research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of [Li7(i-PrO)3(C4H10NO)3]2O and [Na(i-PrOH)2(C8H18NO2)]2

CROSSMARK_Color_square_no_text.svg

aInorganic Chemistry, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 8 May 2020; accepted 18 May 2020; online 29 May 2020)

The title compounds, hexa­kis­[μ3-2-(di­methyl­amino)­ethano­lato]hexa-μ2-iso­propano­lato-μ4-oxido-tetra­deca­lithium(I), [Li7(i-PrO)3(C4H10NO)3]2O (1), and {3-[(2-meth­oxy­eth­yl)(meth­yl)amino]-1,1-dimethylpropano­lato}diiso­prop­an­o­lsodium(I), [Na(i-PrOH)2(C8H18NO2)] (2), were crystallized in the presence of 2-propanol (i-PrOH, C3H7OH). The structure 1 has monoclinic symmetry (C2/c) and the asymmetric unit contains half of the compound. Title compound 2 has triclinic symmetry (P[\overline{1}]) and the asymmetric unit is half of an inversion-symmetric aggregate. Both compounds consist of an alkali metal, an amino­alkoxide and a 2-propanol compound. Furthermore, the dimeric sodium aggregate 2 is build up by hydrogen bonding through the 2-propanol and the alkoxides. Compound 1 does not exhibit hydrogen bonding, due to the fact that the 2-propanol is deprotonated. In compound 1, benzene appeared as co-crystallate, but was suppressed by solvent masking because of strong disorder. The formula mass and density do not take account of the solvent.

1. Chemical context

The combination of alkali-metal organyls, amino­alkoxides and alcohols is of great inter­est for understanding the behaviour of alkali-metal organyls in deprotonation or metalation reactions. Alkoxides, and especially amino­alkoxides, are used to increase the reactivity of alkali-metal organyls through deaggregation (Lochmann & Janata, 2014[Lochmann, L. & Janata, M. (2014). Cent. Eur. J. Chem. 12, 537-548.]; Caubére, 1993[Caubére, P. (1993). Chem. Rev. 93, 2317-2334.]). As a result of the formation of oligomers, alkali-metal organyls should be deaggregated to get easily accessible metal centers and thus increase the reactivity (Streitwieser et al., 1976[Streitwieser, A., Williams, J. E., Alexandratos, S. & McKelvey, J. M. (1976). J. Am. Chem. Soc. 98, 4778-4784.]; Gessner et al., 2009[Gessner, V. H., Däschlein, C. & Strohmann, C. (2009). Chemistry, 15, 3320-3334.]). This deaggregation can be carried out by solvent mol­ecules or Lewis bases, such as amino­alkoxides. Thus the use of amino­alkoxides leads to a highly reactive species, which has great impact on deprotonation or metal­ation reactions with alkali-metal organyls in chemical synthesis (Gros et al., 1995[Gros, P., Fort, Y., Queguiner, G. & Caubére, P. (1995). Tetrahedron Lett. 36, 4791-4794.]; Gros et al., 1997[Gros, P., Fort, Y. & Caubère, P. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3071-3080.]). Previous studies have shown that the reaction of 2-meth­oxy­pyridine with a lithium alkyl and a lithium di­methyl­amino­ethoxide leads to a high yield of the metalated product, while the reaction without the amino­alkoxide only leads to a nucleophilic addition (Gros & Fort, 2002[Gros, P. & Fort, Y. (2002). Eur. J. Org. Chem. pp. 3375-3383.]). Besides 2-meth­oxy­pyridine, the metalation of pyridine and quinoline with a mixture of lithium alkyl and lithium amino­alkoxide can also be observed, which indicates a higher substrate scope and a higher reactivity (Gros & Fort, 2002[Gros, P. & Fort, Y. (2002). Eur. J. Org. Chem. pp. 3375-3383.]). This mixture is a so-called monometallic superbase of the second generation, based on the Lochmann–Schlosser superbase (n-butyl­lithium and potassium-tert-butoxide) (Schlosser, 1967[Schlosser, M. (1967). J. Organomet. Chem. 8, 9-16.]; Lochmann et al., 1966[Lochmann, L., Pospíšil, J. & Lím, D. (1966). Tetrahedron Lett. 7, 257-262.], 1970[Lochmann, L., Čoupek, J. & Lím, D. (1970). Collect. Czech. Chem. Commun. 35, 733-736.], 1972[Lochmann, L., Lukáš, R. & Lím, D. (1972). Collect. Czech. Chem. Commun. 37, 569-572.]; Lochmann & Janata, 2014[Lochmann, L. & Janata, M. (2014). Cent. Eur. J. Chem. 12, 537-548.]). In particular, the insertion of the amine function in the alkoxide shows a high stabilization, which is proven by the structure of (LiDMAE)8 (Andrews et al., 2002[Andrews, P., MacLellan, J. G., Mulvey, R. E. & Nichols, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1651-1655.]). The structural behaviour exhibits a high stabilization and a broader approach to deprotonation possibilities. Therefore, the use of an alkali-metal amino­alkoxide in combination with an alkali-metal organyl is a potential monometallic superbase of the second generation. But, because of the synthesis of the lithium amino­alkoxide with the amino­alcohol (di­methyl­amino­ethanol), which is added in situ to the butyl­lithium solution, reaction mixtures can still contain the pure amino­alcohol (Gros et al., 1997[Gros, P., Fort, Y. & Caubère, P. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3071-3080.]). In general, alcohols also affect the structural and chemical behaviour of alkali-metal organyls. As well as the synthesis of the amino­alkoxides, they are also used during the synthesis of alkali-metal organyls such as tert-butyl­lithium. To gain higher yields, it is reported that the addition of small amounts of tert-butyl alcohol improves the yield to 80% instead of 40% (Smith, 1974[Smith, W. N. (1974). J. Organomet. Chem. 82, 1-5.]). Consequently, in metalation and deprotonation reactions containing amino­alkoxides and alkali-metal organyls, small amounts of alcohols can also be available. Usually the alcohol, which is added during the synthesis of the organometal reagents, is metalated. By adding a second alcohol, the amino­alcohol, it is not clear whether the previous alcohol is still metalated. Therefore, the influence of these amounts of alcohol is of great inter­est for understanding the reactivity and the mechanistic behaviour. The structures obtained here reflect the inter­action of the reagents and can provide insights into the influence of alcohols, which occur during the synthesis of the alkoxide or the synthesis of the organometal reagent. In particular, the insertion of an alcohol that is not based on the amino­alkoxide generates high inter­est, because it can be concluded whether the amino­alcohol is deprotonated to form the alkali-metal alkoxide or the additional alcohol is deprotonated. The combination of alkali-metal organyls, amino­alkoxides and alcohols is therefore of great inter­est for understanding the synergistic effect.

[Scheme 1]
[Scheme 2]

2. Structural commentary

The title compounds 1 and 2 crystallize at 193 K in the presence of iso­propanol. Both structures contain an alkali metal, an amino­alkoxide and iso­propanol. Compound 1 crystallizes in the monoclinic space group C2/c and the asymmetric unit contains half of the compound, which is built up by a twofold rotation axis. Compound 1 consists of lithium triangles, which are capped by the oxygen atom of the isopropoxide and the amino­alkoxide. Di­methyl­amino­ethanoxide, whose nitro­gen atom also coordinates a lithium center, is used as an alkoxide. The mol­ecule contains fourteen lithium centers, which are arranged as a distorted face-centered cube around an oxygen center. The oxygen center is located on a special position (4c, 0.75, 0.25, 0.5) and is dianionic. The structure is shown in Fig. 1[link] and selected bond lengths and angles are given in Table 1[link]. The distances between the oxygen atom of the amino­alkoxide and the next lithium center are 1.901 (2) Å for Li2—O3, 1.893 (2) Å for Li6—O1 and 1.899 (2) Å for Li4—O5. Comparing these to a similar structure in the literature, containing the same amino­alkoxide, the bond length is, at 1.899 (2) Å, nearly in the same range (Andrews et al., 2002[Andrews, P., MacLellan, J. G., Mulvey, R. E. & Nichols, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1651-1655.]). Furthermore, the bond lengths of the oxygen atom and the lithium center, which is coordinated by a nitro­gen atom, are slightly elongated with 1.989 (2) Å (Li3—O3), 1.989 (2) Å (Li1—O1) and 1.997 (2) Å (O5—Li5) because of the rigid structure of the amino­alkoxide and the formed inter­nal ring. The bond lengths between the nitro­gen atom of the amino­alkoxide and the lithium center vary between 2.141 (3) Å for Li3—N2, 2.157 (2) Å for Li1—N1 and 2.125 (2) Å for Li5—N3, which is slightly shorter than the bond length in the literature for the (LiDMAE)8 compound [2.189 (2) Å; Andrews et al., 2002[Andrews, P., MacLellan, J. G., Mulvey, R. E. & Nichols, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1651-1655.]]. Moreover, the bond lengths of the oxygen atom of the isopropoxide and the lithium centers amount to 1.920 (2) Å for Li2—O2, 1.918 (2) Å for Li4—O4 and 1.910 (2) Å for Li6—O6, respectively. Thus, they are slightly shorter compared to bonds in the literature, which vary between 1.953 (8) and 1.962 (7) Å (Crozier et al., 2013[Crozier, A. R., Schädle, C., Maichle-Mössmer, C., Törnroos, K. W. & Anwander, R. (2013). Dalton Trans. 42, 5491-5499.]). The bond length of the inter­nal oxygen atom O7 exhibits a very long distance to the opposite lithium center Li7, with a bond length of 2.554 (3) Å. The distances to the other lithium centers Li2, Li4 and Li6 are shorter and come to bond lengths of 2.003 (2) Å for O7—Li2, 2.007 (2) Å for O7—Li4, and 1.997 (2) Å for O7—Li6. The bond angles of the lithium centers and the oxygen of the amino­alkoxide, Li2—O3—Li3, Li1—O1—Li6 and Li4—O5—Li5, are 93.81 (10), 94.45 (10) and 93.77 (10)°, respectively, and therefore wider than the bond angles in comparable structures [80.55 (9)°; Andrews et al., 2002[Andrews, P., MacLellan, J. G., Mulvey, R. E. & Nichols, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1651-1655.]]. Moreover, the bond angles of the nitro­gen atom of the amino­alkoxide, the lithium center and the oxygen atom of the amino­alkoxide are 88.05 (10)° for N2—Li3—O3, 88.06 (10)° for N1—Li1—O1 and 88.55 (10)° for N3—Li5—O5. Compared to a structure in the literature with an angle of 90.25 (10)° (Andrews et al., 2002[Andrews, P., MacLellan, J. G., Mulvey, R. E. & Nichols, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1651-1655.]), the angles in the observed compound are compressed. The bond angle of the lithium atoms and the oxygen atom of the isopropoxide are 79.26 (10)° (Li1—O2—Li2), 79.25 (10)° (Li3—O4—Li4) and 79.35 (10)° (Li5—O6—Li6). In contrast, the angles of the oxygen atom of the isopropoxide and the outermost lithium center Li7 are much wider at 116.92 (11)° for Li1—O2—Li7, 116.33 (11)° for Li7—O4—Li3 and 116.55 (12)° for Li5—O6—Li7.

Table 1
Selected geometric parameters (Å, °) for 1

Li2—O3 1.901 (2) Li5—N3 2.125 (2)
Li6—O1 1.893 (2) Li2—O2 1.920 (2)
Li4—O5 1.899 (2) Li4—O4 1.918 (2)
Li3—O3 1.989 (2) Li6—O6 1.910 (2)
Li1—O1 1.989 (2) Li7—O7 2.554 (3)
Li5—O5 1.997 (2) Li2—O7 2.003 (2)
Li3—N2 2.141 (3) Li4—O7 2.007 (2)
Li1—N1 2.157 (2) Li6—O7 1.997 (2)
       
Li2—O3—Li3 93.81 (10) Li1—O2—Li2 79.26 (10)
Li1—O1—Li6 94.45 (10) Li3—O4—Li4 79.25 (10)
Li4—O5—Li5 93.77 (10) Li5—O6—Li6 79.35 (10)
N1—Li1—O1 88.06 (10) Li7—O4—Li3 116.33 (11)
N3—Li5—O5 88.55 (10) Li1—O2—Li7 116.92 (11)
N2—Li3—O3 88.05 (10) Li5—O6—Li7 116.55 (11)
[Figure 1]
Figure 1
Mol­ecular structure of compound 1 [Li7(i-PrO)3(C4H10NO)3]2O with atom labeling. The asymmetric unit is half of the compound, symmetry operation a = [{3\over 2}] − x, [{1\over 2}] − y, 1 − z.

Compound 2 crystallizes in the triclinic space group P[\overline{1}] and the asymmetric unit contains half of the mol­ecule. [Na(i-PrOH)2(C8H18NO2)]2 is a sodium dimer with a deprotonated alcohol that coordinates the sodium atom with its three donor atoms. The deprotonated alcohol N-meth­yl(2-meth­oxy­ethyl­amino)-2-methyl-2-propanol consists of a central nitro­gen atom and two oxygen atoms. Therefore, it has excellent properties as a donating ligand. The structure of the compound is given in Fig. 2[link] and selected bond lengths and angles are given in Table 2[link]. The asymmetric unit contains a central sodium atom with a trigonal–bipyramidal coordination sphere. The nitro­gen atom of the amino­alkoxide builds up the top pyramid site, while one iso­propanol builds up the opposite pyramid site. The two oxygen atoms of the amino­alkoxide and another iso­propanol are located triangularly around the sodium atom. The distance between the sodium atom Na1 and the nitro­gen atom N1 is 2.5707 (11) Å, which is an elongated bond length in comparison to a literature structure [2.528 (2) Å; Marszałek-Harych et al., 2020[Marszałek-Harych, A., Trybuła, D., Jędrzkiewicz, D. & Ejfler, J. (2020). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.0c00310.]]. The bond lengths between the sodium atom and the oxygen atom of the amino­alkoxide are 2.3736 (10) Å for Na1—O2 and 2.2970 (10) Å for Na1—O1, which is in accordance with a similar compound in the literature with bond lengths of 2.239 (2) and 2.352 (2) Å (Marszałek-Harych et al., 2020[Marszałek-Harych, A., Trybuła, D., Jędrzkiewicz, D. & Ejfler, J. (2020). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.0c00310.]). Moreover, the bond lengths between the sodium atom and the oxygen atoms of the iso­propanols are 2.3905 (10) Å (Na1—O4) and 2.2998 (10) Å (Na1—O3). A similar compound in the literature exhibits an Na—O bond length of 2.402 (6) Å and is therefore much longer (Edema et al., 1991[Edema, J. J. H., Gambarotta, S., Smeets, W. J. J. & Spek, A. L. (1991). Inorg. Chem. 30, 1380-1384.]). The bond angles N1—Na1—O1 and N1—Na1—O2 are 73.22 (3) and 69.39 (3)°, respectively. Compared to a bond angle in the literature of 66.7 (4)° (Schüler et al., 2019[Schüler, P., Görls, H., Westerhausen, M. & Krieck, S. (2019). Dalton Trans. 48, 8966-8975.]), the angles in the title structure are much wider. That might be traced back to the fact that the angles are limited because of the rigid structure of the amino­alkoxide. As the coordination sphere of the sodium atom is arranged like a trigonal bipyramid, the bond angles correspond to this. One iso­propanol mol­ecule is arranged in the triangular sphere around the sodium and therefore exhib­its an angle of 109.84 (4)° for N1—Na1—O3. The other iso­propanol is arranged in the opposite pyramid site of the amine function and shows an angle of 160.83 (4)° for N1—Na1—O4, respectively.

Table 2
Selected geometric parameters (Å, °) for 2

Na1—O2 2.3736 (10) Na1—O4 2.3905 (10)
Na1—O1 2.2970 (10) Na1—O3 2.2998 (10)
Na1—N1 2.5707 (11)    
       
N1—Na1—O1 73.22 (3) N1—Na1—O2 69.39 (3)
N1—Na1—O3 109.84 (4) N1—Na1—O4 160.83 (4)
[Figure 2]
Figure 2
Mol­ecular structure of compound 2 [Na(i-PrOH)2(C8H18NO2)]2 with atom labeling. The asymmetric unit is half of the compound, symmetry operation a = 1 − x, 1 − y, 1 − z.

In this dimeric structure, the two sodium centers are bridged by iso­propanol mol­ecules. From the hydrogen atoms of the iso­propanol, a hydrogen bond to the oxygen atoms of the amino­alkoxide is formed. Details of the hydrogen bonding are given in Table 3[link]. As hydrogen bonds are present in the compound, it can be shown that the amino­alkoxide oxygen is more acidic than the alcohol function of the iso­propanol. The graph-set motifs of the hydrogen bonds a and b are R22(8) and R22(8), respectively, and are shown in Fig. 3[link] (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). In addition, a Hirshfeld surface analysis has been carried out with a dnorm property over a range of −0.7978 to +1.3992 a.u. The characteristic red spots in Fig. 4[link] (CrystalExplorer17; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.]) indicate inter­nal hydrogen bonding.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.92 (2) 1.65 (2) 2.5442 (12) 165 (2)
O4—H4⋯O1i 0.86 (2) 1.75 (2) 2.5894 (12) 164.4 (19)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
View of the unit cell of 2, Hydrogen bonding is shown and the graph-set motifs are labelled (Mercury; Macrae et al., 2008[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Symmetry operation a = 1 − x, 1 − y, 1 − z.
[Figure 4]
Figure 4
Hirshfeld surface analysis (CrystalExplorer17; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.]) of compound 2 illustrating the hydrogen bonding. Symmetry operation a = 1 − x, 1 − y, 1 − z.

In 1 as well as in 2, the alcohol characterizes the structural motif. In 1, the iso­propanol is crucial for the saturation of the coordination sphere of the lithium atoms. In addition, it serves not only as the anionic part, but also as a ligand. In 2, the iso­propanol is located opposite the nitro­gen of the amino­alkoxide. It serves as a ligand that bridges the dimeric structure by hydrogen bonding. Therefore, alcohols affect the structural motifs and thus inter­act with the reagents.

3. Supra­molecular features

The title compound [Li7(i-PrO)3(C4H10NO)3]2O (1) is a dimeric mol­ecule where the asymmetric unit is half of the mol­ecule and the full structure is build up by a twofold rotation axis. It is packed parallel to the ac plane and to the bc plane, as shown in Fig. 5[link]. The second title compound, [Na(i-PrOH)2(C8H18NO2)]2 (2), is also a dimeric mol­ecule, the asymmetric unit being half of an inversion symmetric aggregate. The mol­ecules are packed parallel to the ab plane and the bc plane.

[Figure 5]
Figure 5
View of the crystal packing of 1 parallel to the ac plane and the bc plane.

4. Database survey

Other examples of crystallographically characterized complexes containing an alkali metal center and a directly to the metal center coordinated iso­propanol are C40H88Cr2Na4O12 (Edema et al., 1991[Edema, J. J. H., Gambarotta, S., Smeets, W. J. J. & Spek, A. L. (1991). Inorg. Chem. 30, 1380-1384.]) and C26H66CeLiN2O4Si4 (Crozier et al., 2013[Crozier, A. R., Schädle, C., Maichle-Mössmer, C., Törnroos, K. W. & Anwander, R. (2013). Dalton Trans. 42, 5491-5499.]). Both compounds, 1 and 2, contain an amino­alkoxide as well as iso­propanol. Examples of crystallographically characterized complexes containing a lithium amino­alkoxide are C54H36Li6N6O6 (Begley & Rajeswaran, 2006[Begley, W. J. & Rajeswaran, M. (2006). Acta Cryst. E62, o1200-o1202.]), C20H43LiN2O2Si (Bauer & Strohmann, 2014[Bauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 8167-8171.]), C36H72Li6N6O6·0.5 C4H10 (Strohmann et al., 2004[Strohmann, C., Seibel, T. & Schildbach, D. (2004). J. Am. Chem. Soc. 126, 9876-9877.]), C42H56Li2N2O2Si2 (Unkelbach et al., 2012[Unkelbach, C., Abele, B. C., Lehmen, K., Schildbach, D., Waerder, K., Wild, K. & Strohmann, C. (2012). Chem. Commun. 48, 2492-2494.]), C13H31LiN2O2Si (Colquhoun & Strohmann, 2012[Colquhoun, V. P. & Strohmann, C. (2012). Dalton Trans. 41, 1897-1902.]) and C18H36Li2N2O4 (Kroesen et al., 2017[Kroesen, U., Unkelbach, C., Schildbach, D. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 14164-14168.]). A very rare example is C32H80Li8N8O8 (Andrews et al., 2002[Andrews, P., MacLellan, J. G., Mulvey, R. E. & Nichols, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1651-1655.]), because the crystallographically characterized complex contains the same amino­alkoxide used in 1. Furthermore, crystallographically characterized sodium complexes containing an amino­alkoxide are C16H34N2NaO6I (Fronczek et al., 1983[Fronczek, F. R., Gatto, V. J., Schultz, R. A., Jungk, S. J., Colucci, W., Gandour, R. D. & Gokel, G. W. (1983). J. Am. Chem. Soc. 105, 6717-6718.]), C16H44N3NaO2Si2 (Schüler et al., 2019[Schüler, P., Görls, H., Westerhausen, M. & Krieck, S. (2019). Dalton Trans. 48, 8966-8975.]), C18H48N3NaO3Si4 (Thalangamaarachchige et al., 2017[Thalangamaarachchige, V. D., Li, H., Cordes, D. B., Unruh, D. K. & Krempner, C. (2017). Inorg. Chem. 56, 9869-9879.]), C56H84MgNa2N4O4 (Hevia et al., 2006[Hevia, E., Henderson, K. W., Kennedy, A. R. & Mulvey, R. E. (2006). Organometallics, 25, 1778-1785.]) and C35H58N4Na2O4 (Hevia et al., 2006[Hevia, E., Henderson, K. W., Kennedy, A. R. & Mulvey, R. E. (2006). Organometallics, 25, 1778-1785.]). In addition, a crystallographically characterized complex containing a penta­coordinated sodium atom and amine and oxygen functions as ligands are C50H88N2Na2O6, C74H104N2Na2O6 and C48H80N2Na2O8 (Marszałek-Harych et al., 2020[Marszałek-Harych, A., Trybuła, D., Jędrzkiewicz, D. & Ejfler, J. (2020). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.0c00310.]).

5. Synthesis and crystallization

Compound 1 [Li7(i-PrO)3(C4H10NO)3]2O:

Di­methyl­amino ethanol (100 mg, 1.12 mmol, 1.0 eq.) was added to 1.0 mL of diethyl ether and cooled to 195 K. After that, n-butyl­lithium in hexane (c = 2.5 mol L – 1, 0.9 mL, 2.24 mmol, 2.0 eq.) was added dropwise and 0.5 mL of benzene were added for crystallization. The reaction mixture was left to stand for 15 min, while warming up to 218 K. Then it was stored at 193 K in the coolant iso­propanol. Colorless crystals were formed after 45 d. During storage, the coolant iso­propanol seems to have diffused into the vessel, leading to the incorporation of iso­propanol in the crystal structure of compound 1.

Compound 2 [Na(i-PrOH)2(C8H18NO2)]2:

Sodium-N-meth­yl(2-meth­oxy­ethyl­amino)-2-methyl-2-prop­anoxide (49.5 mg, 0.27 mmol, 1.0 eq.) was dissolved in 2.0 mL of diethyl ether and cooled to 195 K. Then n-butyl­lithium in hexane (c = 2.5 mol L – 1, 0.13 mL, 0.33 mmol, 1.2 eq.) was added and the reaction mixture was left to stand in the cooling bath for 15min. The reaction mixture warmed up to 218 K and was then stored at 193 K in the coolant iso­propanol. Colorless crystals were formed after 60 d. During the storage, the coolant iso­propanol seems to have diffused into the vessel, leading to the incorporation of iso­propanol in the crystal structure of compound 2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All of the hydrogen atoms were placed in geometrically calculated positions and were each assigned a fixed isotropic displacement parameter based on a riding-model: C—H = 0.98–1.0 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. Apart from this, the O-bound hydrogen atoms of compound 2 were located in the difference-Fourier maps and refined independently. In compound 1, benzene appeared as co-crystallate, but was suppressed by solvent masking because of strong disorder.

Table 4
Experimental details

  1 2
Crystal data
Chemical formula [Li14(C3H7O)6(C4H10NO)6O] [Na(C3H8O)2(C8H18NO2)]
Mr 996.45 303.41
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 25.0880 (18), 23.1071 (19), 12.5875 (11) 9.9339 (6), 10.3002 (7), 11.0874 (7)
α, β, γ (°) 90, 95.806 (3), 90 103.333 (2), 108.132 (2), 111.845 (2)
V3) 7259.7 (10) 920.33 (10)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.06 0.10
Crystal size (mm) 0.26 × 0.14 × 0.1 0.29 × 0.27 × 0.19
 
Data collection
Diffractometer Bruker D8 VENTURE area detector Bruker D8 VENTURE area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.715, 0.746 0.703, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 121411, 7914, 6608 21708, 4399, 3558
Rint 0.045 0.040
(sin θ/λ)max−1) 0.639 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.159, 1.06 0.039, 0.095, 1.03
No. of reflections 7914 4399
No. of parameters 462 197
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.28 0.31, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Hexakis[µ3-2-(dimethylamino)ethanolato]hexa-µ2-isopropanolato-µ4-oxido-tetradecalithium(I) (1) top
Crystal data top
[Li14(C3H7O)6(C4H10NO)6O]F(000) = 2168
Mr = 996.45Dx = 0.912 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.0880 (18) ÅCell parameters from 9461 reflections
b = 23.1071 (19) Åθ = 2.4–29.4°
c = 12.5875 (11) ŵ = 0.06 mm1
β = 95.806 (3)°T = 100 K
V = 7259.7 (10) Å3Block, colourless
Z = 40.26 × 0.14 × 0.1 mm
Data collection top
Bruker D8 VENTURE area detector
diffractometer
7914 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs6608 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.045
Detector resolution: 10.4167 pixels mm-1θmax = 27.0°, θmin = 2.4°
ω and φ scansh = 3132
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2929
Tmin = 0.715, Tmax = 0.746l = 1616
121411 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0974P)2 + 4.4307P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
7914 reflectionsΔρmax = 0.27 e Å3
462 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.82870 (3)0.34901 (4)0.50492 (7)0.0183 (2)
O60.79419 (4)0.27930 (4)0.73760 (7)0.0202 (2)
O50.77811 (3)0.14434 (4)0.63558 (7)0.0186 (2)
O40.66955 (4)0.23713 (4)0.67690 (7)0.0210 (2)
O30.63408 (3)0.27145 (4)0.41861 (7)0.0192 (2)
O20.70891 (4)0.36513 (4)0.60060 (7)0.0208 (2)
O70.75000.25000.50000.0109 (2)
N10.80465 (5)0.47063 (5)0.51979 (10)0.0279 (3)
N30.84936 (5)0.14280 (5)0.82980 (9)0.0249 (3)
N20.54215 (5)0.23333 (6)0.51819 (11)0.0323 (3)
C10.8202 (3)0.4929 (3)0.4105 (6)0.0379 (17)0.239 (3)
H1A0.85290.51630.42190.057*0.239 (3)
H1B0.79110.51650.37590.057*0.239 (3)
H1C0.82660.45980.36470.057*0.239 (3)
C1A0.78645 (10)0.52463 (9)0.4698 (2)0.0470 (7)0.761 (3)
H1AA0.81480.55380.48150.071*0.761 (3)
H1AB0.75450.53810.50120.071*0.761 (3)
H1AC0.77770.51850.39300.071*0.761 (3)
C20.7823 (3)0.5188 (3)0.5687 (8)0.051 (2)0.239 (3)
H2A0.80880.55010.57700.077*0.239 (3)
H2B0.77220.50760.63890.077*0.239 (3)
H2C0.75050.53220.52380.077*0.239 (3)
C2A0.81827 (10)0.48120 (10)0.63667 (19)0.0438 (6)0.761 (3)
H2AA0.82610.44420.67310.066*0.761 (3)
H2AB0.78790.49980.66600.066*0.761 (3)
H2AC0.84970.50640.64740.066*0.761 (3)
C30.8508 (3)0.4442 (3)0.5765 (6)0.0324 (16)0.239 (3)
H3A0.84220.43260.64850.039*0.239 (3)
H3B0.88040.47270.58530.039*0.239 (3)
C3A0.85140 (8)0.44932 (8)0.47343 (17)0.0296 (5)0.761 (3)
H3AA0.88110.47730.48840.035*0.761 (3)
H3AB0.84320.44680.39500.035*0.761 (3)
C40.86954 (5)0.38992 (6)0.51670 (13)0.0292 (3)
H4AA0.89990.37640.47860.035*0.761 (3)
H4AB0.88250.39360.59340.035*0.761 (3)
H4BC0.87950.40140.44550.035*0.239 (3)
H4BD0.90160.37290.55750.035*0.239 (3)
C50.87176 (12)0.32028 (16)0.8393 (3)0.0382 (8)0.830 (12)
H5A0.88260.28300.87160.057*0.830 (12)
H5B0.88280.35160.88930.057*0.830 (12)
H5C0.88890.32550.77330.057*0.830 (12)
C5A0.8626 (12)0.3440 (17)0.8112 (15)0.078 (8)0.170 (12)
H5AA0.89140.32540.77670.116*0.170 (12)
H5AB0.87750.36150.87880.116*0.170 (12)
H5AC0.84590.37410.76420.116*0.170 (12)
C60.81072 (15)0.32148 (10)0.8136 (2)0.0212 (6)0.830 (12)
H60.80020.36030.78340.025*0.830 (12)
C6A0.8264 (8)0.3052 (15)0.8302 (15)0.056 (6)0.170 (12)
H6A0.84870.27190.85960.067*0.170 (12)
C70.78459 (7)0.31309 (7)0.91547 (11)0.0353 (4)
H7AA0.74560.31390.89940.053*0.830 (12)
H7AB0.79580.34420.96570.053*0.830 (12)
H7AC0.79550.27570.94730.053*0.830 (12)
H7BD0.75770.34180.88940.053*0.170 (12)
H7BE0.80330.32630.98320.053*0.170 (12)
H7BF0.76700.27600.92640.053*0.170 (12)
C80.78634 (6)0.09334 (6)0.69403 (12)0.0303 (3)
H8AA0.78380.06000.64440.036*0.876 (3)
H8AB0.75770.08920.74220.036*0.876 (3)
H8BC0.81710.07200.67000.036*0.124 (3)
H8BD0.75420.06840.68240.036*0.124 (3)
C90.7976 (5)0.1082 (6)0.8143 (9)0.031 (3)0.124 (3)
H9A0.76770.13120.83790.037*0.124 (3)
H9B0.80110.07230.85720.037*0.124 (3)
C9A0.84123 (7)0.09213 (7)0.76079 (14)0.0307 (4)0.876 (3)
H9AA0.84390.05670.80530.037*0.876 (3)
H9AB0.86990.09060.71230.037*0.876 (3)
C100.8625 (6)0.1575 (7)0.9401 (10)0.041 (4)0.124 (3)
H10A0.83090.17420.96860.062*0.124 (3)
H10B0.89170.18590.94640.062*0.124 (3)
H10C0.87370.12270.98060.062*0.124 (3)
C10A0.81086 (8)0.14483 (8)0.91015 (14)0.0353 (4)0.876 (3)
H10D0.77440.14790.87430.053*0.876 (3)
H10E0.81850.17850.95650.053*0.876 (3)
H10F0.81400.10940.95320.053*0.876 (3)
C110.8928 (5)0.1012 (5)0.7970 (11)0.034 (3)0.124 (3)
H11A0.89070.06440.83530.051*0.124 (3)
H11B0.92830.11850.81500.051*0.124 (3)
H11C0.88720.09410.71990.051*0.124 (3)
C11A0.90372 (7)0.14202 (8)0.88581 (15)0.0373 (5)0.876 (3)
H11D0.90930.17690.92970.056*0.876 (3)
H11E0.93010.14090.83340.056*0.876 (3)
H11F0.90800.10770.93160.056*0.876 (3)
C120.66027 (6)0.21940 (6)0.78018 (11)0.0262 (3)
H120.69560.21760.82450.031*
C130.62524 (7)0.26235 (8)0.83185 (13)0.0391 (4)
H13A0.64160.30080.83200.059*
H13B0.62170.25040.90550.059*
H13C0.58970.26360.79150.059*
C140.63540 (9)0.15932 (8)0.77873 (14)0.0457 (4)
H14A0.60040.16010.73650.069*
H14B0.63090.14730.85190.069*
H14C0.65890.13180.74680.069*
C150.58259 (6)0.28518 (7)0.37426 (13)0.0321 (3)
H15A0.58210.28660.29560.038*0.840 (3)
H15B0.57300.32410.39900.038*0.840 (3)
H15C0.56780.25350.32720.038*0.160 (3)
H15D0.58310.32100.33140.038*0.160 (3)
C160.5485 (4)0.2937 (4)0.4666 (9)0.034 (3)0.160 (3)
H16A0.51300.30970.44020.041*0.160 (3)
H16B0.56630.32090.51960.041*0.160 (3)
C16A0.54003 (6)0.24076 (8)0.40459 (14)0.0281 (4)0.840 (3)
H16C0.50390.25430.37670.034*0.840 (3)
H16D0.54640.20300.37080.034*0.840 (3)
C170.5200 (4)0.1977 (5)0.4088 (10)0.045 (3)0.160 (3)
H17A0.48760.21650.37510.067*0.160 (3)
H17B0.51170.15770.42740.067*0.160 (3)
H17C0.54770.19760.35910.067*0.160 (3)
C17A0.50373 (8)0.18920 (12)0.5459 (2)0.0472 (6)0.840 (3)
H17D0.46720.20230.52300.071*0.840 (3)
H17E0.50770.18310.62330.071*0.840 (3)
H17F0.51070.15280.50970.071*0.840 (3)
C180.5067 (4)0.2340 (7)0.5861 (11)0.053 (4)0.160 (3)
H18A0.47100.23920.54800.079*0.160 (3)
H18B0.51440.26590.63650.079*0.160 (3)
H18C0.50790.19720.62520.079*0.160 (3)
C18A0.52902 (8)0.28778 (10)0.57243 (17)0.0422 (6)0.840 (3)
H18D0.55750.31620.56610.063*0.840 (3)
H18E0.52590.27990.64810.063*0.840 (3)
H18F0.49500.30310.53890.063*0.840 (3)
C190.66622 (6)0.39575 (6)0.63752 (12)0.0283 (3)
H190.63790.36690.65070.034*
C200.64160 (8)0.43798 (8)0.55461 (14)0.0442 (4)
H20A0.66870.46610.53770.066*
H20B0.61170.45830.58270.066*
H20C0.62840.41690.48970.066*
C210.68280 (7)0.42570 (7)0.74270 (13)0.0363 (4)
H21A0.69790.39720.79500.054*
H21B0.65140.44400.76890.054*
H21C0.70980.45530.73220.054*
Li10.75967 (9)0.39092 (9)0.50866 (19)0.0234 (5)
Li60.80947 (9)0.28752 (9)0.59280 (17)0.0224 (4)
Li50.82290 (9)0.20557 (10)0.71279 (18)0.0234 (5)
Li40.71915 (9)0.19472 (10)0.60043 (17)0.0221 (4)
Li30.62719 (9)0.22294 (10)0.54705 (19)0.0240 (5)
Li20.69456 (9)0.31260 (10)0.48299 (17)0.0227 (4)
Li70.72391 (9)0.29414 (10)0.6734 (2)0.0261 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0182 (4)0.0153 (4)0.0209 (4)0.0017 (3)0.0002 (3)0.0003 (3)
O60.0251 (5)0.0212 (5)0.0136 (4)0.0001 (3)0.0013 (3)0.0035 (3)
O50.0219 (4)0.0150 (4)0.0183 (4)0.0013 (3)0.0016 (3)0.0035 (3)
O40.0219 (4)0.0250 (5)0.0169 (4)0.0008 (4)0.0056 (3)0.0012 (4)
O30.0153 (4)0.0202 (4)0.0214 (5)0.0025 (3)0.0017 (3)0.0003 (3)
O20.0235 (5)0.0173 (4)0.0216 (5)0.0041 (3)0.0030 (4)0.0043 (3)
O70.0112 (5)0.0093 (5)0.0117 (5)0.0002 (4)0.0013 (4)0.0015 (4)
N10.0291 (6)0.0165 (5)0.0375 (7)0.0011 (4)0.0003 (5)0.0025 (5)
N30.0280 (6)0.0243 (6)0.0207 (6)0.0012 (5)0.0059 (5)0.0036 (4)
N20.0179 (5)0.0384 (7)0.0406 (7)0.0006 (5)0.0031 (5)0.0023 (6)
C10.038 (4)0.031 (3)0.043 (4)0.006 (3)0.003 (3)0.010 (3)
C1A0.0487 (13)0.0195 (10)0.0708 (19)0.0016 (9)0.0044 (12)0.0058 (10)
C20.049 (4)0.020 (3)0.088 (7)0.004 (3)0.019 (4)0.018 (4)
C2A0.0552 (14)0.0368 (12)0.0400 (13)0.0106 (10)0.0078 (10)0.0160 (10)
C30.036 (3)0.021 (3)0.038 (4)0.006 (2)0.010 (3)0.003 (2)
C3A0.0308 (10)0.0198 (9)0.0387 (11)0.0062 (7)0.0068 (8)0.0008 (7)
C40.0185 (6)0.0209 (7)0.0474 (9)0.0035 (5)0.0007 (6)0.0027 (6)
C50.0288 (11)0.0494 (17)0.0341 (18)0.0035 (11)0.0074 (11)0.0121 (11)
C5A0.081 (14)0.12 (2)0.031 (8)0.055 (15)0.010 (8)0.001 (10)
C60.0205 (15)0.0230 (10)0.0186 (10)0.0006 (8)0.0046 (9)0.0039 (7)
C6A0.030 (8)0.114 (17)0.020 (7)0.012 (9)0.010 (5)0.032 (9)
C70.0511 (9)0.0352 (8)0.0197 (7)0.0015 (7)0.0036 (6)0.0070 (6)
C80.0429 (8)0.0177 (6)0.0274 (7)0.0046 (6)0.0111 (6)0.0048 (5)
C90.033 (6)0.039 (7)0.020 (6)0.006 (5)0.007 (4)0.009 (5)
C9A0.0400 (10)0.0199 (8)0.0291 (9)0.0055 (6)0.0114 (7)0.0026 (6)
C100.040 (7)0.052 (8)0.029 (7)0.017 (6)0.009 (5)0.005 (6)
C10A0.0429 (10)0.0367 (10)0.0265 (9)0.0038 (8)0.0041 (7)0.0039 (7)
C110.028 (6)0.026 (6)0.048 (8)0.009 (5)0.001 (5)0.005 (5)
C11A0.0345 (9)0.0392 (10)0.0345 (10)0.0037 (7)0.0145 (7)0.0107 (8)
C120.0276 (7)0.0323 (7)0.0193 (6)0.0045 (6)0.0063 (5)0.0001 (5)
C130.0394 (9)0.0533 (10)0.0265 (8)0.0036 (7)0.0132 (6)0.0043 (7)
C140.0675 (12)0.0387 (9)0.0326 (9)0.0195 (8)0.0128 (8)0.0034 (7)
C150.0212 (7)0.0430 (9)0.0314 (8)0.0092 (6)0.0004 (6)0.0118 (6)
C160.017 (4)0.035 (5)0.050 (6)0.008 (3)0.000 (4)0.004 (4)
C16A0.0165 (7)0.0351 (10)0.0316 (9)0.0001 (7)0.0023 (6)0.0002 (7)
C170.030 (5)0.044 (6)0.057 (7)0.009 (5)0.012 (5)0.001 (5)
C17A0.0232 (9)0.0605 (16)0.0589 (14)0.0044 (9)0.0087 (9)0.0175 (12)
C180.027 (5)0.069 (9)0.064 (8)0.012 (5)0.008 (5)0.006 (7)
C18A0.0273 (9)0.0589 (14)0.0398 (11)0.0102 (9)0.0002 (8)0.0107 (10)
C190.0294 (7)0.0263 (7)0.0294 (7)0.0068 (6)0.0039 (6)0.0073 (6)
C200.0520 (10)0.0417 (9)0.0372 (9)0.0259 (8)0.0040 (8)0.0066 (7)
C210.0456 (9)0.0333 (8)0.0304 (8)0.0093 (7)0.0062 (7)0.0091 (6)
Li10.0245 (11)0.0174 (10)0.0281 (12)0.0001 (8)0.0019 (9)0.0027 (9)
Li60.0289 (11)0.0205 (10)0.0180 (10)0.0015 (9)0.0032 (9)0.0004 (8)
Li50.0270 (11)0.0220 (11)0.0201 (11)0.0004 (9)0.0027 (9)0.0011 (8)
Li40.0220 (10)0.0251 (11)0.0188 (10)0.0048 (9)0.0006 (8)0.0018 (9)
Li30.0204 (10)0.0255 (11)0.0259 (11)0.0005 (8)0.0015 (9)0.0004 (9)
Li20.0251 (11)0.0224 (11)0.0206 (11)0.0021 (8)0.0028 (8)0.0036 (8)
Li70.0220 (11)0.0235 (11)0.0320 (12)0.0001 (9)0.0007 (9)0.0040 (9)
Geometric parameters (Å, º) top
O1—C41.3909 (16)C8—H8AB0.9900
O1—Li11.989 (2)C8—H8BC0.9900
O1—Li61.893 (2)C8—H8BD0.9900
O1—Li4i1.974 (2)C8—C91.550 (12)
O1—Li3i2.136 (2)C8—C9A1.539 (2)
O6—C61.399 (3)C9—H9A0.9900
O6—C6A1.476 (15)C9—H9B0.9900
O6—Li61.910 (2)C9A—H9AA0.9900
O6—Li51.888 (2)C9A—H9AB0.9900
O6—Li71.895 (2)C10—H10A0.9800
O5—C81.3934 (16)C10—H10B0.9800
O5—Li1i2.124 (2)C10—H10C0.9800
O5—Li51.997 (2)C10A—H10D0.9800
O5—Li41.899 (2)C10A—H10E0.9800
O5—Li2i1.973 (2)C10A—H10F0.9800
O4—C121.4048 (16)C11—H11A0.9800
O4—Li41.918 (2)C11—H11B0.9800
O4—Li31.886 (2)C11—H11C0.9800
O4—Li71.900 (2)C11A—H11D0.9800
O3—C151.3911 (16)C11A—H11E0.9800
O3—Li6i1.981 (2)C11A—H11F0.9800
O3—Li5i2.132 (3)C12—H121.0000
O3—Li31.989 (2)C12—C131.515 (2)
O3—Li21.901 (2)C12—C141.521 (2)
O2—C191.4017 (16)C13—H13A0.9800
O2—Li11.901 (2)C13—H13B0.9800
O2—Li21.920 (2)C13—H13C0.9800
O2—Li71.898 (2)C14—H14A0.9800
O7—Li61.997 (2)C14—H14B0.9800
O7—Li6i1.998 (2)C14—H14C0.9800
O7—Li4i2.007 (2)C15—H15A0.9900
O7—Li42.007 (2)C15—H15B0.9900
O7—Li22.003 (2)C15—H15C0.9900
O7—Li2i2.003 (2)C15—H15D0.9900
O7—Li72.554 (3)C15—C161.524 (10)
O7—Li7i2.554 (3)C15—C16A1.556 (2)
N1—C11.556 (7)C16—H16A0.9900
N1—C1A1.450 (2)C16—H16B0.9900
N1—C21.415 (7)C16A—H16C0.9900
N1—C2A1.496 (3)C16A—H16D0.9900
N1—C31.435 (6)C17—H17A0.9800
N1—C3A1.448 (2)C17—H17B0.9800
N1—Li12.157 (2)C17—H17C0.9800
N3—C91.520 (12)C17A—H17D0.9800
N3—C9A1.460 (2)C17A—H17E0.9800
N3—C101.435 (13)C17A—H17F0.9800
N3—C10A1.468 (2)C18—H18A0.9800
N3—C111.542 (12)C18—H18B0.9800
N3—C11A1.471 (2)C18—H18C0.9800
N3—Li52.125 (2)C18A—H18D0.9800
N2—C161.554 (11)C18A—H18E0.9800
N2—C16A1.436 (2)C18A—H18F0.9800
N2—C171.652 (11)C19—H191.0000
N2—C17A1.469 (2)C19—C201.514 (2)
N2—C181.294 (12)C19—C211.514 (2)
N2—C18A1.484 (3)C20—H20A0.9800
N2—Li32.141 (3)C20—H20B0.9800
C1—H1A0.9800C20—H20C0.9800
C1—H1B0.9800C21—H21A0.9800
C1—H1C0.9800C21—H21B0.9800
C1A—H1AA0.9800C21—H21C0.9800
C1A—H1AB0.9800Li1—O5i2.124 (2)
C1A—H1AC0.9800Li1—C8i2.716 (3)
C2—H2A0.9800Li1—Li62.850 (3)
C2—H2B0.9800Li1—Li4i2.496 (3)
C2—H2C0.9800Li1—Li22.437 (3)
C2A—H2AA0.9800Li1—Li73.238 (3)
C2A—H2AB0.9800Li6—O3i1.981 (2)
C2A—H2AC0.9800Li6—Li52.425 (3)
C3—H3A0.9900Li6—Li43.128 (3)
C3—H3B0.9900Li6—Li4i2.499 (3)
C3—C41.559 (7)Li6—Li3i2.500 (3)
C3A—H3AA0.9900Li6—Li2i2.501 (3)
C3A—H3AB0.9900Li6—Li23.123 (3)
C3A—C41.529 (2)Li6—Li72.470 (3)
C4—H4AA0.9900Li5—O3i2.132 (3)
C4—H4AB0.9900Li5—C15i2.719 (3)
C4—H4BC0.9900Li5—Li42.845 (3)
C4—H4BD0.9900Li5—Li2i2.495 (3)
C5—H5A0.9800Li5—Li73.218 (3)
C5—H5B0.9800Li4—O1i1.974 (2)
C5—H5C0.9800Li4—Li1i2.496 (3)
C5—C61.533 (5)Li4—Li6i2.499 (3)
C5A—H5AA0.9800Li4—Li32.426 (3)
C5A—H5AB0.9800Li4—Li23.131 (3)
C5A—H5AC0.9800Li4—Li2i2.505 (3)
C5A—C6A1.32 (3)Li4—Li72.473 (3)
C6—H61.0000Li3—O1i2.136 (2)
C6—C71.511 (3)Li3—C4i2.732 (3)
C6A—H6A1.0000Li3—Li6i2.500 (3)
C6A—C71.586 (17)Li3—Li22.842 (3)
C7—H7AA0.9800Li3—Li73.216 (3)
C7—H7AB0.9800Li2—O5i1.974 (2)
C7—H7AC0.9800Li2—Li6i2.501 (3)
C7—H7BD0.9800Li2—Li5i2.495 (3)
C7—H7BE0.9800Li2—Li4i2.505 (3)
C7—H7BF0.9800Li2—Li72.472 (3)
C8—H8AA0.9900
C4—O1—Li1107.47 (10)O5i—Li1—Li4i47.70 (7)
C4—O1—Li6132.56 (11)O5i—Li1—Li250.71 (7)
C4—O1—Li4i144.17 (11)O5i—Li1—Li798.86 (9)
C4—O1—Li3i99.37 (10)O2—Li1—O1120.02 (12)
Li1—O1—Li3i149.94 (10)O2—Li1—O5i97.57 (10)
Li6—O1—Li194.45 (10)O2—Li1—N1127.33 (12)
Li6—O1—Li4i80.49 (10)O2—Li1—C8i111.50 (10)
Li6—O1—Li3i76.43 (10)O2—Li1—Li678.84 (9)
Li4i—O1—Li178.07 (9)O2—Li1—Li4i106.22 (11)
Li4i—O1—Li3i72.22 (9)O2—Li1—Li250.71 (8)
C6—O6—Li6120.60 (14)O2—Li1—Li731.51 (6)
C6—O6—Li5130.56 (17)N1—Li1—C8i96.69 (9)
C6—O6—Li7111.35 (18)N1—Li1—Li6119.00 (11)
C6A—O6—Li6124.5 (9)N1—Li1—Li4i125.00 (12)
C6A—O6—Li5107.9 (13)N1—Li1—Li2169.02 (13)
C6A—O6—Li7132.5 (11)N1—Li1—Li7136.48 (11)
Li5—O6—Li679.35 (10)C8i—Li1—Li6126.15 (10)
Li5—O6—Li7116.55 (11)C8i—Li1—Li7125.11 (9)
Li7—O6—Li680.97 (11)Li6—Li1—Li747.35 (7)
C8—O5—Li1i99.01 (10)Li4i—Li1—C8i71.54 (8)
C8—O5—Li5107.22 (10)Li4i—Li1—Li655.26 (8)
C8—O5—Li4135.38 (11)Li4i—Li1—Li783.86 (9)
C8—O5—Li2i141.39 (11)Li2—Li1—C8i76.08 (9)
Li5—O5—Li1i150.26 (10)Li2—Li1—Li671.92 (9)
Li4—O5—Li1i76.48 (9)Li2—Li1—Li4i61.03 (9)
Li4—O5—Li593.77 (10)Li2—Li1—Li749.21 (8)
Li4—O5—Li2i80.60 (10)O1—Li6—O6136.07 (13)
Li2i—O5—Li1i72.91 (9)O1—Li6—O3i104.34 (11)
Li2i—O5—Li577.84 (10)O1—Li6—O7101.74 (10)
C12—O4—Li4119.48 (11)O1—Li6—Li144.09 (7)
C12—O4—Li3128.30 (11)O1—Li6—Li5157.33 (13)
C12—O4—Li7114.21 (11)O1—Li6—Li4i51.18 (8)
Li3—O4—Li479.25 (10)O1—Li6—Li4139.52 (11)
Li3—O4—Li7116.33 (11)O1—Li6—Li3i56.17 (8)
Li7—O4—Li480.73 (11)O1—Li6—Li283.14 (9)
C15—O3—Li6i140.30 (11)O1—Li6—Li2i118.32 (12)
C15—O3—Li5i98.87 (10)O1—Li6—Li7118.50 (12)
C15—O3—Li3107.53 (10)O6—Li6—O3i102.40 (11)
C15—O3—Li2136.53 (12)O6—Li6—O7107.75 (11)
Li6i—O3—Li5i72.14 (9)O6—Li6—Li1108.38 (10)
Li6i—O3—Li378.04 (10)O6—Li6—Li549.93 (8)
Li3—O3—Li5i149.72 (10)O6—Li6—Li471.73 (8)
Li2—O3—Li6i80.18 (10)O6—Li6—Li4i151.59 (13)
Li2—O3—Li5i76.19 (9)O6—Li6—Li3i149.98 (13)
Li2—O3—Li393.82 (10)O6—Li6—Li2i105.53 (11)
C19—O2—Li1128.68 (11)O6—Li6—Li2100.11 (10)
C19—O2—Li2119.00 (11)O6—Li6—Li749.26 (8)
C19—O2—Li7113.39 (11)O3i—Li6—O798.98 (10)
Li1—O2—Li279.26 (10)O3i—Li6—Li1147.08 (12)
Li7—O2—Li1116.92 (11)O3i—Li6—Li556.81 (8)
Li7—O2—Li280.72 (11)O3i—Li6—Li4i100.34 (10)
Li6—O7—Li6i180.0O3i—Li6—Li493.21 (9)
Li6i—O7—Li4i102.76 (9)O3i—Li6—Li3i51.13 (8)
Li6—O7—Li4i77.24 (9)O3i—Li6—Li2136.91 (11)
Li6i—O7—Li477.25 (9)O3i—Li6—Li2i48.51 (7)
Li6—O7—Li4102.75 (9)O3i—Li6—Li7136.86 (12)
Li6—O7—Li2i77.38 (9)O7—Li6—Li182.71 (9)
Li6i—O7—Li2i102.62 (9)O7—Li6—Li594.23 (10)
Li6i—O7—Li277.38 (9)O7—Li6—Li4i51.54 (7)
Li6—O7—Li2102.62 (9)O7—Li6—Li438.73 (6)
Li6—O7—Li764.39 (8)O7—Li6—Li3i92.10 (10)
Li6i—O7—Li7i64.39 (8)O7—Li6—Li2i51.41 (7)
Li6—O7—Li7i115.61 (8)O7—Li6—Li238.76 (6)
Li6i—O7—Li7115.62 (8)O7—Li6—Li768.80 (9)
Li4—O7—Li4i180.0Li1—Li6—Li4107.12 (9)
Li4—O7—Li764.36 (8)Li1—Li6—Li247.90 (7)
Li4i—O7—Li7i64.36 (8)Li5—Li6—Li1156.11 (12)
Li4—O7—Li7i115.64 (8)Li5—Li6—Li4i137.96 (12)
Li4i—O7—Li7115.64 (8)Li5—Li6—Li460.06 (8)
Li2i—O7—Li477.34 (9)Li5—Li6—Li3i107.76 (11)
Li2—O7—Li4i77.34 (9)Li5—Li6—Li2118.99 (11)
Li2—O7—Li4102.66 (9)Li5—Li6—Li2i60.84 (9)
Li2i—O7—Li4i102.66 (9)Li5—Li6—Li782.19 (10)
Li2—O7—Li2i180.0Li4i—Li6—Li155.16 (8)
Li2—O7—Li764.39 (8)Li4i—Li6—Li490.27 (9)
Li2i—O7—Li7115.61 (8)Li4i—Li6—Li3i58.07 (9)
Li2—O7—Li7i115.61 (8)Li4i—Li6—Li2i77.53 (10)
Li2i—O7—Li7i64.39 (8)Li4i—Li6—Li251.48 (8)
Li7—O7—Li7i180.0Li3i—Li6—Li196.05 (10)
C1—N1—Li1113.7 (3)Li3i—Li6—Li4117.99 (10)
C1A—N1—C2A108.45 (17)Li3i—Li6—Li2i69.26 (9)
C1A—N1—Li1124.52 (14)Li3i—Li6—Li2109.29 (10)
C2—N1—C1105.7 (5)Li2i—Li6—Li1129.38 (11)
C2—N1—C3117.0 (5)Li2—Li6—Li460.11 (7)
C2—N1—Li1118.2 (3)Li2i—Li6—Li451.39 (8)
C2A—N1—Li1105.61 (13)Li2i—Li6—Li290.17 (9)
C3—N1—C1108.6 (4)Li7—Li6—Li174.59 (9)
C3—N1—Li193.4 (3)Li7—Li6—Li450.77 (8)
C3A—N1—C1A110.50 (16)Li7—Li6—Li4i102.33 (11)
C3A—N1—C2A109.76 (15)Li7—Li6—Li3i159.40 (13)
C3A—N1—Li197.07 (11)Li7—Li6—Li2i102.16 (11)
C9—N3—C11104.8 (7)Li7—Li6—Li250.85 (8)
C9—N3—Li593.8 (4)O6—Li5—O5120.97 (12)
C9A—N3—C10A111.94 (13)O6—Li5—O3i97.77 (10)
C9A—N3—C11A110.02 (13)O6—Li5—N3126.79 (12)
C9A—N3—Li596.89 (10)O6—Li5—C15i111.01 (11)
C10—N3—C9111.0 (8)O6—Li5—Li650.72 (8)
C10—N3—C11108.0 (7)O6—Li5—Li479.43 (9)
C10—N3—Li5122.2 (6)O6—Li5—Li2i106.47 (11)
C10A—N3—C11A108.23 (13)O6—Li5—Li731.79 (6)
C10A—N3—Li5105.93 (12)O5—Li5—O3i95.91 (10)
C11—N3—Li5114.8 (5)O5—Li5—N388.55 (10)
C11A—N3—Li5123.37 (12)O5—Li5—C15i109.28 (10)
C16—N2—C1798.1 (6)O5—Li5—Li6102.37 (11)
C16—N2—Li391.7 (3)O5—Li5—Li441.77 (7)
C16A—N2—C17A111.09 (15)O5—Li5—Li2i50.66 (8)
C16A—N2—C18A111.66 (15)O5—Li5—Li789.32 (9)
C16A—N2—Li396.79 (11)O3i—Li5—C15i30.36 (5)
C17—N2—Li3109.3 (4)O3i—Li5—Li651.05 (8)
C17A—N2—C18A107.33 (16)O3i—Li5—Li498.38 (9)
C17A—N2—Li3123.26 (13)O3i—Li5—Li2i47.74 (7)
C18—N2—C16111.8 (8)O3i—Li5—Li799.53 (9)
C18—N2—C17111.1 (7)N3—Li5—O3i124.10 (12)
C18—N2—Li3128.9 (6)N3—Li5—C15i96.26 (9)
C18A—N2—Li3106.31 (12)N3—Li5—Li6168.21 (13)
N1—C1—H1A109.5N3—Li5—Li4119.36 (11)
N1—C1—H1B109.5N3—Li5—Li2i125.53 (12)
N1—C1—H1C109.5N3—Li5—Li7136.30 (11)
H1A—C1—H1B109.5C15i—Li5—Li4126.71 (10)
H1A—C1—H1C109.5C15i—Li5—Li7125.37 (9)
H1B—C1—H1C109.5Li6—Li5—C15i76.08 (9)
N1—C1A—H1AA109.5Li6—Li5—Li472.34 (9)
N1—C1A—H1AB109.5Li6—Li5—Li2i61.09 (9)
N1—C1A—H1AC109.5Li6—Li5—Li749.52 (8)
H1AA—C1A—H1AB109.5Li4—Li5—Li747.65 (7)
H1AA—C1A—H1AC109.5Li2i—Li5—C15i71.84 (9)
H1AB—C1A—H1AC109.5Li2i—Li5—Li455.50 (8)
N1—C2—H2A109.5Li2i—Li5—Li784.22 (9)
N1—C2—H2B109.5O1i—Li4—O798.61 (10)
N1—C2—H2C109.5O1i—Li4—Li1i51.22 (8)
H2A—C2—H2B109.5O1i—Li4—Li6i48.32 (7)
H2A—C2—H2C109.5O1i—Li4—Li6136.33 (11)
H2B—C2—H2C109.5O1i—Li4—Li5147.41 (11)
N1—C2A—H2AA109.5O1i—Li4—Li356.97 (8)
N1—C2A—H2AB109.5O1i—Li4—Li2i100.16 (10)
N1—C2A—H2AC109.5O1i—Li4—Li292.91 (9)
H2AA—C2A—H2AB109.5O1i—Li4—Li7136.74 (12)
H2AA—C2A—H2AC109.5O5—Li4—O1i104.42 (11)
H2AB—C2A—H2AC109.5O5—Li4—O4136.55 (13)
N1—C3—H3A109.3O5—Li4—O7101.31 (10)
N1—C3—H3B109.3O5—Li4—Li1i55.81 (8)
N1—C3—C4111.7 (4)O5—Li4—Li6i117.89 (11)
H3A—C3—H3B107.9O5—Li4—Li682.99 (9)
C4—C3—H3A109.3O5—Li4—Li544.47 (7)
C4—C3—H3B109.3O5—Li4—Li3157.77 (14)
N1—C3A—H3AA109.1O5—Li4—Li2139.03 (11)
N1—C3A—H3AB109.1O5—Li4—Li2i51.00 (8)
N1—C3A—C4112.69 (14)O5—Li4—Li7118.42 (12)
H3AA—C3A—H3AB107.8O4—Li4—O1i102.54 (11)
C4—C3A—H3AA109.1O4—Li4—O7107.59 (11)
C4—C3A—H3AB109.1O4—Li4—Li1i150.02 (13)
O1—C4—C3110.1 (3)O4—Li4—Li6100.02 (10)
O1—C4—C3A112.50 (12)O4—Li4—Li6i105.51 (11)
O1—C4—H4AA109.1O4—Li4—Li5108.24 (10)
O1—C4—H4AB109.1O4—Li4—Li349.79 (8)
O1—C4—H4BC109.6O4—Li4—Li271.67 (8)
O1—C4—H4BD109.6O4—Li4—Li2i151.27 (13)
C3—C4—H4BC109.6O4—Li4—Li749.31 (8)
C3—C4—H4BD109.6O7—Li4—Li1i92.35 (10)
C3A—C4—H4AA109.1O7—Li4—Li6i51.22 (7)
C3A—C4—H4AB109.1O7—Li4—Li638.52 (6)
H4AA—C4—H4AB107.8O7—Li4—Li582.26 (9)
H4BC—C4—H4BD108.2O7—Li4—Li394.07 (10)
H5A—C5—H5B109.5O7—Li4—Li2i51.27 (7)
H5A—C5—H5C109.5O7—Li4—Li238.63 (6)
H5B—C5—H5C109.5O7—Li4—Li768.63 (9)
C6—C5—H5A109.5Li1i—Li4—Li6i69.57 (9)
C6—C5—H5B109.5Li1i—Li4—Li6109.36 (10)
C6—C5—H5C109.5Li1i—Li4—Li596.22 (10)
H5AA—C5A—H5AB109.5Li1i—Li4—Li2118.21 (10)
H5AA—C5A—H5AC109.5Li1i—Li4—Li2i58.33 (9)
H5AB—C5A—H5AC109.5Li6i—Li4—Li689.73 (9)
C6A—C5A—H5AA109.5Li6i—Li4—Li5128.89 (11)
C6A—C5A—H5AB109.5Li6—Li4—Li259.86 (7)
C6A—C5A—H5AC109.5Li6i—Li4—Li251.26 (8)
O6—C6—C5110.6 (2)Li6i—Li4—Li2i77.21 (10)
O6—C6—H6108.5Li5—Li4—Li647.60 (7)
O6—C6—C7111.54 (19)Li5—Li4—Li2106.55 (9)
C5—C6—H6108.5Li3—Li4—Li1i108.06 (11)
C7—C6—C5109.2 (3)Li3—Li4—Li6i60.97 (9)
C7—C6—H6108.5Li3—Li4—Li6118.61 (11)
O6—C6A—H6A102.8Li3—Li4—Li5155.59 (12)
O6—C6A—C7103.5 (10)Li3—Li4—Li259.93 (8)
C5A—C6A—O6118 (2)Li3—Li4—Li2i137.72 (12)
C5A—C6A—H6A102.8Li3—Li4—Li782.07 (10)
C5A—C6A—C7124 (3)Li2i—Li4—Li651.26 (8)
C7—C6A—H6A102.8Li2i—Li4—Li555.14 (8)
C6—C7—H7AA109.5Li2i—Li4—Li289.90 (10)
C6—C7—H7AB109.5Li7—Li4—Li1i159.39 (13)
C6—C7—H7AC109.5Li7—Li4—Li6i101.98 (11)
C6A—C7—H7BD109.5Li7—Li4—Li650.70 (8)
C6A—C7—H7BE109.5Li7—Li4—Li574.10 (9)
C6A—C7—H7BF109.5Li7—Li4—Li2i101.96 (11)
H7AA—C7—H7AB109.5Li7—Li4—Li250.72 (8)
H7AA—C7—H7AC109.5O1i—Li3—N2125.00 (12)
H7AB—C7—H7AC109.5O1i—Li3—C4i30.15 (5)
H7BD—C7—H7BE109.5O1i—Li3—Li6i47.40 (7)
H7BD—C7—H7BF109.5O1i—Li3—Li450.80 (7)
H7BE—C7—H7BF109.5O1i—Li3—Li298.00 (10)
O5—C8—H8AA109.1O1i—Li3—Li799.28 (9)
O5—C8—H8AB109.1O4—Li3—O1i97.86 (10)
O5—C8—H8BC109.8O4—Li3—O3121.25 (12)
O5—C8—H8BD109.8O4—Li3—N2126.29 (13)
O5—C8—C9109.3 (5)O4—Li3—C4i112.92 (11)
O5—C8—C9A112.35 (12)O4—Li3—Li6i106.53 (11)
H8AA—C8—H8AB107.9O4—Li3—Li450.95 (8)
H8BC—C8—H8BD108.3O4—Li3—Li279.63 (9)
C9—C8—H8BC109.8O4—Li3—Li731.97 (6)
C9—C8—H8BD109.8O3—Li3—O1i95.70 (10)
C9A—C8—H8AA109.1O3—Li3—N288.05 (10)
C9A—C8—H8AB109.1O3—Li3—C4i106.95 (10)
N3—C9—C8108.1 (7)O3—Li3—Li6i50.83 (8)
N3—C9—H9A110.1O3—Li3—Li4102.60 (11)
N3—C9—H9B110.1O3—Li3—Li241.88 (7)
C8—C9—H9A110.1O3—Li3—Li789.45 (9)
C8—C9—H9B110.1N2—Li3—C4i96.68 (9)
H9A—C9—H9B108.4N2—Li3—Li6i125.79 (12)
N3—C9A—C8111.94 (13)N2—Li3—Li4168.66 (13)
N3—C9A—H9AA109.2N2—Li3—Li2118.76 (11)
N3—C9A—H9AB109.2N2—Li3—Li7135.68 (11)
C8—C9A—H9AA109.2C4i—Li3—Li2125.18 (10)
C8—C9A—H9AB109.2C4i—Li3—Li7126.16 (9)
H9AA—C9A—H9AB107.9Li6i—Li3—C4i70.17 (8)
N3—C10—H10A109.5Li6i—Li3—Li255.39 (8)
N3—C10—H10B109.5Li6i—Li3—Li784.05 (9)
N3—C10—H10C109.5Li4—Li3—C4i76.63 (9)
H10A—C10—H10B109.5Li4—Li3—Li6i60.96 (9)
H10A—C10—H10C109.5Li4—Li3—Li272.44 (9)
H10B—C10—H10C109.5Li4—Li3—Li749.59 (8)
N3—C10A—H10D109.5Li2—Li3—Li747.68 (7)
N3—C10A—H10E109.5O5i—Li2—O798.88 (10)
N3—C10A—H10F109.5O5i—Li2—Li156.39 (8)
H10D—C10A—H10E109.5O5i—Li2—Li693.01 (9)
H10D—C10A—H10F109.5O5i—Li2—Li6i100.47 (10)
H10E—C10A—H10F109.5O5i—Li2—Li5i51.50 (8)
N3—C11—H11A109.5O5i—Li2—Li4136.79 (11)
N3—C11—H11B109.5O5i—Li2—Li4i48.40 (7)
N3—C11—H11C109.5O5i—Li2—Li3147.60 (12)
H11A—C11—H11B109.5O5i—Li2—Li7136.72 (12)
H11A—C11—H11C109.5O3—Li2—O5i104.67 (11)
H11B—C11—H11C109.5O3—Li2—O2136.40 (13)
N3—C11A—H11D109.5O3—Li2—O7101.53 (10)
N3—C11A—H11E109.5O3—Li2—Li1157.39 (13)
N3—C11A—H11F109.5O3—Li2—Li6139.21 (11)
H11D—C11A—H11E109.5O3—Li2—Li6i51.31 (8)
H11D—C11A—H11F109.5O3—Li2—Li5i56.07 (8)
H11E—C11A—H11F109.5O3—Li2—Li4i118.28 (11)
O4—C12—H12107.9O3—Li2—Li482.92 (9)
O4—C12—C13111.33 (12)O3—Li2—Li344.30 (7)
O4—C12—C14111.17 (12)O3—Li2—Li7118.26 (12)
C13—C12—H12107.9O2—Li2—O5i102.24 (11)
C13—C12—C14110.35 (14)O2—Li2—O7107.46 (11)
C14—C12—H12107.9O2—Li2—Li150.03 (8)
C12—C13—H13A109.5O2—Li2—Li6i151.18 (13)
C12—C13—H13B109.5O2—Li2—Li671.54 (8)
C12—C13—H13C109.5O2—Li2—Li5i150.30 (13)
H13A—C13—H13B109.5O2—Li2—Li4i105.27 (11)
H13A—C13—H13C109.5O2—Li2—Li499.98 (10)
H13B—C13—H13C109.5O2—Li2—Li3108.22 (11)
C12—C14—H14A109.5O2—Li2—Li749.25 (8)
C12—C14—H14B109.5O7—Li2—Li194.20 (10)
C12—C14—H14C109.5O7—Li2—Li638.62 (6)
H14A—C14—H14B109.5O7—Li2—Li6i51.21 (7)
H14A—C14—H14C109.5O7—Li2—Li5i91.99 (10)
H14B—C14—H14C109.5O7—Li2—Li438.71 (6)
O3—C15—H15A109.1O7—Li2—Li4i51.39 (7)
O3—C15—H15B109.1O7—Li2—Li382.51 (9)
O3—C15—H15C110.3O7—Li2—Li768.68 (9)
O3—C15—H15D110.3Li1—Li2—Li6i137.58 (12)
O3—C15—C16107.0 (4)Li1—Li2—Li660.18 (8)
O3—C15—C16A112.55 (12)Li1—Li2—Li5i107.72 (11)
H15A—C15—H15B107.8Li1—Li2—Li4119.08 (10)
H15C—C15—H15D108.6Li1—Li2—Li4i60.65 (9)
C16—C15—H15C110.3Li1—Li2—Li3156.00 (12)
C16—C15—H15D110.3Li1—Li2—Li782.52 (10)
C16A—C15—H15A109.1Li6i—Li2—Li689.83 (9)
C16A—C15—H15B109.1Li6i—Li2—Li4i77.35 (10)
N2—C16—H16A110.3Li6i—Li2—Li451.21 (8)
N2—C16—H16B110.3Li6—Li2—Li460.03 (7)
C15—C16—N2107.0 (6)Li6i—Li2—Li355.35 (8)
C15—C16—H16A110.3Li5i—Li2—Li6i58.07 (9)
C15—C16—H16B110.3Li5i—Li2—Li6117.91 (10)
H16A—C16—H16B108.6Li5i—Li2—Li4i69.36 (9)
N2—C16A—C15111.46 (13)Li5i—Li2—Li4109.06 (10)
N2—C16A—H16C109.3Li5i—Li2—Li396.17 (10)
N2—C16A—H16D109.3Li4i—Li2—Li651.31 (8)
C15—C16A—H16C109.3Li4i—Li2—Li490.10 (9)
C15—C16A—H16D109.3Li4i—Li2—Li3129.32 (11)
H16C—C16A—H16D108.0Li3—Li2—Li6106.74 (9)
N2—C17—H17A109.5Li3—Li2—Li447.63 (7)
N2—C17—H17B109.5Li7—Li2—Li6i101.94 (11)
N2—C17—H17C109.5Li7—Li2—Li650.79 (8)
H17A—C17—H17B109.5Li7—Li2—Li5i159.08 (13)
H17A—C17—H17C109.5Li7—Li2—Li450.72 (8)
H17B—C17—H17C109.5Li7—Li2—Li4i102.10 (11)
N2—C17A—H17D109.5Li7—Li2—Li374.12 (9)
N2—C17A—H17E109.5O6—Li7—O4120.26 (13)
N2—C17A—H17F109.5O6—Li7—O2119.52 (13)
H17D—C17A—H17E109.5O6—Li7—O789.09 (9)
H17D—C17A—H17F109.5O6—Li7—Li195.27 (10)
H17E—C17A—H17F109.5O6—Li7—Li649.77 (8)
N2—C18—H18A109.5O6—Li7—Li531.66 (6)
N2—C18—H18B109.5O6—Li7—Li489.89 (10)
N2—C18—H18C109.5O6—Li7—Li3137.83 (12)
H18A—C18—H18B109.5O6—Li7—Li2128.13 (13)
H18A—C18—H18C109.5O4—Li7—O789.39 (10)
H18B—C18—H18C109.5O4—Li7—Li1137.71 (12)
N2—C18A—H18D109.5O4—Li7—Li6128.48 (13)
N2—C18A—H18E109.5O4—Li7—Li595.74 (10)
N2—C18A—H18F109.5O4—Li7—Li449.95 (8)
H18D—C18A—H18E109.5O4—Li7—Li331.71 (7)
H18D—C18A—H18F109.5O4—Li7—Li289.88 (11)
H18E—C18A—H18F109.5O2—Li7—O4120.18 (12)
O2—C19—H19107.3O2—Li7—O789.30 (10)
O2—C19—C20111.65 (12)O2—Li7—Li131.57 (6)
O2—C19—C21111.65 (12)O2—Li7—Li689.60 (11)
C20—C19—H19107.3O2—Li7—Li5137.41 (12)
C20—C19—C21111.40 (13)O2—Li7—Li4128.58 (13)
C21—C19—H19107.3O2—Li7—Li395.77 (10)
C19—C20—H20A109.5O2—Li7—Li250.03 (8)
C19—C20—H20B109.5O7—Li7—Li167.46 (7)
C19—C20—H20C109.5O7—Li7—Li567.48 (7)
H20A—C20—H20B109.5O7—Li7—Li367.59 (7)
H20A—C20—H20C109.5Li6—Li7—O746.81 (7)
H20B—C20—H20C109.5Li6—Li7—Li158.06 (8)
C19—C21—H21A109.5Li6—Li7—Li548.29 (8)
C19—C21—H21B109.5Li6—Li7—Li478.52 (10)
C19—C21—H21C109.5Li6—Li7—Li3114.12 (11)
H21A—C21—H21B109.5Li6—Li7—Li278.36 (10)
H21A—C21—H21C109.5Li5—Li7—Li1106.16 (9)
H21B—C21—H21C109.5Li4—Li7—O747.02 (7)
O1—Li1—O5i96.16 (10)Li4—Li7—Li1114.19 (11)
O1—Li1—N188.06 (10)Li4—Li7—Li558.25 (8)
O1—Li1—C8i109.35 (10)Li4—Li7—Li348.34 (8)
O1—Li1—Li641.46 (7)Li3—Li7—Li1106.29 (9)
O1—Li1—Li4i50.71 (7)Li3—Li7—Li5106.42 (9)
O1—Li1—Li2102.05 (10)Li2—Li7—O746.93 (7)
O1—Li1—Li788.70 (9)Li2—Li7—Li148.27 (8)
O5i—Li1—N1124.63 (12)Li2—Li7—Li5114.11 (11)
O5i—Li1—C8i30.44 (5)Li2—Li7—Li478.55 (10)
O5i—Li1—Li697.88 (9)Li2—Li7—Li358.20 (8)
O5—C8—C9—N363.5 (8)Li6—O6—Li5—C15i49.68 (11)
O5—C8—C9A—N354.21 (19)Li6—O6—Li5—Li475.75 (9)
O3—C15—C16—N269.0 (6)Li6—O6—Li5—Li2i26.74 (11)
O3—C15—C16A—N253.89 (18)Li6—O6—Li5—Li774.19 (12)
N1—C3—C4—O159.8 (5)Li6—O6—Li7—O4116.74 (16)
N1—C3A—C4—O154.81 (19)Li6—O6—Li7—O260.70 (15)
C1—N1—C3—C463.4 (5)Li6—O6—Li7—O727.98 (8)
C1A—N1—C3A—C4175.25 (16)Li6—O6—Li7—Li139.29 (9)
C2—N1—C3—C4177.1 (5)Li6—O6—Li7—Li573.23 (12)
C2A—N1—C3A—C465.19 (19)Li6—O6—Li7—Li474.99 (10)
C4—O1—Li6—O653.4 (2)Li6—O6—Li7—Li382.14 (18)
C4—O1—Li6—O3i72.35 (16)Li6—O6—Li7—Li20.31 (15)
C4—O1—Li6—O7174.92 (11)Li6i—O3—C15—C16128.4 (4)
C4—O1—Li6—Li1118.71 (15)Li6i—O3—C15—C16A68.3 (2)
C4—O1—Li6—Li541.0 (4)Li5—O6—C6—C532.4 (3)
C4—O1—Li6—Li4174.79 (14)Li5—O6—C6—C789.3 (3)
C4—O1—Li6—Li4i164.19 (15)Li5—O6—C6A—C5A101 (4)
C4—O1—Li6—Li3i90.33 (14)Li5—O6—C6A—C7118.0 (16)
C4—O1—Li6—Li2i122.63 (15)Li5—O6—Li7—O443.52 (19)
C4—O1—Li6—Li2150.90 (12)Li5—O6—Li7—O2133.93 (14)
C4—O1—Li6—Li7112.98 (16)Li5—O6—Li7—O745.25 (12)
C6—O6—Li5—O5158.28 (17)Li5—O6—Li7—Li1112.52 (11)
C6—O6—Li5—O3i100.01 (18)Li5—O6—Li7—Li673.23 (12)
C6—O6—Li5—N344.0 (3)Li5—O6—Li7—Li41.76 (14)
C6—O6—Li5—C15i71.7 (2)Li5—O6—Li7—Li38.9 (2)
C6—O6—Li5—Li6121.39 (19)Li5—O6—Li7—Li273.54 (18)
C6—O6—Li5—Li4162.86 (17)Li5—O5—C8—C931.5 (5)
C6—O6—Li5—Li2i148.13 (17)Li5—O5—C8—C9A26.04 (16)
C6—O6—Li5—Li7164.4 (2)Li5—O5—Li4—O1i168.51 (11)
C6—O6—Li7—O4123.83 (17)Li5—O5—Li4—O464.8 (2)
C6—O6—Li7—O258.7 (2)Li5—O5—Li4—O766.44 (11)
C6—O6—Li7—O7147.40 (13)Li5—O5—Li4—Li1i151.54 (10)
C6—O6—Li7—Li180.13 (14)Li5—O5—Li4—Li6i118.35 (13)
C6—O6—Li7—Li6119.43 (15)Li5—O5—Li4—Li632.38 (9)
C6—O6—Li7—Li5167.35 (18)Li5—O5—Li4—Li3160.6 (3)
C6—O6—Li7—Li4165.58 (13)Li5—O5—Li4—Li2i77.01 (10)
C6—O6—Li7—Li3158.43 (18)Li5—O5—Li4—Li256.41 (17)
C6—O6—Li7—Li2119.12 (18)Li5—O5—Li4—Li75.24 (14)
C6A—O6—Li5—O5156.7 (9)Li5i—O3—C15—C16159.0 (4)
C6A—O6—Li5—O3i101.6 (9)Li5i—O3—C15—C16A141.01 (13)
C6A—O6—Li5—N342.3 (9)Li5—N3—C9—C853.9 (7)
C6A—O6—Li5—C15i73.3 (9)Li5—N3—C9A—C846.40 (15)
C6A—O6—Li5—Li6123.0 (9)Li4i—O1—C4—C3118.8 (3)
C6A—O6—Li5—Li4161.2 (9)Li4i—O1—C4—C3A65.0 (2)
C6A—O6—Li5—Li2i149.8 (9)Li4i—O1—Li6—O6142.38 (19)
C6A—O6—Li5—Li7162.8 (9)Li4i—O1—Li6—O3i91.84 (11)
C6A—O6—Li7—O4114.1 (16)Li4i—O1—Li6—O710.73 (10)
C6A—O6—Li7—O268.5 (16)Li4i—O1—Li6—Li177.10 (10)
C6A—O6—Li7—O7157.2 (16)Li4i—O1—Li6—Li5123.2 (3)
C6A—O6—Li7—Li189.9 (16)Li4i—O1—Li6—Li421.02 (18)
C6A—O6—Li7—Li6129.2 (16)Li4i—O1—Li6—Li3i73.86 (9)
C6A—O6—Li7—Li5157.6 (16)Li4i—O1—Li6—Li244.91 (8)
C6A—O6—Li7—Li4155.8 (16)Li4i—O1—Li6—Li2i41.56 (13)
C6A—O6—Li7—Li3148.7 (16)Li4i—O1—Li6—Li782.83 (13)
C6A—O6—Li7—Li2128.9 (16)Li4—O5—C8—C982.8 (5)
C8—O5—Li4—O1i72.21 (17)Li4—O5—C8—C9A140.37 (15)
C8—O5—Li4—O454.5 (3)Li4—O4—C12—C13173.15 (12)
C8—O5—Li4—O7174.28 (11)Li4—O4—C12—C1463.38 (17)
C8—O5—Li4—Li1i89.18 (15)Li4—O4—Li3—O1i21.02 (10)
C8—O5—Li4—Li6i122.37 (15)Li4—O4—Li3—O380.58 (14)
C8—O5—Li4—Li6151.66 (13)Li4—O4—Li3—N2166.08 (16)
C8—O5—Li4—Li5119.28 (16)Li4—O4—Li3—C4i48.23 (11)
C8—O5—Li4—Li341.4 (4)Li4—O4—Li3—Li6i26.78 (11)
C8—O5—Li4—Li2i163.71 (15)Li4—O4—Li3—Li275.73 (9)
C8—O5—Li4—Li2175.70 (13)Li4—O4—Li3—Li773.93 (12)
C8—O5—Li4—Li7114.04 (16)Li4—O4—Li7—O660.45 (15)
C10—N3—C9—C8179.4 (8)Li4—O4—Li7—O2116.98 (16)
C10A—N3—C9A—C863.89 (17)Li4—O4—Li7—O728.15 (8)
C11—N3—C9—C863.1 (9)Li4—O4—Li7—Li182.61 (17)
C11A—N3—C9A—C8175.73 (14)Li4—O4—Li7—Li60.11 (15)
C12—O4—Li3—O1i98.21 (14)Li4—O4—Li7—Li539.15 (9)
C12—O4—Li3—O3160.19 (12)Li4—O4—Li7—Li373.05 (12)
C12—O4—Li3—N246.8 (2)Li4—O4—Li7—Li275.08 (10)
C12—O4—Li3—C4i71.00 (16)Li3i—O1—C4—C3168.6 (3)
C12—O4—Li3—Li6i146.01 (12)Li3i—O1—C4—C3A137.50 (14)
C12—O4—Li3—Li4119.23 (14)Li3i—O1—Li6—O6143.8 (2)
C12—O4—Li3—Li2165.04 (12)Li3i—O1—Li6—O3i17.99 (10)
C12—O4—Li3—Li7166.84 (18)Li3i—O1—Li6—O784.59 (10)
C12—O4—Li7—O657.80 (18)Li3i—O1—Li6—Li1150.96 (10)
C12—O4—Li7—O2124.77 (14)Li3i—O1—Li6—Li549.3 (3)
C12—O4—Li7—O7146.40 (9)Li3i—O1—Li6—Li494.88 (17)
C12—O4—Li7—Li1159.14 (15)Li3i—O1—Li6—Li4i73.86 (9)
C12—O4—Li7—Li6118.36 (16)Li3i—O1—Li6—Li2i32.30 (12)
C12—O4—Li7—Li579.10 (12)Li3i—O1—Li6—Li2118.77 (9)
C12—O4—Li7—Li4118.25 (12)Li3i—O1—Li6—Li7156.69 (14)
C12—O4—Li7—Li3168.70 (16)Li3—O4—C12—C1386.86 (16)
C12—O4—Li7—Li2166.67 (10)Li3—O4—C12—C1436.61 (19)
C17—N2—C16—C1552.7 (7)Li3—O4—Li7—O6133.50 (14)
C17A—N2—C16A—C15177.14 (15)Li3—O4—Li7—O243.93 (19)
C18—N2—C16—C15169.4 (7)Li3—O4—Li7—O744.90 (12)
C18A—N2—C16A—C1563.08 (17)Li3—O4—Li7—Li19.6 (2)
C19—O2—Li7—O6125.50 (14)Li3—O4—Li7—Li672.93 (18)
C19—O2—Li7—O457.06 (18)Li3—O4—Li7—Li5112.20 (11)
C19—O2—Li7—O7145.95 (9)Li3—O4—Li7—Li473.05 (12)
C19—O2—Li7—Li1169.46 (15)Li3—O4—Li7—Li22.03 (14)
C19—O2—Li7—Li6167.24 (10)Li3—O3—C15—C1636.1 (4)
C19—O2—Li7—Li5159.46 (15)Li3—O3—C15—C16A23.97 (16)
C19—O2—Li7—Li4117.83 (15)Li3—N2—C16—C1557.1 (5)
C19—O2—Li7—Li378.56 (11)Li3—N2—C16A—C1547.50 (15)
C19—O2—Li7—Li2117.68 (12)Li2i—O5—C8—C9123.5 (5)
Li1—O1—C4—C325.0 (3)Li2i—O5—C8—C9A65.9 (2)
Li1—O1—C4—C3A28.82 (17)Li2i—O5—Li4—O1i91.50 (11)
Li1—O1—Li6—O665.27 (19)Li2i—O5—Li4—O4141.8 (2)
Li1—O1—Li6—O3i168.95 (11)Li2i—O5—Li4—O710.57 (9)
Li1—O1—Li6—O766.37 (11)Li2i—O5—Li4—Li1i74.54 (9)
Li1—O1—Li6—Li5159.7 (3)Li2i—O5—Li4—Li6i41.34 (13)
Li1—O1—Li6—Li4i77.10 (10)Li2i—O5—Li4—Li644.62 (8)
Li1—O1—Li6—Li456.08 (17)Li2i—O5—Li4—Li577.01 (10)
Li1—O1—Li6—Li3i150.96 (10)Li2i—O5—Li4—Li3122.4 (3)
Li1—O1—Li6—Li232.19 (9)Li2i—O5—Li4—Li220.59 (18)
Li1—O1—Li6—Li2i118.66 (13)Li2i—O5—Li4—Li782.25 (13)
Li1—O1—Li6—Li75.73 (14)Li2—O3—C15—C1679.7 (4)
Li1i—O5—C8—C9162.6 (5)Li2—O3—C15—C16A139.73 (15)
Li1i—O5—C8—C9A139.78 (13)Li2—O2—C19—C2065.70 (17)
Li1i—O5—Li4—O1i16.96 (10)Li2—O2—C19—C21168.85 (12)
Li1i—O5—Li4—O4143.7 (2)Li2—O2—Li7—O6116.82 (16)
Li1i—O5—Li4—O785.11 (10)Li2—O2—Li7—O460.62 (15)
Li1i—O5—Li4—Li6119.16 (9)Li2—O2—Li7—O728.27 (8)
Li1i—O5—Li4—Li6i33.19 (12)Li2—O2—Li7—Li172.86 (12)
Li1i—O5—Li4—Li5151.54 (10)Li2—O2—Li7—Li675.08 (10)
Li1i—O5—Li4—Li347.8 (3)Li2—O2—Li7—Li582.86 (17)
Li1i—O5—Li4—Li295.13 (17)Li2—O2—Li7—Li40.15 (15)
Li1i—O5—Li4—Li2i74.54 (9)Li2—O2—Li7—Li339.12 (9)
Li1i—O5—Li4—Li7156.78 (14)Li7—O6—C6—C5162.5 (3)
Li1—O2—C19—C2034.14 (19)Li7—O6—C6—C775.7 (2)
Li1—O2—C19—C2191.31 (16)Li7—O6—C6A—C5A100 (3)
Li1—O2—Li7—O643.96 (19)Li7—O6—C6A—C741 (3)
Li1—O2—Li7—O4133.48 (14)Li7—O6—Li5—O56.14 (19)
Li1—O2—Li7—O744.59 (12)Li7—O6—Li5—O3i95.57 (12)
Li1—O2—Li7—Li62.22 (14)Li7—O6—Li5—N3120.46 (15)
Li1—O2—Li7—Li510.0 (2)Li7—O6—Li5—C15i123.87 (12)
Li1—O2—Li7—Li472.71 (18)Li7—O6—Li5—Li674.19 (12)
Li1—O2—Li7—Li3111.98 (11)Li7—O6—Li5—Li41.56 (12)
Li1—O2—Li7—Li272.86 (12)Li7—O6—Li5—Li2i47.45 (15)
Li1—N1—C3—C453.0 (4)Li7—O4—C12—C1380.21 (15)
Li1—N1—C3A—C444.25 (16)Li7—O4—C12—C14156.32 (14)
Li6—O1—C4—C388.5 (3)Li7—O4—Li3—O1i94.95 (12)
Li6—O1—C4—C3A142.36 (15)Li7—O4—Li3—O36.65 (18)
Li6—O6—C6—C570.5 (3)Li7—O4—Li3—N2119.99 (15)
Li6—O6—C6—C7167.76 (16)Li7—O4—Li3—C4i122.16 (12)
Li6—O6—C6A—C5A12 (5)Li7—O4—Li3—Li6i47.16 (15)
Li6—O6—C6A—C7152.8 (9)Li7—O4—Li3—Li473.93 (12)
Li6—O6—Li5—O580.33 (14)Li7—O4—Li3—Li21.80 (12)
Li6—O6—Li5—O3i21.38 (10)Li7—O2—C19—C20157.92 (13)
Li6—O6—Li5—N3165.34 (16)Li7—O2—C19—C2176.63 (15)
Symmetry code: (i) x+3/2, y+1/2, z+1.
{3-[(2-Methoxyethyl)(methyl)amino]-1,1-dimethylpropanolato}diisopropanolsodium(I) (2) top
Crystal data top
[Na(C3H8O)2(C8H18NO2)]Z = 2
Mr = 303.41F(000) = 336
Triclinic, P1Dx = 1.095 Mg m3
a = 9.9339 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3002 (7) ÅCell parameters from 7656 reflections
c = 11.0874 (7) Åθ = 2.3–27.9°
α = 103.333 (2)°µ = 0.10 mm1
β = 108.132 (2)°T = 100 K
γ = 111.845 (2)°Block, clear yellowish colourless
V = 920.33 (10) Å30.29 × 0.27 × 0.19 mm
Data collection top
Bruker D8 VENTURE area detector
diffractometer
4399 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs3558 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.040
Detector resolution: 10.4167 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1313
Tmin = 0.703, Tmax = 0.746l = 1414
21708 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.4014P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4399 reflectionsΔρmax = 0.31 e Å3
197 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.56574 (6)0.36139 (5)0.41374 (5)0.01326 (12)
O10.31637 (10)0.26510 (9)0.41304 (8)0.01364 (18)
O20.70291 (11)0.22028 (10)0.38157 (9)0.0188 (2)
O30.62550 (12)0.56549 (10)0.34999 (10)0.0225 (2)
H30.649 (3)0.639 (2)0.430 (2)0.057 (6)*
O40.77531 (11)0.54064 (10)0.63765 (9)0.0183 (2)
H40.761 (2)0.617 (2)0.634 (2)0.043 (5)*
N10.37916 (13)0.11246 (11)0.19792 (10)0.0154 (2)
C10.23564 (15)0.10579 (13)0.35343 (12)0.0144 (2)
C20.32290 (17)0.04561 (14)0.44729 (13)0.0198 (3)
H2A0.43590.08850.46270.030*
H2B0.27010.06550.40320.030*
H2C0.31840.07540.53590.030*
C30.06061 (16)0.04123 (15)0.33445 (15)0.0249 (3)
H3A0.06010.06850.42500.037*
H3B0.00470.06980.28700.037*
H3C0.00520.08370.27930.037*
C40.22490 (15)0.05000 (14)0.20708 (13)0.0172 (3)
H4A0.17590.06220.17030.021*
H4B0.15110.07600.14670.021*
C50.35604 (18)0.14141 (16)0.07181 (14)0.0248 (3)
H5A0.32240.21990.07580.037*
H5B0.27250.04750.00830.037*
H5C0.45770.17620.06350.037*
C60.45368 (16)0.01318 (14)0.20398 (13)0.0191 (3)
H6A0.40330.06840.11130.023*
H6B0.43250.03540.26810.023*
C70.63388 (16)0.09934 (14)0.25142 (14)0.0203 (3)
H7A0.68100.03050.26000.024*
H7B0.65660.14050.18350.024*
C80.87449 (17)0.28899 (17)0.44783 (16)0.0267 (3)
H8A0.91790.31830.38450.040*
H8B0.90620.21640.47400.040*
H8C0.91740.37960.53060.040*
C90.71232 (16)0.63586 (15)0.28242 (13)0.0213 (3)
H90.81340.73010.35340.026*
C100.75795 (19)0.52768 (19)0.20825 (17)0.0336 (4)
H10A0.81850.49770.27420.050*
H10B0.82500.57850.16740.050*
H10C0.65980.43700.13530.050*
C110.6126 (2)0.67931 (18)0.18342 (16)0.0326 (4)
H11A0.51250.58790.11400.049*
H11B0.67380.72790.13770.049*
H11C0.58660.75040.23410.049*
C120.79279 (16)0.53749 (14)0.76930 (13)0.0197 (3)
H120.70920.55630.79020.024*
C130.95946 (19)0.65927 (16)0.88120 (15)0.0332 (4)
H13A1.04190.63990.86260.050*
H13B0.96820.65700.97110.050*
H13C0.97570.75940.88200.050*
C140.76561 (19)0.38057 (16)0.76273 (15)0.0278 (3)
H14A0.65840.30380.68920.042*
H14B0.77280.37450.85130.042*
H14C0.84810.36200.74350.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0173 (2)0.0096 (2)0.0137 (2)0.00671 (19)0.00710 (19)0.00498 (18)
O10.0187 (4)0.0083 (4)0.0151 (4)0.0065 (3)0.0084 (3)0.0050 (3)
O20.0185 (4)0.0172 (4)0.0207 (5)0.0102 (4)0.0087 (4)0.0047 (4)
O30.0383 (6)0.0133 (4)0.0160 (5)0.0088 (4)0.0148 (4)0.0080 (4)
O40.0246 (5)0.0152 (4)0.0149 (4)0.0122 (4)0.0052 (4)0.0058 (3)
N10.0219 (5)0.0136 (5)0.0129 (5)0.0095 (4)0.0089 (4)0.0054 (4)
C10.0178 (6)0.0092 (5)0.0158 (6)0.0057 (5)0.0080 (5)0.0046 (4)
C20.0325 (7)0.0136 (6)0.0188 (6)0.0129 (5)0.0130 (6)0.0094 (5)
C30.0210 (7)0.0195 (6)0.0297 (7)0.0055 (5)0.0137 (6)0.0062 (6)
C40.0180 (6)0.0146 (6)0.0135 (6)0.0060 (5)0.0046 (5)0.0028 (5)
C50.0336 (8)0.0288 (7)0.0165 (6)0.0158 (6)0.0133 (6)0.0117 (6)
C60.0276 (7)0.0116 (6)0.0197 (6)0.0104 (5)0.0126 (5)0.0041 (5)
C70.0280 (7)0.0167 (6)0.0232 (7)0.0139 (6)0.0161 (6)0.0073 (5)
C80.0203 (7)0.0272 (7)0.0339 (8)0.0129 (6)0.0118 (6)0.0115 (6)
C90.0227 (7)0.0175 (6)0.0164 (6)0.0036 (5)0.0073 (5)0.0068 (5)
C100.0298 (8)0.0431 (9)0.0314 (8)0.0205 (7)0.0144 (7)0.0137 (7)
C110.0522 (10)0.0304 (8)0.0235 (7)0.0231 (8)0.0178 (7)0.0168 (6)
C120.0245 (7)0.0172 (6)0.0144 (6)0.0112 (5)0.0041 (5)0.0056 (5)
C130.0373 (9)0.0204 (7)0.0215 (7)0.0098 (6)0.0032 (6)0.0048 (6)
C140.0341 (8)0.0192 (7)0.0243 (7)0.0113 (6)0.0061 (6)0.0111 (6)
Geometric parameters (Å, º) top
Na1—Na1i3.9154 (9)C5—H5A0.9800
Na1—O12.2970 (10)C5—H5B0.9800
Na1—O22.3736 (10)C5—H5C0.9800
Na1—O32.2998 (10)C6—H6A0.9900
Na1—H32.61 (2)C6—H6B0.9900
Na1—O42.3905 (10)C6—C71.5116 (19)
Na1—H42.637 (19)C7—H7A0.9900
Na1—N12.5707 (11)C7—H7B0.9900
O1—C11.4012 (13)C8—H8A0.9800
O2—C71.4225 (15)C8—H8B0.9800
O2—C81.4244 (16)C8—H8C0.9800
O3—H30.92 (2)C9—H91.0000
O3—C91.4205 (16)C9—C101.519 (2)
O4—H40.86 (2)C9—C111.505 (2)
O4—C121.4249 (15)C10—H10A0.9800
N1—C41.4717 (16)C10—H10B0.9800
N1—C51.4629 (16)C10—H10C0.9800
N1—C61.4705 (15)C11—H11A0.9800
C1—C21.5345 (17)C11—H11B0.9800
C1—C31.5353 (18)C11—H11C0.9800
C1—C41.5463 (17)C12—H121.0000
C2—H2A0.9800C12—C131.5206 (19)
C2—H2B0.9800C12—C141.5163 (18)
C2—H2C0.9800C13—H13A0.9800
C3—H3A0.9800C13—H13B0.9800
C3—H3B0.9800C13—H13C0.9800
C3—H3C0.9800C14—H14A0.9800
C4—H4A0.9900C14—H14B0.9800
C4—H4B0.9900C14—H14C0.9800
Na1i—Na1—H353.0 (5)N1—C4—H4B108.4
Na1i—Na1—H454.7 (4)C1—C4—H4A108.4
O1—Na1—Na1i60.32 (2)C1—C4—H4B108.4
O1—Na1—O2124.96 (4)H4A—C4—H4B107.4
O1—Na1—O3113.36 (4)N1—C5—H5A109.5
O1—Na1—H3107.0 (5)N1—C5—H5B109.5
O1—Na1—O4111.89 (4)N1—C5—H5C109.5
O1—Na1—H4107.6 (4)H5A—C5—H5B109.5
O1—Na1—N173.22 (3)H5A—C5—H5C109.5
O2—Na1—Na1i162.16 (3)H5B—C5—H5C109.5
O2—Na1—H3127.7 (5)N1—C6—H6A109.2
O2—Na1—O493.84 (4)N1—C6—H6B109.2
O2—Na1—H4110.0 (4)N1—C6—C7112.24 (10)
O2—Na1—N169.39 (3)H6A—C6—H6B107.9
O3—Na1—Na1i69.43 (3)C7—C6—H6A109.2
O3—Na1—O2116.52 (4)C7—C6—H6B109.2
O3—Na1—H320.3 (5)O2—C7—C6108.25 (10)
O3—Na1—O485.59 (4)O2—C7—H7A110.0
O3—Na1—H469.9 (4)O2—C7—H7B110.0
O3—Na1—N1109.84 (4)C6—C7—H7A110.0
H3—Na1—H451.9 (7)C6—C7—H7B110.0
O4—Na1—Na1i69.31 (3)H7A—C7—H7B108.4
O4—Na1—H369.5 (5)O2—C8—H8A109.5
O4—Na1—H418.9 (4)O2—C8—H8B109.5
O4—Na1—N1160.83 (4)O2—C8—H8C109.5
N1—Na1—Na1i126.01 (3)H8A—C8—H8B109.5
N1—Na1—H3128.0 (5)H8A—C8—H8C109.5
N1—Na1—H4179.1 (4)H8B—C8—H8C109.5
C1—O1—Na1110.84 (7)O3—C9—H9108.7
C7—O2—Na1118.31 (7)O3—C9—C10109.09 (11)
C7—O2—C8112.37 (10)O3—C9—C11110.25 (12)
C8—O2—Na1121.71 (8)C10—C9—H9108.7
Na1—O3—H399.4 (13)C11—C9—H9108.7
C9—O3—Na1141.03 (8)C11—C9—C10111.20 (12)
C9—O3—H3108.7 (13)C9—C10—H10A109.5
Na1—O4—H496.9 (13)C9—C10—H10B109.5
C12—O4—Na1129.10 (8)C9—C10—H10C109.5
C12—O4—H4107.1 (13)H10A—C10—H10B109.5
C4—N1—Na1104.76 (7)H10A—C10—H10C109.5
C5—N1—Na1111.10 (8)H10B—C10—H10C109.5
C5—N1—C4110.12 (10)C9—C11—H11A109.5
C5—N1—C6110.29 (10)C9—C11—H11B109.5
C6—N1—Na1107.80 (7)C9—C11—H11C109.5
C6—N1—C4112.64 (10)H11A—C11—H11B109.5
O1—C1—C2109.45 (10)H11A—C11—H11C109.5
O1—C1—C3111.07 (10)H11B—C11—H11C109.5
O1—C1—C4109.85 (9)O4—C12—H12109.1
C2—C1—C3108.59 (10)O4—C12—C13110.66 (12)
C2—C1—C4111.93 (10)O4—C12—C14108.08 (11)
C3—C1—C4105.91 (10)C13—C12—H12109.1
C1—C2—H2A109.5C14—C12—H12109.1
C1—C2—H2B109.5C14—C12—C13110.77 (11)
C1—C2—H2C109.5C12—C13—H13A109.5
H2A—C2—H2B109.5C12—C13—H13B109.5
H2A—C2—H2C109.5C12—C13—H13C109.5
H2B—C2—H2C109.5H13A—C13—H13B109.5
C1—C3—H3A109.5H13A—C13—H13C109.5
C1—C3—H3B109.5H13B—C13—H13C109.5
C1—C3—H3C109.5C12—C14—H14A109.5
H3A—C3—H3B109.5C12—C14—H14B109.5
H3A—C3—H3C109.5C12—C14—H14C109.5
H3B—C3—H3C109.5H14A—C14—H14B109.5
N1—C4—C1115.58 (10)H14A—C14—H14C109.5
N1—C4—H4A108.4H14B—C14—H14C109.5
Na1—O1—C1—C267.90 (10)O1—C1—C4—N153.41 (13)
Na1—O1—C1—C3172.20 (8)N1—C6—C7—O256.12 (13)
Na1—O1—C1—C455.36 (10)C2—C1—C4—N168.39 (13)
Na1—O2—C7—C641.77 (12)C3—C1—C4—N1173.44 (10)
Na1—O3—C9—C1013.35 (19)C4—N1—C6—C7157.08 (10)
Na1—O3—C9—C11135.73 (12)C5—N1—C4—C1142.14 (11)
Na1—O4—C12—C13169.52 (8)C5—N1—C6—C779.44 (13)
Na1—O4—C12—C1448.07 (14)C6—N1—C4—C194.29 (12)
Na1—N1—C4—C122.60 (11)C8—O2—C7—C6168.09 (11)
Na1—N1—C6—C742.01 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.92 (2)1.65 (2)2.5442 (12)165 (2)
O4—H4···O1i0.86 (2)1.75 (2)2.5894 (12)164.4 (19)
Symmetry code: (i) x+1, y+1, z+1.
Selected geometric parameters (Å, °) for 1 top
Li2—O31.901 (2)Li5—N32.125 (2)
Li6—O11.893 (2)Li2—O21.920 (2)
Li4—O51.899 (2)Li4—O41.918 (2)
Li3—O31.989 (2)Li6—O61.910 (2)
Li1—O11.989 (2)Li7—O72.554 (3)
Li5—O51.997 (2)Li2—O72.003 (2)
Li3—N22.141 (3)Li4—O72.007 (2)
Li1—N12.157 (2)Li6—O71.997 (2)
Li2—O3—Li393.81 (10)Li1—O2—Li279.26 (10)
Li1—O1—Li694.45 (10)Li3—O4—Li479.25 (10)
Li4—O5—Li593.77 (10)Li5—O6—Li679.35 (10)
N1—Li1—O188.06 (10)Li7—O4—Li3116.33 (11)
N3—Li5—O588.55 (10)Li1—O2—Li7116.92 (11)
N2—Li3—O388.05 (10)Li5—O6—Li7116.55 (11)
Selected geometric parameters(Å, °) for 2 top
Na1—O22.3736 (10)Na1—O42.3905 (10)
Na1—O12.2970 (10)Na1—O32.2998 (10)
Na1—N12.5707 (11)
N1—Na1—O173.22 (3)N1—Na1—O269.39 (3)
N1—Na1—O3109.84 (4)N1—Na1—O4160.83 (4)
 

Funding information

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

References

First citationAndrews, P., MacLellan, J. G., Mulvey, R. E. & Nichols, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1651–1655.  Google Scholar
First citationBauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 8167–8171.  Google Scholar
First citationBegley, W. J. & Rajeswaran, M. (2006). Acta Cryst. E62, o1200–o1202.  Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaubére, P. (1993). Chem. Rev. 93, 2317–2334.  Google Scholar
First citationColquhoun, V. P. & Strohmann, C. (2012). Dalton Trans. 41, 1897–1902.  Google Scholar
First citationCrozier, A. R., Schädle, C., Maichle-Mössmer, C., Törnroos, K. W. & Anwander, R. (2013). Dalton Trans. 42, 5491–5499.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdema, J. J. H., Gambarotta, S., Smeets, W. J. J. & Spek, A. L. (1991). Inorg. Chem. 30, 1380–1384.  Google Scholar
First citationFronczek, F. R., Gatto, V. J., Schultz, R. A., Jungk, S. J., Colucci, W., Gandour, R. D. & Gokel, G. W. (1983). J. Am. Chem. Soc. 105, 6717–6718.  Google Scholar
First citationGessner, V. H., Däschlein, C. & Strohmann, C. (2009). Chemistry, 15, 3320–3334.  Google Scholar
First citationGros, P., Fort, Y., Queguiner, G. & Caubére, P. (1995). Tetrahedron Lett. 36, 4791–4794.  Google Scholar
First citationGros, P. & Fort, Y. (2002). Eur. J. Org. Chem. pp. 3375–3383.  Google Scholar
First citationGros, P., Fort, Y. & Caubère, P. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3071–3080.  Google Scholar
First citationHevia, E., Henderson, K. W., Kennedy, A. R. & Mulvey, R. E. (2006). Organometallics, 25, 1778–1785.  Google Scholar
First citationKroesen, U., Unkelbach, C., Schildbach, D. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 14164–14168.  Google Scholar
First citationLochmann, L., Čoupek, J. & Lím, D. (1970). Collect. Czech. Chem. Commun. 35, 733–736.  Google Scholar
First citationLochmann, L. & Janata, M. (2014). Cent. Eur. J. Chem. 12, 537–548.  Google Scholar
First citationLochmann, L., Lukáš, R. & Lím, D. (1972). Collect. Czech. Chem. Commun. 37, 569–572.  Google Scholar
First citationLochmann, L., Pospíšil, J. & Lím, D. (1966). Tetrahedron Lett. 7, 257–262.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarszałek-Harych, A., Trybuła, D., Jędrzkiewicz, D. & Ejfler, J. (2020). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.0c00310.  Google Scholar
First citationSchlosser, M. (1967). J. Organomet. Chem. 8, 9–16.  Google Scholar
First citationSchüler, P., Görls, H., Westerhausen, M. & Krieck, S. (2019). Dalton Trans. 48, 8966–8975.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, W. N. (1974). J. Organomet. Chem. 82, 1–5.  Google Scholar
First citationStreitwieser, A., Williams, J. E., Alexandratos, S. & McKelvey, J. M. (1976). J. Am. Chem. Soc. 98, 4778–4784.  Google Scholar
First citationStrohmann, C., Seibel, T. & Schildbach, D. (2004). J. Am. Chem. Soc. 126, 9876–9877.  Google Scholar
First citationThalangamaarachchige, V. D., Li, H., Cordes, D. B., Unruh, D. K. & Krempner, C. (2017). Inorg. Chem. 56, 9869–9879.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.  Google Scholar
First citationUnkelbach, C., Abele, B. C., Lehmen, K., Schildbach, D., Waerder, K., Wild, K. & Strohmann, C. (2012). Chem. Commun. 48, 2492–2494.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds