research communications
E)-(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline
and Hirshfeld surface analysis of 4-{2,2-dichloro-1-[(aInstitute of Natural and Applied Science, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The is stabilized by a short Cl⋯H contact, C—Cl⋯π and van der Waals interactions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H⋯H (33.3%), Cl⋯H/H⋯Cl (22.9%) and C⋯H/H⋯C (15.5%) interactions are the most important contributors towards the crystal packing.
Keywords: crystal structure; C—Cl⋯π interactions; van der Waals interactions; Hirshfeld surface analysis.
CCDC reference: 2001173
1. Chemical context
Both inter- and intramolecular weak interactions play a crucial role in determining the properties of organic compounds and controlling their molecular organization in solution and in the solid state, which is sensitive to their chemical environment, solvent polarity, temperature, etc. (Asadov et al., 2016; Maharramov et al., 2009, 2010; Mahmudov et al., 2013, 2014a,b, 2015, 2017a,b, 2019; Shixaliyev et al., 2013, 2014). For example, in catalysis monomeric, oligomeric or polymeric compounds can promote various organic transformations not only by coordination bonds but also through non-covalent interactions, such as hydrogen, halogen, chalcogen, pnictogen, tetrel and triel bonds, as well as metal–metal, cation–π, anion–π, lone pair–π, π–π stacking, agostic, pseudo-agostic, anagostic, dispersion-driven, lipophilic, etc, or their cooperation (Akbari Afkhami et al., 2017; Gurbanov et al., 2017, 2018; Kopylovich et al., 2011a,b; Ma et al., 2017a,b; Mahmoudi et al., 2016, 2017a,b,c, 2018a,b). On the other hand, we and other researchers have attached various types of non-covalent-bond donor synthons to dye molecules, which results in interesting analytical and solvatochromic properties (Maharramov et al., 2018; Mahmudov et al., 2010, 2011; Mahmudov & Pombeiro, 2016).
In order to continue our work in this direction, we have functionalized a new azo dye, 4-{2,2-dichloro-1-[(E)-(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline, which provides C—H⋯F and C—Cl⋯F types of intermolecular weak interactions.
2. Structural commentary
In the title compound (Fig. 1), the dihedral angle between the benzene rings (C1–C6 and C8–C13) of the 4-fluorophenyl and N,N-dimethylaniline groups is 64.12 (14)°. The amine N atom as well as the directly adjacent arene C atom are bent a little out of the plane of the other five aromatic C atoms, with deviations of 0.007 (3) Å for C11 and 0.027 (2) Å for N3. The N1—N2—C7—C14, N2—C7—C14—Cl1, N2—C7—C14—Cl2 and C8—C7—C14—Cl2 torsion angles are −172.0 (2), 2.1 (3), −177.0 (2) and 0.6 (4)°, respectively.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are connected by a short Cl2⋯H13A contact (2.96 Å) and C—Cl⋯π interactions, which contribute to the overall packing energy stabilization, into infinite columns along the a-axis direction (Table 1; Fig. 2).
|
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). Three-dimensional molecular Hirshfeld surfaces were generated using a `high standard' surface resolution colour-mapped over the normalized contact distance. The red, white and blue regions visible on the dnorm surfaces indicate contacts with distances shorter, longer and equal to the van der Waals radii (Fig. 3).
The bright-red spots near atoms Cl2 and C13 in Fig.3a refer to the short Cl2⋯H13A contact, and near the atoms F1 and C10 in Fig. 3b to the F1⋯H10A contact. The shape-index of the Hirshfeld surface is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 4 clearly suggests that there are no π–π interactions in the crystal structure.
The overall two-dimensional fingerprint plot, Fig. 5a, and those delineated into H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C, F⋯H/H⋯F, N⋯H/H⋯N, C⋯C and Cl⋯C/C⋯Cl contacts (McKinnon et al., 2007) are illustrated in Fig. 5b–h, together with their relative contributions to the Hirshfeld surface while details of the various contacts are given in Table 2. The most important interaction is H⋯H, contributing 33.3% to the overall crystal packing, which is reflected in Fig. 5b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.10 Å. The reciprocal Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with de + di ≃ 2.80 Å and contribute 22.9% to the Hirshfeld surface (Fig. 5c). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 5d; 15.5% contribution to the Hirshfeld surface), have the tips at de + di ≃ 2.95 Å. The fingerprint plot for F⋯H/H⋯F contacts (9.0% contribution), Fig. 5e, has a pair of spikes with the tips at de + di = 2.55 Å. The remaining contributions from the other different interatomic contacts to the Hirshfeld surfaces are listed in Table 3. The small contribution of the other weak intermolecular N⋯H/H⋯N, C⋯C, Cl⋯C/C⋯Cl, N⋯C/C⋯N, Cl⋯N/N⋯Cl, Cl⋯F/F⋯Cl, C⋯F/F⋯C and F⋯N/N⋯F contacts has a negligible effect on the packing.
|
|
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) for structures having an (E)-1-(2,2-dichloro-1-phenylvinyl)-2-phenyldiazene unit gave 25 hits. Six compounds closely resemble the title compound, viz. 1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (CSD refcode HONBOE; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (HONBUK; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene (HODQAV; Shikhaliyev et al., 2019), 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (XIZREG; Atioğlu et al., 2019), 1,1-[methylenebis(4,1-phenylene)]bis[(2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (LEQXIR; Shixaliyev et al., 2018), 1,1-[methylenebis(4,1-phenylene)]bis{[2,2-dichloro-1-(4-chlorophenyl) ethenyl]diazene} (LEQXOX; Shikhaliyev et al., 2018).
In the crystal structures of HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Molecules are linked through weak X⋯Cl contacts (X = Br for HONBOE and Cl for HONBUK) and C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. Additional van der Waals interactions consolidate the three-dimensional packing. In the crystal of HODQAV, molecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In XIZREG, molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In the crystal of LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and Cl⋯O contacts were found, and in LEQXOX, C—H⋯N and Cl⋯Cl contacts are observed.
5. Synthesis and crystallization
The title compound was synthesized according to the reported method (Shixaliyev et al., 2018). A 20 mL screw-neck vial was charged with DMSO (10mL), (E)-4-{[2-(4-fluorophenyl)hydrazono]methyl}-N,N-dimethylaniline (257 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Orange solid (78%); m.p. 418 K. Analysis calculated for C16H14Cl2FN3 (M = 338.21): C 56.82, H 4.17, N 12.42; found: C 56.78, H 4.11, N 12.34%. 1H NMR (300 MHz, CDCl3) δ (ppm) 3.05 (6H, NMe2), 6.79–7.86 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ (ppm) 134.71, 131.08, 130.42, 128.97, 128.85, 125.34, 125.22, 124.68, 124.57, 119.46, 116.13, 115.83, 115.47, 115.17, 115.12, 111.49, 110.83, 43.94, 40.31. ESI–MS: m/z: 338.12 [M+H]+.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 4Supporting information
CCDC reference: 2001173
https://doi.org/10.1107/S2056989020006106/vm2232sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020006106/vm2232Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020006106/vm2232Isup3.cml
Data collection: APEX3 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C16H14Cl2FN3 | Dx = 1.413 Mg m−3 |
Mr = 338.20 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 6056 reflections |
a = 6.0730 (3) Å | θ = 2.8–26.4° |
b = 15.9782 (9) Å | µ = 0.42 mm−1 |
c = 16.3860 (7) Å | T = 296 K |
V = 1590.03 (14) Å3 | Block, orange |
Z = 4 | 0.27 × 0.24 × 0.17 mm |
F(000) = 696 |
Bruker APEXII PHOTON 100 detector diffractometer | 2696 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.4°, θmin = 2.5° |
Tmin = 0.887, Tmax = 0.944 | h = −7→7 |
12082 measured reflections | k = −19→19 |
3215 independent reflections | l = −20→20 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.1514P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.084 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.13 e Å−3 |
3215 reflections | Δρmin = −0.22 e Å−3 |
201 parameters | Absolute structure: Flack x determined using 1002 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
0 restraints | Absolute structure parameter: −0.02 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4252 (4) | 0.61833 (16) | 0.56623 (16) | 0.0443 (6) | |
C2 | 0.5620 (5) | 0.68715 (18) | 0.55987 (18) | 0.0509 (7) | |
H2A | 0.540332 | 0.725536 | 0.517976 | 0.061* | |
C3 | 0.7298 (5) | 0.6994 (2) | 0.61488 (17) | 0.0573 (8) | |
H3A | 0.823241 | 0.745307 | 0.610610 | 0.069* | |
C4 | 0.7553 (5) | 0.6416 (2) | 0.67653 (18) | 0.0594 (8) | |
C5 | 0.6205 (6) | 0.5739 (2) | 0.6855 (2) | 0.0673 (9) | |
H5A | 0.641740 | 0.536178 | 0.728082 | 0.081* | |
C6 | 0.4535 (5) | 0.56267 (19) | 0.63053 (18) | 0.0574 (8) | |
H6A | 0.358152 | 0.517491 | 0.636245 | 0.069* | |
C7 | −0.0179 (4) | 0.53364 (16) | 0.45205 (16) | 0.0439 (6) | |
C8 | −0.0207 (4) | 0.58320 (16) | 0.37493 (15) | 0.0421 (6) | |
C9 | −0.1979 (4) | 0.63333 (18) | 0.35356 (16) | 0.0465 (6) | |
H9A | −0.319781 | 0.635689 | 0.387856 | 0.056* | |
C10 | −0.1976 (4) | 0.67976 (18) | 0.28261 (16) | 0.0470 (7) | |
H10A | −0.319254 | 0.712725 | 0.270104 | 0.056* | |
C11 | −0.0185 (4) | 0.67833 (17) | 0.22914 (15) | 0.0419 (6) | |
C12 | 0.1597 (5) | 0.62650 (17) | 0.25034 (16) | 0.0463 (6) | |
H12A | 0.280540 | 0.622891 | 0.215669 | 0.056* | |
C13 | 0.1577 (5) | 0.58098 (17) | 0.32175 (17) | 0.0473 (6) | |
H13A | 0.278742 | 0.547916 | 0.334730 | 0.057* | |
C14 | −0.1613 (5) | 0.47174 (16) | 0.46824 (16) | 0.0469 (6) | |
C15 | −0.1744 (6) | 0.7909 (2) | 0.14541 (19) | 0.0624 (8) | |
H15A | −0.174793 | 0.828007 | 0.191458 | 0.094* | |
H15B | −0.318008 | 0.766689 | 0.138916 | 0.094* | |
H15C | −0.136230 | 0.821563 | 0.097069 | 0.094* | |
C16 | 0.1532 (6) | 0.7139 (2) | 0.09817 (19) | 0.0666 (8) | |
H16A | 0.162051 | 0.655738 | 0.083877 | 0.100* | |
H16B | 0.292048 | 0.732038 | 0.119880 | 0.100* | |
H16C | 0.118356 | 0.746158 | 0.050458 | 0.100* | |
Cl1 | −0.16032 (15) | 0.41361 (5) | 0.55620 (5) | 0.0677 (3) | |
Cl2 | −0.36345 (14) | 0.44180 (5) | 0.40139 (5) | 0.0680 (3) | |
F1 | 0.9220 (4) | 0.65309 (16) | 0.73030 (13) | 0.0957 (8) | |
N1 | 0.2619 (4) | 0.60931 (14) | 0.50431 (14) | 0.0477 (5) | |
N2 | 0.1433 (4) | 0.54576 (14) | 0.51363 (13) | 0.0469 (5) | |
N3 | −0.0159 (4) | 0.72557 (16) | 0.15854 (14) | 0.0554 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0531 (15) | 0.0378 (14) | 0.0420 (13) | 0.0006 (11) | −0.0011 (12) | −0.0018 (11) |
C2 | 0.0671 (18) | 0.0421 (15) | 0.0436 (14) | −0.0075 (13) | 0.0032 (14) | 0.0000 (12) |
C3 | 0.0676 (19) | 0.0562 (17) | 0.0480 (16) | −0.0201 (15) | 0.0029 (15) | −0.0036 (14) |
C4 | 0.0617 (18) | 0.070 (2) | 0.0468 (15) | −0.0164 (16) | −0.0090 (15) | 0.0004 (15) |
C5 | 0.079 (2) | 0.065 (2) | 0.0583 (18) | −0.0209 (17) | −0.0234 (17) | 0.0185 (15) |
C6 | 0.0655 (18) | 0.0480 (17) | 0.0588 (17) | −0.0192 (15) | −0.0148 (15) | 0.0152 (14) |
C7 | 0.0430 (13) | 0.0427 (14) | 0.0461 (14) | 0.0082 (11) | −0.0043 (12) | −0.0006 (11) |
C8 | 0.0433 (13) | 0.0398 (14) | 0.0433 (13) | 0.0034 (11) | −0.0052 (12) | −0.0006 (11) |
C9 | 0.0409 (14) | 0.0550 (16) | 0.0436 (14) | 0.0078 (12) | 0.0017 (12) | −0.0020 (12) |
C10 | 0.0421 (14) | 0.0513 (15) | 0.0474 (15) | 0.0121 (12) | −0.0034 (13) | 0.0028 (12) |
C11 | 0.0416 (14) | 0.0435 (15) | 0.0406 (14) | 0.0010 (11) | −0.0047 (12) | −0.0043 (11) |
C12 | 0.0384 (13) | 0.0517 (15) | 0.0486 (14) | 0.0059 (12) | 0.0035 (13) | −0.0033 (12) |
C13 | 0.0392 (13) | 0.0478 (14) | 0.0547 (15) | 0.0077 (12) | −0.0061 (13) | −0.0012 (12) |
C14 | 0.0453 (14) | 0.0438 (14) | 0.0515 (14) | 0.0037 (12) | −0.0048 (13) | −0.0001 (11) |
C15 | 0.0624 (19) | 0.0655 (19) | 0.0591 (18) | 0.0090 (16) | −0.0018 (17) | 0.0153 (15) |
C16 | 0.0647 (19) | 0.075 (2) | 0.0595 (18) | 0.0020 (18) | 0.0144 (18) | 0.0095 (16) |
Cl1 | 0.0720 (5) | 0.0627 (5) | 0.0683 (5) | −0.0060 (4) | 0.0004 (5) | 0.0197 (4) |
Cl2 | 0.0576 (4) | 0.0620 (5) | 0.0845 (5) | −0.0089 (4) | −0.0209 (4) | 0.0044 (4) |
F1 | 0.0914 (16) | 0.1181 (18) | 0.0777 (13) | −0.0488 (14) | −0.0399 (12) | 0.0172 (13) |
N1 | 0.0566 (14) | 0.0415 (12) | 0.0450 (12) | −0.0009 (11) | −0.0058 (11) | 0.0018 (10) |
N2 | 0.0506 (12) | 0.0449 (12) | 0.0454 (11) | −0.0031 (11) | −0.0081 (11) | 0.0016 (10) |
N3 | 0.0568 (15) | 0.0634 (16) | 0.0461 (12) | 0.0129 (12) | 0.0076 (12) | 0.0089 (11) |
C1—C2 | 1.382 (4) | C10—C11 | 1.397 (4) |
C1—C6 | 1.389 (4) | C10—H10A | 0.9300 |
C1—N1 | 1.426 (3) | C11—N3 | 1.381 (3) |
C2—C3 | 1.374 (4) | C11—C12 | 1.406 (4) |
C2—H2A | 0.9300 | C12—C13 | 1.378 (4) |
C3—C4 | 1.377 (4) | C12—H12A | 0.9300 |
C3—H3A | 0.9300 | C13—H13A | 0.9300 |
C4—F1 | 1.354 (3) | C14—Cl2 | 1.713 (3) |
C4—C5 | 1.365 (4) | C14—Cl1 | 1.715 (3) |
C5—C6 | 1.369 (4) | C15—N3 | 1.436 (4) |
C5—H5A | 0.9300 | C15—H15A | 0.9600 |
C6—H6A | 0.9300 | C15—H15B | 0.9600 |
C7—C14 | 1.344 (4) | C15—H15C | 0.9600 |
C7—N2 | 1.419 (3) | C16—N3 | 1.438 (4) |
C7—C8 | 1.491 (4) | C16—H16A | 0.9600 |
C8—C9 | 1.387 (4) | C16—H16B | 0.9600 |
C8—C13 | 1.391 (4) | C16—H16C | 0.9600 |
C9—C10 | 1.379 (4) | N1—N2 | 1.255 (3) |
C9—H9A | 0.9300 | ||
C2—C1—C6 | 119.5 (3) | N3—C11—C10 | 121.7 (2) |
C2—C1—N1 | 116.4 (2) | N3—C11—C12 | 121.3 (2) |
C6—C1—N1 | 124.1 (2) | C10—C11—C12 | 117.0 (2) |
C3—C2—C1 | 120.6 (3) | C13—C12—C11 | 120.9 (3) |
C3—C2—H2A | 119.7 | C13—C12—H12A | 119.5 |
C1—C2—H2A | 119.7 | C11—C12—H12A | 119.5 |
C2—C3—C4 | 118.0 (3) | C12—C13—C8 | 121.7 (2) |
C2—C3—H3A | 121.0 | C12—C13—H13A | 119.1 |
C4—C3—H3A | 121.0 | C8—C13—H13A | 119.1 |
F1—C4—C5 | 119.0 (3) | C7—C14—Cl2 | 122.9 (2) |
F1—C4—C3 | 118.1 (3) | C7—C14—Cl1 | 124.2 (2) |
C5—C4—C3 | 122.9 (3) | Cl2—C14—Cl1 | 112.87 (16) |
C4—C5—C6 | 118.5 (3) | N3—C15—H15A | 109.5 |
C4—C5—H5A | 120.8 | N3—C15—H15B | 109.5 |
C6—C5—H5A | 120.8 | H15A—C15—H15B | 109.5 |
C5—C6—C1 | 120.5 (3) | N3—C15—H15C | 109.5 |
C5—C6—H6A | 119.8 | H15A—C15—H15C | 109.5 |
C1—C6—H6A | 119.8 | H15B—C15—H15C | 109.5 |
C14—C7—N2 | 114.0 (2) | N3—C16—H16A | 109.5 |
C14—C7—C8 | 123.4 (2) | N3—C16—H16B | 109.5 |
N2—C7—C8 | 122.5 (2) | H16A—C16—H16B | 109.5 |
C9—C8—C13 | 117.5 (2) | N3—C16—H16C | 109.5 |
C9—C8—C7 | 122.0 (2) | H16A—C16—H16C | 109.5 |
C13—C8—C7 | 120.6 (2) | H16B—C16—H16C | 109.5 |
C10—C9—C8 | 121.5 (3) | N2—N1—C1 | 113.2 (2) |
C10—C9—H9A | 119.2 | N1—N2—C7 | 114.8 (2) |
C8—C9—H9A | 119.2 | C11—N3—C15 | 121.0 (2) |
C9—C10—C11 | 121.4 (2) | C11—N3—C16 | 120.9 (2) |
C9—C10—H10A | 119.3 | C15—N3—C16 | 118.0 (2) |
C11—C10—H10A | 119.3 | ||
C6—C1—C2—C3 | 2.2 (4) | N3—C11—C12—C13 | 178.6 (3) |
N1—C1—C2—C3 | −177.5 (2) | C10—C11—C12—C13 | −1.4 (4) |
C1—C2—C3—C4 | −0.6 (4) | C11—C12—C13—C8 | 1.1 (4) |
C2—C3—C4—F1 | 179.3 (3) | C9—C8—C13—C12 | −0.1 (4) |
C2—C3—C4—C5 | −0.7 (5) | C7—C8—C13—C12 | −179.7 (3) |
F1—C4—C5—C6 | −179.6 (3) | N2—C7—C14—Cl2 | −177.0 (2) |
C3—C4—C5—C6 | 0.4 (6) | C8—C7—C14—Cl2 | 0.6 (4) |
C4—C5—C6—C1 | 1.2 (5) | N2—C7—C14—Cl1 | 2.1 (3) |
C2—C1—C6—C5 | −2.5 (5) | C8—C7—C14—Cl1 | 179.6 (2) |
N1—C1—C6—C5 | 177.1 (3) | C2—C1—N1—N2 | −179.9 (2) |
C14—C7—C8—C9 | 63.2 (4) | C6—C1—N1—N2 | 0.4 (4) |
N2—C7—C8—C9 | −119.4 (3) | C1—N1—N2—C7 | −178.6 (2) |
C14—C7—C8—C13 | −117.3 (3) | C14—C7—N2—N1 | −172.0 (2) |
N2—C7—C8—C13 | 60.1 (3) | C8—C7—N2—N1 | 10.4 (3) |
C13—C8—C9—C10 | −0.4 (4) | C10—C11—N3—C15 | 13.1 (4) |
C7—C8—C9—C10 | 179.1 (3) | C12—C11—N3—C15 | −166.9 (3) |
C8—C9—C10—C11 | 0.0 (4) | C10—C11—N3—C16 | −170.4 (3) |
C9—C10—C11—N3 | −179.1 (3) | C12—C11—N3—C16 | 9.6 (4) |
C9—C10—C11—C12 | 0.9 (4) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—Cl1···Cg1i | 1.72 (1) | 3.93 (1) | 3.882 (3) | 76 (1) |
Symmetry code: (i) x−1, y, z. |
A···B | Distance | Symmetry operation for B |
H15B···H16B | 2.45 | -1 + x, y, z |
Cl1···N3 | 3.409 (3) | -1/2 - x, 1 - y, 1/2 + z |
C12···H6A | 2.97 | 1/2 - x, 1 - y, -1/2 + z |
Cl2···H13A | 2.96 | -1 + x, y, z |
F1···H10A | 2.66 | 3/2 + x, 3/2 - y, 1 - z |
H3A···H2A | 2.53 | 1/2 + x, 3/2 - y, 1 - z |
Contact | Percentage contribution |
H···H | 33.3 |
Cl···H/H···Cl | 22.9 |
C···H/H···C | 15.5 |
F···H/H···F | 9.0 |
N···H/H···N | 4.9 |
C···C | 4.7 |
Cl···C/C···Cl | 2.7 |
N···C/C···N | 2.0 |
Cl···N/N···Cl | 2.0 |
Cl···F/F···Cl | 1.9 |
C···F/F···C | 0.8 |
F···N/N···F | 0.3 |
Funding information
This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan, grant No. EIF– BGM-4-RFTF-1/2017–21/13/4, and RFBR grant No.18–53-06006.
References
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science CSD CrossRef CAS PubMed Google Scholar
Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. Web of Science CSD CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011a). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017c). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018b). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67–73. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138. Web of Science CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1–37. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17, University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.