1ii | 101.29 (3) | C4iv—C5—C6 | 120.42 (11) |
O3—Sr—C1ii | 158.83 (7) | N2iv—N2—N1 | 109.42 (10) |
O2—Sr—C1ii | 97.87 (9) | N1iv—C6—N1 | 111.5 (2) |
O1ii—Sr—C1ii | 24.50 (3) | N1iv—C6—C5 | 124.22 (11) |
O1iii—Sr—C1ii | 24.50 (3) | N1—C6—C5 | 124.22 (11) |
O4—Sr—C1ii | 80.16 (4) | C2—C3—C4 | 120.34 (18) |
O4ii—Sr—C1ii | 80.16 (4) | C2—C3—H3A | 119.8 |
O1—Sr—Srii | 162.46 (3) | C4—C3—H3A | 119.8 |
O1i—Sr—Srii | 43.07 (4) | O1—C1—O1iv | 121.4 (2) |
O3—Sr—Srii | 111.97 (2) | O1—C1—C2 | 119.31 (11) |
O2—Sr—Srii | 98.82 (3) | O1iv—C1—C2 | 119.31 (11) |
O1ii—Sr—Srii | 39.95 (3) | O1—C1—Srv | 60.84 (11) |
O1iii—Sr—Srii | 88.51 (4) | O1iv—C1—Srv | 60.84 (11) |
O4—Sr—Srii | 115.64 (3) | C2—C1—Srv | 174.84 (17) |
O1—Sr—O4—Srv | 43.94 (4) | O4ii—Sr—O1—Srv | −59.57 (8) |
O1i—Sr—O4—Srv | −158.12 (6) | C1ii—Sr—O1—Srv | 29.86 (6) |
O3—Sr—O4—Srv | 131.27 (4) | Srii—Sr—O1—Srv | 61.70 (12) |
O2—Sr—O4—Srv | 28.11 (11) | C3—C4—C5—C4iv | 0.2 (4) |
O1ii—Sr—O4—Srv | −80.03 (4) | C3—C4—C5—C6 | −178.7 (2) |
O1iii—Sr—O4—Srv | −41.54 (3) | C6—N1—N2—N2iv | −0.35 (16) |
O4ii—Sr—O4—Srv | −144.08 (2) | N2—N1—C6—N1iv | 0.6 (3) |
C1ii—Sr—O4—Srv | −62.52 (4) | N2—N1—C6—C5 | −178.6 (2) |
Srii—Sr—O4—Srv | −117.34 (3) | C4—C5—C6—N1iv | −0.1 (4) |
O1i—Sr—O1—C1 | −74.0 (5) | C4iv—C5—C6—N1iv | −179.0 (2) |
O3—Sr—O1—C1 | 2.4 (5) | C4—C5—C6—N1 | 179.0 (2) |
O2—Sr—O1—C1 | −103.1 (5) | C4iv—C5—C6—N1 | 0.1 (4) |
O1ii—Sr—O1—C1 | 171.6 (5) | C3iv—C2—C3—C4 | −0.5 (4) |
O1iii—Sr—O1—C1 | 156.5 (5) | C1—C2—C3—C4 | 179.0 (2) |
O4—Sr—O1—C1 | 87.6 (5) | C5—C4—C3—C2 | 0.1 (3) |
O4ii—Sr—O1—C1 | 72.7 (5) | Sr—O1—C1—O1iv | −138.6 (3) |
C1ii—Sr—O1—C1 | 162.1 (5) | Srv—O1—C1—O1iv | −6.2 (3) |
Srii—Sr—O1—C1 | −166.1 (4) | Sr—O1—C1—C2 | 41.6 (6) |
Srv—Sr—O1—C1 | 132.2 (5) | Srv—O1—C1—C2 | 174.1 (2) |
O1i—Sr—O1—Srv | 153.83 (6) | Sr—O1—C1—Srv | −132.5 (5) |
O3—Sr—O1—Srv | −129.77 (7) | C3iv—C2—C1—O1 | 179.6 (2) |
O2—Sr—O1—Srv | 124.67 (8) | C3—C2—C1—O1 | 0.1 (4) |
O1ii—Sr—O1—Srv | 39.36 (9) | C3iv—C2—C1—O1iv | −0.1 (4) |
O1iii—Sr—O1—Srv | 24.29 (6) | C3—C2—C1—O1iv | −179.6 (2) |
O4—Sr—O1—Srv | −44.63 (4) |
Symmetry codes: (i) −x+1, y, z; (ii) x−1/2, y, −z+1/2; (iii) −x+3/2, y, −z+1/2; (iv) −x+2, y, z; (v) x+1/2, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···N1vi | 0.85 (2) | 1.96 (2) | 2.800 (2) | 171 (3) |
O3—H3···N2vi | 0.85 (2) | 2.62 (2) | 3.314 (3) | 141 (2) |
O2—H2···N2vii | 0.77 (3) | 2.53 (3) | 3.270 (3) | 160 (3) |
O4—H4···N2viii | 0.87 (2) | 1.93 (2) | 2.784 (2) | 166 (2) |
Symmetry codes: (vi) −x+2, −y+1, −z+1; (vii) −x+2, −y, −z+1; (viii) x−1/2, −y+1, z−1/2. |
Acknowledgements
We would like to thank S. Maza and the Fluorescence Spectroscopy staff at the National Biotechnology Research Center, Constantine, Algeria.
Funding information
Funding for this research was provided by: Unité de Recherche de Chimie Moléculaire et Structurale (UR.CHEMS); Direction Générale de la Recherche Scientifique et du Developpement Technologique (DGRSDT) Algérie.
References
Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947–3958. Web of Science CrossRef CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Baggio, R., Stoilova, D., Polla, G., Leyva, G. & Garland, M. T. (2004). J. Mol. Struct. 697, 173–180. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494. Web of Science CrossRef PubMed CAS Google Scholar
Cheng, M., Ding, Y.-S., Zhang, Z. & Jia, Q.-X. (2016). Inorg. Chim. Acta, 450, 1–7. CSD CrossRef CAS Google Scholar
Damavarapu, R., Klapötke, T. M., Stierstorfer, J. & Tarantik, K. R. (2010). Propellants, Explosives, Pyrotech. 35, 395–406. Google Scholar
Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950. Web of Science CrossRef PubMed CAS Google Scholar
Divya, R., Nair, L. P., Bijini, B. R., Nair, C. M. K., Gopakumar, N. & Babu, K. R. (2017). Physica B, 526, 37–44. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fischer, N., Klapötke, T. M., Peters, K., Rusan, M. & Stierstorfer, J. (2011). Z. Anorg. Allg. Chem. 637, 1693–1701. CSD CrossRef CAS Google Scholar
Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282–285. Web of Science CSD CrossRef CAS Google Scholar
Gao, J.-X., Xiong, J. B., Xu, Q., Tan, Y. H., Liu, Y., Wen, H. R. & Tang, Y. Z. (2016). Cryst. Growth Des. 16, 1559–1564. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hammerl, A., Holl, G., Kaiser, M., Klapötke, Th. M. & Piotrowski, H. (2003). Z. Anorg. Allg. Chem. 629, 2117–2121. CSD CrossRef CAS Google Scholar
Hammerl, A., Holl, G., Klapötke, Th. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834–845. CSD CrossRef Google Scholar
Hari, N., Jana, A. & Mohanta, S. (2017). Inorg. Chim. Acta, 467, 11–20. CSD CrossRef CAS Google Scholar
Hartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). Inorg. Chem. 48, 9549–9556. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jiang, T., Zhao, Y.-F. & Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194–1197. Web of Science CSD CrossRef CAS Google Scholar
Klapötke, T. M. & Stierstorfer, J. (2009). J. Am. Chem. Soc. 131, 1122–1134. PubMed Google Scholar
Koşar, B., Albayrak, C., Ersanlı, C. C., Odabaşoğlu, M. & Büyükgüngör, O. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 93, 1–9. PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ouellette, W., Darling, K. & Zubieta, J. (2012). Inorg. Chim. Acta, 391, 36–43. CSD CrossRef CAS Google Scholar
Ouellette, W., Liu, H., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 4655–4657. CSD CrossRef PubMed CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheng, D.-H., Dan, W.-Y., Luo, G.-X. & Deng, M.-L. (2016). Chin. J. Struct. Chem. 35, 264–270. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sun, J.-Y., Wang, L., Zhang, D.-J., Li, D., Cao, Y., Zhang, L.-Y., Zeng, S.-L., Pang, G.-S., Fan, Y., Xu, J.-N. & Song, T.-Y. (2013). CrystEngComm, 15, 3402–3411. CSD CrossRef CAS Google Scholar
Wang, D., Zhang, L., Li, G., Huo, Q. & Liu, Y. (2015). RSC Adv. 5, 18087–18091. CSD CrossRef CAS Google Scholar
Wang, J., Nie, J. & Dai, C. (2011). J. Coord. Chem. 64, 1645–1653. CSD CrossRef CAS Google Scholar
Wei, Q., Yang, D., Larson, T. E., Kinnibrugh, T. L., Zou, R., Henson, N. J., Timofeeva, T., Xu, H., Zhao, Y. & Mattes, B. R. (2012). J. Mater. Chem. 22, 10166–10171. CSD CrossRef CAS Google Scholar
Werrett, M. V., Huff, G. S., Muzzioli, S., Fiorini, V., Zacchini, S., Skelton, B. W., Maggiore, A., Malicka, J. M., Cocchi, M., Gordon, K. C., Stagni, S. & Massi, M. (2015). Dalton Trans. 44, 8379–8393. CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, H.-Y., Li, Y.-Z., Shi, W.-J., Hou, L., Wang, Y. & Zhu, Z. (2017). Dalton Trans. 46, 11722–11727. CSD CrossRef CAS PubMed Google Scholar
Yao, R.-X., Qin, Y.-L., Ji, F., Zhao, Y.-F. & Zhang, X.-M. (2013). Dalton Trans. 42, 6611–6618. CSD CrossRef CAS PubMed Google Scholar
Yu, Z.-P., Xiong, S.-S., Yong, G.-P. & Wang, Z.-Y. (2009). J. Coord. Chem. 62, 242–248. CSD CrossRef CAS Google Scholar
Zhang, T., Li, R. F., Tian, A. Q., Feng, X. & Tian, P. H. (2016). Chin. J. Struct. Chem. 35, 1122–1128. CAS Google Scholar
Zhang, X. B., Ren, Y. H., Li, W., Zhao, F. Q., Yi, J. H., Wang, B. Z. & Song, J. R. (2013). J. Coord. Chem. 66, 2051–2064. CSD CrossRef CAS Google Scholar
Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100. Web of Science CrossRef PubMed Google Scholar
Zheng, S.-L., Wang, Y., Yu, Z., Lin, Q. & Coppens, P. (2009). J. Am. Chem. Soc. 131, 18036–18037. CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.