research communications
Synthesis and κ2N,N′)[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate with an unknown number of solvent molecules
of (1,10-phenanthroline-aJiangsu Nursing Vocational College, Huaian 223300, Jiangsu Province, People's Republic of China, bJiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, Jiangsu Province, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: junqian8203@ujs.edu.cn
The cationic complex in the title compound, [Ir(C9H7N2)2(C12H8N2)]PF6, comprises two phenylpyrazole (ppz) cyclometallating ligands and one 1,10-phenanthroline (phen) ancillary ligand. The consists of one [Ir(ppz)2(phen)]+ cation and one [PF6]− counter-ion. The central IrIII ion is six-coordinated by two N atoms and two C atoms from the two ppz ligands as well as by two N atoms from the phen ligand within a distorted octahedral C2N4 coordination set. In the the [Ir(ppz)2(phen)]+ cations and PF6− counter-ions are connected with each other through weak intermolecular C—H⋯F hydrogen bonds. Additional C—H⋯π interactions between the rings of neighbouring cations consolidate the three-dimensional network. Electron density associated with additional disordered solvent molecules inside cavities of the structure was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s). The title compound has a different space-group symmetry (C2/c) from its solvatomorph (P21/c) comprising 1.5CH2Cl2 solvent molecules per ion pair.
Keywords: crystal structure; cyclometallated iridium complex; 1,10-phenanthroline; 1-phenylpyrazole; intermolecular hydrogen bonding.
CCDC reference: 1856996
1. Chemical context
Cyclometallated iridium(III) complexes have found applications in electroluminescent instruments such as sensors and light-emitting devices and in et al., 2010; Shan et al., 2012). In this regard, a variety of cyclometallated iridium complexes have been reported and most of them have potential for the aforementioned applications (Flamigni et al., 2008; Li et al., 2011). The properties of iridium complexes can be tuned by rational design of either the cyclometallating or ancillary ligands (Chen et al., 2010; Goswami et al., 2014; Radwan et al., 2015; Congrave et al., 2017). Among numerous organic conjugate ligands, the cyclometallating ligand 1-phenylpyrazole (ppz) is known for its high triplet energy (Schlegel & Skancke, 1993). Consequently, some bis-cyclometallated IrIII complexes with ppz ligands have been synthesized that exhibit high energy phosphorescence (Sajoto et al., 2005).
because of their high emission efficiencies, photo/thermal stabilities and easy tunability of the emission wavelength (ZhaoOn the other hand, ancillary ligands with strong π-electrons of cyclometallated iridium(III) complex systems through the interaction between the d orbitals of the transition metal and the π-electron orbitals of the organic (Liu et al., 2018). This way, the high degree of delocalized π-electrons can increase the luminescent properties of IrIII complexes (Choy et al., 2014). In this context, we report herein the synthesis and of the cyclometallated iridium(III) complex, [Ir(ppz)2(phen)][PF6], which contains an unknown number of solvent molecules.
such as 1,10-phenanthroline (phen) can also enhance the degree of delocalized2. Structural commentary
The 2(phen)]+ cation and one PF6− counter-ion (Fig. 1). The iridium(III) atom is six-coordinated by four nitrogen atoms and two carbon atoms within an octahedral [N4C2] coordination set. The axial positions are occupied by two nitrogen atoms (N3, N5) from two ppz ligands, while the equatorial plane is composed of two N atoms from the phen ligand (N1, N2) and two C atoms from two ppz ligands (C21, C30).
of the title complex consists of one [Ir(ppz)The bond lengths and angles related to the coordinating carbon and nitrogen atoms are normal and correspond to literature values. The average Ir—C bond length is 2.018 (5) Å, a typical value for the distance between an IrIII and a C atom originating from a ppz ligand (Adamovich et al., 2019). There are two different Ir—N bond types in the cation of the title compound: the average Ir—NC^N (C^N refers to the ppz ligand) bond length is 2.023 (2) Å, whereas the value for the Ir—NN^N (N^N refers to the phen ligand) bond is much longer at 2.141 (8) Å. The bond angles around the IrIII atom involving cis-arranged ligand atoms deviate clearly from 90° and range from 78.06 (15)° (the bite angle of the phen ligand) to 99.24 (17)°, except for C21—Ir1—C30 with a value of 89.44 (19)°, which correspond to a relatively low distortion from an ideal octahedral The bond angles along the axes of the pseudo-octahedral coordination figure are 171.64 (16), 173.09 (18) and 173.97 (17)° for N3—Ir—N5, C30—Ir—N2 and C21—Ir—N1, respectively.
3. Supramolecular features
In the 6− counter-ions by six C—H⋯F interactions (Table 1, Fig. 2), leading to the formation of a three-dimensional supramolecular network. In addition, there are also C—H⋯π interactions between the [Ir(ppz)2(phen)]+ cations, involving the centroids of one of the pyrazole rings and of a phenyl ring (Table 1, Fig. 3). As can be seen in Fig. 4, the packing of the components leads to voids that are large enough to host solvent molecules of an unknown nature.
the complex cations are linked to the PF4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, update November 2017; Groom et al., 2016) for complexes containing the iridium(III) ion with ppz ligand fragments yielded 36 hits. Among the 36 structures, only four contain auxiliary phen ligands or derivatives thereof. From these, one compound (JUPTIZ; Howarth et al., 2015) matches the title compound, but crystallizes in the P21/c and contains two molecular ion pairs in the in contrast to the title compound, which crystallizes in C2/c with one in the Bond lengths and angles in the corresponding [Ir(ppz)2(phen)]+ cations are very similar. In both structure refinements, the contributions of solvent molecules were not considered; for JUPTIZ, 1.5 CH2Cl2 solvent molecules were estimated per but in the title structure the number and nature of solvent molecule(s) remains unknown. Hence JUPTIZ is a solvatomorph of the title compound. The three other structures comprise derivatives of the phen ligand, viz. JUPTEV/JUPTAR (Howarth et al., 2015) and DUCWOZ (Shan et al., 2012).
5. Synthesis and crystallization
The organometallated iridium(III) dimer, [Ir(μ-Cl)(ppz)2]2 (ppz = 1-phenylpyrazole), was prepared according to a literature protocol (Kwon et al., 2005) by heating IrCl3·3H2O (1 equiv.) and 1-phenylpyrazole (2.3 equiv.) in a mixed solution of 2-ethoxyethanol and water (v/v = 3:1) at 408 K.
The title compound was synthesized from the reaction of [Ir(μ-Cl)(ppz)2]2 and 1,10-phenanthroline in a mixed solution of dichloromethane (CH2Cl2) and methanol (MeOH) (v/v = 2:1) at 358 K with KPF6 as a source for the PF6− counter-ion. The mixture was dried under vacuum and separated by on silica gel with CH2Cl2/petroleum ether (v/v = 4:1) as A pure product of the cyclometalated iridium(III) complex was obtained as a dark-yellow solid. Elemental analysis for C30H22F6IrN6P (calculated; found): C (44.83; 45.26); H (2.76, 2.73); N (10.46, 10.39)%.
Single crystals of the title compound were grown by inter-diffusion reaction between n-hexane and a dichloromethane solution of the pure solid with CH2Cl2/hexane (v/v = 1/1) as buffer solution at room temperature for 7 d (Nie et al., 2019). In should be noted that the dichloromethane sesquisolvate of [Ir(ppz)2(phen)](PF6) (JUPTIZ) was obtained by reacting [Ir(μ-Cl)(ppz)2]2 with 1,10-phenanthroline under microwave irradiation for 30 min. at 373 K (Howarth et al., 2015).
6. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The contribution of the missing solvent molecules to the diffraction pattern was subtracted from the reflection data by the SQUEEZE method (Spek, 2015) as implemented in PLATON (Spek, 2020). The solvent-accessible volume in the structure of the title compound as calculated by PLATON is 1136.1 Å3 (17.7%).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1856996
https://doi.org/10.1107/S2056989020005861/wm5544sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020005861/wm5544Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020) and DIAMOND (Brandenburg & Putz, 2016); software used to prepare material for publication: publCIF (Westrip, 2010).[Ir(C9H7N2)2(C12H8N2)]PF6 | F(000) = 3120 |
Mr = 803.70 | Dx = 1.667 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.976 (3) Å | Cell parameters from 10866 reflections |
b = 22.818 (5) Å | θ = 3.0–26.0° |
c = 18.850 (4) Å | µ = 4.28 mm−1 |
β = 95.98 (3)° | T = 293 K |
V = 6406 (2) Å3 | Block, red |
Z = 8 | 0.25 × 0.22 × 0.20 mm |
Bruker APEXII CCD diffractometer | 5077 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.039 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.0°, θmin = 3.0° |
h = −15→18 | |
29484 measured reflections | k = −28→25 |
6280 independent reflections | l = −23→23 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0321P)2 + 39.6215P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
6280 reflections | Δρmax = 1.25 e Å−3 |
397 parameters | Δρmin = −0.96 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.25544 (2) | −0.00046 (2) | 0.00566 (2) | 0.02570 (9) | |
N1 | 0.3343 (3) | 0.06189 (18) | 0.0705 (2) | 0.0289 (10) | |
N2 | 0.1946 (3) | −0.00380 (17) | 0.1030 (2) | 0.0254 (9) | |
N3 | 0.3270 (3) | −0.07374 (19) | 0.0323 (2) | 0.0289 (10) | |
N4 | 0.2938 (3) | −0.12375 (18) | −0.0004 (2) | 0.0317 (10) | |
N5 | 0.1815 (3) | 0.06810 (19) | −0.0356 (2) | 0.0323 (10) | |
N6 | 0.2036 (3) | 0.08734 (19) | −0.1000 (2) | 0.0362 (11) | |
C1 | 0.4018 (4) | 0.0938 (2) | 0.0528 (3) | 0.0362 (13) | |
H1A | 0.4237 | 0.0871 | 0.0091 | 0.043* | |
C2 | 0.4418 (4) | 0.1377 (3) | 0.0976 (3) | 0.0416 (14) | |
H2A | 0.4888 | 0.1598 | 0.0831 | 0.050* | |
C3 | 0.4118 (4) | 0.1478 (2) | 0.1623 (3) | 0.0397 (14) | |
H3A | 0.4386 | 0.1764 | 0.1926 | 0.048* | |
C4 | 0.3391 (4) | 0.1142 (2) | 0.1827 (3) | 0.0348 (12) | |
C5 | 0.3015 (4) | 0.1213 (3) | 0.2491 (3) | 0.0408 (14) | |
H5A | 0.3250 | 0.1498 | 0.2811 | 0.049* | |
C6 | 0.2328 (4) | 0.0877 (2) | 0.2662 (3) | 0.0378 (13) | |
H6A | 0.2101 | 0.0930 | 0.3099 | 0.045* | |
C7 | 0.1946 (3) | 0.0440 (2) | 0.2182 (3) | 0.0296 (11) | |
C8 | 0.1236 (4) | 0.0068 (2) | 0.2333 (3) | 0.0334 (12) | |
H8A | 0.0989 | 0.0101 | 0.2764 | 0.040* | |
C9 | 0.0914 (4) | −0.0341 (2) | 0.1843 (3) | 0.0326 (12) | |
H9A | 0.0450 | −0.0589 | 0.1940 | 0.039* | |
C10 | 0.1287 (3) | −0.0384 (2) | 0.1192 (3) | 0.0300 (11) | |
H10A | 0.1063 | −0.0665 | 0.0863 | 0.036* | |
C11 | 0.2288 (3) | 0.0364 (2) | 0.1529 (2) | 0.0264 (11) | |
C12 | 0.3025 (3) | 0.0718 (2) | 0.1349 (3) | 0.0277 (11) | |
C13 | 0.4046 (4) | −0.0891 (3) | 0.0694 (3) | 0.0367 (13) | |
H13A | 0.4422 | −0.0638 | 0.0973 | 0.044* | |
C14 | 0.4207 (4) | −0.1483 (3) | 0.0602 (3) | 0.0445 (15) | |
H14A | 0.4698 | −0.1697 | 0.0805 | 0.053* | |
C15 | 0.3503 (4) | −0.1691 (3) | 0.0154 (3) | 0.0417 (14) | |
H15A | 0.3426 | −0.2073 | −0.0011 | 0.050* | |
C16 | 0.2090 (4) | −0.1185 (2) | −0.0414 (3) | 0.0302 (12) | |
C17 | 0.1642 (4) | −0.1663 (3) | −0.0724 (3) | 0.0422 (14) | |
H17A | 0.1892 | −0.2036 | −0.0679 | 0.051* | |
C18 | 0.0812 (4) | −0.1576 (3) | −0.1106 (3) | 0.0465 (16) | |
H18A | 0.0498 | −0.1892 | −0.1320 | 0.056* | |
C19 | 0.0454 (4) | −0.1023 (3) | −0.1166 (3) | 0.0426 (14) | |
H19A | −0.0103 | −0.0966 | −0.1424 | 0.051* | |
C20 | 0.0912 (4) | −0.0547 (2) | −0.0845 (3) | 0.0332 (12) | |
H20A | 0.0653 | −0.0176 | −0.0887 | 0.040* | |
C21 | 0.1757 (3) | −0.0614 (2) | −0.0458 (3) | 0.0287 (11) | |
C22 | 0.1125 (4) | 0.0995 (3) | −0.0200 (3) | 0.0428 (14) | |
H22A | 0.0840 | 0.0954 | 0.0213 | 0.051* | |
C23 | 0.0886 (4) | 0.1395 (3) | −0.0738 (4) | 0.0528 (17) | |
H23A | 0.0421 | 0.1666 | −0.0757 | 0.063* | |
C24 | 0.1476 (5) | 0.1307 (3) | −0.1235 (3) | 0.0515 (17) | |
H24A | 0.1487 | 0.1511 | −0.1661 | 0.062* | |
C25 | 0.2783 (4) | 0.0599 (2) | −0.1271 (3) | 0.0358 (13) | |
C26 | 0.3100 (4) | 0.0767 (3) | −0.1898 (3) | 0.0478 (16) | |
H26A | 0.2833 | 0.1077 | −0.2163 | 0.057* | |
C27 | 0.3814 (5) | 0.0474 (3) | −0.2130 (3) | 0.0514 (17) | |
H27A | 0.4039 | 0.0586 | −0.2551 | 0.062* | |
C28 | 0.4198 (5) | 0.0012 (3) | −0.1737 (3) | 0.0514 (17) | |
H28A | 0.4680 | −0.0188 | −0.1896 | 0.062* | |
C29 | 0.3863 (4) | −0.0159 (3) | −0.1097 (3) | 0.0371 (13) | |
H29A | 0.4128 | −0.0472 | −0.0839 | 0.045* | |
C30 | 0.3144 (4) | 0.0132 (2) | −0.0845 (3) | 0.0308 (12) | |
P1 | 0.35528 (11) | 0.28676 (7) | 0.33205 (8) | 0.0404 (4) | |
F1 | 0.3359 (4) | 0.2677 (2) | 0.2511 (2) | 0.105 (2) | |
F2 | 0.3773 (4) | 0.3061 (2) | 0.4122 (2) | 0.0877 (15) | |
F3 | 0.4239 (4) | 0.3339 (2) | 0.3101 (3) | 0.0978 (17) | |
F4 | 0.2835 (5) | 0.2436 (3) | 0.3520 (4) | 0.152 (3) | |
F5 | 0.2829 (4) | 0.3381 (3) | 0.3221 (4) | 0.140 (2) | |
F6 | 0.4276 (5) | 0.2399 (3) | 0.3409 (3) | 0.147 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.02768 (12) | 0.02890 (14) | 0.02103 (12) | −0.00258 (8) | 0.00499 (8) | 0.00069 (8) |
N1 | 0.029 (2) | 0.029 (2) | 0.028 (2) | −0.0065 (19) | 0.0014 (19) | −0.0035 (18) |
N2 | 0.026 (2) | 0.026 (2) | 0.024 (2) | −0.0003 (17) | 0.0036 (17) | 0.0014 (17) |
N3 | 0.033 (2) | 0.034 (2) | 0.022 (2) | −0.0015 (19) | 0.0107 (19) | −0.0002 (18) |
N4 | 0.042 (3) | 0.029 (2) | 0.025 (2) | −0.001 (2) | 0.008 (2) | 0.0023 (18) |
N5 | 0.036 (3) | 0.029 (2) | 0.031 (2) | −0.005 (2) | 0.002 (2) | −0.0001 (19) |
N6 | 0.042 (3) | 0.037 (3) | 0.029 (2) | −0.006 (2) | 0.000 (2) | 0.010 (2) |
C1 | 0.040 (3) | 0.037 (3) | 0.032 (3) | −0.010 (3) | 0.004 (2) | −0.001 (2) |
C2 | 0.037 (3) | 0.046 (4) | 0.042 (4) | −0.012 (3) | 0.005 (3) | 0.000 (3) |
C3 | 0.040 (3) | 0.042 (3) | 0.035 (3) | −0.010 (3) | −0.005 (3) | −0.008 (3) |
C4 | 0.039 (3) | 0.037 (3) | 0.028 (3) | −0.005 (2) | 0.000 (2) | −0.003 (2) |
C5 | 0.053 (4) | 0.043 (3) | 0.026 (3) | −0.005 (3) | 0.002 (3) | −0.004 (2) |
C6 | 0.043 (3) | 0.046 (3) | 0.026 (3) | −0.004 (3) | 0.008 (2) | −0.003 (2) |
C7 | 0.033 (3) | 0.031 (3) | 0.024 (3) | 0.004 (2) | 0.003 (2) | 0.001 (2) |
C8 | 0.037 (3) | 0.041 (3) | 0.023 (3) | 0.002 (2) | 0.013 (2) | 0.007 (2) |
C9 | 0.035 (3) | 0.037 (3) | 0.027 (3) | 0.000 (2) | 0.009 (2) | 0.001 (2) |
C10 | 0.031 (3) | 0.030 (3) | 0.029 (3) | −0.003 (2) | 0.007 (2) | 0.003 (2) |
C11 | 0.031 (3) | 0.029 (3) | 0.019 (2) | 0.000 (2) | 0.000 (2) | −0.001 (2) |
C12 | 0.027 (3) | 0.034 (3) | 0.022 (3) | 0.001 (2) | 0.001 (2) | −0.001 (2) |
C13 | 0.029 (3) | 0.052 (4) | 0.029 (3) | 0.000 (3) | 0.001 (2) | 0.007 (3) |
C14 | 0.047 (4) | 0.045 (4) | 0.042 (4) | 0.014 (3) | 0.008 (3) | 0.014 (3) |
C15 | 0.055 (4) | 0.034 (3) | 0.038 (3) | 0.007 (3) | 0.014 (3) | 0.008 (3) |
C16 | 0.039 (3) | 0.033 (3) | 0.019 (3) | −0.005 (2) | 0.006 (2) | −0.002 (2) |
C17 | 0.065 (4) | 0.035 (3) | 0.027 (3) | −0.008 (3) | 0.009 (3) | 0.000 (2) |
C18 | 0.059 (4) | 0.046 (4) | 0.033 (3) | −0.028 (3) | 0.000 (3) | −0.005 (3) |
C19 | 0.041 (3) | 0.057 (4) | 0.029 (3) | −0.014 (3) | 0.000 (3) | 0.002 (3) |
C20 | 0.034 (3) | 0.043 (3) | 0.022 (3) | −0.008 (2) | 0.005 (2) | 0.001 (2) |
C21 | 0.034 (3) | 0.035 (3) | 0.019 (2) | −0.009 (2) | 0.010 (2) | 0.000 (2) |
C22 | 0.033 (3) | 0.044 (3) | 0.051 (4) | 0.010 (3) | 0.004 (3) | −0.001 (3) |
C23 | 0.042 (4) | 0.051 (4) | 0.063 (5) | 0.007 (3) | −0.009 (3) | 0.011 (3) |
C24 | 0.062 (4) | 0.045 (4) | 0.044 (4) | 0.001 (3) | −0.011 (3) | 0.018 (3) |
C25 | 0.038 (3) | 0.041 (3) | 0.028 (3) | −0.007 (3) | 0.001 (2) | 0.002 (2) |
C26 | 0.061 (4) | 0.047 (4) | 0.035 (3) | −0.019 (3) | 0.004 (3) | 0.011 (3) |
C27 | 0.058 (4) | 0.071 (5) | 0.028 (3) | −0.026 (4) | 0.016 (3) | −0.002 (3) |
C28 | 0.051 (4) | 0.072 (5) | 0.033 (3) | −0.017 (3) | 0.015 (3) | −0.009 (3) |
C29 | 0.038 (3) | 0.050 (3) | 0.025 (3) | −0.008 (3) | 0.012 (2) | −0.005 (2) |
C30 | 0.032 (3) | 0.044 (3) | 0.017 (2) | −0.012 (2) | 0.004 (2) | −0.004 (2) |
P1 | 0.0506 (9) | 0.0377 (8) | 0.0325 (8) | −0.0028 (7) | 0.0030 (7) | 0.0021 (6) |
F1 | 0.163 (5) | 0.105 (4) | 0.041 (3) | −0.067 (4) | −0.014 (3) | 0.005 (2) |
F2 | 0.127 (4) | 0.095 (3) | 0.041 (2) | −0.017 (3) | 0.009 (2) | −0.019 (2) |
F3 | 0.128 (4) | 0.083 (3) | 0.086 (3) | −0.054 (3) | 0.027 (3) | −0.018 (3) |
F4 | 0.198 (7) | 0.158 (6) | 0.116 (5) | −0.125 (5) | 0.084 (5) | −0.035 (4) |
F5 | 0.103 (4) | 0.108 (4) | 0.200 (7) | 0.049 (4) | −0.023 (4) | 0.011 (4) |
F6 | 0.183 (7) | 0.146 (5) | 0.104 (5) | 0.135 (5) | −0.024 (4) | −0.014 (4) |
Ir1—C21 | 2.016 (5) | C11—C12 | 1.437 (7) |
Ir1—C30 | 2.019 (5) | C13—C14 | 1.388 (8) |
Ir1—N3 | 2.021 (4) | C13—H13A | 0.9300 |
Ir1—N5 | 2.025 (4) | C14—C15 | 1.365 (9) |
Ir1—N2 | 2.133 (4) | C14—H14A | 0.9300 |
Ir1—N1 | 2.148 (4) | C15—H15A | 0.9300 |
N1—C1 | 1.317 (7) | C16—C17 | 1.378 (7) |
N1—C12 | 1.367 (6) | C16—C21 | 1.394 (7) |
N2—C10 | 1.324 (6) | C17—C18 | 1.383 (9) |
N2—C11 | 1.374 (6) | C17—H17A | 0.9300 |
N3—C13 | 1.339 (7) | C18—C19 | 1.370 (9) |
N3—N4 | 1.366 (6) | C18—H18A | 0.9300 |
N4—C15 | 1.349 (7) | C19—C20 | 1.390 (8) |
N4—C16 | 1.420 (7) | C19—H19A | 0.9300 |
N5—C22 | 1.315 (7) | C20—C21 | 1.401 (7) |
N5—N6 | 1.364 (6) | C20—H20A | 0.9300 |
N6—C24 | 1.341 (7) | C22—C23 | 1.383 (8) |
N6—C25 | 1.422 (7) | C22—H22A | 0.9300 |
C1—C2 | 1.402 (8) | C23—C24 | 1.369 (9) |
C1—H1A | 0.9300 | C23—H23A | 0.9300 |
C2—C3 | 1.364 (8) | C24—H24A | 0.9300 |
C2—H2A | 0.9300 | C25—C26 | 1.374 (8) |
C3—C4 | 1.418 (8) | C25—C30 | 1.408 (8) |
C3—H3A | 0.9300 | C26—C27 | 1.372 (9) |
C4—C12 | 1.395 (7) | C26—H26A | 0.9300 |
C4—C5 | 1.434 (8) | C27—C28 | 1.378 (9) |
C5—C6 | 1.350 (8) | C27—H27A | 0.9300 |
C5—H5A | 0.9300 | C28—C29 | 1.409 (8) |
C6—C7 | 1.425 (7) | C28—H28A | 0.9300 |
C6—H6A | 0.9300 | C29—C30 | 1.391 (8) |
C7—C11 | 1.393 (7) | C29—H29A | 0.9300 |
C7—C8 | 1.413 (7) | P1—F6 | 1.520 (5) |
C8—C9 | 1.364 (7) | P1—F4 | 1.534 (5) |
C8—H8A | 0.9300 | P1—F3 | 1.572 (5) |
C9—C10 | 1.404 (7) | P1—F2 | 1.575 (4) |
C9—H9A | 0.9300 | P1—F1 | 1.584 (5) |
C10—H10A | 0.9300 | P1—F5 | 1.593 (5) |
C21—Ir1—C30 | 89.44 (19) | N3—C13—C14 | 110.0 (5) |
C21—Ir1—N3 | 79.7 (2) | N3—C13—H13A | 125.0 |
C30—Ir1—N3 | 94.0 (2) | C14—C13—H13A | 125.0 |
C21—Ir1—N5 | 94.3 (2) | C15—C14—C13 | 106.3 (5) |
C30—Ir1—N5 | 80.0 (2) | C15—C14—H14A | 126.8 |
N3—Ir1—N5 | 171.64 (16) | C13—C14—H14A | 126.8 |
C21—Ir1—N2 | 96.00 (17) | N4—C15—C14 | 107.3 (5) |
C30—Ir1—N2 | 173.09 (18) | N4—C15—H15A | 126.3 |
N3—Ir1—N2 | 91.16 (15) | C14—C15—H15A | 126.3 |
N5—Ir1—N2 | 95.29 (16) | C17—C16—C21 | 123.9 (5) |
C21—Ir1—N1 | 173.97 (17) | C17—C16—N4 | 122.2 (5) |
C30—Ir1—N1 | 96.56 (18) | C21—C16—N4 | 114.0 (4) |
N3—Ir1—N1 | 99.24 (17) | C16—C17—C18 | 118.6 (6) |
N5—Ir1—N1 | 87.33 (17) | C16—C17—H17A | 120.7 |
N2—Ir1—N1 | 78.06 (15) | C18—C17—H17A | 120.7 |
C1—N1—C12 | 118.8 (4) | C19—C18—C17 | 119.8 (5) |
C1—N1—Ir1 | 127.8 (4) | C19—C18—H18A | 120.1 |
C12—N1—Ir1 | 113.1 (3) | C17—C18—H18A | 120.1 |
C10—N2—C11 | 118.2 (4) | C18—C19—C20 | 120.9 (6) |
C10—N2—Ir1 | 128.0 (3) | C18—C19—H19A | 119.6 |
C11—N2—Ir1 | 113.8 (3) | C20—C19—H19A | 119.6 |
C13—N3—N4 | 105.8 (4) | C19—C20—C21 | 121.2 (5) |
C13—N3—Ir1 | 139.0 (4) | C19—C20—H20A | 119.4 |
N4—N3—Ir1 | 114.8 (3) | C21—C20—H20A | 119.4 |
C15—N4—N3 | 110.5 (5) | C16—C21—C20 | 115.7 (5) |
C15—N4—C16 | 133.6 (5) | C16—C21—Ir1 | 115.2 (4) |
N3—N4—C16 | 116.0 (4) | C20—C21—Ir1 | 129.2 (4) |
C22—N5—N6 | 107.0 (5) | N5—C22—C23 | 110.2 (6) |
C22—N5—Ir1 | 138.2 (4) | N5—C22—H22A | 124.9 |
N6—N5—Ir1 | 114.6 (3) | C23—C22—H22A | 124.9 |
C24—N6—N5 | 109.3 (5) | C24—C23—C22 | 105.6 (6) |
C24—N6—C25 | 133.9 (5) | C24—C23—H23A | 127.2 |
N5—N6—C25 | 116.8 (4) | C22—C23—H23A | 127.2 |
N1—C1—C2 | 122.2 (5) | N6—C24—C23 | 107.9 (5) |
N1—C1—H1A | 118.9 | N6—C24—H24A | 126.0 |
C2—C1—H1A | 118.9 | C23—C24—H24A | 126.0 |
C3—C2—C1 | 120.0 (5) | C26—C25—C30 | 123.7 (6) |
C3—C2—H2A | 120.0 | C26—C25—N6 | 122.8 (5) |
C1—C2—H2A | 120.0 | C30—C25—N6 | 113.4 (5) |
C2—C3—C4 | 119.0 (5) | C27—C26—C25 | 119.2 (6) |
C2—C3—H3A | 120.5 | C27—C26—H26A | 120.4 |
C4—C3—H3A | 120.5 | C25—C26—H26A | 120.4 |
C12—C4—C3 | 117.5 (5) | C26—C27—C28 | 119.9 (6) |
C12—C4—C5 | 118.6 (5) | C26—C27—H27A | 120.1 |
C3—C4—C5 | 123.9 (5) | C28—C27—H27A | 120.1 |
C6—C5—C4 | 121.5 (5) | C27—C28—C29 | 120.4 (6) |
C6—C5—H5A | 119.2 | C27—C28—H28A | 119.8 |
C4—C5—H5A | 119.2 | C29—C28—H28A | 119.8 |
C5—C6—C7 | 120.7 (5) | C30—C29—C28 | 121.1 (6) |
C5—C6—H6A | 119.6 | C30—C29—H29A | 119.4 |
C7—C6—H6A | 119.6 | C28—C29—H29A | 119.4 |
C11—C7—C8 | 117.1 (5) | C29—C30—C25 | 115.6 (5) |
C11—C7—C6 | 119.3 (5) | C29—C30—Ir1 | 129.5 (4) |
C8—C7—C6 | 123.6 (5) | C25—C30—Ir1 | 114.9 (4) |
C9—C8—C7 | 119.7 (5) | F6—P1—F4 | 91.8 (5) |
C9—C8—H8A | 120.2 | F6—P1—F3 | 91.8 (4) |
C7—C8—H8A | 120.2 | F4—P1—F3 | 176.4 (4) |
C8—C9—C10 | 119.6 (5) | F6—P1—F2 | 91.0 (3) |
C8—C9—H9A | 120.2 | F4—P1—F2 | 91.5 (3) |
C10—C9—H9A | 120.2 | F3—P1—F2 | 89.1 (3) |
N2—C10—C9 | 122.3 (5) | F6—P1—F1 | 88.2 (3) |
N2—C10—H10A | 118.9 | F4—P1—F1 | 89.8 (3) |
C9—C10—H10A | 118.9 | F3—P1—F1 | 89.6 (3) |
N2—C11—C7 | 122.9 (5) | F2—P1—F1 | 178.4 (3) |
N2—C11—C12 | 117.0 (4) | F6—P1—F5 | 177.3 (4) |
C7—C11—C12 | 120.0 (4) | F4—P1—F5 | 90.9 (4) |
N1—C12—C4 | 122.5 (5) | F3—P1—F5 | 85.5 (3) |
N1—C12—C11 | 117.7 (4) | F2—P1—F5 | 88.8 (3) |
C4—C12—C11 | 119.8 (4) | F1—P1—F5 | 92.0 (4) |
C13—N3—N4—C15 | −0.8 (5) | C7—C11—C12—C4 | −0.5 (7) |
Ir1—N3—N4—C15 | 174.3 (3) | N4—N3—C13—C14 | 0.2 (6) |
C13—N3—N4—C16 | 177.8 (4) | Ir1—N3—C13—C14 | −173.0 (4) |
Ir1—N3—N4—C16 | −7.1 (5) | N3—C13—C14—C15 | 0.4 (6) |
C22—N5—N6—C24 | 0.0 (6) | N3—N4—C15—C14 | 1.0 (6) |
Ir1—N5—N6—C24 | 177.0 (4) | C16—N4—C15—C14 | −177.2 (5) |
C22—N5—N6—C25 | 178.9 (5) | C13—C14—C15—N4 | −0.9 (6) |
Ir1—N5—N6—C25 | −4.1 (6) | C15—N4—C16—C17 | 3.6 (9) |
C12—N1—C1—C2 | −0.2 (8) | N3—N4—C16—C17 | −174.6 (5) |
Ir1—N1—C1—C2 | 173.0 (4) | C15—N4—C16—C21 | −177.5 (5) |
N1—C1—C2—C3 | 0.9 (9) | N3—N4—C16—C21 | 4.3 (6) |
C1—C2—C3—C4 | −1.0 (9) | C21—C16—C17—C18 | 0.2 (8) |
C2—C3—C4—C12 | 0.4 (8) | N4—C16—C17—C18 | 179.0 (5) |
C2—C3—C4—C5 | −179.5 (6) | C16—C17—C18—C19 | −0.1 (8) |
C12—C4—C5—C6 | 0.8 (9) | C17—C18—C19—C20 | −0.3 (9) |
C3—C4—C5—C6 | −179.3 (6) | C18—C19—C20—C21 | 0.8 (8) |
C4—C5—C6—C7 | −0.6 (9) | C17—C16—C21—C20 | 0.3 (7) |
C5—C6—C7—C11 | −0.1 (8) | N4—C16—C21—C20 | −178.6 (4) |
C5—C6—C7—C8 | 179.0 (5) | C17—C16—C21—Ir1 | 179.4 (4) |
C11—C7—C8—C9 | −0.5 (8) | N4—C16—C21—Ir1 | 0.5 (5) |
C6—C7—C8—C9 | −179.6 (5) | C19—C20—C21—C16 | −0.8 (7) |
C7—C8—C9—C10 | −0.5 (8) | C19—C20—C21—Ir1 | −179.8 (4) |
C11—N2—C10—C9 | 1.9 (7) | N6—N5—C22—C23 | 0.1 (7) |
Ir1—N2—C10—C9 | −176.7 (4) | Ir1—N5—C22—C23 | −175.8 (4) |
C8—C9—C10—N2 | −0.2 (8) | N5—C22—C23—C24 | −0.1 (7) |
C10—N2—C11—C7 | −3.0 (7) | N5—N6—C24—C23 | −0.1 (7) |
Ir1—N2—C11—C7 | 175.8 (4) | C25—N6—C24—C23 | −178.8 (6) |
C10—N2—C11—C12 | 177.8 (4) | C22—C23—C24—N6 | 0.1 (7) |
Ir1—N2—C11—C12 | −3.4 (5) | C24—N6—C25—C26 | 1.4 (10) |
C8—C7—C11—N2 | 2.3 (7) | N5—N6—C25—C26 | −177.2 (5) |
C6—C7—C11—N2 | −178.5 (5) | C24—N6—C25—C30 | −176.9 (6) |
C8—C7—C11—C12 | −178.5 (5) | N5—N6—C25—C30 | 4.5 (7) |
C6—C7—C11—C12 | 0.7 (8) | C30—C25—C26—C27 | −0.7 (9) |
C1—N1—C12—C4 | −0.5 (8) | N6—C25—C26—C27 | −178.9 (5) |
Ir1—N1—C12—C4 | −174.6 (4) | C25—C26—C27—C28 | 0.7 (9) |
C1—N1—C12—C11 | 180.0 (5) | C26—C27—C28—C29 | −0.3 (9) |
Ir1—N1—C12—C11 | 5.9 (6) | C27—C28—C29—C30 | −0.2 (9) |
C3—C4—C12—N1 | 0.3 (8) | C28—C29—C30—C25 | 0.2 (8) |
C5—C4—C12—N1 | −179.8 (5) | C28—C29—C30—Ir1 | −178.3 (4) |
C3—C4—C12—C11 | 179.9 (5) | C26—C25—C30—C29 | 0.2 (8) |
C5—C4—C12—C11 | −0.2 (8) | N6—C25—C30—C29 | 178.5 (5) |
N2—C11—C12—N1 | −1.7 (7) | C26—C25—C30—Ir1 | 179.0 (4) |
C7—C11—C12—N1 | 179.1 (5) | N6—C25—C30—Ir1 | −2.7 (6) |
N2—C11—C12—C4 | 178.7 (5) |
Cg4 and Cg9 are the centroids of rings N3/N4/C15–C13 and C16–C21, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···F6i | 0.93 | 2.57 | 3.184 (7) | 124 |
C9—H9A···F3ii | 0.93 | 2.49 | 3.024 (7) | 117 |
C17—H17A···F4iii | 0.93 | 2.36 | 2.977 (8) | 124 |
C23—H23A···F2iv | 0.93 | 2.53 | 3.383 (8) | 152 |
C24—H24A···F1v | 0.93 | 2.48 | 3.368 (8) | 161 |
C26—H26A···F5v | 0.93 | 2.47 | 3.348 (9) | 158 |
C6—H6A···Cg9vi | 0.93 | 2.58 | 3.501 (6) | 173 |
C29—H29A···Cg4 | 0.93 | 2.98 | 3.688 (7) | 134 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, −y, z−1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) −x+1/2, −y+1/2, −z; (vi) −x+1/2, y+1/2, −z+1/2. |
Funding information
Funding for this research was provided by: National Natural Science Foundation of China (grant No. 51602130).
References
Adamovich, V., Boudreault, P. T., Esteruelas, M. A., Gómez-Bautista, D., López, A. M., Oñate, E. & Tsai, J. Y. (2019). Organometallics, 38, 2738–2747. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Z. Q., Bian, Z. Q. & Huang, C. H. (2010). Adv. Mater. 22, 1534–1539. Web of Science CrossRef CAS PubMed Google Scholar
Choy, W. C. H., Chan, W. K. & Yuan, Y. (2014). Adv. Mater. 26, 5368–5399. Web of Science CrossRef CAS PubMed Google Scholar
Congrave, D. G., Hsu, Y. T., Batsanov, A. S., Beeby, A. & Bryce, M. R. (2017). Organometallics, 36, 981–993. Web of Science CSD CrossRef CAS Google Scholar
Flamigni, L., Collin, J. P. & Sauvage, J. P. (2008). Acc. Chem. Res. 41, 857–871. Web of Science CrossRef PubMed CAS Google Scholar
Goswami, S., Sengupta, D., Paul, N. D., Mondal, T. K. & Goswami, S. (2014). Chem. Eur. J. 20, 6103–6111. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Howarth, A. J., Majewski, M. B., Brown, C. M., Lelj, F., Wolf, M. O. & Patrick, B. O. (2015). Dalton Trans. 44, 16272–16279. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kwon, T. H., Cho, H. S., Kim, M. K., Kim, J. W., Kim, J. J., Lee, K. H., Park, S. J., Shin, I. S., Kim, H., Shin, D. M., Chung, Y. K. & Hong, J. I. (2005). Organometallics, 24, 1578–1585. Web of Science CSD CrossRef CAS Google Scholar
Li, F., Zhang, B., Li, X., Jiang, Y., Chen, L., Li, Y. & Sun, L. (2011). Angew. Chem. Int. Ed. 50, 12276–12279. Web of Science CrossRef CAS Google Scholar
Liu, B., Monro, S., Lystrom, L., Cameron, C. G., Colón, K., Yin, H., Kilina, S., McFarland, S. A. & Sun, W. (2018). Inorg. Chem. 57, 7122–7131. Google Scholar
Nie, Q. Y., Qian, J. & Zhang, C. (2019). J. Mol. Struct. 1186, 434–439. Web of Science CSD CrossRef CAS Google Scholar
Radwan, Y. K., Maity, A. & Teets, T. S. (2015). Inorg. Chem. 54, 7122–7131. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sajoto, T., Djurovich, P. I., Tamayo, A., Yousufuddin, M., Bau, R., Thompson, M. E., Holmes, R. J. & Forrest, S. R. (2005). Inorg. Chem. 44, 7992–8003. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schlegel, H. B. & Skancke, A. (1993). J. Am. Chem. Soc. 115, 7465–7471. CrossRef CAS Web of Science Google Scholar
Shan, G. G., Li, H. B., Cao, H. T., Zhu, D. X., Su, Z. M. & Liao, Y. (2012). J. Organomet. Chem. 713, 20–26. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, Q., Li, F. Y. & Huang, C. H. (2010). Chem. Soc. Rev. 39, 3007–3030. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.