research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of (1,10-phenanthroline-κ2N,N′)[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexa­fluorido­phosphate with an unknown number of solvent mol­ecules

CROSSMARK_Color_square_no_text.svg

aJiangsu Nursing Vocational College, Huaian 223300, Jiangsu Province, People's Republic of China, bJiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, Jiangsu Province, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: junqian8203@ujs.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 February 2020; accepted 28 April 2020; online 5 May 2020)

The cationic complex in the title compound, [Ir(C9H7N2)2(C12H8N2)]PF6, comprises two phenyl­pyrazole (ppz) cyclo­metallating ligands and one 1,10-phenanthroline (phen) ancillary ligand. The asymmetric unit consists of one [Ir(ppz)2(phen)]+ cation and one [PF6] counter-ion. The central IrIII ion is six-coordinated by two N atoms and two C atoms from the two ppz ligands as well as by two N atoms from the phen ligand within a distorted octa­hedral C2N4 coordination set. In the crystal structure, the [Ir(ppz)2(phen)]+ cations and PF6 counter-ions are connected with each other through weak inter­molecular C—H⋯F hydrogen bonds. Additional C—H⋯π inter­actions between the rings of neighbouring cations consolidate the three-dimensional network. Electron density associated with additional disordered solvent mol­ecules inside cavities of the structure was removed with the SQUEEZE procedure in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s). The title compound has a different space-group symmetry (C2/c) from its solvatomorph (P21/c) comprising 1.5CH2Cl2 solvent mol­ecules per ion pair.

1. Chemical context

Cyclo­metallated iridium(III) complexes have found applications in electroluminescent instruments such as sensors and light-emitting devices and in photocatalysis because of their high emission efficiencies, photo/thermal stabilities and easy tunability of the emission wavelength (Zhao et al., 2010[Zhao, Q., Li, F. Y. & Huang, C. H. (2010). Chem. Soc. Rev. 39, 3007-3030.]; Shan et al., 2012[Shan, G. G., Li, H. B., Cao, H. T., Zhu, D. X., Su, Z. M. & Liao, Y. (2012). J. Organomet. Chem. 713, 20-26.]). In this regard, a variety of cyclo­metallated iridium complexes have been reported and most of them have potential for the aforementioned applications (Flamigni et al., 2008[Flamigni, L., Collin, J. P. & Sauvage, J. P. (2008). Acc. Chem. Res. 41, 857-871.]; Li et al., 2011[Li, F., Zhang, B., Li, X., Jiang, Y., Chen, L., Li, Y. & Sun, L. (2011). Angew. Chem. Int. Ed. 50, 12276-12279.]). The properties of iridium complexes can be tuned by rational design of either the cyclo­metallating or ancillary ligands (Chen et al., 2010[Chen, Z. Q., Bian, Z. Q. & Huang, C. H. (2010). Adv. Mater. 22, 1534-1539.]; Goswami et al., 2014[Goswami, S., Sengupta, D., Paul, N. D., Mondal, T. K. & Goswami, S. (2014). Chem. Eur. J. 20, 6103-6111.]; Radwan et al., 2015[Radwan, Y. K., Maity, A. & Teets, T. S. (2015). Inorg. Chem. 54, 7122-7131.]; Congrave et al., 2017[Congrave, D. G., Hsu, Y. T., Batsanov, A. S., Beeby, A. & Bryce, M. R. (2017). Organometallics, 36, 981-993.]). Among numerous organic conjugate ligands, the cyclo­metallating ligand 1-phenyl­pyrazole (ppz) is known for its high triplet energy (Schlegel & Skancke, 1993[Schlegel, H. B. & Skancke, A. (1993). J. Am. Chem. Soc. 115, 7465-7471.]). Consequently, some bis-cyclo­metallated IrIII complexes with ppz ligands have been synthesized that exhibit high energy phospho­rescence (Sajoto et al., 2005[Sajoto, T., Djurovich, P. I., Tamayo, A., Yousufuddin, M., Bau, R., Thompson, M. E., Holmes, R. J. & Forrest, S. R. (2005). Inorg. Chem. 44, 7992-8003.]).

On the other hand, ancillary ligands with strong conjugated system such as 1,10-phenanthroline (phen) can also enhance the degree of delocalized π-electrons of cyclo­metallated iridium(III) complex systems through the inter­action between the d orbitals of the transition metal and the π-electron orbitals of the organic conjugated system (Liu et al., 2018[Liu, B., Monro, S., Lystrom, L., Cameron, C. G., Colón, K., Yin, H., Kilina, S., McFarland, S. A. & Sun, W. (2018). Inorg. Chem. 57, 7122-7131.]). This way, the high degree of delocalized π-electrons can increase the luminescent properties of IrIII complexes (Choy et al., 2014[Choy, W. C. H., Chan, W. K. & Yuan, Y. (2014). Adv. Mater. 26, 5368-5399.]). In this context, we report herein the synthesis and crystal structure of the cyclo­metallated iridium(III) complex, [Ir(ppz)2(phen)][PF6], which contains an unknown number of solvent mol­ecules.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title complex consists of one [Ir(ppz)2(phen)]+ cation and one PF6 counter-ion (Fig. 1[link]). The iridium(III) atom is six-coordinated by four nitro­gen atoms and two carbon atoms within an octa­hedral [N4C2] coordination set. The axial positions are occupied by two nitro­gen atoms (N3, N5) from two ppz ligands, while the equatorial plane is composed of two N atoms from the phen ligand (N1, N2) and two C atoms from two ppz ligands (C21, C30).

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.

The bond lengths and angles related to the coordinating carbon and nitro­gen atoms are normal and correspond to literature values. The average Ir—C bond length is 2.018 (5) Å, a typical value for the distance between an IrIII and a C atom originating from a ppz ligand (Adamovich et al., 2019[Adamovich, V., Boudreault, P. T., Esteruelas, M. A., Gómez-Bautista, D., López, A. M., Oñate, E. & Tsai, J. Y. (2019). Organometallics, 38, 2738-2747.]). There are two different Ir—N bond types in the cation of the title compound: the average Ir—NC^N (C^N refers to the ppz ligand) bond length is 2.023 (2) Å, whereas the value for the Ir—NN^N (N^N refers to the phen ligand) bond is much longer at 2.141 (8) Å. The bond angles around the IrIII atom involving cis-arranged ligand atoms deviate clearly from 90° and range from 78.06 (15)° (the bite angle of the phen ligand) to 99.24 (17)°, except for C21—Ir1—C30 with a value of 89.44 (19)°, which correspond to a relatively low distortion from an ideal octa­hedral coordination polyhedron. The bond angles along the axes of the pseudo-octa­hedral coordination figure are 171.64 (16), 173.09 (18) and 173.97 (17)° for N3—Ir—N5, C30—Ir—N2 and C21—Ir—N1, respectively.

3. Supra­molecular features

In the crystal structure, the complex cations are linked to the PF6 counter-ions by six C—H⋯F inter­actions (Table 1[link], Fig. 2[link]), leading to the formation of a three-dimensional supra­molecular network. In addition, there are also C—H⋯π inter­actions between the [Ir(ppz)2(phen)]+ cations, involving the centroids of one of the pyrazole rings and of a phenyl ring (Table 1[link], Fig. 3[link]). As can be seen in Fig. 4[link], the packing of the components leads to voids that are large enough to host solvent mol­ecules of an unknown nature.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg9 are the centroids of rings N3/N4/C15–C13 and C16–C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F6i 0.93 2.57 3.184 (7) 124
C9—H9A⋯F3ii 0.93 2.49 3.024 (7) 117
C17—H17A⋯F4iii 0.93 2.36 2.977 (8) 124
C23—H23A⋯F2iv 0.93 2.53 3.383 (8) 152
C24—H24A⋯F1v 0.93 2.48 3.368 (8) 161
C26—H26A⋯F5v 0.93 2.47 3.348 (9) 158
C6—H6ACg9vi 0.93 2.58 3.501 (6) 173
C29—H29ACg4 0.93 2.98 3.688 (7) 134
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
C—H⋯F hydrogen bonding inter­actions between complex cations and counter-ions (shown as dashed lines).
[Figure 3]
Figure 3
C—H⋯π inter­actions in the title structure (shown as dashed lines).
[Figure 4]
Figure 4
A packing diagram of the title compound viewed along the c axis, showing the porous structure with different cavities for the unknown solvent mol­ecules.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes containing the iridium(III) ion with ppz ligand fragments yielded 36 hits. Among the 36 structures, only four contain auxiliary phen ligands or derivatives thereof. From these, one compound (JUPTIZ; Howarth et al., 2015[Howarth, A. J., Majewski, M. B., Brown, C. M., Lelj, F., Wolf, M. O. & Patrick, B. O. (2015). Dalton Trans. 44, 16272-16279.]) matches the title compound, but crystallizes in the space group P21/c and contains two mol­ecular ion pairs in the asymmetric unit in contrast to the title compound, which crystallizes in space group C2/c with one ion pair in the asymmetric unit. Bond lengths and angles in the corresponding [Ir(ppz)2(phen)]+ cations are very similar. In both structure refinements, the contributions of solvent mol­ecules were not considered; for JUPTIZ, 1.5 CH2Cl2 solvent mol­ecules were estimated per ion pair, but in the title structure the number and nature of solvent mol­ecule(s) remains unknown. Hence JUPTIZ is a solvatomorph of the title compound. The three other structures comprise derivatives of the phen ligand, viz. JUPTEV/JUPTAR (Howarth et al., 2015[Howarth, A. J., Majewski, M. B., Brown, C. M., Lelj, F., Wolf, M. O. & Patrick, B. O. (2015). Dalton Trans. 44, 16272-16279.]) and DUCWOZ (Shan et al., 2012[Shan, G. G., Li, H. B., Cao, H. T., Zhu, D. X., Su, Z. M. & Liao, Y. (2012). J. Organomet. Chem. 713, 20-26.]).

5. Synthesis and crystallization

The organometallated iridium(III) dimer, [Ir(μ-Cl)(ppz)2]2 (ppz = 1-phenyl­pyrazole), was prepared according to a literature protocol (Kwon et al., 2005[Kwon, T. H., Cho, H. S., Kim, M. K., Kim, J. W., Kim, J. J., Lee, K. H., Park, S. J., Shin, I. S., Kim, H., Shin, D. M., Chung, Y. K. & Hong, J. I. (2005). Organometallics, 24, 1578-1585.]) by heating IrCl3·3H2O (1 equiv.) and 1-phenyl­pyrazole (2.3 equiv.) in a mixed solution of 2-eth­oxy­ethanol and water (v/v = 3:1) at 408 K.

The title compound was synthesized from the reaction of [Ir(μ-Cl)(ppz)2]2 and 1,10-phenanthroline in a mixed solution of di­chloro­methane (CH2Cl2) and methanol (MeOH) (v/v = 2:1) at 358 K with KPF6 as a source for the PF6 counter-ion. The mixture was dried under vacuum and separated by column chromatography on silica gel with CH2Cl2/petroleum ether (v/v = 4:1) as eluent. A pure product of the cyclo­metalated iridium(III) complex was obtained as a dark-yellow solid. Elemental analysis for C30H22F6IrN6P (calculated; found): C (44.83; 45.26); H (2.76, 2.73); N (10.46, 10.39)%.

Single crystals of the title compound were grown by inter-diffusion reaction between n-hexane and a di­chloro­methane solution of the pure solid with CH2Cl2/hexane (v/v = 1/1) as buffer solution at room temperature for 7 d (Nie et al., 2019[Nie, Q. Y., Qian, J. & Zhang, C. (2019). J. Mol. Struct. 1186, 434-439.]). In should be noted that the di­chloro­methane sesquisolvate of [Ir(ppz)2(phen)](PF6) (JUPTIZ) was obtained by reacting [Ir(μ-Cl)(ppz)2]2 with 1,10-phenanthroline under microwave irradiation for 30 min. at 373 K (Howarth et al., 2015[Howarth, A. J., Majewski, M. B., Brown, C. M., Lelj, F., Wolf, M. O. & Patrick, B. O. (2015). Dalton Trans. 44, 16272-16279.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The contribution of the missing solvent mol­ecules to the diffraction pattern was subtracted from the reflection data by the SQUEEZE method (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The solvent-accessible volume in the structure of the title compound as calculated by PLATON is 1136.1 Å3 (17.7%).

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C9H7N2)2(C12H8N2)]PF6
Mr 803.70
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 14.976 (3), 22.818 (5), 18.850 (4)
β (°) 95.98 (3)
V3) 6406 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.28
Crystal size (mm) 0.25 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 29484, 6280, 5077
Rint 0.039
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.11
No. of reflections 6280
No. of parameters 397
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −0.96
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and DIAMOND (Brandenburg & Putz, 2016[Brandenburg, K. & Putz, H. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020) and DIAMOND (Brandenburg & Putz, 2016); software used to prepare material for publication: publCIF (Westrip, 2010).

(1,10-Phenanthroline-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate top
Crystal data top
[Ir(C9H7N2)2(C12H8N2)]PF6F(000) = 3120
Mr = 803.70Dx = 1.667 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.976 (3) ÅCell parameters from 10866 reflections
b = 22.818 (5) Åθ = 3.0–26.0°
c = 18.850 (4) ŵ = 4.28 mm1
β = 95.98 (3)°T = 293 K
V = 6406 (2) Å3Block, red
Z = 80.25 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
5077 reflections with I > 2σ(I)
phi and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.0°, θmin = 3.0°
h = 1518
29484 measured reflectionsk = 2825
6280 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0321P)2 + 39.6215P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
6280 reflectionsΔρmax = 1.25 e Å3
397 parametersΔρmin = 0.96 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.25544 (2)0.00046 (2)0.00566 (2)0.02570 (9)
N10.3343 (3)0.06189 (18)0.0705 (2)0.0289 (10)
N20.1946 (3)0.00380 (17)0.1030 (2)0.0254 (9)
N30.3270 (3)0.07374 (19)0.0323 (2)0.0289 (10)
N40.2938 (3)0.12375 (18)0.0004 (2)0.0317 (10)
N50.1815 (3)0.06810 (19)0.0356 (2)0.0323 (10)
N60.2036 (3)0.08734 (19)0.1000 (2)0.0362 (11)
C10.4018 (4)0.0938 (2)0.0528 (3)0.0362 (13)
H1A0.42370.08710.00910.043*
C20.4418 (4)0.1377 (3)0.0976 (3)0.0416 (14)
H2A0.48880.15980.08310.050*
C30.4118 (4)0.1478 (2)0.1623 (3)0.0397 (14)
H3A0.43860.17640.19260.048*
C40.3391 (4)0.1142 (2)0.1827 (3)0.0348 (12)
C50.3015 (4)0.1213 (3)0.2491 (3)0.0408 (14)
H5A0.32500.14980.28110.049*
C60.2328 (4)0.0877 (2)0.2662 (3)0.0378 (13)
H6A0.21010.09300.30990.045*
C70.1946 (3)0.0440 (2)0.2182 (3)0.0296 (11)
C80.1236 (4)0.0068 (2)0.2333 (3)0.0334 (12)
H8A0.09890.01010.27640.040*
C90.0914 (4)0.0341 (2)0.1843 (3)0.0326 (12)
H9A0.04500.05890.19400.039*
C100.1287 (3)0.0384 (2)0.1192 (3)0.0300 (11)
H10A0.10630.06650.08630.036*
C110.2288 (3)0.0364 (2)0.1529 (2)0.0264 (11)
C120.3025 (3)0.0718 (2)0.1349 (3)0.0277 (11)
C130.4046 (4)0.0891 (3)0.0694 (3)0.0367 (13)
H13A0.44220.06380.09730.044*
C140.4207 (4)0.1483 (3)0.0602 (3)0.0445 (15)
H14A0.46980.16970.08050.053*
C150.3503 (4)0.1691 (3)0.0154 (3)0.0417 (14)
H15A0.34260.20730.00110.050*
C160.2090 (4)0.1185 (2)0.0414 (3)0.0302 (12)
C170.1642 (4)0.1663 (3)0.0724 (3)0.0422 (14)
H17A0.18920.20360.06790.051*
C180.0812 (4)0.1576 (3)0.1106 (3)0.0465 (16)
H18A0.04980.18920.13200.056*
C190.0454 (4)0.1023 (3)0.1166 (3)0.0426 (14)
H19A0.01030.09660.14240.051*
C200.0912 (4)0.0547 (2)0.0845 (3)0.0332 (12)
H20A0.06530.01760.08870.040*
C210.1757 (3)0.0614 (2)0.0458 (3)0.0287 (11)
C220.1125 (4)0.0995 (3)0.0200 (3)0.0428 (14)
H22A0.08400.09540.02130.051*
C230.0886 (4)0.1395 (3)0.0738 (4)0.0528 (17)
H23A0.04210.16660.07570.063*
C240.1476 (5)0.1307 (3)0.1235 (3)0.0515 (17)
H24A0.14870.15110.16610.062*
C250.2783 (4)0.0599 (2)0.1271 (3)0.0358 (13)
C260.3100 (4)0.0767 (3)0.1898 (3)0.0478 (16)
H26A0.28330.10770.21630.057*
C270.3814 (5)0.0474 (3)0.2130 (3)0.0514 (17)
H27A0.40390.05860.25510.062*
C280.4198 (5)0.0012 (3)0.1737 (3)0.0514 (17)
H28A0.46800.01880.18960.062*
C290.3863 (4)0.0159 (3)0.1097 (3)0.0371 (13)
H29A0.41280.04720.08390.045*
C300.3144 (4)0.0132 (2)0.0845 (3)0.0308 (12)
P10.35528 (11)0.28676 (7)0.33205 (8)0.0404 (4)
F10.3359 (4)0.2677 (2)0.2511 (2)0.105 (2)
F20.3773 (4)0.3061 (2)0.4122 (2)0.0877 (15)
F30.4239 (4)0.3339 (2)0.3101 (3)0.0978 (17)
F40.2835 (5)0.2436 (3)0.3520 (4)0.152 (3)
F50.2829 (4)0.3381 (3)0.3221 (4)0.140 (2)
F60.4276 (5)0.2399 (3)0.3409 (3)0.147 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02768 (12)0.02890 (14)0.02103 (12)0.00258 (8)0.00499 (8)0.00069 (8)
N10.029 (2)0.029 (2)0.028 (2)0.0065 (19)0.0014 (19)0.0035 (18)
N20.026 (2)0.026 (2)0.024 (2)0.0003 (17)0.0036 (17)0.0014 (17)
N30.033 (2)0.034 (2)0.022 (2)0.0015 (19)0.0107 (19)0.0002 (18)
N40.042 (3)0.029 (2)0.025 (2)0.001 (2)0.008 (2)0.0023 (18)
N50.036 (3)0.029 (2)0.031 (2)0.005 (2)0.002 (2)0.0001 (19)
N60.042 (3)0.037 (3)0.029 (2)0.006 (2)0.000 (2)0.010 (2)
C10.040 (3)0.037 (3)0.032 (3)0.010 (3)0.004 (2)0.001 (2)
C20.037 (3)0.046 (4)0.042 (4)0.012 (3)0.005 (3)0.000 (3)
C30.040 (3)0.042 (3)0.035 (3)0.010 (3)0.005 (3)0.008 (3)
C40.039 (3)0.037 (3)0.028 (3)0.005 (2)0.000 (2)0.003 (2)
C50.053 (4)0.043 (3)0.026 (3)0.005 (3)0.002 (3)0.004 (2)
C60.043 (3)0.046 (3)0.026 (3)0.004 (3)0.008 (2)0.003 (2)
C70.033 (3)0.031 (3)0.024 (3)0.004 (2)0.003 (2)0.001 (2)
C80.037 (3)0.041 (3)0.023 (3)0.002 (2)0.013 (2)0.007 (2)
C90.035 (3)0.037 (3)0.027 (3)0.000 (2)0.009 (2)0.001 (2)
C100.031 (3)0.030 (3)0.029 (3)0.003 (2)0.007 (2)0.003 (2)
C110.031 (3)0.029 (3)0.019 (2)0.000 (2)0.000 (2)0.001 (2)
C120.027 (3)0.034 (3)0.022 (3)0.001 (2)0.001 (2)0.001 (2)
C130.029 (3)0.052 (4)0.029 (3)0.000 (3)0.001 (2)0.007 (3)
C140.047 (4)0.045 (4)0.042 (4)0.014 (3)0.008 (3)0.014 (3)
C150.055 (4)0.034 (3)0.038 (3)0.007 (3)0.014 (3)0.008 (3)
C160.039 (3)0.033 (3)0.019 (3)0.005 (2)0.006 (2)0.002 (2)
C170.065 (4)0.035 (3)0.027 (3)0.008 (3)0.009 (3)0.000 (2)
C180.059 (4)0.046 (4)0.033 (3)0.028 (3)0.000 (3)0.005 (3)
C190.041 (3)0.057 (4)0.029 (3)0.014 (3)0.000 (3)0.002 (3)
C200.034 (3)0.043 (3)0.022 (3)0.008 (2)0.005 (2)0.001 (2)
C210.034 (3)0.035 (3)0.019 (2)0.009 (2)0.010 (2)0.000 (2)
C220.033 (3)0.044 (3)0.051 (4)0.010 (3)0.004 (3)0.001 (3)
C230.042 (4)0.051 (4)0.063 (5)0.007 (3)0.009 (3)0.011 (3)
C240.062 (4)0.045 (4)0.044 (4)0.001 (3)0.011 (3)0.018 (3)
C250.038 (3)0.041 (3)0.028 (3)0.007 (3)0.001 (2)0.002 (2)
C260.061 (4)0.047 (4)0.035 (3)0.019 (3)0.004 (3)0.011 (3)
C270.058 (4)0.071 (5)0.028 (3)0.026 (4)0.016 (3)0.002 (3)
C280.051 (4)0.072 (5)0.033 (3)0.017 (3)0.015 (3)0.009 (3)
C290.038 (3)0.050 (3)0.025 (3)0.008 (3)0.012 (2)0.005 (2)
C300.032 (3)0.044 (3)0.017 (2)0.012 (2)0.004 (2)0.004 (2)
P10.0506 (9)0.0377 (8)0.0325 (8)0.0028 (7)0.0030 (7)0.0021 (6)
F10.163 (5)0.105 (4)0.041 (3)0.067 (4)0.014 (3)0.005 (2)
F20.127 (4)0.095 (3)0.041 (2)0.017 (3)0.009 (2)0.019 (2)
F30.128 (4)0.083 (3)0.086 (3)0.054 (3)0.027 (3)0.018 (3)
F40.198 (7)0.158 (6)0.116 (5)0.125 (5)0.084 (5)0.035 (4)
F50.103 (4)0.108 (4)0.200 (7)0.049 (4)0.023 (4)0.011 (4)
F60.183 (7)0.146 (5)0.104 (5)0.135 (5)0.024 (4)0.014 (4)
Geometric parameters (Å, º) top
Ir1—C212.016 (5)C11—C121.437 (7)
Ir1—C302.019 (5)C13—C141.388 (8)
Ir1—N32.021 (4)C13—H13A0.9300
Ir1—N52.025 (4)C14—C151.365 (9)
Ir1—N22.133 (4)C14—H14A0.9300
Ir1—N12.148 (4)C15—H15A0.9300
N1—C11.317 (7)C16—C171.378 (7)
N1—C121.367 (6)C16—C211.394 (7)
N2—C101.324 (6)C17—C181.383 (9)
N2—C111.374 (6)C17—H17A0.9300
N3—C131.339 (7)C18—C191.370 (9)
N3—N41.366 (6)C18—H18A0.9300
N4—C151.349 (7)C19—C201.390 (8)
N4—C161.420 (7)C19—H19A0.9300
N5—C221.315 (7)C20—C211.401 (7)
N5—N61.364 (6)C20—H20A0.9300
N6—C241.341 (7)C22—C231.383 (8)
N6—C251.422 (7)C22—H22A0.9300
C1—C21.402 (8)C23—C241.369 (9)
C1—H1A0.9300C23—H23A0.9300
C2—C31.364 (8)C24—H24A0.9300
C2—H2A0.9300C25—C261.374 (8)
C3—C41.418 (8)C25—C301.408 (8)
C3—H3A0.9300C26—C271.372 (9)
C4—C121.395 (7)C26—H26A0.9300
C4—C51.434 (8)C27—C281.378 (9)
C5—C61.350 (8)C27—H27A0.9300
C5—H5A0.9300C28—C291.409 (8)
C6—C71.425 (7)C28—H28A0.9300
C6—H6A0.9300C29—C301.391 (8)
C7—C111.393 (7)C29—H29A0.9300
C7—C81.413 (7)P1—F61.520 (5)
C8—C91.364 (7)P1—F41.534 (5)
C8—H8A0.9300P1—F31.572 (5)
C9—C101.404 (7)P1—F21.575 (4)
C9—H9A0.9300P1—F11.584 (5)
C10—H10A0.9300P1—F51.593 (5)
C21—Ir1—C3089.44 (19)N3—C13—C14110.0 (5)
C21—Ir1—N379.7 (2)N3—C13—H13A125.0
C30—Ir1—N394.0 (2)C14—C13—H13A125.0
C21—Ir1—N594.3 (2)C15—C14—C13106.3 (5)
C30—Ir1—N580.0 (2)C15—C14—H14A126.8
N3—Ir1—N5171.64 (16)C13—C14—H14A126.8
C21—Ir1—N296.00 (17)N4—C15—C14107.3 (5)
C30—Ir1—N2173.09 (18)N4—C15—H15A126.3
N3—Ir1—N291.16 (15)C14—C15—H15A126.3
N5—Ir1—N295.29 (16)C17—C16—C21123.9 (5)
C21—Ir1—N1173.97 (17)C17—C16—N4122.2 (5)
C30—Ir1—N196.56 (18)C21—C16—N4114.0 (4)
N3—Ir1—N199.24 (17)C16—C17—C18118.6 (6)
N5—Ir1—N187.33 (17)C16—C17—H17A120.7
N2—Ir1—N178.06 (15)C18—C17—H17A120.7
C1—N1—C12118.8 (4)C19—C18—C17119.8 (5)
C1—N1—Ir1127.8 (4)C19—C18—H18A120.1
C12—N1—Ir1113.1 (3)C17—C18—H18A120.1
C10—N2—C11118.2 (4)C18—C19—C20120.9 (6)
C10—N2—Ir1128.0 (3)C18—C19—H19A119.6
C11—N2—Ir1113.8 (3)C20—C19—H19A119.6
C13—N3—N4105.8 (4)C19—C20—C21121.2 (5)
C13—N3—Ir1139.0 (4)C19—C20—H20A119.4
N4—N3—Ir1114.8 (3)C21—C20—H20A119.4
C15—N4—N3110.5 (5)C16—C21—C20115.7 (5)
C15—N4—C16133.6 (5)C16—C21—Ir1115.2 (4)
N3—N4—C16116.0 (4)C20—C21—Ir1129.2 (4)
C22—N5—N6107.0 (5)N5—C22—C23110.2 (6)
C22—N5—Ir1138.2 (4)N5—C22—H22A124.9
N6—N5—Ir1114.6 (3)C23—C22—H22A124.9
C24—N6—N5109.3 (5)C24—C23—C22105.6 (6)
C24—N6—C25133.9 (5)C24—C23—H23A127.2
N5—N6—C25116.8 (4)C22—C23—H23A127.2
N1—C1—C2122.2 (5)N6—C24—C23107.9 (5)
N1—C1—H1A118.9N6—C24—H24A126.0
C2—C1—H1A118.9C23—C24—H24A126.0
C3—C2—C1120.0 (5)C26—C25—C30123.7 (6)
C3—C2—H2A120.0C26—C25—N6122.8 (5)
C1—C2—H2A120.0C30—C25—N6113.4 (5)
C2—C3—C4119.0 (5)C27—C26—C25119.2 (6)
C2—C3—H3A120.5C27—C26—H26A120.4
C4—C3—H3A120.5C25—C26—H26A120.4
C12—C4—C3117.5 (5)C26—C27—C28119.9 (6)
C12—C4—C5118.6 (5)C26—C27—H27A120.1
C3—C4—C5123.9 (5)C28—C27—H27A120.1
C6—C5—C4121.5 (5)C27—C28—C29120.4 (6)
C6—C5—H5A119.2C27—C28—H28A119.8
C4—C5—H5A119.2C29—C28—H28A119.8
C5—C6—C7120.7 (5)C30—C29—C28121.1 (6)
C5—C6—H6A119.6C30—C29—H29A119.4
C7—C6—H6A119.6C28—C29—H29A119.4
C11—C7—C8117.1 (5)C29—C30—C25115.6 (5)
C11—C7—C6119.3 (5)C29—C30—Ir1129.5 (4)
C8—C7—C6123.6 (5)C25—C30—Ir1114.9 (4)
C9—C8—C7119.7 (5)F6—P1—F491.8 (5)
C9—C8—H8A120.2F6—P1—F391.8 (4)
C7—C8—H8A120.2F4—P1—F3176.4 (4)
C8—C9—C10119.6 (5)F6—P1—F291.0 (3)
C8—C9—H9A120.2F4—P1—F291.5 (3)
C10—C9—H9A120.2F3—P1—F289.1 (3)
N2—C10—C9122.3 (5)F6—P1—F188.2 (3)
N2—C10—H10A118.9F4—P1—F189.8 (3)
C9—C10—H10A118.9F3—P1—F189.6 (3)
N2—C11—C7122.9 (5)F2—P1—F1178.4 (3)
N2—C11—C12117.0 (4)F6—P1—F5177.3 (4)
C7—C11—C12120.0 (4)F4—P1—F590.9 (4)
N1—C12—C4122.5 (5)F3—P1—F585.5 (3)
N1—C12—C11117.7 (4)F2—P1—F588.8 (3)
C4—C12—C11119.8 (4)F1—P1—F592.0 (4)
C13—N3—N4—C150.8 (5)C7—C11—C12—C40.5 (7)
Ir1—N3—N4—C15174.3 (3)N4—N3—C13—C140.2 (6)
C13—N3—N4—C16177.8 (4)Ir1—N3—C13—C14173.0 (4)
Ir1—N3—N4—C167.1 (5)N3—C13—C14—C150.4 (6)
C22—N5—N6—C240.0 (6)N3—N4—C15—C141.0 (6)
Ir1—N5—N6—C24177.0 (4)C16—N4—C15—C14177.2 (5)
C22—N5—N6—C25178.9 (5)C13—C14—C15—N40.9 (6)
Ir1—N5—N6—C254.1 (6)C15—N4—C16—C173.6 (9)
C12—N1—C1—C20.2 (8)N3—N4—C16—C17174.6 (5)
Ir1—N1—C1—C2173.0 (4)C15—N4—C16—C21177.5 (5)
N1—C1—C2—C30.9 (9)N3—N4—C16—C214.3 (6)
C1—C2—C3—C41.0 (9)C21—C16—C17—C180.2 (8)
C2—C3—C4—C120.4 (8)N4—C16—C17—C18179.0 (5)
C2—C3—C4—C5179.5 (6)C16—C17—C18—C190.1 (8)
C12—C4—C5—C60.8 (9)C17—C18—C19—C200.3 (9)
C3—C4—C5—C6179.3 (6)C18—C19—C20—C210.8 (8)
C4—C5—C6—C70.6 (9)C17—C16—C21—C200.3 (7)
C5—C6—C7—C110.1 (8)N4—C16—C21—C20178.6 (4)
C5—C6—C7—C8179.0 (5)C17—C16—C21—Ir1179.4 (4)
C11—C7—C8—C90.5 (8)N4—C16—C21—Ir10.5 (5)
C6—C7—C8—C9179.6 (5)C19—C20—C21—C160.8 (7)
C7—C8—C9—C100.5 (8)C19—C20—C21—Ir1179.8 (4)
C11—N2—C10—C91.9 (7)N6—N5—C22—C230.1 (7)
Ir1—N2—C10—C9176.7 (4)Ir1—N5—C22—C23175.8 (4)
C8—C9—C10—N20.2 (8)N5—C22—C23—C240.1 (7)
C10—N2—C11—C73.0 (7)N5—N6—C24—C230.1 (7)
Ir1—N2—C11—C7175.8 (4)C25—N6—C24—C23178.8 (6)
C10—N2—C11—C12177.8 (4)C22—C23—C24—N60.1 (7)
Ir1—N2—C11—C123.4 (5)C24—N6—C25—C261.4 (10)
C8—C7—C11—N22.3 (7)N5—N6—C25—C26177.2 (5)
C6—C7—C11—N2178.5 (5)C24—N6—C25—C30176.9 (6)
C8—C7—C11—C12178.5 (5)N5—N6—C25—C304.5 (7)
C6—C7—C11—C120.7 (8)C30—C25—C26—C270.7 (9)
C1—N1—C12—C40.5 (8)N6—C25—C26—C27178.9 (5)
Ir1—N1—C12—C4174.6 (4)C25—C26—C27—C280.7 (9)
C1—N1—C12—C11180.0 (5)C26—C27—C28—C290.3 (9)
Ir1—N1—C12—C115.9 (6)C27—C28—C29—C300.2 (9)
C3—C4—C12—N10.3 (8)C28—C29—C30—C250.2 (8)
C5—C4—C12—N1179.8 (5)C28—C29—C30—Ir1178.3 (4)
C3—C4—C12—C11179.9 (5)C26—C25—C30—C290.2 (8)
C5—C4—C12—C110.2 (8)N6—C25—C30—C29178.5 (5)
N2—C11—C12—N11.7 (7)C26—C25—C30—Ir1179.0 (4)
C7—C11—C12—N1179.1 (5)N6—C25—C30—Ir12.7 (6)
N2—C11—C12—C4178.7 (5)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg9 are the centroids of rings N3/N4/C15–C13 and C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···F6i0.932.573.184 (7)124
C9—H9A···F3ii0.932.493.024 (7)117
C17—H17A···F4iii0.932.362.977 (8)124
C23—H23A···F2iv0.932.533.383 (8)152
C24—H24A···F1v0.932.483.368 (8)161
C26—H26A···F5v0.932.473.348 (9)158
C6—H6A···Cg9vi0.932.583.501 (6)173
C29—H29A···Cg40.932.983.688 (7)134
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 51602130).

References

First citationAdamovich, V., Boudreault, P. T., Esteruelas, M. A., Gómez-Bautista, D., López, A. M., Oñate, E. & Tsai, J. Y. (2019). Organometallics, 38, 2738–2747.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. Q., Bian, Z. Q. & Huang, C. H. (2010). Adv. Mater. 22, 1534–1539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChoy, W. C. H., Chan, W. K. & Yuan, Y. (2014). Adv. Mater. 26, 5368–5399.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCongrave, D. G., Hsu, Y. T., Batsanov, A. S., Beeby, A. & Bryce, M. R. (2017). Organometallics, 36, 981–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlamigni, L., Collin, J. P. & Sauvage, J. P. (2008). Acc. Chem. Res. 41, 857–871.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoswami, S., Sengupta, D., Paul, N. D., Mondal, T. K. & Goswami, S. (2014). Chem. Eur. J. 20, 6103–6111.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHowarth, A. J., Majewski, M. B., Brown, C. M., Lelj, F., Wolf, M. O. & Patrick, B. O. (2015). Dalton Trans. 44, 16272–16279.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKwon, T. H., Cho, H. S., Kim, M. K., Kim, J. W., Kim, J. J., Lee, K. H., Park, S. J., Shin, I. S., Kim, H., Shin, D. M., Chung, Y. K. & Hong, J. I. (2005). Organometallics, 24, 1578–1585.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F., Zhang, B., Li, X., Jiang, Y., Chen, L., Li, Y. & Sun, L. (2011). Angew. Chem. Int. Ed. 50, 12276–12279.  Web of Science CrossRef CAS Google Scholar
First citationLiu, B., Monro, S., Lystrom, L., Cameron, C. G., Colón, K., Yin, H., Kilina, S., McFarland, S. A. & Sun, W. (2018). Inorg. Chem. 57, 7122–7131.  Google Scholar
First citationNie, Q. Y., Qian, J. & Zhang, C. (2019). J. Mol. Struct. 1186, 434–439.  Web of Science CSD CrossRef CAS Google Scholar
First citationRadwan, Y. K., Maity, A. & Teets, T. S. (2015). Inorg. Chem. 54, 7122–7131.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSajoto, T., Djurovich, P. I., Tamayo, A., Yousufuddin, M., Bau, R., Thompson, M. E., Holmes, R. J. & Forrest, S. R. (2005). Inorg. Chem. 44, 7992–8003.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchlegel, H. B. & Skancke, A. (1993). J. Am. Chem. Soc. 115, 7465–7471.  CrossRef CAS Web of Science Google Scholar
First citationShan, G. G., Li, H. B., Cao, H. T., Zhu, D. X., Su, Z. M. & Liao, Y. (2012). J. Organomet. Chem. 713, 20–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Q., Li, F. Y. & Huang, C. H. (2010). Chem. Soc. Rev. 39, 3007–3030.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds