research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

In situ synthesis, crystal structures, topology and photoluminescent properties of poly[di-μ-aqua-di­aqua­[μ3-4-(1H-tetra­zol-1-id-5-yl)benzoato-κ4O:O,O′:O′′]barium(II)] and poly[μ-aqua-di­aqua­[μ3-4-(1H-tetra­zol-1-id-5-yl)benzoato-κ4O:O,O′:O′]strontium(II)]

CROSSMARK_Color_square_no_text.svg

aEnvironmental, Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria
*Correspondence e-mail: bensegueni.abdellatif@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 16 April 2020; accepted 12 May 2020; online 19 May 2020)

Two alkaline-earth coordination compounds, [Ba(C8H4N4O2)(H2O)4]n, (I), and [Sr(C8H4N4O2)(H2O)3]n, (II), from the one-pot hydrolysis transformation of benzoyl chloride and the in situ self-assembled [2 + 3] cyclo­addition of nitrile are presented. These coordination compounds are prepared by reacting 4-cyano­benzoyl chloride with divalent alkaline-earth salts (BaCl2 and SrCl2) in aqueous solution under hydro­thermal conditions. The mononuclear coordination compounds (I) and (II) show the same mode of coordination of the organic ligands. The cohesion of the crystalline structures is provided by hydrogen bonds and π-stacking inter­actions, thus forming three-dimensional supra­molecular networks. The two compounds have a three-dimensional (3,6)-connected topology, and the structural differences between them is in the number of water mol­ecules around the alkaline earth metals. Having the same emission frequencies, the compounds exhibit photoluminescence properties with a downward absorption value from (I) to (II).

1. Chemical context

In recent years, studies on a wide variety of tetra­zolyl-5-substituted coordination compounds have proliferated (Klapötke & Stierstorfer, 2009[Klapötke, T. M. & Stierstorfer, J. (2009). J. Am. Chem. Soc. 131, 1122-1134.]; Fischer et al., 2011[Fischer, N., Klapötke, T. M., Peters, K., Rusan, M. & Stierstorfer, J. (2011). Z. Anorg. Allg. Chem. 637, 1693-1701.]). The extension from the synthetic approach developed by Demko and Sharpless (2001[Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.]) to that of Zhao and colleagues (Zhao et al., 2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]) is the main reason for this new inter­est. Chemists have focused on transition-metal compounds, while studies with alkaline-earth metal–tetra­zol coordination compounds remain scarce. This led us to further explore this type of compound, and to study their topological and physical properties.

The choice of ligand is essential in the design of new coordination compounds. In our study we selected a (tetra­zol-carboxyl­ate) bifunctional ligand, which is able to adopt several coordination modes, resulting in a variety of crystal structures (Ouellette et al., 2012[Ouellette, W., Darling, K. & Zubieta, J. (2012). Inorg. Chim. Acta, 391, 36-43.]; Sun et al., 2013[Sun, J.-Y., Wang, L., Zhang, D.-J., Li, D., Cao, Y., Zhang, L.-Y., Zeng, S.-L., Pang, G.-S., Fan, Y., Xu, J.-N. & Song, T.-Y. (2013). CrystEngComm, 15, 3402-3411.]; Wei et al., 2012[Wei, Q., Yang, D., Larson, T. E., Kinnibrugh, T. L., Zou, R., Henson, N. J., Timofeeva, T., Xu, H., Zhao, Y. & Mattes, B. R. (2012). J. Mater. Chem. 22, 10166-10171.]).

The complexation and formation of both the tetra­zole and carboxyl­ate groups occurred in situ under hydro­thermal conditions from a 4-cyano-benzoyl chloride and the alkaline earth salts BaCl2·2H2O and SrCl2·6H2O, giving the title compounds poly[di-μ-aqua-di­aqua­[μ3-5-(4-carboxyl­ato­phen­yl)-1H-1,2,3,4-tetra­zol-1-ido-κ4O:O,O′:O′′]barium(II)] (I)[link] and poly[μ-aqua-di­aqua­[μ3-4-(1H-tetra­zol-1-id-5-yl)benzoato-κ4O:O,O′:O′]strontium(II)] (II)[link]. The two compounds form one-dimensional crystalline chains, in which the coordination is ensured by chelating carboxyl­ate groups. The two compounds were characterized by FT–IR, TGA and single-crystal X-ray diffraction analysis. A topological study was performed and the photoluminescent properties were also studied.

[Scheme 1]

2. Structural commentary

Compound (I)[link] crystallizes in the ortho­rhom­bic space group Imma while compound (II)[link] crystallizes in Pmna. In these two coordination compounds, the asymmetric unit comprises half of a crystallographically independent alkaline-earth metal ion, half of a deprotonated 4-(tetrrazol-5-yl)benzoate anion (ttzbenz), and two halves of water mol­ecules in compound (I)[link] and three halves of water mol­ecules in compound (II)[link] (Fig. 1[link]). The bond distances and angles of the ligands are comparable to those found in the literature for similar systems (Zheng et al., 2009[Zheng, S.-L., Wang, Y., Yu, Z., Lin, Q. & Coppens, P. (2009). J. Am. Chem. Soc. 131, 18036-18037.]; Jiang et al., 2007[Jiang, T., Zhao, Y.-F. & Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194-1197.]; Yu et al., 2009[Yu, Z.-P., Xiong, S.-S., Yong, G.-P. & Wang, Z.-Y. (2009). J. Coord. Chem. 62, 242-248.]).

[Figure 1]
Figure 1
The coordination environment of the Ae2+ ion in compounds (I)[link] and (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes for (I)[link]: (i) 2 − x, [{1\over 2}] − y, z; (ii) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] − z; (iii) x − [{1\over 2}], [{1\over 2}] − y, [{1\over 2}] − z; (iv) 2 − x, y, z; (v) [{1\over 2}] + x, y, [{1\over 2}] − z; (vi) x − [{1\over 2}], −y, z; (vii) −x − [{1\over 2}], y, [{1\over 2}] − z; and for (II)[link]: (i) 2 − x, y, z; (ii) [{3\over 2}] − x, y, [{1\over 2}] − z; (iii) x + [{1\over 2}], y, [{1\over 2}] − z.]

The crystal structures of compounds (I)[link] and (II)[link] show similar topologies, the main difference being the coordination polyhedron around the metal center. In compound (I)[link], a slightly distorted BaO10 sphenocorona coordination geometry (Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.]) is observed (Fig. 2[link]). The geometry deviates by 4.424 compared to the theoretical model as proposed by SHAPE 2.1 software (Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.]; see Table S1 in the supporting information). In (I)[link], the barium cation is deca­coordinated by four oxygen atoms from three ttzbenz ligands, two independent oxygen atoms from two terminal water mol­ecules (O2 and O3) and four additional oxygens from bridging water mol­ecules. In compound (II)[link], the Sr2+ ion is eightfold coordinated, being surrounded by four bridging water mol­ecules and by four oxygen atoms from three symmetry-related ttzbenz ligands (Fig. 2[link]), thus generating a triangular dodeca­hedral SrO8 coordination geometry; this geometry deviates by 3.426 compared to the theoretical model proposed by SHAPE 2.1 software (Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.]; see Table S1 in the supporting information).

[Figure 2]
Figure 2
Coordinating polyhedra of compounds (I)[link] and (II)[link], the colored polyhedra with open front faces represent the ideal polyhedral shape as calculated by SHAPE 2.1 [Symmetry codes for (I)[link]: (i) 1 − x, [{1\over 2}] − y, z; (ii) 1 − x, y, z; (iii) −[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] − z; (iv) [{3\over 2}] − x, y, [{1\over 2}] − z; (v) x, [{1\over 2}] − y, z; and for (II)[link]: (i) 2 − x, y, z; (ii) [{5\over 2}] − x, y, [{1\over 2}] − z; (iii) −[{1\over 2}] + x, y, [{1\over 2}] − z.]

The bond angles (Tables 1[link] and 2[link]) around the Ae2+ ion (Ae2+ = Ba2+ and Sr2+) range between 42.49 (6) and 142.50 (2)° in compound (I)[link], and between 48.93 (6) and 148.91 (4)° in compound (II)[link]. The Ba—O bond lengths are 2.821 (2) and 2.875 (1) Å for the coordinated water mol­ecule, and 2.660 (2) and 3.016 (2) Å for the ttzbenz oxygen atom (Table 2[link]), and these distances are slightly longer than that in an analogous compound (Fu et al., 2010[Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.]). The Sr—O bond lengths are 2.501 (2) and 2.660 (1) Å for the ttzbenz oxygen atom, and 2.549 (2) and 2.676 (2) Å for the coordinated water mol­ecule (Table 2[link]). The Ba—O bonds are longer than Sr—O bonds; this is due not only to the nature of the metal, but also, in part, to the measurement temperature [room temperature for compound (I)[link], but 150K for compound (II)[link]. These bond-length values are close to those observed in similar compounds based on Ae2+ one-dimensional coordination polymers: Ba—O = 2.647–3.179 Å, Sr—O = 2.486–2.843 Å in [C24H28N2O13Cl2CuSr]n and [C24H28N2O13Cl2CuBa]n (Hari, et al., 2017[Hari, N., Jana, A. & Mohanta, S. (2017). Inorg. Chim. Acta, 467, 11-20.]), and in the compounds [C8H16N16O19Sr4]n and [C8H20N16O18Sr4]n where the Sr—O distances range from 2.570–2.700 Å and 2.541–2.633 Å, respectively. In the two-dimensional coordination compound [C2H6BaN4O5]n, the Ba—O distances are 2.790 and 2.902 Å (Hartdegen et al., 2009[Hartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). Inorg. Chem. 48, 9549-9556.]), while in the three-dimensional polymers [Ba2M(HCOO)6(H2O)4]n, Ba—O = 2.801 (2)–3.6143 (2) Å for M = Ni, Ba—O = 2.797 (2)–2.999 (2) Å for M = Zn, and Ba—O = 2.801 (2)–3.004 (2) Å for M = Co (Baggio et al., 2004[Baggio, R., Stoilova, D., Polla, G., Leyva, G. & Garland, M. T. (2004). J. Mol. Struct. 697, 173-180.]), and in the strontium complex C6H12SrN6O10, Sr—O = 2.506–2.724 Å (Divya et al., 2017[Divya, R., Nair, L. P., Bijini, B. R., Nair, C. M. K., Gopakumar, N. & Babu, K. R. (2017). Physica B, 526, 37-44.]).

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Ba1—O1 2.6598 (17) Ba1—O2 2.8750 (12)
Ba1—O1i 2.6598 (17) Ba1—O2iii 2.8750 (12)
Ba1—O3i 2.821 (2) Ba1—O2i 2.8750 (12)
Ba1—O3 2.821 (2) Ba1—O1ii 3.0157 (17)
Ba1—O2ii 2.8750 (12) Ba1—O1iii 3.0157 (17)
       
O1—Ba1—O1i 137.57 (7) O2ii—Ba1—O2iii 142.501 (17)
O1—Ba1—O3i 75.09 (3) O2—Ba1—O2iii 91.23 (5)
O3i—Ba1—O3 89.36 (11) O1—Ba1—O1ii 132.46 (5)
O1—Ba1—O2ii 134.06 (2) O3i—Ba1—O1ii 131.51 (5)
O1i—Ba1—O2ii 62.43 (2) O2ii—Ba1—O1ii 58.35 (2)
O3i—Ba1—O2ii 74.10 (4) O2—Ba1—O1ii 85.73 (2)
O3—Ba1—O2ii 136.98 (2) O1ii—Ba1—O1iii 42.49 (6)
O2ii—Ba1—O2 76.81 (4)    
Symmetry codes: (i) [-x+1, -y+{\script{3\over 2}}, z]; (ii) [x, y+{\script{1\over 2}}, -z+1]; (iii) -x+1, -y+1, -z+1.

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Sr—O1 2.501 (2) Sr—O1i 2.6602 (14)
Sr—O3 2.522 (2) Sr—O4 2.6757 (18)
Sr—O2 2.549 (3)    
       
O1—Sr—O1ii 140.67 (7) O3—Sr—O1iii 148.91 (4)
O1—Sr—O3 85.19 (4) O1—Sr—O4 68.20 (5)
O1—Sr—O2 72.67 (4) O1ii—Sr—O4 147.71 (5)
O3—Sr—O2 103.31 (9) O3—Sr—O4 83.72 (5)
O1—Sr—O1i 124.21 (4) O2—Sr—O4 139.50 (4)
O1ii—Sr—O1i 77.42 (5) O1i—Sr—O4 97.37 (4)
O3—Sr—O1i 148.91 (4) O1iii—Sr—O4 66.00 (5)
O2—Sr—O1i 95.91 (7) O1iii—Sr—O4i 97.37 (4)
O1ii—Sr—O1iii 124.21 (5) O4—Sr—O4i 80.48 (7)
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x+1, y, z; (iii) [-x+{\script{3\over 2}}, y, -z+{\script{1\over 2}}].

The ttzbenz ligand can adopt several coordination modes by involving the tetra­zole ring (Yao et al., 2013[Yao, R.-X., Qin, Y.-L., Ji, F., Zhao, Y.-F. & Zhang, X.-M. (2013). Dalton Trans. 42, 6611-6618.]), or the carboxyl­ate group as in our case, where the two compounds use the ttzbenz anion to coordinate two adjacent Ae2+ cations in a bidentate chelate manner, thus forming a polyatomic bridge and binding neighboring Ae2+ ions in a zigzag manner, resulting in the formation of binuclear units [Ae–O1–Ae–O1] with a Ba⋯Ba distance of 4.0089 (4) Å for compound (I)[link] and an Sr⋯Sr distance of 3.866 (2) Å for compound (II)[link] (Fig. 3[link]).

[Figure 3]
Figure 3
Coordinating polymers along the b axis.

3. Supra­molecular features

In compound (I)[link], hydrogen bonds between two coordinated water mol­ecules and two nitro­gen atoms of the tetra­zole ring of the ttzbenz ligand are observed (Table 3[link]), ensuring cohesion between the tetra­zole rings and the inorganic [Ba2O2]n chains. In addition to hydrogen bonds, π-stacking inter­actions between phenyl rings are observed (Fig. 4[link]) with a centroid–centroid distance of 4.035 (1) Å, which enhance the cohesion of the crystal structure.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2iv 0.79 (2) 2.14 (2) 2.927 (2) 175 (3)
O3—H3⋯N1v 0.79 (3) 2.29 (3) 3.069 (2) 169 (3)
Symmetry codes: (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Hydrogen bonds (blue dashed lines) and π-stacking inter­actions (green dashed lines) in the crystal packing of compounds (I)[link] and (II)[link].

In compound (II)[link], as well as the strong O—H⋯N hydrogen bonds (Table 4[link]), weak intra­molecular π-stacking inter­actions are observed, reinforcing the cohesion in the crystal structure between the tetra­zole rings (centroid Cg1) and the phenyl rings (centroid Cg2) with centroid–centroid distances Cg1⋯Cg2 = 3.622 (3) Å and Cg2⋯Cg2 = 3.897 (3) Å (Fig. 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1iv 0.85 (2) 1.96 (2) 2.800 (2) 171 (3)
O3—H3⋯N2iv 0.85 (2) 2.62 (2) 3.314 (3) 141 (2)
O2—H2⋯N2v 0.77 (3) 2.53 (3) 3.270 (3) 160 (3)
O4—H4⋯N2vi 0.87 (2) 1.93 (2) 2.784 (2) 166 (2)
Symmetry codes: (iv) -x+2, -y+1, -z+1; (v) -x+2, -y, -z+1; (vi) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

4. Topological study

To simplify the crystalline structure of the title compounds, we used the standard representation of valence-bound CPs (CP = coordination polymer) to obtain the underlying network. In such models, only metal centers and the centroids of organic ligands are considered as structural units (Alexandrov et al., 2011[Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947-3958.]). The simplification of the crystal structure of the two compounds by this procedure and the topological classification of the two studied compounds led to the same topological network, identified as a 3.6-c net with stoichiometry (3-C)2(6-C), which can be represented by the point symbol {43}2{46.66.83}. Thus the two structures consist of planar layers running parallel to (100) (Fig. 5[link]).

[Figure 5]
Figure 5
Simplification of the coordination framework in the two compounds using standard representation for valence-bonded CPs.

5. Database survey

A search for 4-(tetra­zol-5-yl) benzoate in the Cambridge Structural Database (CSD Version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 81 hits for the ligand, alone or with co-ligands. The ttzbenz ligand has proved to be an excellent component for the assembly of new coordination complexes and polymers, whether through a bridging and/or chelating coordination mode, mono or polydentate, and as an acceptor of hydrogen bonds through the two carboxyl­ate and tetra­zolate groups. This has led to structural diversity with inter­esting physicochemical properties, as seen in the structures with metal ions: copper (Ouellette et al., 2009[Ouellette, W., Liu, H., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 4655-4657.]), cobalt (Ouellette et al., 2012[Ouellette, W., Darling, K. & Zubieta, J. (2012). Inorg. Chim. Acta, 391, 36-43.]), zinc (Wei et al., 2012[Wei, Q., Yang, D., Larson, T. E., Kinnibrugh, T. L., Zou, R., Henson, N. J., Timofeeva, T., Xu, H., Zhao, Y. & Mattes, B. R. (2012). J. Mater. Chem. 22, 10166-10171.]; Jiang et al., 2007[Jiang, T., Zhao, Y.-F. & Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194-1197.]; Zheng et al., 2009[Zheng, S.-L., Wang, Y., Yu, Z., Lin, Q. & Coppens, P. (2009). J. Am. Chem. Soc. 131, 18036-18037.]), lead (Sun et al., 2013[Sun, J.-Y., Wang, L., Zhang, D.-J., Li, D., Cao, Y., Zhang, L.-Y., Zeng, S.-L., Pang, G.-S., Fan, Y., Xu, J.-N. & Song, T.-Y. (2013). CrystEngComm, 15, 3402-3411.]), manganese and cadmium (Cheng et al., 2016[Cheng, M., Ding, Y.-S., Zhang, Z. & Jia, Q.-X. (2016). Inorg. Chim. Acta, 450, 1-7.]; Yu et al., 2009[Yu, Z.-P., Xiong, S.-S., Yong, G.-P. & Wang, Z.-Y. (2009). J. Coord. Chem. 62, 242-248.]), europium, terbium (Wang et al., 2011[Wang, J., Nie, J. & Dai, C. (2011). J. Coord. Chem. 64, 1645-1653.]). Finally, with bi­pyridine co-ligands (Yang et al., 2017[Yang, H.-Y., Li, Y.-Z., Shi, W.-J., Hou, L., Wang, Y. & Zhu, Z. (2017). Dalton Trans. 46, 11722-11727.]; Gao et al., 2016[Gao, J.-X., Xiong, J. B., Xu, Q., Tan, Y. H., Liu, Y., Wen, H. R. & Tang, Y. Z. (2016). Cryst. Growth Des. 16, 1559-1564.]), (terpyridin­yl)benzoate (Zhang et al., 2016[Zhang, T., Li, R. F., Tian, A. Q., Feng, X. & Tian, P. H. (2016). Chin. J. Struct. Chem. 35, 1122-1128.]), phenanthroline (Werrett et al., 2015[Werrett, M. V., Huff, G. S., Muzzioli, S., Fiorini, V., Zacchini, S., Skelton, B. W., Maggiore, A., Malicka, J. M., Cocchi, M., Gordon, K. C., Stagni, S. & Massi, M. (2015). Dalton Trans. 44, 8379-8393.]), 3,5-dimethyl-1,2,4-triazolato (Sheng et al., 2016[Sheng, D.-H., Dan, W.-Y., Luo, G.-X. & Deng, M.-L. (2016). Chin. J. Struct. Chem. 35, 264-270.]), and N,N-di­methyl­acetamide (Wang et al., 2015[Wang, D., Zhang, L., Li, G., Huo, Q. & Liu, Y. (2015). RSC Adv. 5, 18087-18091.]).

6. Synthesis and crystallization

Colorless crystals suitable for X-ray diffraction were obtained by hydro­thermal synthesis in an aqueous solution according to a literature procedure (Demko & Sharpless, 2001[Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.]; Zhao et al., 2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]), where an aqueous solution (10 ml) of sodium azide (0.065 g, 1 mmol) and 4-cyano­benzoyl chloride (0.165 g, 1 mmol) was added dropwise to an aqueous solution (5 ml) of BaCl2·2H2O (0.244 g, 1mmol) for (I)[link] and SrCl2·6H2O (0.266g, 1 mmol) for (II)[link] under constant stirring for a few minutes. The resulting solution was sealed in a 25ml teflon-lined stainless steel autoclave and heated at 453 K for 3 d.

The FT–IR spectra for compounds (I)[link] and (II)[link] were recorded in the frequency range 4000–400 cm−1 on a Perkin Elmer FT–IR spectrophotometer Spectrum 1000. The ν, γ and δ modes are: stretching, out-of-plane bending, and in-plane bending, respectively. The absence of bands in the two regions: 2200–2280 cm−1 and 2100–2270 cm−1 corresponding to the functions –CN and N3, respectively, confirms that the [2 + 3] cyclo­addition reaction between the cyano group and the azide anions occurred and the tetra­zolate ligand was formed (Hammerl et al., 2002[Hammerl, A., Holl, G., Klapötke, Th. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834-845.], 2003[Hammerl, A., Holl, G., Kaiser, M., Klapötke, Th. M. & Piotrowski, H. (2003). Z. Anorg. Allg. Chem. 629, 2117-2121.]; Damavarapu et al., 2010[Damavarapu, R., Klapötke, T. M., Stierstorfer, J. & Tarantik, K. R. (2010). Propellants, Explosives, Pyrotech. 35, 395-406.]; Zhang et al., 2013[Zhang, X. B., Ren, Y. H., Li, W., Zhao, F. Q., Yi, J. H., Wang, B. Z. & Song, J. R. (2013). J. Coord. Chem. 66, 2051-2064.])

FT–IR of (I)[link] (ATR, cm−1): 3300 ν(O—H)water, 3100 ν(C—H)Ph, 1435 νsym (C—C), 1523 ν(N—N)ring, 1603 ν(C—N)ring, 628–1050 γ,δ (tetra­zole).

FT–IR of (II)[link] (ATR, cm−1): 3600 ν(O—H)water, 3200 ν(C—H)Ph, 1408 νsym (C—C), 1530 ν(N—N)ring, 1585 ν(C—N)ring, 654–1009 γ, δ (tetra­zole) (see Fig. S1 in the supporting information).

The thermogravimetric analysis (TGA) was performed in the range 25–600°C under air atmosphere at a flow rate of 5°C/min (Fig. 6[link]). The pyrolytic processes for compound (I)[link] occurs in two main steps. The first step corresponds to the release of four water mol­ecules (2 bridging water mol­ecules and 2 monodentate) (scheme1) between 90°C and 200°C, which corresponds to approximately 18% of the weight of (I)[link]. Subsequently, the ligands undergo pyrolysis to result in decomposition (32% by weight) in the range of 200 to 600°C. In compound (II)[link], the pyrolytic processes also go through two stages. The first step corresponds to the release of three water mol­ecules (1 bridging water mol­ecule and 2 monodentate) (scheme1) between 100°C and 160°C, which corresponds to approximately 16% of the weight of (II)[link]. The second step corresponding to a weight loss of 44% of (II)[link] is attributed to the decomposition of the ligand 160 and 600°C.

[Figure 6]
Figure 6
Thermogravimetric analysis of compounds (I)[link] and (II)[link].

7. Thermogravimetric analysis

The thermogravimetric analysis (TGA) was performed in the range 25–600°C under an air atmosphere at a flow rate of 5°C min−1 (Fig. 6[link]). The pyrolytic processes for compound (I)[link] occur in two main steps. The first step corresponds to the release of four water mol­ecules (two bridging water mol­ecules and two monodentate) between 90°C and 200°C, which corresponds to approximately 18% of the weight of (I)[link]. Subsequently, the ligands undergo pyrolysis to result in decomposition (32% by weight) in the range 200–600°C. In compound (II)[link], the pyrolytic processes also go through two stages. The first step corresponds to the release of three water mol­ecules (one bridging water mol­ecule and two monodentate) between 100°C and 160°C, which corresponds to approximately 16% of the weight of (II)[link]. The second step corresponding to a weight loss of 44% of (II)[link] is attributed to the decomposition of the ligand between 160 and 600°C.

8. Fluorescence properties

The fluorescence properties of compounds (I)[link] and (II)[link] were determined from the emission spectra at the same excitation wavelength (eX = 322 nm) on an Agilent Cary Eclipse Fluorescence Spectrophotometer at room temperature. Excitation of the two compounds after dissolution in DMSO leads to similar fluorescence emission spectra. The emission maximum of (I)[link] is observed to shift from 368 to 377 nm and from 371 to 378 nm for II (see Fig. S2 in the supporting information), probably corresponding to π* → π or π*→n electronic transition of the aromatic ring ttzbenz ligands (Koşar et al., 2012[Koşar, B., Albayrak, C., Ersanlı, C. C., Odabaşoğlu, M. & Büyükgüngör, O. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 93, 1-9.]), due to the close resemblance of the emission band of the two compounds. We also note downward absorption values ranging from compound (I)[link] to (II)[link], which may be due to the increase in the atomic number from Sr2+ to Ba2+.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The water H atoms were located in a difference-Fourier map and their positions and isotropic displacement parameters were refined. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93 Å) with Uiso(H) = 1.2Ueq(C).

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Ba(C8H4N4O2)(H2O)4] [Sr(C8H4N4O2)(H2O)3]
Mr 397.55 329.82
Crystal system, space group Orthorhombic, Imma Orthorhombic, Pmna
Temperature (K) 298 150
a, b, c (Å) 7.5012 (1), 7.1444 (1), 24.7457 (5) 6.914 (6), 7.018 (7), 24.164 (2)
V3) 1326.16 (4) 1172.5 (16)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.02 4.62
Crystal size (mm) 0.6 × 0.5 × 0.22 0.20 × 0.1 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.670, 0.747 0.67, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 5216, 952, 920 9495, 2091, 1740
Rint 0.032 0.038
(sin θ/λ)max−1) 0.667 0.735
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.039, 1.07 0.028, 0.062, 1.07
No. of reflections 937 2091
No. of parameters 70 105
No. of restraints 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.91, −0.31 0.65, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2011). Cell refinement: SAINT (Bruker, 2011) for (I); CrysAlis PRO (Rigaku OD, 2015) for (II). Data reduction: SAINT (Bruker, 2011) for (I); CrysAlis PRO (Rigaku OD, 2015) for (II). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (I); SIR92 (Altomare et al., 1993) for (II). Program(s) used to refine structure: SHELXL (Sheldrick, 2015b) for (I); SHELXL97 (Sheldrick, 2008) for (II). Molecular graphics: OLEX2 (Dolomanov et al., 2009) for (I); ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020) for (II). Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for (I); PLATON (Spek, 2020); publCIF (Westrip, 2010) for (II).

Poly[di-µ-aqua-diaqua[µ3-5-(4-carboxylatophenyl)-1H-1,2,3,4-tetrazol-1-ido-κ4O:O,O':O']barium(II)] (I) top
Crystal data top
[Ba(C8H4N4O2)(H2O)4]F(000) = 768
Mr = 397.55Dx = 1.991 Mg m3
Orthorhombic, ImmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2Cell parameters from 9092 reflections
a = 7.5012 (1) Åθ = 4.3–51.0°
b = 7.1444 (1) ŵ = 3.02 mm1
c = 24.7457 (5) ÅT = 298 K
V = 1326.16 (4) Å3Block, colorless
Z = 40.6 × 0.5 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
920 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
θmax = 28.3°, θmin = 4.9°
Tmin = 0.670, Tmax = 0.747h = 107
5216 measured reflectionsk = 97
952 independent reflectionsl = 3032
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: mixed
wR(F2) = 0.039H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0155P)2 + 1.5691P]
where P = (Fo2 + 2Fc2)/3
937 reflections(Δ/σ)max = 0.002
70 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.50000.75000.462655 (6)0.02050 (7)
O20.7739 (2)0.50000.50000.0309 (3)
O10.50000.4029 (2)0.42376 (7)0.0385 (4)
O30.2356 (3)0.75000.38160 (10)0.0458 (5)
N20.50000.1584 (3)0.08485 (7)0.0312 (4)
C10.50000.25000.39934 (11)0.0197 (5)
N10.50000.0959 (3)0.13588 (7)0.0313 (4)
C20.50000.25000.33851 (11)0.0221 (5)
C30.50000.0832 (3)0.31016 (9)0.0343 (5)
H3A0.50000.02980.32880.041*
C50.50000.25000.22580 (12)0.0243 (6)
C60.50000.25000.16639 (12)0.0233 (5)
C40.50000.0829 (3)0.25423 (9)0.0369 (6)
H40.50000.03020.23560.044*
H30.175 (4)0.665 (4)0.3725 (13)0.072 (9)*
H20.834 (3)0.464 (4)0.4761 (9)0.046 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02865 (11)0.01345 (10)0.01940 (11)0.0000.0000.000
O20.0294 (7)0.0369 (9)0.0265 (8)0.0000.0000.0053 (7)
O10.0744 (12)0.0226 (8)0.0184 (7)0.0000.0000.0041 (6)
O30.0508 (11)0.0293 (9)0.0571 (13)0.0000.0202 (10)0.000
N20.0469 (11)0.0283 (10)0.0183 (8)0.0000.0000.0020 (7)
C10.0246 (12)0.0172 (12)0.0173 (13)0.0000.0000.000
N10.0527 (11)0.0240 (9)0.0171 (8)0.0000.0000.0010 (7)
C20.0319 (14)0.0213 (13)0.0132 (12)0.0000.0000.000
C30.0659 (15)0.0190 (9)0.0180 (10)0.0000.0000.0022 (8)
C50.0337 (14)0.0231 (14)0.0162 (13)0.0000.0000.000
C60.0298 (13)0.0223 (13)0.0179 (13)0.0000.0000.000
C40.0718 (17)0.0193 (9)0.0196 (10)0.0000.0000.0033 (8)
Geometric parameters (Å, º) top
Ba1—O12.6598 (17)N2—N11.339 (3)
Ba1—O1i2.6598 (17)C1—O1iv1.249 (2)
Ba1—O3i2.821 (2)C1—C21.505 (4)
Ba1—O32.821 (2)N1—C61.335 (2)
Ba1—O2ii2.8750 (12)C2—C3iv1.383 (3)
Ba1—O22.8750 (12)C2—C31.383 (3)
Ba1—O2iii2.8750 (12)C3—C41.384 (3)
Ba1—O2i2.8750 (12)C3—H3A0.9300
Ba1—O1ii3.0157 (17)C5—C41.386 (3)
Ba1—O1iii3.0157 (17)C5—C4iv1.386 (3)
O2—H20.78 (2)C5—C61.470 (4)
O1—C11.249 (2)C6—N1iv1.335 (2)
O3—H30.80 (3)C4—H40.9300
N2—N2iv1.308 (4)
O1—Ba1—O1i137.57 (7)Ba1iii—O2—Ba188.77 (5)
O1—Ba1—O3i75.09 (3)Ba1v—O2—H2117 (2)
O1i—Ba1—O3i75.09 (3)Ba1vi—O2—H2117 (2)
O1—Ba1—O375.09 (3)Ba1vii—O2—H2117 (2)
O1i—Ba1—O375.09 (3)Ba1iii—O2—H2117 (2)
O3i—Ba1—O389.36 (11)Ba1—O2—H2111.5 (19)
O1—Ba1—O2ii134.06 (2)C1—O1—Ba1172.27 (16)
O1i—Ba1—O2ii62.43 (2)C1—O1—Ba1v97.70 (14)
O3i—Ba1—O2ii74.10 (4)Ba1—O1—Ba1v90.03 (5)
O3—Ba1—O2ii136.98 (2)C1—O1—Ba1vii97.70 (14)
O1—Ba1—O262.43 (2)Ba1—O1—Ba1vii90.03 (5)
O1i—Ba1—O2134.06 (2)C1—O1—Ba1iii97.70 (14)
O3i—Ba1—O274.10 (4)Ba1—O1—Ba1iii90.03 (5)
O3—Ba1—O2136.98 (2)C1—O1—Ba1vi97.70 (14)
O2ii—Ba1—O276.81 (4)Ba1—O1—Ba1vi90.03 (5)
O1—Ba1—O2iii62.43 (2)Ba1—O3—H3127 (2)
O1i—Ba1—O2iii134.06 (2)N2iv—N2—N1109.49 (12)
O3i—Ba1—O2iii136.98 (2)O1—C1—O1iv122.1 (3)
O3—Ba1—O2iii74.10 (4)O1—C1—C2118.95 (13)
O2ii—Ba1—O2iii142.501 (17)O1iv—C1—C2118.95 (13)
O2—Ba1—O2iii91.23 (5)O1—C1—Ba1vii61.05 (13)
O1—Ba1—O2i134.06 (2)O1iv—C1—Ba1vii61.05 (13)
O1i—Ba1—O2i62.43 (2)C2—C1—Ba1vii180.0
O3i—Ba1—O2i136.98 (2)O1—C1—Ba1iii61.05 (13)
O3—Ba1—O2i74.10 (4)O1iv—C1—Ba1iii61.05 (13)
O2ii—Ba1—O2i91.23 (5)C2—C1—Ba1iii180.0
O2—Ba1—O2i142.501 (17)O1—C1—Ba1vi61.05 (13)
O2iii—Ba1—O2i76.81 (4)O1iv—C1—Ba1vi61.05 (13)
O1—Ba1—O1ii132.46 (5)C2—C1—Ba1vi180.0
O1i—Ba1—O1ii89.97 (5)O1—C1—Ba1v61.05 (13)
O3i—Ba1—O1ii131.51 (5)O1iv—C1—Ba1v61.05 (13)
O3—Ba1—O1ii131.51 (5)C2—C1—Ba1v180.0
O2ii—Ba1—O1ii58.35 (2)C6—N1—N2104.94 (19)
O2—Ba1—O1ii85.73 (2)C3iv—C2—C3119.0 (3)
O2iii—Ba1—O1ii85.73 (2)C3iv—C2—C1120.48 (13)
O2i—Ba1—O1ii58.35 (2)C3—C2—C1120.48 (13)
O1—Ba1—O1iii89.97 (5)C2—C3—C4120.6 (2)
O1i—Ba1—O1iii132.46 (5)C2—C3—H3A119.7
O3i—Ba1—O1iii131.51 (5)C4—C3—H3A119.7
O3—Ba1—O1iii131.51 (5)C4—C5—C4iv119.0 (3)
O2ii—Ba1—O1iii85.73 (2)C4—C5—C6120.50 (14)
O2—Ba1—O1iii58.35 (2)C4iv—C5—C6120.50 (14)
O2iii—Ba1—O1iii58.35 (2)N1iv—C6—N1111.1 (3)
O2i—Ba1—O1iii85.73 (2)N1iv—C6—C5124.44 (13)
O1ii—Ba1—O1iii42.49 (6)N1—C6—C5124.44 (13)
Ba1v—O2—Ba188.77 (5)C3—C4—C5120.4 (2)
Ba1vi—O2—Ba188.77 (5)C3—C4—H4119.8
Ba1vii—O2—Ba188.77 (5)C5—C4—H4119.8
O1—Ba1—O2—Ba1v57.76 (3)O1ii—Ba1—O2—Ba1vii85.62 (2)
O1i—Ba1—O2—Ba1v171.44 (5)O1iii—Ba1—O2—Ba1vii50.97 (3)
O3i—Ba1—O2—Ba1v138.96 (4)O1—Ba1—O2—Ba1iii57.76 (3)
O3—Ba1—O2—Ba1v67.75 (7)O1i—Ba1—O2—Ba1iii171.44 (5)
O2ii—Ba1—O2—Ba1v144.096 (12)O3i—Ba1—O2—Ba1iii138.96 (4)
O2i—Ba1—O2—Ba1v69.71 (4)O3—Ba1—O2—Ba1iii67.75 (7)
O1ii—Ba1—O2—Ba1v85.62 (2)O2ii—Ba1—O2—Ba1iii144.096 (12)
O1iii—Ba1—O2—Ba1v50.97 (3)O2i—Ba1—O2—Ba1iii69.71 (4)
O1—Ba1—O2—Ba1vi57.76 (3)O1ii—Ba1—O2—Ba1iii85.62 (2)
O1i—Ba1—O2—Ba1vi171.44 (5)O1iii—Ba1—O2—Ba1iii50.97 (3)
O3i—Ba1—O2—Ba1vi138.96 (4)O3i—Ba1—O1—Ba1v133.31 (5)
O3—Ba1—O2—Ba1vi67.75 (7)O2ii—Ba1—O1—Ba1v84.02 (4)
O2ii—Ba1—O2—Ba1vi144.096 (12)O2—Ba1—O1—Ba1v53.73 (3)
O2i—Ba1—O2—Ba1vi69.71 (4)O3i—Ba1—O1—Ba1vii133.31 (5)
O1ii—Ba1—O2—Ba1vi85.62 (2)O2ii—Ba1—O1—Ba1vii84.02 (4)
O1iii—Ba1—O2—Ba1vi50.97 (3)O2—Ba1—O1—Ba1vii53.73 (3)
O1—Ba1—O2—Ba1vii57.76 (3)O3i—Ba1—O1—Ba1iii133.31 (5)
O1i—Ba1—O2—Ba1vii171.44 (5)O2ii—Ba1—O1—Ba1iii84.02 (4)
O3i—Ba1—O2—Ba1vii138.96 (4)O2—Ba1—O1—Ba1iii53.73 (3)
O3—Ba1—O2—Ba1vii67.75 (7)O3i—Ba1—O1—Ba1vi133.31 (5)
O2ii—Ba1—O2—Ba1vii144.096 (12)O2ii—Ba1—O1—Ba1vi84.02 (4)
O2i—Ba1—O2—Ba1vii69.71 (4)O2—Ba1—O1—Ba1vi53.73 (3)
Symmetry codes: (i) x+1, y+3/2, z; (ii) x, y+1/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z; (v) x+1, y1/2, z+1; (vi) x, y1/2, z+1; (vii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2viii0.79 (2)2.14 (2)2.927 (2)175 (3)
O3—H3···N1ix0.79 (3)2.29 (3)3.069 (2)169 (3)
Symmetry codes: (viii) x+1/2, y+1/2, z+1/2; (ix) x1/2, y+1/2, z+1/2.
Poly[µ-aqua-diaqua[µ3-5-(4-carboxylatophenyl)-1H-1,2,3,4-tetrazol-1-ido-κ4O:O,O':O']strontium(II)] (II) top
Crystal data top
[Sr(C8H4N4O2)(H2O)3]F(000) = 656
Mr = 329.82Dx = 1.874 Mg m3
Orthorhombic, PmnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2Cell parameters from 10707 reflections
a = 6.914 (6) Åθ = 4.9–34.3°
b = 7.018 (7) ŵ = 4.62 mm1
c = 24.164 (2) ÅT = 150 K
V = 1172.5 (16) Å3Prism, colorless
Z = 40.20 × 0.1 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2091 independent reflections
Radiation source: fine-focus sealed tube1740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 31.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 108
Tmin = 0.67, Tmax = 0.747k = 108
9495 measured reflectionsl = 3435
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.7105P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.65 e Å3
2091 reflectionsΔρmin = 0.44 e Å3
105 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr0.50000.41161 (3)0.285826 (9)0.01071 (7)
O40.75000.6752 (3)0.25000.0148 (4)
O20.50000.0703 (3)0.32193 (13)0.0341 (6)
O30.50000.6090 (3)0.37304 (8)0.0201 (4)
O10.84065 (19)0.3310 (2)0.31160 (5)0.0157 (3)
C21.00000.2947 (3)0.39842 (10)0.0112 (5)
N11.1596 (2)0.1898 (2)0.60389 (6)0.0155 (3)
C40.8268 (3)0.2547 (3)0.48414 (7)0.0166 (4)
H4A0.71010.24590.50310.020*
C51.00000.2407 (4)0.51296 (10)0.0120 (5)
N21.0952 (2)0.1577 (2)0.65534 (6)0.0167 (3)
C61.00000.2079 (3)0.57327 (10)0.0120 (5)
C30.8269 (3)0.2818 (3)0.42714 (7)0.0166 (4)
H3A0.71020.29120.40820.020*
C11.00000.3206 (4)0.33702 (10)0.0113 (5)
H30.600 (3)0.668 (4)0.3839 (10)0.037 (7)*
H40.709 (4)0.743 (4)0.2212 (9)0.036 (8)*
H20.584 (4)0.014 (5)0.3353 (12)0.058 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr0.00658 (11)0.01630 (11)0.00923 (10)0.0000.0000.00006 (10)
O40.0141 (10)0.0173 (8)0.0131 (9)0.0000.0015 (7)0.000
O20.0211 (13)0.0223 (12)0.0590 (18)0.0000.0000.0144 (12)
O30.0102 (10)0.0302 (11)0.0200 (10)0.0000.0000.0087 (9)
O10.0088 (6)0.0258 (7)0.0124 (6)0.0014 (6)0.0017 (5)0.0045 (5)
C20.0120 (12)0.0107 (10)0.0107 (11)0.0000.0000.0017 (9)
N10.0144 (8)0.0215 (8)0.0106 (7)0.0015 (6)0.0014 (6)0.0002 (6)
C40.0101 (9)0.0251 (9)0.0146 (8)0.0019 (8)0.0022 (7)0.0017 (7)
C50.0140 (12)0.0126 (11)0.0093 (11)0.0000.0000.0019 (9)
N20.0186 (8)0.0206 (7)0.0110 (7)0.0015 (7)0.0010 (6)0.0000 (6)
C60.0134 (12)0.0112 (10)0.0114 (11)0.0000.0000.0019 (9)
C30.0102 (9)0.0260 (9)0.0137 (8)0.0023 (7)0.0009 (7)0.0026 (7)
C10.0084 (12)0.0124 (11)0.0132 (11)0.0000.0000.0007 (9)
Geometric parameters (Å, º) top
Sr—O12.501 (2)C2—C31.387 (2)
Sr—O1i2.501 (2)C2—C11.495 (3)
Sr—O32.522 (2)N1—C61.335 (2)
Sr—O22.549 (3)N1—N21.340 (2)
Sr—O1ii2.6602 (14)C4—C51.389 (2)
Sr—O1iii2.6602 (14)C4—C31.390 (2)
Sr—O42.6757 (18)C4—H4A0.9300
Sr—O4ii2.6757 (18)C5—C4iv1.389 (2)
O4—H40.89 (2)C5—C61.475 (3)
O2—H20.77 (3)N2—N2iv1.316 (4)
O3—H30.846 (16)C6—N1iv1.335 (2)
O1—C11.2635 (19)C3—H3A0.9300
C2—C3iv1.387 (2)C1—O1iv1.2635 (19)
O1—Sr—O1i140.67 (7)O4ii—Sr—Srii43.74 (4)
O1—Sr—O385.19 (4)C1ii—Sr—Srii64.037 (19)
O1i—Sr—O385.20 (4)O1—Sr—Srv43.07 (4)
O1—Sr—O272.67 (4)O1i—Sr—Srv162.46 (3)
O1i—Sr—O272.67 (4)O3—Sr—Srv111.97 (2)
O3—Sr—O2103.31 (9)O2—Sr—Srv98.82 (3)
O1—Sr—O1ii124.21 (4)O1ii—Sr—Srv88.51 (4)
O1i—Sr—O1ii77.42 (5)O1iii—Sr—Srv39.95 (3)
O3—Sr—O1ii148.91 (4)O4—Sr—Srv43.74 (4)
O2—Sr—O1ii95.91 (7)O4ii—Sr—Srv115.64 (3)
O1—Sr—O1iii77.42 (5)C1ii—Sr—Srv64.037 (19)
O1i—Sr—O1iii124.21 (5)Srii—Sr—Srv126.79 (4)
O3—Sr—O1iii148.91 (4)Sr—O4—Srv92.52 (8)
O2—Sr—O1iii95.91 (7)Sr—O4—H4114.6 (18)
O1ii—Sr—O1iii48.93 (6)Srv—O4—H4108.9 (17)
O1—Sr—O468.20 (5)Sr—O2—H2129 (2)
O1i—Sr—O4147.71 (5)Sr—O3—H3121.9 (18)
O3—Sr—O483.72 (5)C1—O1—Sr162.79 (14)
O2—Sr—O4139.50 (4)C1—O1—Srv94.66 (12)
O1ii—Sr—O497.37 (4)Sr—O1—Srv96.98 (5)
O1iii—Sr—O466.00 (5)C3iv—C2—C3119.4 (2)
O1—Sr—O4ii147.71 (5)C3iv—C2—C1120.32 (11)
O1i—Sr—O4ii68.20 (5)C3—C2—C1120.32 (11)
O3—Sr—O4ii83.72 (5)C6—N1—N2104.81 (16)
O2—Sr—O4ii139.50 (4)C5—C4—C3120.41 (18)
O1ii—Sr—O4ii66.00 (5)C5—C4—H4A119.8
O1iii—Sr—O4ii97.37 (4)C3—C4—H4A119.8
O4—Sr—O4ii80.48 (7)C4—C5—C4iv119.1 (2)
O1—Sr—C1ii101.29 (3)C4—C5—C6120.42 (11)
O1i—Sr—C1ii101.29 (3)C4iv—C5—C6120.42 (11)
O3—Sr—C1ii158.83 (7)N2iv—N2—N1109.42 (10)
O2—Sr—C1ii97.87 (9)N1iv—C6—N1111.5 (2)
O1ii—Sr—C1ii24.50 (3)N1iv—C6—C5124.22 (11)
O1iii—Sr—C1ii24.50 (3)N1—C6—C5124.22 (11)
O4—Sr—C1ii80.16 (4)C2—C3—C4120.34 (18)
O4ii—Sr—C1ii80.16 (4)C2—C3—H3A119.8
O1—Sr—Srii162.46 (3)C4—C3—H3A119.8
O1i—Sr—Srii43.07 (4)O1—C1—O1iv121.4 (2)
O3—Sr—Srii111.97 (2)O1—C1—C2119.31 (11)
O2—Sr—Srii98.82 (3)O1iv—C1—C2119.31 (11)
O1ii—Sr—Srii39.95 (3)O1—C1—Srv60.84 (11)
O1iii—Sr—Srii88.51 (4)O1iv—C1—Srv60.84 (11)
O4—Sr—Srii115.64 (3)C2—C1—Srv174.84 (17)
O1—Sr—O4—Srv43.94 (4)O4ii—Sr—O1—Srv59.57 (8)
O1i—Sr—O4—Srv158.12 (6)C1ii—Sr—O1—Srv29.86 (6)
O3—Sr—O4—Srv131.27 (4)Srii—Sr—O1—Srv61.70 (12)
O2—Sr—O4—Srv28.11 (11)C3—C4—C5—C4iv0.2 (4)
O1ii—Sr—O4—Srv80.03 (4)C3—C4—C5—C6178.7 (2)
O1iii—Sr—O4—Srv41.54 (3)C6—N1—N2—N2iv0.35 (16)
O4ii—Sr—O4—Srv144.08 (2)N2—N1—C6—N1iv0.6 (3)
C1ii—Sr—O4—Srv62.52 (4)N2—N1—C6—C5178.6 (2)
Srii—Sr—O4—Srv117.34 (3)C4—C5—C6—N1iv0.1 (4)
O1i—Sr—O1—C174.0 (5)C4iv—C5—C6—N1iv179.0 (2)
O3—Sr—O1—C12.4 (5)C4—C5—C6—N1179.0 (2)
O2—Sr—O1—C1103.1 (5)C4iv—C5—C6—N10.1 (4)
O1ii—Sr—O1—C1171.6 (5)C3iv—C2—C3—C40.5 (4)
O1iii—Sr—O1—C1156.5 (5)C1—C2—C3—C4179.0 (2)
O4—Sr—O1—C187.6 (5)C5—C4—C3—C20.1 (3)
O4ii—Sr—O1—C172.7 (5)Sr—O1—C1—O1iv138.6 (3)
C1ii—Sr—O1—C1162.1 (5)Srv—O1—C1—O1iv6.2 (3)
Srii—Sr—O1—C1166.1 (4)Sr—O1—C1—C241.6 (6)
Srv—Sr—O1—C1132.2 (5)Srv—O1—C1—C2174.1 (2)
O1i—Sr—O1—Srv153.83 (6)Sr—O1—C1—Srv132.5 (5)
O3—Sr—O1—Srv129.77 (7)C3iv—C2—C1—O1179.6 (2)
O2—Sr—O1—Srv124.67 (8)C3—C2—C1—O10.1 (4)
O1ii—Sr—O1—Srv39.36 (9)C3iv—C2—C1—O1iv0.1 (4)
O1iii—Sr—O1—Srv24.29 (6)C3—C2—C1—O1iv179.6 (2)
O4—Sr—O1—Srv44.63 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y, z+1/2; (iii) x+3/2, y, z+1/2; (iv) x+2, y, z; (v) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1vi0.85 (2)1.96 (2)2.800 (2)171 (3)
O3—H3···N2vi0.85 (2)2.62 (2)3.314 (3)141 (2)
O2—H2···N2vii0.77 (3)2.53 (3)3.270 (3)160 (3)
O4—H4···N2viii0.87 (2)1.93 (2)2.784 (2)166 (2)
Symmetry codes: (vi) x+2, y+1, z+1; (vii) x+2, y, z+1; (viii) x1/2, y+1, z1/2.
 

Acknowledgements

We would like to thank S. Maza and the Fluorescence Spectroscopy staff at the National Biotechnology Research Center, Constantine, Algeria.

Funding information

Funding for this research was provided by: Unité de Recherche de Chimie Moléculaire et Structurale (UR.CHEMS); Direction Générale de la Recherche Scientifique et du Developpement Technologique (DGRSDT) Algérie.

References

First citationAlexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947–3958.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaggio, R., Stoilova, D., Polla, G., Leyva, G. & Garland, M. T. (2004). J. Mol. Struct. 697, 173–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCasanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCheng, M., Ding, Y.-S., Zhang, Z. & Jia, Q.-X. (2016). Inorg. Chim. Acta, 450, 1–7.  CSD CrossRef CAS Google Scholar
First citationDamavarapu, R., Klapötke, T. M., Stierstorfer, J. & Tarantik, K. R. (2010). Propellants, Explosives, Pyrotech. 35, 395–406.  Google Scholar
First citationDemko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDivya, R., Nair, L. P., Bijini, B. R., Nair, C. M. K., Gopakumar, N. & Babu, K. R. (2017). Physica B, 526, 37–44.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, N., Klapötke, T. M., Peters, K., Rusan, M. & Stierstorfer, J. (2011). Z. Anorg. Allg. Chem. 637, 1693–1701.  CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282–285.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, J.-X., Xiong, J. B., Xu, Q., Tan, Y. H., Liu, Y., Wen, H. R. & Tang, Y. Z. (2016). Cryst. Growth Des. 16, 1559–1564.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHammerl, A., Holl, G., Kaiser, M., Klapötke, Th. M. & Piotrowski, H. (2003). Z. Anorg. Allg. Chem. 629, 2117–2121.  CSD CrossRef CAS Google Scholar
First citationHammerl, A., Holl, G., Klapötke, Th. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834–845.  CSD CrossRef Google Scholar
First citationHari, N., Jana, A. & Mohanta, S. (2017). Inorg. Chim. Acta, 467, 11–20.  CSD CrossRef CAS Google Scholar
First citationHartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). Inorg. Chem. 48, 9549–9556.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJiang, T., Zhao, Y.-F. & Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194–1197.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlapötke, T. M. & Stierstorfer, J. (2009). J. Am. Chem. Soc. 131, 1122–1134.  PubMed Google Scholar
First citationKoşar, B., Albayrak, C., Ersanlı, C. C., Odabaşoğlu, M. & Büyükgüngör, O. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 93, 1–9.  PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuellette, W., Darling, K. & Zubieta, J. (2012). Inorg. Chim. Acta, 391, 36–43.  CSD CrossRef CAS Google Scholar
First citationOuellette, W., Liu, H., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 4655–4657.  CSD CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheng, D.-H., Dan, W.-Y., Luo, G.-X. & Deng, M.-L. (2016). Chin. J. Struct. Chem. 35, 264–270.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, J.-Y., Wang, L., Zhang, D.-J., Li, D., Cao, Y., Zhang, L.-Y., Zeng, S.-L., Pang, G.-S., Fan, Y., Xu, J.-N. & Song, T.-Y. (2013). CrystEngComm, 15, 3402–3411.  CSD CrossRef CAS Google Scholar
First citationWang, D., Zhang, L., Li, G., Huo, Q. & Liu, Y. (2015). RSC Adv. 5, 18087–18091.  CSD CrossRef CAS Google Scholar
First citationWang, J., Nie, J. & Dai, C. (2011). J. Coord. Chem. 64, 1645–1653.  CSD CrossRef CAS Google Scholar
First citationWei, Q., Yang, D., Larson, T. E., Kinnibrugh, T. L., Zou, R., Henson, N. J., Timofeeva, T., Xu, H., Zhao, Y. & Mattes, B. R. (2012). J. Mater. Chem. 22, 10166–10171.  CSD CrossRef CAS Google Scholar
First citationWerrett, M. V., Huff, G. S., Muzzioli, S., Fiorini, V., Zacchini, S., Skelton, B. W., Maggiore, A., Malicka, J. M., Cocchi, M., Gordon, K. C., Stagni, S. & Massi, M. (2015). Dalton Trans. 44, 8379–8393.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H.-Y., Li, Y.-Z., Shi, W.-J., Hou, L., Wang, Y. & Zhu, Z. (2017). Dalton Trans. 46, 11722–11727.  CSD CrossRef CAS PubMed Google Scholar
First citationYao, R.-X., Qin, Y.-L., Ji, F., Zhao, Y.-F. & Zhang, X.-M. (2013). Dalton Trans. 42, 6611–6618.  CSD CrossRef CAS PubMed Google Scholar
First citationYu, Z.-P., Xiong, S.-S., Yong, G.-P. & Wang, Z.-Y. (2009). J. Coord. Chem. 62, 242–248.  CSD CrossRef CAS Google Scholar
First citationZhang, T., Li, R. F., Tian, A. Q., Feng, X. & Tian, P. H. (2016). Chin. J. Struct. Chem. 35, 1122–1128.  CAS Google Scholar
First citationZhang, X. B., Ren, Y. H., Li, W., Zhao, F. Q., Yi, J. H., Wang, B. Z. & Song, J. R. (2013). J. Coord. Chem. 66, 2051–2064.  CSD CrossRef CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar
First citationZheng, S.-L., Wang, Y., Yu, Z., Lin, Q. & Coppens, P. (2009). J. Am. Chem. Soc. 131, 18036–18037.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds