research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-{2,2-di­chloro-1-[(E)-(4-fluoro­phen­yl)diazen­yl]ethen­yl}-N,N-di­methyl­aniline

CROSSMARK_Color_square_no_text.svg

aInstitute of Natural and Applied Science, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 28 April 2020; accepted 5 May 2020; online 6 May 2020)

In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl⋯H contact, C—Cl⋯π and van der Waals inter­actions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H⋯H (33.3%), Cl⋯H/H⋯Cl (22.9%) and C⋯H/H⋯C (15.5%) inter­actions are the most important contributors towards the crystal packing.

1. Chemical context

Both inter- and intra­molecular weak inter­actions play a crucial role in determining the properties of organic compounds and controlling their mol­ecular organization in solution and in the solid state, which is sensitive to their chemical environment, solvent polarity, temperature, etc. (Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145-153.]; Maharramov et al., 2009[Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704-709.], 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.], 2014a[Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67-73.],b[Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1-37.], 2015[Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602-5610.], 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121-10138.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54-72.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]; Shixaliyev et al., 2013[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.], 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). For example, in catalysis monomeric, oligomeric or polymeric compounds can promote various organic transformations not only by coordination bonds but also through non-covalent inter­actions, such as hydrogen, halogen, chalcogen, pnictogen, tetrel and triel bonds, as well as metal–metal, cation–π, anion–π, lone pair–π, ππ stacking, agostic, pseudo-agostic, anagostic, dispersion-driven, lipophilic, etc, or their cooperation (Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Kopylovich et al., 2011a[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011a). Chem. Commun. 47, 7248-7250.],b[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175-180.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]; Mahmoudi et al., 2016[Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.], 2017a[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763-4772.],b[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.],c[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017c). Inorg. Chim. Acta, 461, 192-205.], 2018a[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959-4971.],b[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018b). CrystEngComm, 20, 2812-2821.]). On the other hand, we and other researchers have attached various types of non-covalent-bond donor synthons to dye mol­ecules, which results in inter­esting analytical and solvatochromic properties (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.]; Mahmudov & Pombeiro, 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.]).

[Scheme 1]

In order to continue our work in this direction, we have functionalized a new azo dye, 4-{2,2-di­chloro-1-[(E)-(4-fluoro­phen­yl)diazen­yl]ethen­yl}-N,N-di­methyl­aniline, which provides C—H⋯F and C—Cl⋯F types of inter­molecular weak inter­actions.

2. Structural commentary

In the title compound (Fig. 1[link]), the dihedral angle between the benzene rings (C1–C6 and C8–C13) of the 4-fluoro­phenyl and N,N-di­methyl­aniline groups is 64.12 (14)°. The amine N atom as well as the directly adjacent arene C atom are bent a little out of the plane of the other five aromatic C atoms, with deviations of 0.007 (3) Å for C11 and 0.027 (2) Å for N3. The N1—N2—C7—C14, N2—C7—C14—Cl1, N2—C7—C14—Cl2 and C8—C7—C14—Cl2 torsion angles are −172.0 (2), 2.1 (3), −177.0 (2) and 0.6 (4)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are connected by a short Cl2⋯H13A contact (2.96 Å) and C—Cl⋯π inter­actions, which contribute to the overall packing energy stabilization, into infinite columns along the a-axis direction (Table 1[link]; Fig. 2[link]).

Table 1
C—Cl⋯π interaction geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—Cl1⋯Cg1i 1.72 (1) 3.93 (1) 3.882 (3) 76 (1)
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
A partial packing diagram of the title compound showing chain formation along the a-axis direction. Symmetry operators: (a) −1 + x, y, z; (b) 1 + x, y, z. Cg1 is the centroid of the C1–C6 ring.

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17, University of Western Australia.]). Three-dimensional mol­ecular Hirshfeld surfaces were generated using a `high standard' surface resolution colour-mapped over the normalized contact distance. The red, white and blue regions visible on the dnorm surfaces indicate contacts with distances shorter, longer and equal to the van der Waals radii (Fig. 3[link]).

[Figure 3]
Figure 3
Front and back sides of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range 0.0350 to 0.8404 a.u.

The bright-red spots near atoms Cl2 and C13 in Fig.3a refer to the short Cl2⋯H13A contact, and near the atoms F1 and C10 in Fig. 3[link]b to the F1⋯H10A contact. The shape-index of the Hirshfeld surface is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 4[link] clearly suggests that there are no ππ inter­actions in the crystal structure.

[Figure 4]
Figure 4
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 5[link]a, and those delineated into H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C, F⋯H/H⋯F, N⋯H/H⋯N, C⋯C and Cl⋯C/C⋯Cl contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]bh, together with their relative contributions to the Hirshfeld surface while details of the various contacts are given in Table 2[link]. The most important inter­action is H⋯H, contributing 33.3% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.10 Å. The reciprocal Cl⋯H/H⋯Cl inter­actions appear as two sym­metrical broad wings with de + di ≃ 2.80 Å and contribute 22.9% to the Hirshfeld surface (Fig. 5[link]c). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 5[link]d; 15.5% contribution to the Hirshfeld surface), have the tips at de + di ≃ 2.95 Å. The fingerprint plot for F⋯H/H⋯F contacts (9.0% contribution), Fig. 5[link]e, has a pair of spikes with the tips at de + di = 2.55 Å. The remaining contributions from the other different inter­atomic contacts to the Hirshfeld surfaces are listed in Table 3[link]. The small contribution of the other weak inter­molecular N⋯H/H⋯N, C⋯C, Cl⋯C/C⋯Cl, N⋯C/C⋯N, Cl⋯N/N⋯Cl, Cl⋯F/F⋯Cl, C⋯F/F⋯C and F⋯N/N⋯F contacts has a negligible effect on the packing.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

AB Distance Symmetry operation for B
H15B⋯H16B 2.45 −1 + x, y, z
Cl1⋯N3 3.409 (3) [{1\over 2}] − x, 1 − y, [{1\over 2}] + z
C12⋯H6A 2.97 [{1\over 2}] − x, 1 − y, −[{1\over 2}] + z
Cl2⋯H13A 2.96 −1 + x, y, z
F1⋯H10A 2.66 [{3\over 2}] + x, [{3\over 2}] − y, 1 − z
H3A⋯H2A 2.53 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 33.3
Cl⋯H/H⋯Cl 22.9
C⋯H/H⋯C 15.5
F⋯H/H⋯F 9.0
N⋯H/H⋯N 4.9
C⋯C 4.7
Cl⋯C/C⋯Cl 2.7
N⋯C/C⋯N 2.0
Cl⋯N/N⋯Cl 2.0
Cl⋯F/F⋯Cl 1.9
C⋯F/F⋯C 0.8
F⋯N/N⋯F 0.3
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F, (f) N⋯H/H⋯N, (g) C⋯C and (h) Cl⋯C/C⋯Cl inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having an (E)-1-(2,2-di­chloro-1-phenyl­vin­yl)-2-phenyl­diazene unit gave 25 hits. Six compounds closely resemble the title compound, viz. 1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (CSD refcode HONBOE; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (HONBUK; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]diazene (HODQAV; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]), 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (XIZREG; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), 1,1-[methyl­ene­bis(4,1-phenyl­ene)]bis­[(2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (LEQXIR; Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]), 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­{[2,2-di­chloro-1-(4-chloro­phen­yl) ethen­yl]diazene} (LEQXOX; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]).

In the crystal structures of HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Mol­ecules are linked through weak X⋯Cl contacts (X = Br for HONBOE and Cl for HONBUK) and C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. In the crystal of HODQAV, mol­ecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In XIZREG, mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystal of LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and Cl⋯O contacts were found, and in LEQXOX, C—H⋯N and Cl⋯Cl contacts are observed.

5. Synthesis and crystallization

The title compound was synthesized according to the reported method (Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). A 20 mL screw-neck vial was charged with DMSO (10mL), (E)-4-{[2-(4-fluoro­phen­yl)hydrazono]meth­yl}-N,N-di­methyl­aniline (257 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Orange solid (78%); m.p. 418 K. Analysis calculated for C16H14Cl2FN3 (M = 338.21): C 56.82, H 4.17, N 12.42; found: C 56.78, H 4.11, N 12.34%. 1H NMR (300 MHz, CDCl3) δ (ppm) 3.05 (6H, NMe2), 6.79–7.86 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ (ppm) 134.71, 131.08, 130.42, 128.97, 128.85, 125.34, 125.22, 124.68, 124.57, 119.46, 116.13, 115.83, 115.47, 115.17, 115.12, 111.49, 110.83, 43.94, 40.31. ESI–MS: m/z: 338.12 [M+H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound H atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C16H14Cl2FN3
Mr 338.20
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 6.0730 (3), 15.9782 (9), 16.3860 (7)
V3) 1590.03 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.27 × 0.24 × 0.17
 
Data collection
Diffractometer Bruker APEXII PHOTON 100 detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.887, 0.944
No. of measured, independent and observed [I > 2σ(I)] reflections 12082, 3215, 2696
Rint 0.036
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.05
No. of reflections 3215
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.22
Absolute structure Flack x determined using 1002 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.02 (2)
Computer programs: APEX3 and SAINT (Bruker, 2007[Bruker (2007). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

4-{2,2-Dichloro-1-[(E)-(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline top
Crystal data top
C16H14Cl2FN3Dx = 1.413 Mg m3
Mr = 338.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6056 reflections
a = 6.0730 (3) Åθ = 2.8–26.4°
b = 15.9782 (9) ŵ = 0.42 mm1
c = 16.3860 (7) ÅT = 296 K
V = 1590.03 (14) Å3Block, orange
Z = 40.27 × 0.24 × 0.17 mm
F(000) = 696
Data collection top
Bruker APEXII PHOTON 100 detector
diffractometer
2696 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.4°, θmin = 2.5°
Tmin = 0.887, Tmax = 0.944h = 77
12082 measured reflectionsk = 1919
3215 independent reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.1514P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.13 e Å3
3215 reflectionsΔρmin = 0.22 e Å3
201 parametersAbsolute structure: Flack x determined using 1002 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 restraintsAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4252 (4)0.61833 (16)0.56623 (16)0.0443 (6)
C20.5620 (5)0.68715 (18)0.55987 (18)0.0509 (7)
H2A0.5403320.7255360.5179760.061*
C30.7298 (5)0.6994 (2)0.61488 (17)0.0573 (8)
H3A0.8232410.7453070.6106100.069*
C40.7553 (5)0.6416 (2)0.67653 (18)0.0594 (8)
C50.6205 (6)0.5739 (2)0.6855 (2)0.0673 (9)
H5A0.6417400.5361780.7280820.081*
C60.4535 (5)0.56267 (19)0.63053 (18)0.0574 (8)
H6A0.3581520.5174910.6362450.069*
C70.0179 (4)0.53364 (16)0.45205 (16)0.0439 (6)
C80.0207 (4)0.58320 (16)0.37493 (15)0.0421 (6)
C90.1979 (4)0.63333 (18)0.35356 (16)0.0465 (6)
H9A0.3197810.6356890.3878560.056*
C100.1976 (4)0.67976 (18)0.28261 (16)0.0470 (7)
H10A0.3192540.7127250.2701040.056*
C110.0185 (4)0.67833 (17)0.22914 (15)0.0419 (6)
C120.1597 (5)0.62650 (17)0.25034 (16)0.0463 (6)
H12A0.2805400.6228910.2156690.056*
C130.1577 (5)0.58098 (17)0.32175 (17)0.0473 (6)
H13A0.2787420.5479160.3347300.057*
C140.1613 (5)0.47174 (16)0.46824 (16)0.0469 (6)
C150.1744 (6)0.7909 (2)0.14541 (19)0.0624 (8)
H15A0.1747930.8280070.1914580.094*
H15B0.3180080.7666890.1389160.094*
H15C0.1362300.8215630.0970690.094*
C160.1532 (6)0.7139 (2)0.09817 (19)0.0666 (8)
H16A0.1620510.6557380.0838770.100*
H16B0.2920480.7320380.1198800.100*
H16C0.1183560.7461580.0504580.100*
Cl10.16032 (15)0.41361 (5)0.55620 (5)0.0677 (3)
Cl20.36345 (14)0.44180 (5)0.40139 (5)0.0680 (3)
F10.9220 (4)0.65309 (16)0.73030 (13)0.0957 (8)
N10.2619 (4)0.60931 (14)0.50431 (14)0.0477 (5)
N20.1433 (4)0.54576 (14)0.51363 (13)0.0469 (5)
N30.0159 (4)0.72557 (16)0.15854 (14)0.0554 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0531 (15)0.0378 (14)0.0420 (13)0.0006 (11)0.0011 (12)0.0018 (11)
C20.0671 (18)0.0421 (15)0.0436 (14)0.0075 (13)0.0032 (14)0.0000 (12)
C30.0676 (19)0.0562 (17)0.0480 (16)0.0201 (15)0.0029 (15)0.0036 (14)
C40.0617 (18)0.070 (2)0.0468 (15)0.0164 (16)0.0090 (15)0.0004 (15)
C50.079 (2)0.065 (2)0.0583 (18)0.0209 (17)0.0234 (17)0.0185 (15)
C60.0655 (18)0.0480 (17)0.0588 (17)0.0192 (15)0.0148 (15)0.0152 (14)
C70.0430 (13)0.0427 (14)0.0461 (14)0.0082 (11)0.0043 (12)0.0006 (11)
C80.0433 (13)0.0398 (14)0.0433 (13)0.0034 (11)0.0052 (12)0.0006 (11)
C90.0409 (14)0.0550 (16)0.0436 (14)0.0078 (12)0.0017 (12)0.0020 (12)
C100.0421 (14)0.0513 (15)0.0474 (15)0.0121 (12)0.0034 (13)0.0028 (12)
C110.0416 (14)0.0435 (15)0.0406 (14)0.0010 (11)0.0047 (12)0.0043 (11)
C120.0384 (13)0.0517 (15)0.0486 (14)0.0059 (12)0.0035 (13)0.0033 (12)
C130.0392 (13)0.0478 (14)0.0547 (15)0.0077 (12)0.0061 (13)0.0012 (12)
C140.0453 (14)0.0438 (14)0.0515 (14)0.0037 (12)0.0048 (13)0.0001 (11)
C150.0624 (19)0.0655 (19)0.0591 (18)0.0090 (16)0.0018 (17)0.0153 (15)
C160.0647 (19)0.075 (2)0.0595 (18)0.0020 (18)0.0144 (18)0.0095 (16)
Cl10.0720 (5)0.0627 (5)0.0683 (5)0.0060 (4)0.0004 (5)0.0197 (4)
Cl20.0576 (4)0.0620 (5)0.0845 (5)0.0089 (4)0.0209 (4)0.0044 (4)
F10.0914 (16)0.1181 (18)0.0777 (13)0.0488 (14)0.0399 (12)0.0172 (13)
N10.0566 (14)0.0415 (12)0.0450 (12)0.0009 (11)0.0058 (11)0.0018 (10)
N20.0506 (12)0.0449 (12)0.0454 (11)0.0031 (11)0.0081 (11)0.0016 (10)
N30.0568 (15)0.0634 (16)0.0461 (12)0.0129 (12)0.0076 (12)0.0089 (11)
Geometric parameters (Å, º) top
C1—C21.382 (4)C10—C111.397 (4)
C1—C61.389 (4)C10—H10A0.9300
C1—N11.426 (3)C11—N31.381 (3)
C2—C31.374 (4)C11—C121.406 (4)
C2—H2A0.9300C12—C131.378 (4)
C3—C41.377 (4)C12—H12A0.9300
C3—H3A0.9300C13—H13A0.9300
C4—F11.354 (3)C14—Cl21.713 (3)
C4—C51.365 (4)C14—Cl11.715 (3)
C5—C61.369 (4)C15—N31.436 (4)
C5—H5A0.9300C15—H15A0.9600
C6—H6A0.9300C15—H15B0.9600
C7—C141.344 (4)C15—H15C0.9600
C7—N21.419 (3)C16—N31.438 (4)
C7—C81.491 (4)C16—H16A0.9600
C8—C91.387 (4)C16—H16B0.9600
C8—C131.391 (4)C16—H16C0.9600
C9—C101.379 (4)N1—N21.255 (3)
C9—H9A0.9300
C2—C1—C6119.5 (3)N3—C11—C10121.7 (2)
C2—C1—N1116.4 (2)N3—C11—C12121.3 (2)
C6—C1—N1124.1 (2)C10—C11—C12117.0 (2)
C3—C2—C1120.6 (3)C13—C12—C11120.9 (3)
C3—C2—H2A119.7C13—C12—H12A119.5
C1—C2—H2A119.7C11—C12—H12A119.5
C2—C3—C4118.0 (3)C12—C13—C8121.7 (2)
C2—C3—H3A121.0C12—C13—H13A119.1
C4—C3—H3A121.0C8—C13—H13A119.1
F1—C4—C5119.0 (3)C7—C14—Cl2122.9 (2)
F1—C4—C3118.1 (3)C7—C14—Cl1124.2 (2)
C5—C4—C3122.9 (3)Cl2—C14—Cl1112.87 (16)
C4—C5—C6118.5 (3)N3—C15—H15A109.5
C4—C5—H5A120.8N3—C15—H15B109.5
C6—C5—H5A120.8H15A—C15—H15B109.5
C5—C6—C1120.5 (3)N3—C15—H15C109.5
C5—C6—H6A119.8H15A—C15—H15C109.5
C1—C6—H6A119.8H15B—C15—H15C109.5
C14—C7—N2114.0 (2)N3—C16—H16A109.5
C14—C7—C8123.4 (2)N3—C16—H16B109.5
N2—C7—C8122.5 (2)H16A—C16—H16B109.5
C9—C8—C13117.5 (2)N3—C16—H16C109.5
C9—C8—C7122.0 (2)H16A—C16—H16C109.5
C13—C8—C7120.6 (2)H16B—C16—H16C109.5
C10—C9—C8121.5 (3)N2—N1—C1113.2 (2)
C10—C9—H9A119.2N1—N2—C7114.8 (2)
C8—C9—H9A119.2C11—N3—C15121.0 (2)
C9—C10—C11121.4 (2)C11—N3—C16120.9 (2)
C9—C10—H10A119.3C15—N3—C16118.0 (2)
C11—C10—H10A119.3
C6—C1—C2—C32.2 (4)N3—C11—C12—C13178.6 (3)
N1—C1—C2—C3177.5 (2)C10—C11—C12—C131.4 (4)
C1—C2—C3—C40.6 (4)C11—C12—C13—C81.1 (4)
C2—C3—C4—F1179.3 (3)C9—C8—C13—C120.1 (4)
C2—C3—C4—C50.7 (5)C7—C8—C13—C12179.7 (3)
F1—C4—C5—C6179.6 (3)N2—C7—C14—Cl2177.0 (2)
C3—C4—C5—C60.4 (6)C8—C7—C14—Cl20.6 (4)
C4—C5—C6—C11.2 (5)N2—C7—C14—Cl12.1 (3)
C2—C1—C6—C52.5 (5)C8—C7—C14—Cl1179.6 (2)
N1—C1—C6—C5177.1 (3)C2—C1—N1—N2179.9 (2)
C14—C7—C8—C963.2 (4)C6—C1—N1—N20.4 (4)
N2—C7—C8—C9119.4 (3)C1—N1—N2—C7178.6 (2)
C14—C7—C8—C13117.3 (3)C14—C7—N2—N1172.0 (2)
N2—C7—C8—C1360.1 (3)C8—C7—N2—N110.4 (3)
C13—C8—C9—C100.4 (4)C10—C11—N3—C1513.1 (4)
C7—C8—C9—C10179.1 (3)C12—C11—N3—C15166.9 (3)
C8—C9—C10—C110.0 (4)C10—C11—N3—C16170.4 (3)
C9—C10—C11—N3179.1 (3)C12—C11—N3—C169.6 (4)
C9—C10—C11—C120.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C14—Cl1···Cg1i1.72 (1)3.93 (1)3.882 (3)76 (1)
Symmetry code: (i) x1, y, z.
Summary of short interatomic contacts (Å) in the title compound top
A···BDistanceSymmetry operation for B
H15B···H16B2.45-1 + x, y, z
Cl1···N33.409 (3)-1/2 - x, 1 - y, 1/2 + z
C12···H6A2.971/2 - x, 1 - y, -1/2 + z
Cl2···H13A2.96-1 + x, y, z
F1···H10A2.663/2 + x, 3/2 - y, 1 - z
H3A···H2A2.531/2 + x, 3/2 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H33.3
Cl···H/H···Cl22.9
C···H/H···C15.5
F···H/H···F9.0
N···H/H···N4.9
C···C4.7
Cl···C/C···Cl2.7
N···C/C···N2.0
Cl···N/N···Cl2.0
Cl···F/F···Cl1.9
C···F/F···C0.8
F···N/N···F0.3
 

Funding information

This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan, grant No. EIF– BGM-4-RFTF-1/2017–21/13/4, and RFBR grant No.18–53-06006.

References

First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011a). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017c). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018b). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1–37.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17, University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds