research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[di­aqua­[1,2-bis­(pyridin-4-yl)ethene]{4-[2-(pyridin-4-yl)ethen­yl]pyridinium}gold(I)iron(II)]-di-μ-cyanido] bis­­[dicyanido­gold(I)] 1,2-bis­­(pyridin-4-yl)ethene dihydrate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania, and cUkrOrgSyntez Ltd, Chervonotkatska St., 67, Kyiv 02094, Ukraine
*Correspondence e-mail: sofiia.partsevska@univ.kiev.ua

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 30 April 2020; accepted 19 May 2020; online 29 May 2020)

In the title compound [Fe(bpe)(Hbpe)Au(CN)2][Au(CN)2]2·bpe·2H2O}n [where bpe = 1,2-bis­(pyridin-4-yl)ethene, C12H10N2], the FeII ion is coordinated in a distorted octa­hedral [FeN4O2] environment by two di­cyano­aurate anions, two water mol­ecules and two partially protonated 1,2-di(4-pyrid­yl)ethyl­ene mol­ecules. Di­cyano­aurate anions bridge the FeII cations, forming infinite chains, which propagate along the a-axis direction. The chains are connected via aurophilic inter­actions with two non-coordinated di­cyano­aurate anions for each FeII ion. The polymeric chains inter­act with each other via ππ stacking between the guest bpe mol­ecules and multiple hydrogen bonds.

1. Chemical context

Iron(II) complexes exhibiting spin-crossover (SCO) properties attract considerable attention because of their fascinating ability to change multiple physical properties (magnetic, optical, mechanical, etc.) under the influence of external stimuli (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Spin Crossover in Transition Metal Compounds I, pp. 1-47. Berlin, Heidelberg: Springer-Verlag.]). These materials can be integrated into various devices as switches, triggers, chemical sensors, etc. (Suleimanov et al., 2015[Suleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026-5032.]). For these reasons, new SCO materials, which undergo transition with defined temperature, hysteresis and abruptness are strongly desired. There are several classical approaches as how to modulate the SCO characteristics of complexes, among them the introduction of slightly modified ligands and co-ligands to obtain new SCO compounds and inclusion of some guest mol­ecules to already existing complexes (Ni et al., 2017[Ni, Z.-P., Liu, J.-L., Hoque, M. N., Liu, W., Li, J.-Y., Chen, Y.-C. & Tong, M.-L. (2017). Coord. Chem. Rev. 335, 28-43.]).

FeII Hofmann clathrate (Hofmann & Höchtlen, 1903[Hofmann, K. A. & Höchtlen, F. (1903). Ber. Dtsch. Chem. Ges. 36, 1149-1151.]) analogues represent one of the biggest classes of SCO coord­ination compounds. They are cyano­bimetallic complexes of general formula [Fe(L)n{M(CN)x}y] in which the FeII ions are connected by bridging cyano­metallic anions into infinite layers (n = 2 for monodentate ligands and n = 1 for bis-monodentate ligands). These layers are supported by N-donor aromatic ligands (L = pyridine, diazines and their substituted analogues). Di-, tetra- and octa­cyano­metallic (x = 2, y = 2: M = Cu, Ag, Au; x = 4, y = 1: M = Ni, Pd, Pt) anions have been introduced to develop coordination compounds of this kind. It has been shown that the inclusion of guest mol­ecules can significantly influence the temperature, completeness and step character of spin transition in complexes belonging to this class (Ohtani & Hayami, 2017[Ohtani, R. & Hayami, S. (2017). Chem. Eur. J. 23, 2236-2248.]). In order to develop new SCO Hofmann clathrate analogues with voids big enough to incorporate bulky guest mol­ecules, some bis-monodentate pyridine-based ligands have been introduced, such as 4,4′-bi­pyridine (Yoshida et al., 2013[Yoshida, K., Akahoshi, D., Kawasaki, T., Saito, T. & Kitazawa, T. (2013). Polyhedron, 66, 252-256.]), bis­(4-pyrid­yl)acetyl­ene (Bartual-Murgui et al., 2011[Bartual-Murgui, C., Ortega-Villar, N. A., Shepherd, H. J., Muñoz, M. C. C., Salmon, L., Molnár, G., Bousseksou, A. & Real, J. A. (2011). J. Mater. Chem. 21, 7217-7222.]), bis­(4-pyrid­yl)ethyl­ene (Muñoz-Lara et al., 2012[Muñoz-Lara, F. J., Gaspar, A. B., Muñoz, M. C., Arai, M., Kitagawa, S., Ohba, M. & Real, J. A. (2012). Chem. Eur. J. 18, 8013-8018.]), etc.

[Scheme 1]

Here we describe the crystal structure of a new cyano­metallic FeII complex with bpe of general formula [Fe(bpe)(Hbpe)Au(CN)2](Au(CN)2)2·bpe·2H2O in which the FeII ions are stabilized in the high-spin (HS) state.

2. Structural commentary

The title compound crystallizes in the triclinic P[\overline{1}] space group. The iron(II) ion has a distorted [FeN4O2] octa­hedral environment (Fig. 1[link]) formed by two mol­ecules of 1,2-bis­(4-pyrid­yl)ethyl­ene (bpe) [Fe1—N4 = 2.223 (6) Å], two mol­ecules of water [Fe1–O1 = 2.081 (5) Å] and two cyano bridges [Fe1—N1 = 2.180 (6) Å]. Notably, the N5 atoms of the coordinated bpe mol­ecules are protonated (with 0.5 occupancy of each H atom). These N5 atoms create hydrogen bonds with symmetry-generated N5 atoms of bpe mol­ecules from the neighbouring chain [N5⋯N5i = 2.677 (14) Å, N5—H5A⋯N5i = 176°; Table 1[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.93 1.86 2.744 (13) 156
O1—H1B⋯N6 0.93 1.85 2.736 (9) 158
C7—H7⋯N2B 0.93 2.08 2.78 (3) 132
N5—H5A⋯N5i 0.86 1.82 2.677 (14) 176
O2—H2A⋯N2Aii 0.96 2.49 3.45 (7) 179
O2—H2B⋯N3Biii 0.94 2.43 3.37 (3) 172
O3—H3B⋯N3A 0.92 2.08 2.99 (3) 167
O3—H3A⋯N2Aiv 0.92 2.11 2.98 (4) 159
O3—H3C⋯O3v 0.94 1.75 2.69 (4) 179
Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+3, -y, -z-1; (iii) x+1, y, z; (iv) -x+2, -y+1, -z-1; (v) -x+1, -y+1, -z.
[Figure 1]
Figure 1
A fragment of the crystal structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The guest bpe mol­ecule and disorder of the [Au(CN)2] counter-ions are not shown for clarity. Symmetry-generated atoms are not labelled.

The deviation from the ideal octa­hedral geometry of the FeII coordination environment is Σ|90 −  θ| = 6.8°, where θ are cis-N—Fe—N or cis-N—Fe—O angles. Two CN anions bridge the Fe2+ and Au+ cations [Fe1⋯Au1 = 5.280 (3) Å], creating a one-dimensional polymer, Fe1—N1—C1 = 172.8 (7)°, N1—C1—Au1 = 179.1 (8)° and C1—Au1—C1 = 180.0°, leading to a very slight deviation from linearity of the chains. This chain binds one guest bpe and two guest water mol­ecules per FeII centre.

3. Supra­molecular features

The structure is characterized by the presence of several different kinds of weak inter­actions that create a three-dimensional supra­molecular framework. Two free [Au(CN)2] counter-ions are connected with the polymeric chains by aurophilic inter­actions and C7⋯N2B hydrogen bonds [C7⋯N2B = 2.78 (3) Å, C7—H7⋯N2B = 132°]. These free counter-ions are disordered over two positions with Au1—Au2A = 3.324 (1) Å and Au1—Au2B = 3.101 (5) Å. The polymeric chains are connected to each other via ππ inter­actions (Fig. 2[link]) between the coordinated and guest mol­ecules of bpe (Cg1⋯Cg2 = 3.650 (5) Å, α = 10.3°, offset = 1.043 Å, where Cg1 and Cg2 are the centroids of the N4/C4–C8 and N6/C16–C20 rings, respectively, and Cg3⋯Cg4 = 3.794 (6) Å, α = 6.8°, offset = 1.835 Å, where Cg3 and Cg4 are the centroids of N5/C11–C15 and N6ii/ Cii16–C20 rings, respectively]. Guest bpe mol­ecules are additionally linked to the polymeric chains by hydrogen bonds with coordinated water mol­ecules [O1⋯N6 = 2.736 (9) Å, O1—H1B⋯N6 = 158°]. One of the guest water mol­ecules forms hydrogen bonds with the coord­inated water [Fig. 3[link]; O2⋯O1 = 2.744 (13) Å, O1—H1A⋯O2 = 156°] and weak hydrogen bonds with free di­cyano­aurate counter-ions [O2⋯N2Aii = 3.45 (7) Å, O2—H2A⋯N2Aii = 179°; O2⋯N3Biii = 3.37 (3) Å, O2—H2B⋯N3Biii = 172°. The O3 guest water atom is bound to another symmetry-generated counterpart [O3⋯O3v = 2.69 (4) Å, O3—H3C⋯O3v = 179°] and free di­cyano­aurate counter-ions [O3⋯N3A = 2.99 (3) Å, O3—H3B⋯N3A = 167°; O3⋯N2Aiv = 2.98 (4) Å, O3—H3A⋯N2Aiv = 159°]. Hydrogen-bonding parameters are summarized in Table 1[link].

[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. ππ contacts and hydrogen bonds are shown as black dashed lines. Aurophilic inter­actions are shown as orange dashed lines. Guest water mol­ecules are omitted for clarity.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing showing the network of hydrogen bonds as black dashed lines. H atoms not involved in hydrogen bonding and guest bpe mol­ecules are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the current structure has never been published before. 101 cyano­metallic structures containing Fe—N≡C—Au fragments were found. These hits include multiple temperature-dependant measurements, which were conducted to study the spin-crossover characteristics of FeII complexes. For example, these hits include a three-dimensional framework catena-[tetra­(μ-cyano)(μ-pyrazine)­irondigold] (IRIKUR01–IRIKUR09; Gural'skiy et al., 2016[Gural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. pp. 3191-3195.]). One particular compound resembles the title MOF: catena-[bis­(μ-cyano)­bis­(2-phenyl­pyrazine)­bis­(aqua)­iron(II)gold(I) bis­(cyano)­gold(I)] (MOJ­FEZ; Kucheriv et al., 2019[Kucheriv, O. I., Barakhtii, D. D., Malinkin, S. O., Shova, S. & Gural'skiy, I. A. (2019). Acta Cryst. E75, 1149-1152.]).

5. Synthesis and crystallization

Crystals of the title compound were prepared by the slow diffusion method between three layers in a 3 ml tube. The first layer was a solution of K[Au(CN)2] (0.03 mmol) in water (0.5 ml), the second was a mixture of water/ethanol (1:2, 1.5 ml) and the third layer was a solution of 1,2-di(4-pyrid­yl)ethyl­ene (0.05 mmol) and [Fe(OTs)2]·6H2O (0.01 mmol; OTs = p-toluene­sulfonate) in ethanol (0.5 ml) with 0.2 ml of water. After two weeks, red crystals grew in the second layer; the crystals were collected and kept in the mother solution prior to measurement.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were placed at their expected calculated positions (C—H = 0.93, N—H = 0.86, O—H = 0.92–0.96 Å) and refined as riding for the guest water mol­ecules (O2, O3) and aromatic rings, and as rotating for the coordinated water mol­ecule (O1) with Uiso(H) = 1.2Uiso(C), Uiso(H) = 1.2Uiso(N), Uiso(H) = 1.5Uiso(O). Uaniso values for all C and N atoms in the guest di­cyano­aurate anions and the O2 and O3 water mol­ecules were constrained to be equal using the EADP command. Distances N3A—C3A and N2A—C2A were restrained to a target of 1.15 Å and distances Au2A—C3A and Au2A—C2A were restrained to a target of 1.99 Å using the DFIX command. The following distances were restrained to be equal using the SADI command: C2A—N2A and C2B—N2B; Au1—C2A and Au1—C2B; C3A—N3A and C3B—N3B; Au1—C3A and Au1—C3B; C2A—C3A and C2B—C3B.

Table 2
Experimental details

Crystal data
Chemical formula [AuFe(C12H11N2)(CN)2(C12H10N2)][Au(CN)2]2·C12H10N2·2H2O
Mr 1422.60
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.5601 (7), 11.0044 (12), 11.8145 (10)
α, β, γ (°) 80.212 (8), 69.124 (7), 78.565 (7)
V3) 1249.9 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 9.11
Crystal size (mm) 0.4 × 0.3 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
Tmin, Tmax 0.350, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9662, 4402, 3540
Rint 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.156, 1.04
No. of reflections 4402
No. of parameters 272
No. of restraints 9
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.27, −1.04
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[[diaqua[1,2-bis(pyridin-4-yl)ethene]{4-[2-(pyridin-4-yl)ethenyl]pyridinium}gold(I)iron(II)]-di-µ-cyanido] bis[dicyanidogold(I)] 1,2-bis(pyridin-4-yl)ethene dihydrate] top
Crystal data top
[AuFe(C12H11N2)(CN)2(C12H10N2)][Au(CN)2]2·C12H10N2·2H2OZ = 1
Mr = 1422.60F(000) = 670
Triclinic, P1Dx = 1.890 Mg m3
a = 10.5601 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0044 (12) ÅCell parameters from 3572 reflections
c = 11.8145 (10) Åθ = 1.9–27.9°
α = 80.212 (8)°µ = 9.11 mm1
β = 69.124 (7)°T = 293 K
γ = 78.565 (7)°Block, red
V = 1249.9 (2) Å30.4 × 0.3 × 0.2 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
3540 reflections with I > 2σ(I)
Detector resolution: 8.0797 pixels mm-1Rint = 0.042
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1112
Tmin = 0.350, Tmax = 1.000k = 1312
9662 measured reflectionsl = 1114
4402 independent reflections
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0855P)2 + 0.8591P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4402 reflectionsΔρmax = 2.27 e Å3
272 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au11.0000000.0000000.5000000.0441 (2)
Fe11.5000000.0000000.5000000.0292 (4)
N61.2335 (8)0.1426 (7)0.1913 (6)0.0501 (18)
O11.4274 (5)0.0394 (6)0.3113 (5)0.0438 (14)
H1A1.4961630.0651490.2764440.066*
H1B1.3816520.0302890.2709140.066*
C81.3795 (8)0.2828 (8)0.5220 (7)0.0423 (19)
H81.3532830.2592260.5814140.051*
C51.4616 (8)0.3566 (8)0.3576 (8)0.043 (2)
H51.4958580.3801100.3034660.052*
C41.5067 (7)0.2397 (8)0.3988 (7)0.0395 (19)
H41.5700870.1851670.3693060.047*
C181.0834 (8)0.3621 (9)0.0954 (8)0.048 (2)
N41.4646 (6)0.2017 (6)0.4772 (5)0.0317 (14)
C210.9996 (10)0.4782 (10)0.0484 (8)0.055 (2)
H210.9423200.5237260.0898650.066*
C91.2973 (8)0.5573 (8)0.3485 (8)0.044 (2)
H91.2405840.6095730.3869710.053*
C171.1829 (10)0.2903 (10)0.0506 (8)0.059 (3)
H171.2016900.3150990.0124490.071*
N11.2923 (6)0.0142 (7)0.5030 (6)0.0433 (17)
C191.0669 (9)0.3182 (10)0.1910 (8)0.052 (2)
H191.0037780.3633300.2265310.063*
C201.1418 (9)0.2094 (9)0.2342 (9)0.055 (2)
H201.1262150.1818890.2976430.065*
C61.3638 (8)0.4388 (8)0.3989 (7)0.0412 (19)
C111.2282 (9)0.7084 (8)0.1962 (8)0.048 (2)
C71.3274 (8)0.4002 (8)0.4855 (7)0.0415 (19)
H71.2672860.4533240.5198950.050*
C151.1322 (10)0.7868 (9)0.2320 (9)0.057 (3)
H151.1168760.7750000.3018870.069*
C101.3093 (9)0.5968 (8)0.2560 (8)0.047 (2)
H101.3751910.5505470.2241820.057*
N51.0744 (8)0.9079 (7)0.0674 (7)0.0513 (19)
H5A1.0251910.9686470.0269050.062*0.5
C11.1866 (8)0.0083 (8)0.5027 (7)0.0413 (19)
C131.1698 (10)0.8351 (10)0.0344 (9)0.061 (3)
H131.1858680.8510360.0337660.073*
C121.2496 (10)0.7344 (9)0.0949 (9)0.057 (2)
H121.3171680.6846620.0673020.069*
C161.2541 (9)0.1809 (10)0.1014 (9)0.058 (3)
H161.3193890.1329210.0698410.070*
C141.0551 (11)0.8852 (10)0.1667 (9)0.064 (3)
H140.9878220.9370400.1930660.077*
N3A0.7442 (6)0.2821 (9)0.2440 (3)0.140 (5)0.8
C3A0.8293 (4)0.2875 (6)0.3312 (2)0.140 (5)0.8
Au2A0.96785 (10)0.30552 (9)0.49275 (9)0.1010 (3)0.8
C2A1.1004 (4)0.3499 (6)0.6389 (3)0.140 (5)0.8
N2A1.1797 (6)0.3786 (9)0.7294 (4)0.140 (5)0.8
N3B0.703 (3)0.119 (3)0.1529 (17)0.140 (5)0.2
C3B0.7686 (18)0.1679 (19)0.2399 (12)0.140 (5)0.2
Au2B0.8855 (5)0.2557 (4)0.3973 (6)0.151 (2)0.2
C2B1.010 (2)0.3636 (18)0.4940 (14)0.140 (5)0.2
N2B1.095 (3)0.424 (3)0.552 (2)0.140 (5)0.2
O21.5706 (15)0.1345 (17)0.1543 (12)0.109 (5)0.6
H2A1.6409620.2017110.1879060.164*0.6
H2B1.6094920.0673110.1471860.164*0.6
O30.574 (2)0.503 (3)0.1194 (19)0.109 (5)0.4
H3B0.6174170.4279380.1481630.164*0.2
H3A0.6373170.5565680.1543730.164*0.4
H3C0.5226170.5014780.0359930.164*0.2
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0232 (2)0.0500 (3)0.0655 (4)0.00604 (19)0.0212 (2)0.0086 (2)
Fe10.0194 (7)0.0277 (9)0.0434 (8)0.0019 (6)0.0110 (6)0.0127 (6)
N60.056 (4)0.038 (5)0.048 (4)0.004 (4)0.005 (4)0.012 (3)
O10.041 (3)0.045 (4)0.044 (3)0.005 (3)0.013 (3)0.014 (3)
C80.041 (4)0.041 (5)0.047 (5)0.003 (4)0.014 (4)0.015 (4)
C50.042 (4)0.036 (5)0.054 (5)0.009 (4)0.013 (4)0.017 (4)
C40.034 (4)0.035 (5)0.055 (5)0.000 (3)0.019 (4)0.020 (4)
C180.037 (4)0.045 (6)0.051 (5)0.013 (4)0.003 (4)0.011 (4)
N40.029 (3)0.024 (4)0.044 (4)0.000 (3)0.014 (3)0.011 (3)
C210.052 (5)0.048 (6)0.065 (6)0.003 (4)0.014 (5)0.024 (5)
C90.035 (4)0.031 (5)0.065 (6)0.000 (3)0.016 (4)0.008 (4)
C170.064 (6)0.072 (8)0.046 (5)0.012 (5)0.016 (5)0.021 (5)
N10.030 (3)0.037 (4)0.066 (5)0.004 (3)0.018 (3)0.011 (3)
C190.052 (5)0.059 (7)0.042 (5)0.006 (5)0.011 (4)0.009 (4)
C200.054 (5)0.051 (6)0.057 (6)0.010 (5)0.010 (5)0.019 (5)
C60.031 (4)0.041 (5)0.050 (5)0.004 (3)0.008 (3)0.014 (4)
C110.048 (5)0.037 (5)0.055 (5)0.009 (4)0.006 (4)0.019 (4)
C70.042 (4)0.036 (5)0.051 (5)0.005 (4)0.021 (4)0.008 (4)
C150.071 (6)0.041 (6)0.065 (6)0.009 (5)0.027 (5)0.029 (5)
C100.056 (5)0.034 (5)0.055 (5)0.003 (4)0.018 (4)0.016 (4)
N50.056 (5)0.039 (5)0.053 (4)0.004 (4)0.006 (4)0.020 (4)
C10.026 (4)0.043 (5)0.054 (5)0.005 (3)0.012 (4)0.008 (4)
C130.058 (6)0.064 (7)0.066 (6)0.014 (5)0.016 (5)0.031 (5)
C120.064 (6)0.047 (6)0.065 (6)0.004 (5)0.022 (5)0.021 (5)
C160.047 (5)0.057 (7)0.062 (6)0.008 (5)0.014 (5)0.014 (5)
C140.075 (7)0.046 (7)0.076 (7)0.010 (5)0.033 (6)0.024 (5)
N3A0.181 (11)0.132 (9)0.155 (11)0.018 (9)0.130 (10)0.026 (9)
C3A0.181 (11)0.132 (9)0.155 (11)0.018 (9)0.130 (10)0.026 (9)
Au2A0.1098 (6)0.0872 (7)0.1463 (8)0.0284 (5)0.0985 (6)0.0475 (5)
C2A0.181 (11)0.132 (9)0.155 (11)0.018 (9)0.130 (10)0.026 (9)
N2A0.181 (11)0.132 (9)0.155 (11)0.018 (9)0.130 (10)0.026 (9)
N3B0.181 (11)0.132 (9)0.155 (11)0.018 (9)0.130 (10)0.026 (9)
C3B0.181 (11)0.132 (9)0.155 (11)0.018 (9)0.130 (10)0.026 (9)
Au2B0.174 (4)0.092 (3)0.276 (6)0.037 (3)0.186 (5)0.081 (4)
C2B0.181 (11)0.132 (9)0.155 (11)0.018 (9)0.130 (10)0.026 (9)
N2B0.181 (11)0.132 (9)0.155 (11)0.018 (9)0.130 (10)0.026 (9)
O20.101 (10)0.146 (14)0.087 (8)0.033 (9)0.066 (7)0.010 (8)
O30.101 (10)0.146 (14)0.087 (8)0.033 (9)0.066 (7)0.010 (8)
Geometric parameters (Å, º) top
Au1—C1i1.979 (7)N1—C11.130 (10)
Au1—C11.979 (7)C19—H190.9300
Au1—Au2A3.3243C19—C201.366 (13)
Au1—Au2Ai3.3243C20—H200.9300
Au1—Au2B3.101 (4)C6—C71.367 (11)
Au1—Au2Bi3.101 (4)C11—C151.336 (13)
Fe1—O1ii2.081 (5)C11—C101.479 (11)
Fe1—O12.081 (5)C11—C121.379 (12)
Fe1—N42.223 (6)C7—H70.9300
Fe1—N4ii2.223 (6)C15—H150.9300
Fe1—N1ii2.180 (6)C15—C141.385 (12)
Fe1—N12.181 (6)C10—H100.9300
N6—C201.294 (12)N5—H5A0.8600
N6—C161.307 (12)N5—C131.290 (12)
O1—H1A0.9319N5—C141.330 (12)
O1—H1B0.9285C13—H130.9300
C8—H80.9300C13—C121.385 (13)
C8—N41.320 (10)C12—H120.9300
C8—C71.377 (11)C16—H160.9300
C5—H50.9300C14—H140.9300
C5—C41.387 (11)N3A—C3A1.1014
C5—C61.401 (12)C3A—Au2A1.9543
C4—H40.9300Au2A—C2A1.8554
C4—N41.315 (9)C2A—N2A1.1381
C18—C211.472 (13)N3B—C3B1.1270
C18—C171.390 (13)C3B—Au2B2.0356
C18—C191.377 (12)Au2B—C2B1.8767
C21—C21iii1.317 (17)C2B—N2B1.1712
C21—H210.9300O2—H2A0.9640
C9—H90.9300O2—H2B0.9427
C9—C61.466 (11)O3—H3B0.9225
C9—C101.298 (11)O3—H3A0.9170
C17—H170.9300O3—H3C0.9389
C17—C161.393 (13)
C1i—Au1—C1180.0C16—C17—H17120.4
C1i—Au1—Au2A98.7 (3)C1—N1—Fe1172.8 (7)
C1—Au1—Au2A81.3 (3)C18—C19—H19119.5
C1—Au1—Au2Ai98.7 (14)C20—C19—C18121.0 (9)
C1i—Au1—Au2Ai81.3 (14)C20—C19—H19119.5
C1i—Au1—Au2B88.0 (3)N6—C20—C19123.2 (9)
C1—Au1—Au2B92.0 (3)N6—C20—H20118.4
C1i—Au1—Au2Bi92 (3)C19—C20—H20118.4
C1—Au1—Au2Bi88 (3)C5—C6—C9122.6 (7)
Au2Ai—Au1—Au2A180.0 (18)C7—C6—C5116.4 (8)
Au2B—Au1—Au2Bi180 (5)C7—C6—C9120.9 (8)
O1ii—Fe1—O1180.0C15—C11—C10124.7 (8)
O1ii—Fe1—N4ii89.1 (2)C15—C11—C12116.4 (9)
O1—Fe1—N489.1 (2)C12—C11—C10118.9 (9)
O1ii—Fe1—N490.9 (2)C8—C7—H7119.9
O1—Fe1—N4ii90.9 (2)C6—C7—C8120.1 (8)
O1—Fe1—N1ii90.4 (2)C6—C7—H7119.9
O1—Fe1—N189.6 (2)C11—C15—H15119.5
O1ii—Fe1—N1ii89.6 (2)C11—C15—C14121.1 (9)
O1ii—Fe1—N190.4 (2)C14—C15—H15119.5
N4—Fe1—N4ii180.0C9—C10—C11126.2 (9)
N1ii—Fe1—N489.6 (2)C9—C10—H10116.9
N1ii—Fe1—N4ii90.4 (2)C11—C10—H10116.9
N1—Fe1—N4ii89.6 (2)C13—N5—H5A121.4
N1—Fe1—N490.4 (2)C13—N5—C14117.3 (8)
N1ii—Fe1—N1180.0C14—N5—H5A121.4
C20—N6—C16118.2 (8)N1—C1—Au1179.0 (8)
Fe1—O1—H1A114.1N5—C13—H13118.2
Fe1—O1—H1B113.4N5—C13—C12123.5 (9)
H1A—O1—H1B100.1C12—C13—H13118.2
N4—C8—H8118.2C11—C12—C13119.6 (9)
N4—C8—C7123.6 (7)C11—C12—H12120.2
C7—C8—H8118.2C13—C12—H12120.2
C4—C5—H5120.5N6—C16—C17123.0 (9)
C4—C5—C6119.0 (7)N6—C16—H16118.5
C6—C5—H5120.5C17—C16—H16118.5
C5—C4—H4118.2C15—C14—H14119.0
N4—C4—C5123.5 (8)N5—C14—C15122.1 (9)
N4—C4—H4118.2N5—C14—H14119.0
C17—C18—C21124.5 (8)N3A—C3A—Au2A174.7
C19—C18—C21120.2 (9)C3A—Au2A—Au188.63 (19)
C19—C18—C17115.4 (9)C2A—Au2A—Au1101.1 (2)
C8—N4—Fe1121.6 (5)C2A—Au2A—C3A169.8
C4—N4—Fe1120.0 (5)N2A—C2A—Au2A178.6
C4—N4—C8117.1 (7)N3B—C3B—Au2B179.57 (10)
C18—C21—H21117.8C3B—Au2B—Au189.4 (6)
C21iii—C21—C18124.4 (12)C2B—Au2B—Au1105.7 (7)
C21iii—C21—H21117.8C2B—Au2B—C3B156.3
C6—C9—H9116.6N2B—C2B—Au2B174.6
C10—C9—H9116.6H2A—O2—H2B110.8
C10—C9—C6126.9 (8)H3B—O3—H3A104.8
C18—C17—H17120.4H3A—O3—H3C120.1
C18—C17—C16119.2 (9)
Symmetry codes: (i) x+2, y, z1; (ii) x+3, y, z1; (iii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.931.862.744 (13)156
O1—H1B···N60.931.852.736 (9)158
C7—H7···N2B0.932.082.78 (3)132
N5—H5A···N5iv0.861.822.677 (14)176
O2—H2A···N2Aii0.962.493.45 (7)179
O2—H2B···N3Bv0.942.433.37 (3)172
O3—H3B···N3A0.922.082.99 (3)167
O3—H3A···N2Avi0.922.112.98 (4)159
O3—H3C···O3vii0.941.752.69 (4)179
Symmetry codes: (ii) x+3, y, z1; (iv) x+2, y+2, z; (v) x+1, y, z; (vi) x+2, y+1, z1; (vii) x+1, y+1, z.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-01M; grant No. 19BF037-04); H2020-MSCA-RISE-2016 (grant No. 734322).

References

First citationBartual-Murgui, C., Ortega-Villar, N. A., Shepherd, H. J., Muñoz, M. C. C., Salmon, L., Molnár, G., Bousseksou, A. & Real, J. A. (2011). J. Mater. Chem. 21, 7217–7222.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. pp. 3191–3195.  Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Spin Crossover in Transition Metal Compounds I, pp. 1–47. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationHofmann, K. A. & Höchtlen, F. (1903). Ber. Dtsch. Chem. Ges. 36, 1149–1151.  CrossRef CAS Google Scholar
First citationKucheriv, O. I., Barakhtii, D. D., Malinkin, S. O., Shova, S. & Gural'skiy, I. A. (2019). Acta Cryst. E75, 1149–1152.  Google Scholar
First citationMuñoz-Lara, F. J., Gaspar, A. B., Muñoz, M. C., Arai, M., Kitagawa, S., Ohba, M. & Real, J. A. (2012). Chem. Eur. J. 18, 8013–8018.  Google Scholar
First citationNi, Z.-P., Liu, J.-L., Hoque, M. N., Liu, W., Li, J.-Y., Chen, Y.-C. & Tong, M.-L. (2017). Coord. Chem. Rev. 335, 28–43.  CrossRef CAS Google Scholar
First citationOhtani, R. & Hayami, S. (2017). Chem. Eur. J. 23, 2236–2248.  Google Scholar
First citationRigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026–5032.  Google Scholar
First citationYoshida, K., Akahoshi, D., Kawasaki, T., Saito, T. & Kitazawa, T. (2013). Polyhedron, 66, 252–256.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds