research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a cadmium sulfate coordination polymer based on the 3,6-bis­­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine ligand

CROSSMARK_Color_square_no_text.svg

aThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology,, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 February 2020; accepted 20 May 2020; online 29 May 2020)

The polymeric title compound, poly[aqua­hemi[μ2-3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine](μ3-sulfato)­cadmium(II)], [Cd(SO4)(C10H8N8)0.5(H2O)]n, (I), represents an example of a three-dimensional coordination polymer resulting from the reaction of CdSO4·8/3H2O with 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine (H2bmtz, C10H8N8) under hydro­thermal conditions. The CdII atom has a distorted octa­hedral coordination environment defined by two nitro­gen atoms from one H2bmtz ligand, three oxygen atoms from three different sulfate anions, and one oxygen atom from a coordinating water mol­ecule. The 1,4-di­hydro-1,2,4,5-tetra­zine ring of the H2bmtz ligand is located about an inversion center, with the NH group being equally disordered over two sites. The sulfate anion acts as a μ3-bridging ligand to connect three CdII atoms, resulting in the formation of [Cd(SO4)(H2O)] sheets propagating parallel to the bc plane. Adjacent sheets are inter­connected across the H2bmtz ligands, which coordinate the CdII atoms in a bis-bidentate coordination mode, to form a three-dimensional framework structure. The framework is further stabilized by classical O—H⋯O hydrogen bonds involving the coordinating water mol­ecules and the sulfate groups, and by N—H⋯O hydrogen bonds between the disordered tetra­zine NH groups and sulfate oxygen atom, along with C—H⋯π and ππ stacking [centroid-to-centroid separation = 3.5954 (15) Å] inter­actions between parallel pyrimidine rings of the H2bmtz ligand.

1. Chemical context

Coordination polymers (CPs) are a class of organic–inorganic hybrid materials formed from metal ions or metal clusters and organic linkers through covalent bonds. The structural organization of CPs can result in chains, sheets or three-dimensional frameworks (Batten et al., 2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination polymers: Design, analysis and application. UK: The Royal Society of Chemistry.]). These hybrid materials have received extensive attention over the past three decades owing to their structural features and useful applications in the fields of gas storage and separation, catalysis, chemical sensing, magnetism or proton conduction (Furukawa et al., 2010[Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. Ö., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329, 424-428.]; Ye & Johnson, 2016[Ye, J. & Johnson, J. K. (2016). Catal. Sci. Technol. 6, 8392-8405.]; Espallargas & Coronado, 2018[Espallargas, G. M. & Coronado, E. (2018). Chem. Soc. Rev. 47, 533-557.]; Xu et al., 2016[Xu, H., Gao, J., Qian, X., Wang, J., He, H., Cui, Y., Yang, Y., Wang, Z. & Qian, G. (2016). J. Mater. Chem. A, 4, 10900-10905.]; Zhang et al., 2017[Zhang, F.-M., Dong, L.-Z., Qin, J.-S., Guan, W., Liu, J., Li, S.-L., Lu, M., Lan, Y.-Q., Su, Z.-M. & Zhou, H.-C. (2017). J. Am. Chem. Soc. 139, 6183-6189.]). Nowadays, many multi-dimensional CPs with structural and topological diversity have been synthesized through the tremendous possibilities of choices for building blocks, and some of them seem promising as candidate materials, for instance, in gas purification (Duan et al., 2015[Duan, J., Jin, W. & Krishna, R. (2015). Inorg. Chem. 54, 4279-4284.]). In the context of the crystal engineering of CPs, the most feasible strategy for the construction of such infinite hybrid networks is by the careful selection of metal coordin­ation arrangements and suitable organic linkers. Among the most common ligands, the rigid organic carboxyl­ate- and pyridyl-based ligands have by far been the most widely used to control the structural motifs of these solids (Glöckle et al., 2001[Glöckle, M., Hübler, K., Kümmerer, H.-J., Denninger, G. & Kaim, W. (2001). Inorg. Chem. 40, 2263-2269.]).

[Scheme 1]

In this work, to explore the synthesis of novel CPs using 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine, C10H8N8 or H2bmtz (Kaim & Fees, 1995[Kaim, W. & Fees, J. (1995). Z. Naturforsch. B: Chem. Sci. 50, 123-127.]; Chainok et al., 2012[Chainok, K., Neville, S. M., Forsyth, C. M., Gee, W. J., Murray, K. S. & Batten, S. R. (2012). CrystEngComm, 14, 3717-3726.]) as a polydentate nitro­gen-donor ligand with cadmium(II) sulfate, a new CP [Cd(SO4)(H2bmtz)0.5(H2O)]n (I) was isolated under hydro­thermal conditions. The crystal structure and supra­molecular inter­actions of (I) are reported herein.

2. Structural commentary

The asymmetric unit of the title compound consists of one CdII cation, one-half of the H2bmtz ligand, one sulfate anion and one coordinating water mol­ecule. The 1,4-di­hydro-1,2,4,5-tetra­zine ring of the H2bmtz ligand is located about an inversion centre, with the NH group (N4) being equally disordered over two sites. As shown in Fig. 1[link], the CdII atom exhibits a distorted octa­hedral [CdN2O4] coordination environment with two nitro­gen atoms from the H2bmtz ligand, three oxygen atoms from three different sulfate anions and one oxygen atom from the coordinating water mol­ecule. The bond angles around the central CdII atom range from 69.69 (5) to 168.46 (5)°. The Cd—O and Cd—N bond lengths fall in the range of 2.2321 (12)–2.3790 (13) Å, which is comparable with those of reported cadmium(II) sulfate compounds containing additional nitro­gen donor ligands such as [Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O (GADLON; Harvey et al., 2003[Harvey, M., Baggio, S., Russi, S. & Baggio, R. (2003). Acta Cryst. C59, m171-m174.]), [Cd2(C2H3O2)2(S2O8)(C15H11N2)2(H2O)2]·7H2O (FOMBUF; Díaz de Vivar et al., 2005[Díaz de Vivar, M. E., Harvey, M. A., Garland, M. T., Baggio, S. & Baggio, R. (2005). Acta Cryst. C61, m240-m244.]) and [Cd2(C15H9N9)(H2O)6(SO4)2]·H2O (DIQCOX; Safin et al., 2013[Safin, D. A., Xu, Y., Korobkov, I., Bryce, D. L. & Murugesu, M. (2013). CrystEngComm, 15, 10419-10422.]). The complete H2bmtz mol­ecule is not planar (r.m.s. deviation = 0.111 Å) with the central six-membered ring of the 1,4-di­hydro-1,2,4,5-tetra­zine moiety in a twist-boat conformation; the C5—N3—N4Ai—C5i torsion angle is 36.4 (4)° [symmetry code: (i) 2 − x, 1 − y, 1 − z]. The sulfate anion acts as a μ3-bridging ligand to connect three CdII atoms to form a sheet-like structure of [Cd(SO4)(H2O)] units, propagating parallel to the bc plane, Fig. 2[link]. Adjacent sheets are inter­connected across the H2bmtz ligands, which exhibit a bis-bidentate coordination mode, giving rise to a three-dimensional framework structure, Fig. 3[link].

[Figure 1]
Figure 1
Mol­ecular structure of (I), showing the atom-labelling scheme. Only one orientation of the disordered N4—H group is shown. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (ii) 1 − x, 1 − y, 1 − z].
[Figure 2]
Figure 2
View of the [Cd(SO4)(H2O)] sheet in (I) propagating parallel to the bc plane. Classical O—H⋯O hydrogen-bonding inter­actions are shown as dashed lines.
[Figure 3]
Figure 3
Packing diagram of (I), showing N—H⋯O hydrogen bonding as dashed lines.

3. Supra­molecular features

In the crystal, classical O—H⋯O hydrogen bonds exist between the coordinating water mol­ecules and the sulfate groups, and N—H⋯O hydrogen bonds involving the disordered tetra­zine NH group and sulfate oxygen atoms. In this way, rings with R11(8) and R44(16) graph-set motifs are formed, Table 1[link]. Additionally, C—H⋯π [H⋯Cg = 3.34 (2) Å; Cg is the centroid of the pyrimidine ring] and ππ stacking [centroid-to-centroid separation = 3.5954 (15) Å, slippage between parallel pyrimidine rings = 1.131 Å] inter­actions between the pyrimidine rings of the H2bmtz ligand are also observed, Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.84 (2) 1.92 (2) 2.710 (2) 159 (2)
O1—H1B⋯O4ii 0.84 (2) 1.91 (2) 2.743 (2) 174 (3)
N4A—H4A⋯O3iii 0.87 (2) 2.09 (2) 2.889 (3) 153 (2)
N4B—H4A⋯O3iii 0.87 (2) 2.09 (2) 2.828 (3) 143 (2)
C2—H2⋯Cg1iv 0.93 3.34 (2) 4.091 (3) 140 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Partial packing diagram of (I), showing C—H⋯π and ππ stacking inter­actions (dashed lines) between the H2bmtz ligands.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, November 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave only two hits for H2bmtz complexes with transition metals ions, viz. with CuI (QORNAM; Glöckle et al., 2001[Glöckle, M., Hübler, K., Kümmerer, H.-J., Denninger, G. & Kaim, W. (2001). Inorg. Chem. 40, 2263-2269.]) and AgI (ZASTAQ; Chainok et al., 2012[Chainok, K., Neville, S. M., Forsyth, C. M., Gee, W. J., Murray, K. S. & Batten, S. R. (2012). CrystEngComm, 14, 3717-3726.]). In these structures, the coordination mode of the H2bmtz ligands is bis-bidentate through nitro­gen atoms.

5. Synthesis and crystallization

All reagents were of analytical grade and were used as received without further purification. The ligand 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine was synthesized according to a literature method (Kaim & Fees, 1995[Kaim, W. & Fees, J. (1995). Z. Naturforsch. B: Chem. Sci. 50, 123-127.]). A mixture solution of CdSO4·8/3H2O (41.7 mg, 0.2 mmol) and the H2bmtz ligand (36.7 mg, 0.1 mmol) in water (5 ml) was added into a 15 ml Teflon-lined reactor, stirred at room temperature for 10 min, sealed in a stainless steel autoclave and placed in an oven. The mixture was heated to 383 K under autogenous pressure for 48 h, and then cooled down to room temperature. After filtration, brown block-shaped crystals were obtained in 80% yield (33.4 mg) based on the cadmium(II) source.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Nitro­gen atom N4 of the 1,4-di­hydro-1,2,4,5-tetra­zine ring was found to be disordered about an inversion centre; restraints (SADI and RIGU with esd 0.001 Å2) were used for its refinement. All hydrogen atoms were found in difference-Fourier maps. H atoms attached to C atoms were refined in the riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms bound to O or N atoms were refined with distance restraints of O—H = 0.84 ± 0.01 Å and N—H = 0.86 ± 0.01 Å and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N), respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Cd(SO4)(C10H8N8)0.5(H2O)]
Mr 346.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.3000 (3), 7.9798 (2), 13.2586 (4)
β (°) 106.872 (1)
V3) 941.60 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.56
Crystal size (mm) 0.28 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.660, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24280, 2357, 2338
Rint 0.020
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.037, 1.12
No. of reflections 2357
No. of parameters 167
No. of restraints 11
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.37
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[aquahemi[µ2-3,6-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine](µ3-sulfato)cadmium(II)] top
Crystal data top
[Cd(SO4)(C10H8N8)0.5(H2O)]F(000) = 672
Mr = 346.60Dx = 2.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3000 (3) ÅCell parameters from 9940 reflections
b = 7.9798 (2) Åθ = 3.4–28.4°
c = 13.2586 (4) ŵ = 2.56 mm1
β = 106.872 (1)°T = 296 K
V = 941.60 (5) Å3Block, brown
Z = 40.28 × 0.24 × 0.18 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
2357 independent reflections
Radiation source: sealed x-ray tube2338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 7.39 pixels mm-1θmax = 28.4°, θmin = 3.2°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.660, Tmax = 0.746l = 1717
24280 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.014 w = 1/[σ2(Fo2) + (0.0176P)2 + 0.6173P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max = 0.002
S = 1.12Δρmax = 0.41 e Å3
2357 reflectionsΔρmin = 0.37 e Å3
167 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
11 restraintsExtinction coefficient: 0.0013 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.61850 (2)0.31497 (2)0.37692 (2)0.01977 (5)
S10.46994 (4)0.71617 (4)0.38900 (3)0.01921 (8)
O10.40176 (15)0.17176 (15)0.34420 (10)0.0290 (2)
H1A0.378 (3)0.170 (3)0.4004 (13)0.046 (7)*
H1B0.408 (3)0.0706 (15)0.329 (2)0.049 (7)*
O20.49134 (16)0.55557 (15)0.34172 (10)0.0389 (3)
O30.61350 (13)0.77844 (18)0.45697 (10)0.0327 (3)
O40.40858 (15)0.83595 (14)0.30158 (9)0.0276 (2)
O50.35993 (14)0.70011 (18)0.44827 (9)0.0338 (3)
N10.81264 (15)0.12667 (17)0.37110 (10)0.0254 (3)
N21.07599 (16)0.1093 (2)0.39678 (13)0.0342 (3)
N30.85731 (15)0.44436 (17)0.44639 (13)0.0321 (3)
N4A1.1157 (3)0.4194 (4)0.4718 (3)0.0326 (6)0.5
H4A1.180 (2)0.345 (3)0.5064 (15)0.070 (9)*
N4B1.1132 (3)0.3849 (4)0.5340 (3)0.0320 (6)0.5
C10.7954 (2)0.0244 (2)0.32666 (14)0.0337 (4)
H10.6998200.0710190.3034630.040*
C20.9168 (2)0.1135 (3)0.31425 (17)0.0427 (4)
H20.9041400.2179070.2816570.051*
C31.0573 (2)0.0420 (3)0.35194 (17)0.0410 (4)
H31.1408800.1005880.3459720.049*
C40.95337 (18)0.18608 (18)0.40350 (13)0.0243 (3)
C50.97378 (19)0.3543 (2)0.45278 (17)0.0354 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01945 (7)0.02157 (7)0.01864 (7)0.00090 (3)0.00607 (4)0.00089 (3)
S10.02314 (16)0.01938 (15)0.01601 (15)0.00267 (12)0.00708 (12)0.00085 (12)
O10.0335 (6)0.0267 (6)0.0300 (6)0.0058 (4)0.0145 (5)0.0068 (4)
O20.0544 (8)0.0226 (6)0.0341 (6)0.0142 (5)0.0042 (6)0.0037 (5)
O30.0235 (5)0.0464 (7)0.0285 (6)0.0025 (5)0.0081 (5)0.0066 (5)
O40.0458 (7)0.0195 (5)0.0182 (5)0.0052 (5)0.0102 (5)0.0032 (4)
O50.0249 (6)0.0580 (8)0.0200 (5)0.0031 (5)0.0090 (4)0.0059 (5)
N10.0235 (6)0.0253 (6)0.0262 (6)0.0015 (5)0.0053 (5)0.0010 (5)
N20.0250 (6)0.0319 (7)0.0456 (8)0.0029 (6)0.0101 (6)0.0042 (6)
N30.0208 (6)0.0213 (6)0.0537 (9)0.0026 (5)0.0101 (6)0.0076 (6)
N4A0.0192 (11)0.0255 (14)0.0529 (19)0.0017 (10)0.0102 (12)0.0135 (14)
N4B0.0227 (12)0.0210 (13)0.0506 (18)0.0004 (10)0.0079 (11)0.0084 (13)
C10.0292 (8)0.0321 (8)0.0356 (9)0.0019 (7)0.0025 (7)0.0077 (7)
C20.0421 (10)0.0341 (9)0.0480 (11)0.0047 (8)0.0067 (8)0.0178 (8)
C30.0331 (9)0.0400 (10)0.0498 (11)0.0091 (8)0.0119 (8)0.0117 (8)
C40.0235 (7)0.0233 (7)0.0262 (7)0.0011 (5)0.0072 (6)0.0009 (5)
C50.0203 (7)0.0228 (7)0.0613 (11)0.0022 (6)0.0087 (7)0.0069 (7)
Geometric parameters (Å, º) top
Cd1—O12.2472 (12)N2—C41.320 (2)
Cd1—O22.2321 (12)N3—N4Aiii1.505 (3)
Cd1—O4i2.3122 (11)N3—N4Biii1.399 (3)
Cd1—O5ii2.2708 (12)N3—C51.282 (2)
Cd1—N12.3674 (13)N4A—H4A0.871 (10)
Cd1—N32.3790 (13)N4A—C51.372 (3)
S1—O21.4653 (12)N4B—H4A0.866 (10)
S1—O31.4640 (12)N4B—C51.445 (3)
S1—O41.4828 (11)C1—H10.9300
S1—O51.4654 (12)C1—C21.384 (3)
O1—H1A0.835 (10)C2—H20.9300
O1—H1B0.839 (10)C2—C31.379 (3)
N1—C11.331 (2)C3—H30.9300
N1—C41.340 (2)C4—C51.481 (2)
N2—C31.335 (2)
O1—Cd1—O4i90.81 (5)C4—N2—C3116.51 (15)
O1—Cd1—O5ii88.77 (5)N4Aiii—N3—Cd1122.32 (13)
O1—Cd1—N1108.71 (5)N4Biii—N3—Cd1127.25 (15)
O1—Cd1—N3168.46 (5)C5—N3—Cd1117.26 (11)
O2—Cd1—O190.34 (5)C5—N3—N4Aiii113.35 (17)
O2—Cd1—O4i80.21 (5)C5—N3—N4Biii114.67 (17)
O2—Cd1—O5ii98.25 (5)N3iii—N4A—H4A99.5 (18)
O2—Cd1—N1154.41 (5)C5—N4A—N3iii110.9 (2)
O2—Cd1—N394.94 (5)C5—N4A—H4A108.3 (19)
O4i—Cd1—N182.54 (5)N3iii—N4B—H4A108.1 (19)
O4i—Cd1—N3100.19 (5)N3iii—N4B—C5112.9 (2)
O5ii—Cd1—O4i178.41 (4)C5—N4B—H4A102.7 (18)
O5ii—Cd1—N199.05 (5)N1—C1—H1119.3
O5ii—Cd1—N380.32 (5)N1—C1—C2121.38 (16)
N1—Cd1—N369.69 (5)C2—C1—H1119.3
O2—S1—O4107.38 (7)C1—C2—H2121.2
O2—S1—O5110.83 (9)C3—C2—C1117.63 (17)
O3—S1—O2110.33 (8)C3—C2—H2121.2
O3—S1—O4109.74 (8)N2—C3—C2121.52 (17)
O3—S1—O5110.69 (7)N2—C3—H3119.2
O5—S1—O4107.78 (7)C2—C3—H3119.2
Cd1—O1—H1A106.8 (18)N1—C4—C5116.76 (14)
Cd1—O1—H1B114.6 (17)N2—C4—N1126.64 (15)
H1A—O1—H1B105 (2)N2—C4—C5116.60 (15)
S1—O2—Cd1142.41 (8)N3—C5—N4A123.30 (19)
S1—O4—Cd1iv131.02 (7)N3—C5—N4B120.8 (2)
S1—O5—Cd1ii133.11 (8)N3—C5—C4118.78 (15)
C1—N1—Cd1126.47 (11)N4A—C5—C4114.68 (18)
C1—N1—C4116.31 (14)N4B—C5—C4117.02 (18)
C4—N1—Cd1116.63 (10)
Cd1—N1—C1—C2170.31 (15)N2—C4—C5—N3169.24 (18)
Cd1—N1—C4—N2172.52 (14)N2—C4—C5—N4A8.9 (3)
Cd1—N1—C4—C58.10 (19)N2—C4—C5—N4B31.3 (3)
Cd1—N3—C5—N4A167.1 (2)N3iii—N4A—C5—N340.7 (4)
Cd1—N3—C5—N4B150.1 (2)N3iii—N4A—C5—C4160.0 (2)
Cd1—N3—C5—C48.5 (2)N3iii—N4B—C5—N338.9 (4)
O2—S1—O4—Cd1iv10.01 (13)N3iii—N4B—C5—C4162.2 (2)
O2—S1—O5—Cd1ii103.95 (11)N4Aiii—N3—C5—N4A41.6 (4)
O3—S1—O2—Cd138.91 (17)N4Aiii—N3—C5—C4159.9 (2)
O3—S1—O4—Cd1iv109.93 (10)N4Biii—N3—C5—N4B39.5 (4)
O3—S1—O5—Cd1ii18.81 (14)N4Biii—N3—C5—C4161.9 (2)
O4—S1—O2—Cd1158.47 (14)C1—N1—C4—N20.8 (3)
O4—S1—O5—Cd1ii138.82 (10)C1—N1—C4—C5179.83 (16)
O5—S1—O2—Cd184.06 (16)C1—C2—C3—N21.5 (3)
O5—S1—O4—Cd1iv129.45 (10)C3—N2—C4—N10.9 (3)
N1—C1—C2—C31.5 (3)C3—N2—C4—C5179.74 (18)
N1—C4—C5—N311.3 (3)C4—N1—C1—C20.5 (3)
N1—C4—C5—N4A171.7 (2)C4—N2—C3—C20.3 (3)
N1—C4—C5—N4B148.1 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.84 (2)1.92 (2)2.710 (2)159 (2)
O1—H1B···O4v0.84 (2)1.91 (2)2.743 (2)174 (3)
N4A—H4A···O3iii0.87 (2)2.09 (2)2.889 (3)153 (2)
N4B—H4A···O3iii0.87 (2)2.09 (2)2.828 (3)143 (2)
C2—H2···Cg1vi0.933.34 (2)4.091 (3)140 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (v) x, y1, z; (vi) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

Funding information

Funding for this research was provided by: Thailand Research Fund (contract No. RSA5780056 to KC); The Research Professional Development Project Under the Science Achievement Scholarship of Thailand (SAST) (award to SJ).

References

First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination polymers: Design, analysis and application. UK: The Royal Society of Chemistry.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChainok, K., Neville, S. M., Forsyth, C. M., Gee, W. J., Murray, K. S. & Batten, S. R. (2012). CrystEngComm, 14, 3717–3726.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíaz de Vivar, M. E., Harvey, M. A., Garland, M. T., Baggio, S. & Baggio, R. (2005). Acta Cryst. C61, m240–m244.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuan, J., Jin, W. & Krishna, R. (2015). Inorg. Chem. 54, 4279–4284.  Google Scholar
First citationEspallargas, G. M. & Coronado, E. (2018). Chem. Soc. Rev. 47, 533–557.  Google Scholar
First citationFurukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. Ö., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329, 424–428.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGlöckle, M., Hübler, K., Kümmerer, H.-J., Denninger, G. & Kaim, W. (2001). Inorg. Chem. 40, 2263–2269.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarvey, M., Baggio, S., Russi, S. & Baggio, R. (2003). Acta Cryst. C59, m171–m174.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaim, W. & Fees, J. (1995). Z. Naturforsch. B: Chem. Sci. 50, 123–127.  Google Scholar
First citationSafin, D. A., Xu, Y., Korobkov, I., Bryce, D. L. & Murugesu, M. (2013). CrystEngComm, 15, 10419–10422.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, H., Gao, J., Qian, X., Wang, J., He, H., Cui, Y., Yang, Y., Wang, Z. & Qian, G. (2016). J. Mater. Chem. A, 4, 10900–10905.  Google Scholar
First citationYe, J. & Johnson, J. K. (2016). Catal. Sci. Technol. 6, 8392–8405.  Google Scholar
First citationZhang, F.-M., Dong, L.-Z., Qin, J.-S., Guan, W., Liu, J., Li, S.-L., Lu, M., Lan, Y.-Q., Su, Z.-M. & Zhou, H.-C. (2017). J. Am. Chem. Soc. 139, 6183–6189.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds