research communications
catena-poly[[[diaqua[1,2-bis(pyridin-4-yl)ethene]{4-[2-(pyridin-4-yl)ethenyl]pyridinium}gold(I)iron(II)]-di-μ-cyanido] bis[dicyanidogold(I)] 1,2-bis(pyridin-4-yl)ethene dihydrate]
ofaDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania, and cUkrOrgSyntez Ltd, Chervonotkatska St., 67, Kyiv 02094, Ukraine
*Correspondence e-mail: sofiia.partsevska@univ.kiev.ua
In the title compound [Fe(bpe)(Hbpe)Au(CN)2][Au(CN)2]2·bpe·2H2O}n [where bpe = 1,2-bis(pyridin-4-yl)ethene, C12H10N2], the FeII ion is coordinated in a distorted octahedral [FeN4O2] environment by two dicyanoaurate anions, two water molecules and two partially protonated 1,2-di(4-pyridyl)ethylene molecules. Dicyanoaurate anions bridge the FeII cations, forming infinite chains, which propagate along the a-axis direction. The chains are connected via aurophilic interactions with two non-coordinated dicyanoaurate anions for each FeII ion. The polymeric chains interact with each other via π–π stacking between the guest bpe molecules and multiple hydrogen bonds.
Keywords: crystal structure; polymeric complex; iron(II) complex; dicyanoaurate; aurophilic interactions.
CCDC reference: 2004716
1. Chemical context
Iron(II) complexes exhibiting spin-crossover (SCO) properties attract considerable attention because of their fascinating ability to change multiple physical properties (magnetic, optical, mechanical, etc.) under the influence of external stimuli (Gütlich & Goodwin, 2004). These materials can be integrated into various devices as switches, triggers, chemical sensors, etc. (Suleimanov et al., 2015). For these reasons, new SCO materials, which undergo transition with defined temperature, hysteresis and abruptness are strongly desired. There are several classical approaches as how to modulate the SCO characteristics of complexes, among them the introduction of slightly modified ligands and co-ligands to obtain new SCO compounds and inclusion of some guest molecules to already existing complexes (Ni et al., 2017).
FeII Hofmann clathrate (Hofmann & Höchtlen, 1903) analogues represent one of the biggest classes of SCO coordination compounds. They are cyanobimetallic complexes of general formula [Fe(L)n{M(CN)x}y] in which the FeII ions are connected by bridging cyanometallic anions into infinite layers (n = 2 for monodentate ligands and n = 1 for bis-monodentate ligands). These layers are supported by N-donor aromatic ligands (L = pyridine, diazines and their substituted analogues). Di-, tetra- and octacyanometallic (x = 2, y = 2: M = Cu, Ag, Au; x = 4, y = 1: M = Ni, Pd, Pt) anions have been introduced to develop coordination compounds of this kind. It has been shown that the inclusion of guest molecules can significantly influence the temperature, completeness and step character of spin transition in complexes belonging to this class (Ohtani & Hayami, 2017). In order to develop new SCO Hofmann clathrate analogues with voids big enough to incorporate bulky guest molecules, some bis-monodentate pyridine-based ligands have been introduced, such as 4,4′-bipyridine (Yoshida et al., 2013), bis(4-pyridyl)acetylene (Bartual-Murgui et al., 2011), bis(4-pyridyl)ethylene (Muñoz-Lara et al., 2012), etc.
Here we describe the II complex with bpe of general formula [Fe(bpe)(Hbpe)Au(CN)2](Au(CN)2)2·bpe·2H2O in which the FeII ions are stabilized in the high-spin (HS) state.
of a new cyanometallic Fe2. Structural commentary
The title compound crystallizes in the triclinic P The iron(II) ion has a distorted [FeN4O2] octahedral environment (Fig. 1) formed by two molecules of 1,2-bis(4-pyridyl)ethylene (bpe) [Fe1—N4 = 2.223 (6) Å], two molecules of water [Fe1–O1 = 2.081 (5) Å] and two cyano bridges [Fe1—N1 = 2.180 (6) Å]. Notably, the N5 atoms of the coordinated bpe molecules are protonated (with 0.5 occupancy of each H atom). These N5 atoms create hydrogen bonds with symmetry-generated N5 atoms of bpe molecules from the neighbouring chain [N5⋯N5i = 2.677 (14) Å, N5—H5A⋯N5i = 176°; Table 1].
The deviation from the ideal octahedral geometry of the FeII coordination environment is Σ|90 − θ| = 6.8°, where θ are cis-N—Fe—N or cis-N—Fe—O angles. Two CN− anions bridge the Fe2+ and Au+ cations [Fe1⋯Au1 = 5.280 (3) Å], creating a one-dimensional polymer, Fe1—N1—C1 = 172.8 (7)°, N1—C1—Au1 = 179.1 (8)° and C1—Au1—C1 = 180.0°, leading to a very slight deviation from linearity of the chains. This chain binds one guest bpe and two guest water molecules per FeII centre.
3. Supramolecular features
The structure is characterized by the presence of several different kinds of weak interactions that create a three-dimensional supramolecular framework. Two free [Au(CN)2]− counter-ions are connected with the polymeric chains by aurophilic interactions and C7⋯N2B hydrogen bonds [C7⋯N2B = 2.78 (3) Å, C7—H7⋯N2B = 132°]. These free counter-ions are disordered over two positions with Au1—Au2A = 3.324 (1) Å and Au1—Au2B = 3.101 (5) Å. The polymeric chains are connected to each other via π–π interactions (Fig. 2) between the coordinated and guest molecules of bpe (Cg1⋯Cg2 = 3.650 (5) Å, α = 10.3°, offset = 1.043 Å, where Cg1 and Cg2 are the centroids of the N4/C4–C8 and N6/C16–C20 rings, respectively, and Cg3⋯Cg4 = 3.794 (6) Å, α = 6.8°, offset = 1.835 Å, where Cg3 and Cg4 are the centroids of N5/C11–C15 and N6ii/ Cii16–C20 rings, respectively]. Guest bpe molecules are additionally linked to the polymeric chains by hydrogen bonds with coordinated water molecules [O1⋯N6 = 2.736 (9) Å, O1—H1B⋯N6 = 158°]. One of the guest water molecules forms hydrogen bonds with the coordinated water [Fig. 3; O2⋯O1 = 2.744 (13) Å, O1—H1A⋯O2 = 156°] and weak hydrogen bonds with free dicyanoaurate counter-ions [O2⋯N2Aii = 3.45 (7) Å, O2—H2A⋯N2Aii = 179°; O2⋯N3Biii = 3.37 (3) Å, O2—H2B⋯N3Biii = 172°. The O3 guest water atom is bound to another symmetry-generated counterpart [O3⋯O3v = 2.69 (4) Å, O3—H3C⋯O3v = 179°] and free dicyanoaurate counter-ions [O3⋯N3A = 2.99 (3) Å, O3—H3B⋯N3A = 167°; O3⋯N2Aiv = 2.98 (4) Å, O3—H3A⋯N2Aiv = 159°]. Hydrogen-bonding parameters are summarized in Table 1.
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, last update February 2019; Groom et al., 2016) revealed that the current structure has never been published before. 101 cyanometallic structures containing Fe—N≡C—Au fragments were found. These hits include multiple temperature-dependant measurements, which were conducted to study the spin-crossover characteristics of FeII complexes. For example, these hits include a three-dimensional framework catena-[tetra(μ-cyano)(μ-pyrazine)irondigold] (IRIKUR01–IRIKUR09; Gural'skiy et al., 2016). One particular compound resembles the title MOF: catena-[bis(μ-cyano)bis(2-phenylpyrazine)bis(aqua)iron(II)gold(I) bis(cyano)gold(I)] (MOJFEZ; Kucheriv et al., 2019).
5. Synthesis and crystallization
Crystals of the title compound were prepared by the slow diffusion method between three layers in a 3 ml tube. The first layer was a solution of K[Au(CN)2] (0.03 mmol) in water (0.5 ml), the second was a mixture of water/ethanol (1:2, 1.5 ml) and the third layer was a solution of 1,2-di(4-pyridyl)ethylene (0.05 mmol) and [Fe(OTs)2]·6H2O (0.01 mmol; OTs = p-toluenesulfonate) in ethanol (0.5 ml) with 0.2 ml of water. After two weeks, red crystals grew in the second layer; the crystals were collected and kept in the mother solution prior to measurement.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms were placed at their expected calculated positions (C—H = 0.93, N—H = 0.86, O—H = 0.92–0.96 Å) and refined as riding for the guest water molecules (O2, O3) and aromatic rings, and as rotating for the coordinated water molecule (O1) with Uiso(H) = 1.2Uiso(C), Uiso(H) = 1.2Uiso(N), Uiso(H) = 1.5Uiso(O). Uaniso values for all C and N atoms in the guest dicyanoaurate anions and the O2 and O3 water molecules were constrained to be equal using the EADP command. Distances N3A—C3A and N2A—C2A were restrained to a target of 1.15 Å and distances Au2A—C3A and Au2A—C2A were restrained to a target of 1.99 Å using the DFIX command. The following distances were restrained to be equal using the SADI command: C2A—N2A and C2B—N2B; Au1—C2A and Au1—C2B; C3A—N3A and C3B—N3B; Au1—C3A and Au1—C3B; C2A—C3A and C2B—C3B.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2004716
https://doi.org/10.1107/S2056989020006738/tx2022sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020006738/tx2022Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[AuFe(C12H11N2)(CN)2(C12H10N2)][Au(CN)2]2·C12H10N2·2H2O | Z = 1 |
Mr = 1422.60 | F(000) = 670 |
Triclinic, P1 | Dx = 1.890 Mg m−3 |
a = 10.5601 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.0044 (12) Å | Cell parameters from 3572 reflections |
c = 11.8145 (10) Å | θ = 1.9–27.9° |
α = 80.212 (8)° | µ = 9.11 mm−1 |
β = 69.124 (7)° | T = 293 K |
γ = 78.565 (7)° | Block, red |
V = 1249.9 (2) Å3 | 0.4 × 0.3 × 0.2 mm |
Rigaku Oxford Diffraction Xcalibur, Eos diffractometer | 3540 reflections with I > 2σ(I) |
Detector resolution: 8.0797 pixels mm-1 | Rint = 0.042 |
ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −11→12 |
Tmin = 0.350, Tmax = 1.000 | k = −13→12 |
9662 measured reflections | l = −11→14 |
4402 independent reflections |
Refinement on F2 | 9 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.156 | w = 1/[σ2(Fo2) + (0.0855P)2 + 0.8591P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4402 reflections | Δρmax = 2.27 e Å−3 |
272 parameters | Δρmin = −1.04 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Au1 | 1.000000 | 0.000000 | −0.500000 | 0.0441 (2) | |
Fe1 | 1.500000 | 0.000000 | −0.500000 | 0.0292 (4) | |
N6 | 1.2335 (8) | 0.1426 (7) | −0.1913 (6) | 0.0501 (18) | |
O1 | 1.4274 (5) | −0.0394 (6) | −0.3113 (5) | 0.0438 (14) | |
H1A | 1.496163 | −0.065149 | −0.276444 | 0.066* | |
H1B | 1.381652 | 0.030289 | −0.270914 | 0.066* | |
C8 | 1.3795 (8) | 0.2828 (8) | −0.5220 (7) | 0.0423 (19) | |
H8 | 1.353283 | 0.259226 | −0.581414 | 0.051* | |
C5 | 1.4616 (8) | 0.3566 (8) | −0.3576 (8) | 0.043 (2) | |
H5 | 1.495858 | 0.380110 | −0.303466 | 0.052* | |
C4 | 1.5067 (7) | 0.2397 (8) | −0.3988 (7) | 0.0395 (19) | |
H4 | 1.570087 | 0.185167 | −0.369306 | 0.047* | |
C18 | 1.0834 (8) | 0.3621 (9) | −0.0954 (8) | 0.048 (2) | |
N4 | 1.4646 (6) | 0.2017 (6) | −0.4772 (5) | 0.0317 (14) | |
C21 | 0.9996 (10) | 0.4782 (10) | −0.0484 (8) | 0.055 (2) | |
H21 | 0.942320 | 0.523726 | −0.089865 | 0.066* | |
C9 | 1.2973 (8) | 0.5573 (8) | −0.3485 (8) | 0.044 (2) | |
H9 | 1.240584 | 0.609573 | −0.386971 | 0.053* | |
C17 | 1.1829 (10) | 0.2903 (10) | −0.0506 (8) | 0.059 (3) | |
H17 | 1.201690 | 0.315099 | 0.012449 | 0.071* | |
N1 | 1.2923 (6) | 0.0142 (7) | −0.5030 (6) | 0.0433 (17) | |
C19 | 1.0669 (9) | 0.3182 (10) | −0.1910 (8) | 0.052 (2) | |
H19 | 1.003778 | 0.363330 | −0.226531 | 0.063* | |
C20 | 1.1418 (9) | 0.2094 (9) | −0.2342 (9) | 0.055 (2) | |
H20 | 1.126215 | 0.181889 | −0.297643 | 0.065* | |
C6 | 1.3638 (8) | 0.4388 (8) | −0.3989 (7) | 0.0412 (19) | |
C11 | 1.2282 (9) | 0.7084 (8) | −0.1962 (8) | 0.048 (2) | |
C7 | 1.3274 (8) | 0.4002 (8) | −0.4855 (7) | 0.0415 (19) | |
H7 | 1.267286 | 0.453324 | −0.519895 | 0.050* | |
C15 | 1.1322 (10) | 0.7868 (9) | −0.2320 (9) | 0.057 (3) | |
H15 | 1.116876 | 0.775000 | −0.301887 | 0.069* | |
C10 | 1.3093 (9) | 0.5968 (8) | −0.2560 (8) | 0.047 (2) | |
H10 | 1.375191 | 0.550547 | −0.224182 | 0.057* | |
N5 | 1.0744 (8) | 0.9079 (7) | −0.0674 (7) | 0.0513 (19) | |
H5A | 1.025191 | 0.968647 | −0.026905 | 0.062* | 0.5 |
C1 | 1.1866 (8) | 0.0083 (8) | −0.5027 (7) | 0.0413 (19) | |
C13 | 1.1698 (10) | 0.8351 (10) | −0.0344 (9) | 0.061 (3) | |
H13 | 1.185868 | 0.851036 | 0.033766 | 0.073* | |
C12 | 1.2496 (10) | 0.7344 (9) | −0.0949 (9) | 0.057 (2) | |
H12 | 1.317168 | 0.684662 | −0.067302 | 0.069* | |
C16 | 1.2541 (9) | 0.1809 (10) | −0.1014 (9) | 0.058 (3) | |
H16 | 1.319389 | 0.132921 | −0.069841 | 0.070* | |
C14 | 1.0551 (11) | 0.8852 (10) | −0.1667 (9) | 0.064 (3) | |
H14 | 0.987822 | 0.937040 | −0.193066 | 0.077* | |
N3A | 0.7442 (6) | 0.2821 (9) | −0.2440 (3) | 0.140 (5) | 0.8 |
C3A | 0.8293 (4) | 0.2875 (6) | −0.3312 (2) | 0.140 (5) | 0.8 |
Au2A | 0.96785 (10) | 0.30552 (9) | −0.49275 (9) | 0.1010 (3) | 0.8 |
C2A | 1.1004 (4) | 0.3499 (6) | −0.6389 (3) | 0.140 (5) | 0.8 |
N2A | 1.1797 (6) | 0.3786 (9) | −0.7294 (4) | 0.140 (5) | 0.8 |
N3B | 0.703 (3) | 0.119 (3) | −0.1529 (17) | 0.140 (5) | 0.2 |
C3B | 0.7686 (18) | 0.1679 (19) | −0.2399 (12) | 0.140 (5) | 0.2 |
Au2B | 0.8855 (5) | 0.2557 (4) | −0.3973 (6) | 0.151 (2) | 0.2 |
C2B | 1.010 (2) | 0.3636 (18) | −0.4940 (14) | 0.140 (5) | 0.2 |
N2B | 1.095 (3) | 0.424 (3) | −0.552 (2) | 0.140 (5) | 0.2 |
O2 | 1.5706 (15) | −0.1345 (17) | −0.1543 (12) | 0.109 (5) | 0.6 |
H2A | 1.640962 | −0.201711 | −0.187906 | 0.164* | 0.6 |
H2B | 1.609492 | −0.067311 | −0.147186 | 0.164* | 0.6 |
O3 | 0.574 (2) | 0.503 (3) | −0.1194 (19) | 0.109 (5) | 0.4 |
H3B | 0.617417 | 0.427938 | −0.148163 | 0.164* | 0.2 |
H3A | 0.637317 | 0.556568 | −0.154373 | 0.164* | 0.4 |
H3C | 0.522617 | 0.501478 | −0.035993 | 0.164* | 0.2 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.0232 (2) | 0.0500 (3) | 0.0655 (4) | −0.00604 (19) | −0.0212 (2) | −0.0086 (2) |
Fe1 | 0.0194 (7) | 0.0277 (9) | 0.0434 (8) | −0.0019 (6) | −0.0110 (6) | −0.0127 (6) |
N6 | 0.056 (4) | 0.038 (5) | 0.048 (4) | −0.004 (4) | −0.005 (4) | −0.012 (3) |
O1 | 0.041 (3) | 0.045 (4) | 0.044 (3) | 0.005 (3) | −0.013 (3) | −0.014 (3) |
C8 | 0.041 (4) | 0.041 (5) | 0.047 (5) | −0.003 (4) | −0.014 (4) | −0.015 (4) |
C5 | 0.042 (4) | 0.036 (5) | 0.054 (5) | −0.009 (4) | −0.013 (4) | −0.017 (4) |
C4 | 0.034 (4) | 0.035 (5) | 0.055 (5) | 0.000 (3) | −0.019 (4) | −0.020 (4) |
C18 | 0.037 (4) | 0.045 (6) | 0.051 (5) | −0.013 (4) | 0.003 (4) | −0.011 (4) |
N4 | 0.029 (3) | 0.024 (4) | 0.044 (4) | 0.000 (3) | −0.014 (3) | −0.011 (3) |
C21 | 0.052 (5) | 0.048 (6) | 0.065 (6) | −0.003 (4) | −0.014 (5) | −0.024 (5) |
C9 | 0.035 (4) | 0.031 (5) | 0.065 (6) | 0.000 (3) | −0.016 (4) | −0.008 (4) |
C17 | 0.064 (6) | 0.072 (8) | 0.046 (5) | −0.012 (5) | −0.016 (5) | −0.021 (5) |
N1 | 0.030 (3) | 0.037 (4) | 0.066 (5) | −0.004 (3) | −0.018 (3) | −0.011 (3) |
C19 | 0.052 (5) | 0.059 (7) | 0.042 (5) | −0.006 (5) | −0.011 (4) | −0.009 (4) |
C20 | 0.054 (5) | 0.051 (6) | 0.057 (6) | −0.010 (5) | −0.010 (5) | −0.019 (5) |
C6 | 0.031 (4) | 0.041 (5) | 0.050 (5) | −0.004 (3) | −0.008 (3) | −0.014 (4) |
C11 | 0.048 (5) | 0.037 (5) | 0.055 (5) | −0.009 (4) | −0.006 (4) | −0.019 (4) |
C7 | 0.042 (4) | 0.036 (5) | 0.051 (5) | −0.005 (4) | −0.021 (4) | −0.008 (4) |
C15 | 0.071 (6) | 0.041 (6) | 0.065 (6) | 0.009 (5) | −0.027 (5) | −0.029 (5) |
C10 | 0.056 (5) | 0.034 (5) | 0.055 (5) | −0.003 (4) | −0.018 (4) | −0.016 (4) |
N5 | 0.056 (5) | 0.039 (5) | 0.053 (4) | −0.004 (4) | −0.006 (4) | −0.020 (4) |
C1 | 0.026 (4) | 0.043 (5) | 0.054 (5) | −0.005 (3) | −0.012 (4) | −0.008 (4) |
C13 | 0.058 (6) | 0.064 (7) | 0.066 (6) | −0.014 (5) | −0.016 (5) | −0.031 (5) |
C12 | 0.064 (6) | 0.047 (6) | 0.065 (6) | −0.004 (5) | −0.022 (5) | −0.021 (5) |
C16 | 0.047 (5) | 0.057 (7) | 0.062 (6) | 0.008 (5) | −0.014 (5) | −0.014 (5) |
C14 | 0.075 (7) | 0.046 (7) | 0.076 (7) | 0.010 (5) | −0.033 (6) | −0.024 (5) |
N3A | 0.181 (11) | 0.132 (9) | 0.155 (11) | 0.018 (9) | −0.130 (10) | −0.026 (9) |
C3A | 0.181 (11) | 0.132 (9) | 0.155 (11) | 0.018 (9) | −0.130 (10) | −0.026 (9) |
Au2A | 0.1098 (6) | 0.0872 (7) | 0.1463 (8) | 0.0284 (5) | −0.0985 (6) | −0.0475 (5) |
C2A | 0.181 (11) | 0.132 (9) | 0.155 (11) | 0.018 (9) | −0.130 (10) | −0.026 (9) |
N2A | 0.181 (11) | 0.132 (9) | 0.155 (11) | 0.018 (9) | −0.130 (10) | −0.026 (9) |
N3B | 0.181 (11) | 0.132 (9) | 0.155 (11) | 0.018 (9) | −0.130 (10) | −0.026 (9) |
C3B | 0.181 (11) | 0.132 (9) | 0.155 (11) | 0.018 (9) | −0.130 (10) | −0.026 (9) |
Au2B | 0.174 (4) | 0.092 (3) | 0.276 (6) | 0.037 (3) | −0.186 (5) | −0.081 (4) |
C2B | 0.181 (11) | 0.132 (9) | 0.155 (11) | 0.018 (9) | −0.130 (10) | −0.026 (9) |
N2B | 0.181 (11) | 0.132 (9) | 0.155 (11) | 0.018 (9) | −0.130 (10) | −0.026 (9) |
O2 | 0.101 (10) | 0.146 (14) | 0.087 (8) | 0.033 (9) | −0.066 (7) | −0.010 (8) |
O3 | 0.101 (10) | 0.146 (14) | 0.087 (8) | 0.033 (9) | −0.066 (7) | −0.010 (8) |
Au1—C1i | 1.979 (7) | N1—C1 | 1.130 (10) |
Au1—C1 | 1.979 (7) | C19—H19 | 0.9300 |
Au1—Au2A | 3.3243 | C19—C20 | 1.366 (13) |
Au1—Au2Ai | 3.3243 | C20—H20 | 0.9300 |
Au1—Au2B | 3.101 (4) | C6—C7 | 1.367 (11) |
Au1—Au2Bi | 3.101 (4) | C11—C15 | 1.336 (13) |
Fe1—O1ii | 2.081 (5) | C11—C10 | 1.479 (11) |
Fe1—O1 | 2.081 (5) | C11—C12 | 1.379 (12) |
Fe1—N4 | 2.223 (6) | C7—H7 | 0.9300 |
Fe1—N4ii | 2.223 (6) | C15—H15 | 0.9300 |
Fe1—N1ii | 2.180 (6) | C15—C14 | 1.385 (12) |
Fe1—N1 | 2.181 (6) | C10—H10 | 0.9300 |
N6—C20 | 1.294 (12) | N5—H5A | 0.8600 |
N6—C16 | 1.307 (12) | N5—C13 | 1.290 (12) |
O1—H1A | 0.9319 | N5—C14 | 1.330 (12) |
O1—H1B | 0.9285 | C13—H13 | 0.9300 |
C8—H8 | 0.9300 | C13—C12 | 1.385 (13) |
C8—N4 | 1.320 (10) | C12—H12 | 0.9300 |
C8—C7 | 1.377 (11) | C16—H16 | 0.9300 |
C5—H5 | 0.9300 | C14—H14 | 0.9300 |
C5—C4 | 1.387 (11) | N3A—C3A | 1.1014 |
C5—C6 | 1.401 (12) | C3A—Au2A | 1.9543 |
C4—H4 | 0.9300 | Au2A—C2A | 1.8554 |
C4—N4 | 1.315 (9) | C2A—N2A | 1.1381 |
C18—C21 | 1.472 (13) | N3B—C3B | 1.1270 |
C18—C17 | 1.390 (13) | C3B—Au2B | 2.0356 |
C18—C19 | 1.377 (12) | Au2B—C2B | 1.8767 |
C21—C21iii | 1.317 (17) | C2B—N2B | 1.1712 |
C21—H21 | 0.9300 | O2—H2A | 0.9640 |
C9—H9 | 0.9300 | O2—H2B | 0.9427 |
C9—C6 | 1.466 (11) | O3—H3B | 0.9225 |
C9—C10 | 1.298 (11) | O3—H3A | 0.9170 |
C17—H17 | 0.9300 | O3—H3C | 0.9389 |
C17—C16 | 1.393 (13) | ||
C1i—Au1—C1 | 180.0 | C16—C17—H17 | 120.4 |
C1i—Au1—Au2A | 98.7 (3) | C1—N1—Fe1 | 172.8 (7) |
C1—Au1—Au2A | 81.3 (3) | C18—C19—H19 | 119.5 |
C1—Au1—Au2Ai | 98.7 (14) | C20—C19—C18 | 121.0 (9) |
C1i—Au1—Au2Ai | 81.3 (14) | C20—C19—H19 | 119.5 |
C1i—Au1—Au2B | 88.0 (3) | N6—C20—C19 | 123.2 (9) |
C1—Au1—Au2B | 92.0 (3) | N6—C20—H20 | 118.4 |
C1i—Au1—Au2Bi | 92 (3) | C19—C20—H20 | 118.4 |
C1—Au1—Au2Bi | 88 (3) | C5—C6—C9 | 122.6 (7) |
Au2Ai—Au1—Au2A | 180.0 (18) | C7—C6—C5 | 116.4 (8) |
Au2B—Au1—Au2Bi | 180 (5) | C7—C6—C9 | 120.9 (8) |
O1ii—Fe1—O1 | 180.0 | C15—C11—C10 | 124.7 (8) |
O1ii—Fe1—N4ii | 89.1 (2) | C15—C11—C12 | 116.4 (9) |
O1—Fe1—N4 | 89.1 (2) | C12—C11—C10 | 118.9 (9) |
O1ii—Fe1—N4 | 90.9 (2) | C8—C7—H7 | 119.9 |
O1—Fe1—N4ii | 90.9 (2) | C6—C7—C8 | 120.1 (8) |
O1—Fe1—N1ii | 90.4 (2) | C6—C7—H7 | 119.9 |
O1—Fe1—N1 | 89.6 (2) | C11—C15—H15 | 119.5 |
O1ii—Fe1—N1ii | 89.6 (2) | C11—C15—C14 | 121.1 (9) |
O1ii—Fe1—N1 | 90.4 (2) | C14—C15—H15 | 119.5 |
N4—Fe1—N4ii | 180.0 | C9—C10—C11 | 126.2 (9) |
N1ii—Fe1—N4 | 89.6 (2) | C9—C10—H10 | 116.9 |
N1ii—Fe1—N4ii | 90.4 (2) | C11—C10—H10 | 116.9 |
N1—Fe1—N4ii | 89.6 (2) | C13—N5—H5A | 121.4 |
N1—Fe1—N4 | 90.4 (2) | C13—N5—C14 | 117.3 (8) |
N1ii—Fe1—N1 | 180.0 | C14—N5—H5A | 121.4 |
C20—N6—C16 | 118.2 (8) | N1—C1—Au1 | 179.0 (8) |
Fe1—O1—H1A | 114.1 | N5—C13—H13 | 118.2 |
Fe1—O1—H1B | 113.4 | N5—C13—C12 | 123.5 (9) |
H1A—O1—H1B | 100.1 | C12—C13—H13 | 118.2 |
N4—C8—H8 | 118.2 | C11—C12—C13 | 119.6 (9) |
N4—C8—C7 | 123.6 (7) | C11—C12—H12 | 120.2 |
C7—C8—H8 | 118.2 | C13—C12—H12 | 120.2 |
C4—C5—H5 | 120.5 | N6—C16—C17 | 123.0 (9) |
C4—C5—C6 | 119.0 (7) | N6—C16—H16 | 118.5 |
C6—C5—H5 | 120.5 | C17—C16—H16 | 118.5 |
C5—C4—H4 | 118.2 | C15—C14—H14 | 119.0 |
N4—C4—C5 | 123.5 (8) | N5—C14—C15 | 122.1 (9) |
N4—C4—H4 | 118.2 | N5—C14—H14 | 119.0 |
C17—C18—C21 | 124.5 (8) | N3A—C3A—Au2A | 174.7 |
C19—C18—C21 | 120.2 (9) | C3A—Au2A—Au1 | 88.63 (19) |
C19—C18—C17 | 115.4 (9) | C2A—Au2A—Au1 | 101.1 (2) |
C8—N4—Fe1 | 121.6 (5) | C2A—Au2A—C3A | 169.8 |
C4—N4—Fe1 | 120.0 (5) | N2A—C2A—Au2A | 178.6 |
C4—N4—C8 | 117.1 (7) | N3B—C3B—Au2B | 179.57 (10) |
C18—C21—H21 | 117.8 | C3B—Au2B—Au1 | 89.4 (6) |
C21iii—C21—C18 | 124.4 (12) | C2B—Au2B—Au1 | 105.7 (7) |
C21iii—C21—H21 | 117.8 | C2B—Au2B—C3B | 156.3 |
C6—C9—H9 | 116.6 | N2B—C2B—Au2B | 174.6 |
C10—C9—H9 | 116.6 | H2A—O2—H2B | 110.8 |
C10—C9—C6 | 126.9 (8) | H3B—O3—H3A | 104.8 |
C18—C17—H17 | 120.4 | H3A—O3—H3C | 120.1 |
C18—C17—C16 | 119.2 (9) |
Symmetry codes: (i) −x+2, −y, −z−1; (ii) −x+3, −y, −z−1; (iii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2 | 0.93 | 1.86 | 2.744 (13) | 156 |
O1—H1B···N6 | 0.93 | 1.85 | 2.736 (9) | 158 |
C7—H7···N2B | 0.93 | 2.08 | 2.78 (3) | 132 |
N5—H5A···N5iv | 0.86 | 1.82 | 2.677 (14) | 176 |
O2—H2A···N2Aii | 0.96 | 2.49 | 3.45 (7) | 179 |
O2—H2B···N3Bv | 0.94 | 2.43 | 3.37 (3) | 172 |
O3—H3B···N3A | 0.92 | 2.08 | 2.99 (3) | 167 |
O3—H3A···N2Avi | 0.92 | 2.11 | 2.98 (4) | 159 |
O3—H3C···O3vii | 0.94 | 1.75 | 2.69 (4) | 179 |
Symmetry codes: (ii) −x+3, −y, −z−1; (iv) −x+2, −y+2, −z; (v) x+1, y, z; (vi) −x+2, −y+1, −z−1; (vii) −x+1, −y+1, −z. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-01M; grant No. 19BF037-04); H2020-MSCA-RISE-2016 (grant No. 734322).
References
Bartual-Murgui, C., Ortega-Villar, N. A., Shepherd, H. J., Muñoz, M. C. C., Salmon, L., Molnár, G., Bousseksou, A. & Real, J. A. (2011). J. Mater. Chem. 21, 7217–7222. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. pp. 3191–3195. Google Scholar
Gütlich, P. & Goodwin, H. A. (2004). Spin Crossover in Transition Metal Compounds I, pp. 1–47. Berlin, Heidelberg: Springer-Verlag. Google Scholar
Hofmann, K. A. & Höchtlen, F. (1903). Ber. Dtsch. Chem. Ges. 36, 1149–1151. CrossRef CAS Google Scholar
Kucheriv, O. I., Barakhtii, D. D., Malinkin, S. O., Shova, S. & Gural'skiy, I. A. (2019). Acta Cryst. E75, 1149–1152. Google Scholar
Muñoz-Lara, F. J., Gaspar, A. B., Muñoz, M. C., Arai, M., Kitagawa, S., Ohba, M. & Real, J. A. (2012). Chem. Eur. J. 18, 8013–8018. Google Scholar
Ni, Z.-P., Liu, J.-L., Hoque, M. N., Liu, W., Li, J.-Y., Chen, Y.-C. & Tong, M.-L. (2017). Coord. Chem. Rev. 335, 28–43. CrossRef CAS Google Scholar
Ohtani, R. & Hayami, S. (2017). Chem. Eur. J. 23, 2236–2248. Google Scholar
Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Suleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026–5032. Google Scholar
Yoshida, K., Akahoshi, D., Kawasaki, T., Saito, T. & Kitazawa, T. (2013). Polyhedron, 66, 252–256. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.