research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of dicaesium strontium hexa­cyanidoferrate(II), Cs2Sr[Fe(CN)6], from laboratory X-ray powder data

CROSSMARK_Color_square_no_text.svg

aCEA, DES, ISEC, DE2D, Univ Montpellier, Marcoule, France, bKazuo Inamori School of Engineering, Alfred University, Alfred, NY, 14802, USA, and cCenter for Hierarchical Waste Form Materials, Columbia, SC, 29208, USA
*Correspondence e-mail: nicolas.massoni@cea.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 April 2020; accepted 18 May 2020; online 22 May 2020)

Ferrocyanides with general formula AIxBIIy[Fe(CN)6], where A and B are cations, are thought to accept many substitutions on the A and B positions. In this communication, the synthesis and crystal structure of Cs2Sr[Fe(CN)6] are reported. The latter was obtained from K2Ba[Fe(CN)6] particles, put in contact with caesium and strontium ions. Hence, a simultaneous ion-exchange mechanism (Cs for K, Sr for Ba) occurs to yield Cs2Sr[Fe(CN)6]. The synthesis protocol shows that K2BaFe(CN)6 particles can be used for the simultaneous trapping of radioactive caesium and strontium nuclides in water streams. Cs2Sr[Fe(CN)6] adopts the cryolite structure type and is isotypic with the known compound Cs2Na[Mn(CN)6] [dicaesium sodium hexa­cyanidomanganate(III)]. The octa­hedrally coordinated Sr and Fe sites both are located on inversion centres, and the eightfold-coordinated Cs site on a general position.

1. Chemical context

Ferrocyanides (FCN), such as Prussian blue, were discovered almost 300 years ago. The attractive properties of these materials for batteries and decontamination processes have ensured that FCNs remain an active research topic (Haas, 1993[Haas, P. A. (1993). Sep. Sci. Technol. 28, 2479-2506.]; Paolella et al., 2017[Paolella, A., Faure, C., Timoshevskii, V., Marras, S., Bertoni, G., Guerfi, A., Vijh, A., Armand, M. & Zaghib, K. (2017). J. Mater. Chem. A, 5, 18919-18932.]). In particular, potassium copper FCN is currently being investigated for the purification of 137Cs-contaminated water streams through partial exchange with potassium (Haas, 1993[Haas, P. A. (1993). Sep. Sci. Technol. 28, 2479-2506.]; Mimura et al., 1997[Mimura, H., Lehto, J. & Harjula, R. (1997). J. Nucl. Sci. Technol. 34, 484-489.]). To the best of our knowledge, however, using FCNs to extract strontium either alone or with caesium has never been considered before. In the framework of the Center for Hierarchical Waste Forms (CHWM), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, we have been working on potassium copper FCN as an efficient K-ionic exchanger to capture 137Cs and serve as a waste containment matrix (zur Loye et al., 2018[Loye, H. C. zur, Besmann, T., Amoroso, J., Brinkman, K., Grandjean, A., Henager, C. H., Hu, S., Misture, S. T., Phillpot, S. R., Shustova, N. B., Wang, H., Koch, R. J., Morrison, G. & Dolgopolova, E. (2018). Chem. Mater. 30, 4475-4488.]). In this context, we have synthesized a cesium strontium FCN to study its efficiency in immobilizing both 90Sr and 137Cs, two radionuclides that are in most cases found together in radioactive water streams. Caesium strontium FCNs appear to be poorly described in the ICDD 2020 PDF4+ powder diffraction database (Gates-Rector & Blanton, 2019[Gates-Rector, S. & Blanton, T. (2019). Powder Diffr. 34, 352-360.]). Since the synthesized phase Cs2Sr[Fe(CN)6] did not match with existing entries, we decided to characterize the structure and we report the results herein.

2. Structural commentary

Cs2Sr[Fe(CN)6] is isotypic with Cs2Na[Mn(CN)6] (Ziegler et al., 1989[Ziegler, B., Haegele, R. & Babel, D. (1989). Z. Naturforsch. B, 44, 896-902.]). As shown in Table 1[link], the lattice parameters of Cs2Sr[Fe(CN)6] are slightly greater than those of Cs2Na[Mn(CN)6], but the cell volumes differ by less than 0.3%. The crystal structure adopts the cryolite structure type and comprises a framework of corner-sharing [Sr(CN)6] (dark green in Fig. 1[link]) and [Fe(CN)6] octa­hedra (brown in Fig. 1[link]). Both types of octa­hedra exhibit site symmetry [\overline{1}], with Sr situated on Wyckoff position 2 c, and Fe on 2 a. In the voids of this framework, Cs sites (light green in Fig. 1[link]) have a distorted square-anti­prismatic environment with four C and four N atoms as ligands. The substitution of manganese by iron in Cs2Na[Mn(CN)6] can be explained by the similar ionic radii of the two elements: rMn(III) = 0.58 Å and rFe(II) = 0.61 Å (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For the substitution of sodium by strontium, the ionic radii differ more substanti­ally: rNa(I) = 1.02 Å and rSr(II) = 1.18 Å. The two crystal structures were compared numerically using COMPSTRU (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]). The structure similarity index Δ was calculated to be 0.009 (Bergerhoff et al., 1999[Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147-156.]). However, since only a few parameters (11) were refined and many parameters kept fixed in the refinement, the similarity index is not reliable.

Table 1
Comparison of lattice parameters (Å, °), selected bond lengths (Å) and volumes (Å3) for Cs2Sr[Fe(CN)6] and Cs2Na[Mn(CN)6]

  Cs2Sr[Fe(CN)6]   Cs2Na[Mn(CN)6]
a, b, c 7.6237 (2), 7.7885 (2), 10.9600 (3) a, b, c 7.597 (1), 7.806 (1), 10.950 (1)
α, β, γ 90, 90.4165 (19), 90 α, β, γ 90, 90.07 (1), 90
V 650.76 (4) V 649.36
       
Cs polyhedron volume* 44.56 Cs polyhedron volume* 44.46
Cs—C1 3.603 (4) Cs—C1 3.6291 (5)
Cs—N1 3.348 (4) Cs—N1 3.3688 (5)
Cs—C1i 3.628 (3) Cs—C1i 3.5936 (5)
Cs—N1i 3.5232 (18) Cs—N1i 3.4920 (5)
Cs—C2ii 3.592 (6) Cs—C2ii 3.5831 (4)
Cs—N2ii 3.367 (6) Cs—N2ii 3.3839 (3)
Cs—C3iii 3.711 (5) Cs—C3iii 3.7044 (4)
Cs—N3iii 3.274 (6) Cs—N3iii 3.2840 (3)
Sr octa­hedron volume* 20.49 Na octa­hedron volume* 20.45
Fe octa­hedron volume* 10.49 Mn octa­hedron volume* 10.47
*Atomic bond lengths were not compared since the positions of C, N, Fe and Sr were not refined. Volumes were calculated by VESTA V3.2.1 (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]). [Symmetry codes: (i) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (ii) x + 1, y, z; (iii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].]
[Figure 1]
Figure 1
Polyhedral plot of the cryolite-type Cs2Sr[Fe(CN)6] crystal structure.

3. Database survey

Ferrocyanides have rather complex structures. The ICDD 2020 PDF4+ database (Gates-Rector & Blanton, 2019[Gates-Rector, S. & Blanton, T. (2019). Powder Diffr. 34, 352-360.]) contains records of about 1521 phases with the general AIxBIIy[Fe(CN)6] ferrocyanide formula in which A and B are cations, with no constraints on the A:B ratio. As shown in Fig. 2[link], the studied sample contained only Cs, Sr, Fe, C and N. Hence, we focused on ferrocyanides with AI = Cs and BII = Sr, for which only three phases have been reported, however with poorly described crystal data. The Cs2Sr[Fe(CN)6] phase studied by Kuznetsov et al. (1970[Kuznetsov, V. G., Popova, Z. V. & Seifer, G. B. (1970). Russ. J. Inorg. Chem. 15, 1084-1088.]) is reported to crystallize in the tetra­gonal crystal system with a ranging from 10.72 to 10.89 Å and c from 10.75 to 10.99 Å (PDF00-024-0293 and PDF00-24-0294). The entry for the third phase (PDF00-048-1203), the hydrated ferrocyanide CsSr[Fe(CN)6]·3H2O reported by Slivko et al. (1988[Slivko, T., Kuligina, T. & Zimina, G. (1988). Russ. J. Inorg. Chem. 33, 1060.]), is comprised only of reflections without further crystal data given. None of these PDF cards matched the X-ray diffraction pattern of the studied sample. As shown in Fig. 2[link]a,b, the cubic crystal habit revealed by SEM measurements hints at a crystal structure with cubic symmetry, but the number of reflections is not consistent with such a highly symmetrical crystal system. The whole pattern can be described by a monoclinic cell and the experimental data are well reproduced by adjusting the reflections from the Cs2Na[Mn(CN)6] phase (Ziegler et al., 1989[Ziegler, B., Haegele, R. & Babel, D. (1989). Z. Naturforsch. B, 44, 896-902.]; PDF 04-012-3126). The Cs2Sr[Fe(CN)6] crystal structure was refined from that of Cs2Na[Mn(CN)6] assuming complete substitution of manganese by iron and sodium by strontium. As described above, the ionic radii of the corresponding metals are close enough for these substitutions to be possible.

[Figure 2]
Figure 2
(a) and (b) SEM-backscattered electron images of Cs2Sr[Fe(CN)6]. (c) EDS spectrum of Cs2Sr[Fe(CN)6].

4. Synthesis and crystallization

All solutions were prepared using Millipore water. Cs2Sr[Fe(CN)6] (Cs2SrHCF) particles were not prepared directly by adding Sr and Cs salts to K4[Fe(CN)6]·3H2O. Although it was found that Cs2SrHCF could be prepared directly by adding aqueous Sr(NO3)2 to a K4[Fe(CN)6]·3H2O/CsNO3 solution, the yield was extremely poor (≤ 1%). Instead, an ion-exchange reaction was initiated by adding a mixed Sr(NO3)2/CsNO3 solution to K2Ba[Fe(CN)6] particles, thereby simultaneously substituting barium for strontium and potassium for cesium. This simple approach, using K2Ba[Fe(CN)6]·2.6H2O (K2BaHCF) as an inter­mediate compound, allowed 1:1 amounts of Cs2SrHCF to be produced from K2BaHCF by ion exchange.

Briefly, the K2BaHCF itself was prepared by adding a 1.5 M solution of Ba(NO3)2 to a 1 M solution of K4[Fe(CN)6]·3H2O as described by Padigi et al. (2015[Padigi, P., Goncher, G., Evans, D. & Solanki, R. (2015). J. Power Sources, 273, 460-464.]). Once prepared, K2BaHCF was collected by centrifugation, washed and dried. Its chemical composition (K, Fe and Ba) and water content, respectively, were determined by inductively coupled plasma (ICP) analysis and thermogravimetric analysis (TGA). The dried K2BaHCF particles redispersed readily in water, producing a clear, slightly yellow dispersion. Cs2SrHCF forms immediately as a milky white precipitate (Fig. 3[link]a) upon adding the mixed CsNO3/Sr(NO3)2 solution to the clear yellow K2BaHCF dispersion. To ensure complete substitution, 2.2 moles of CsNO3 and 1.1 moles of Sr(NO3)2 were added for every mole of K2BaHCF present. After being left to mix for 1 h, the formed Cs2SrHCF was collected by centrifugation, washed and dried. The chemical composition (Fe and Sr) of the powder was determined by ICP analysis while the Cs content was determined by atomic absorption spectroscopy (AAS). An initial characterization of the Cs2SrHCF powder was carried out by TGA, UV–Vis and FT–IR spectroscopy. The UV–Vis spectrum of the Cs2SrHCF (Fig. 3[link]b) confirmed that the [Fe(CN)6] moiety was maintained with only slight decreases in the wavelengths of the various absorption peaks (Gray & Beach, 1963[Gray, H. B. & Beach, N. A. (1963). J. Am. Chem. Soc. 85, 2922-2927.]). The FT–IR spectra of Cs2SrHCF and K2BaHCF are shown in Fig. 3[link]c. While a δ(HOH) signal is observed for K2BaHCF at 1611 cm−1 along with ν(OH) signals at 3527 cm−1 and 3601 cm−1, no such signals were detected for Cs2SrHCF. This absence of water was confirmed by TGA, which showed no mass loss between 30 and 400°C (Fig. S1 in the supporting information. The largest change was in the ν(M—N) stretching mode, which shifted from 421 cm−1 ν(Ba—N) to 439 cm−1 ν(Sr—N) (Fig. 3[link]d).

[Figure 3]
Figure 3
(a) Pictures of a clear yellow K2Ba[Fe(CN)6]·2.6H2O dispersion before (left) and immediately after (right) the addition of Cs/Sr. (b) UV–Vis spectra of K2Ba[Fe(CN)6]·2.6H2O (black) and Cs2Sr[Fe(CN)6] (red). Both spectra show the characteristic features of the [Fe(CN)6] moiety (Gray & Beach, 1963[Gray, H. B. & Beach, N. A. (1963). J. Am. Chem. Soc. 85, 2922-2927.]). (c) FT–IR spectra of K2BaHCF (black) and Cs2SrHCF (red). All peaks shift to higher frequencies after ion exchange. The arrows indicate the δ(HOH) signal at 1611 cm−1 and ν(OH) signals at 3527 cm−1 and 3601 cm−1 observed for K2BaHCF but not for Cs2SrHCF. These signals indicate the presence of structural water, which is common in hexa­cyanidoferrate particles. (d) Enlarged view of the FT–IR spectra in the 400–650 cm−1 range.

5. Refinement

Crystal data and details of the data collection and structure refinement methods are summarized in Table 2[link]. The observed and calculated intensities are shown in Fig. 4[link] along with the difference pattern. For the refinement of Cs2Sr[Fe(CN)6], atomic positions of the Cs2Na[Mn(CN)6] phase (Ziegler et al., 1989[Ziegler, B., Haegele, R. & Babel, D. (1989). Z. Naturforsch. B, 44, 896-902.]) and the given individual isotropic displacement parameters were used. All occupancies were set to unity because of the experimentally determined composition. Except for cesium, all displacement parameters were kept fixed because otherwise some became negative. The positions of the nitro­gen and carbon atoms were also kept fixed. Since iron and strontium atoms are in special positions, only the lattice parameters, the position of the cesium atom and its Uiso value were refined, together with three profile parameters. The residual electron density is about is 6.06 e Å−3 at a distance of 0.71 Å from Cs.

Table 2
Experimental details

Crystal data
Chemical formula Cs2Sr[Fe(CN)6]
Mr 565.4
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.6237 (2), 7.7885 (2), 10.9600 (3)
β (°) 90.4165 (19)
V3) 650.76 (4)
Z 2
Radiation type Cu Kα1, λ = 1.540562, 1.544390 Å
Specimen shape, size (mm) Flat sheet, 25 × 25
 
Data collection
Diffractometer Panalytical XPert MPD Pro
Specimen mounting Packed powder pellet
Data collection mode Reflection
Scan method Step
2θ values (°) 2θmin = 10.023 2θmax = 130.010 2θstep = 0.017
 
Refinement
R factors and goodness of fit Rp = 0.031, Rwp = 0.043, Rexp = 0.025, R(F) = 0.101, χ2 = 2.993
No. of parameters 11
Coordinates from an isotypic compound. Computer programs: Data Collector (Panalytical, 2011[Panalytical (2011). X'Pert Data Collector. PANalytical BV, Almelo, The Netherlands.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
Observed and calculated X-ray powder diffraction intensities for Cs2Sr[Fe(CN)6].

Supporting information


Computing details top

Data collection: Data Collector (Panalytical, 2011); cell refinement: JANA2006 (Petříček et al., 2014); data reduction: JANA2006 (Petříček et al., 2014); program(s) used to solve structure: coordinates from isotypic compound; program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Dicaesium strontium hexacyanidoferrate top
Crystal data top
Cs2Sr[Fe(CN)6]F(000) = 504
Mr = 565.4y
Monoclinic, P21/nDx = 2.885 Mg m3
a = 7.6237 (2) ÅCu Kα1 radiation, λ = 1.540562, 1.544390 Å
b = 7.7885 (2) ÅT = 293 K
c = 10.9600 (3) ÅParticle morphology: plate-like
β = 90.4165 (19)°brown
V = 650.76 (4) Å3flat_sheet, 25 × 25 mm
Z = 2Specimen preparation: Prepared at 1873 K and 100 kPa, cooled at 30 K min1
Data collection top
Panalytical XPert MPD Pro
diffractometer
Data collection mode: reflection
Radiation source: sealed X-ray tubeScan method: step
Specimen mounting: packed powder pellet2θmin = 10.023°, 2θmax = 130.010°, 2θstep = 0.017°
Refinement top
Rp = 0.03111 parameters
Rwp = 0.0430 restraints
Rexp = 0.02526 constraints
R(F) = 0.101Weighting scheme based on measured s.u.'s
6881 data points(Δ/σ)max = 0.012
Profile function: LorentzianBackground function: Manual background
Special details top

Refinement. The Platon test reports 21 Alerts level C. They could be gathered in three groups for explanation :

i)17 C-Alerts (out of 21) are "missing esd on x,y,z coordinates of N and C atoms. This is normal since these positions were not refined. Hence no esd was calculated by Jana2006.

ii)3 C-Alerts (out of 21) are due to a slighlty larger Fourier difference density than allowed by CheckCIF. I can not enhance the quality of the data so no reduction of this value can be done.

iii) The last C-Alert is about a "calc. and reported Sum Formula which differ. I did not find the origin of the Alert.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs0.5080 (4)0.04022 (18)0.2497 (7)0.0410 (6)*
Sr000.50.024*
Fe0000.019*
C10.04880.00870.1780.029*
N10.07540.01690.28090.052*
C20.21280.14440.0220.03*
N20.33470.22960.03680.048*
C30.14490.20970.02510.029*
N30.22810.33010.04060.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs0.0576 (17)0.0343 (13)0.0345 (16)0.016 (4)0.0050 (17)0.008 (4)
Geometric parameters (Å, º) top
Cs—C13.603 (3)Sr—N3i2.4965 (1)
Cs—C1i3.628 (2)Sr—N3vi2.4965 (1)
Cs—N13.348 (3)Fe—C11.9845 (1)
Cs—N1i3.5232 (18)Fe—C1vii1.9845 (1)
Cs—C2ii3.592 (6)Fe—C21.9901 (1)
Cs—N2ii3.367 (6)Fe—C2vii1.9901 (1)
Cs—C3iii3.711 (5)Fe—C31.9920 (1)
Cs—N3iii3.274 (6)Fe—C3vii1.9920 (1)
Sr—N12.4767 (1)C1—N11.1462 (1)
Sr—N1iv2.4767 (1)C2—N21.1543 (1)
Sr—N2v2.4857 (1)C3—N31.1455 (1)
Sr—N2iii2.4857 (1)
Csi—Cs—Csviii89.42 (6)N1—Cs—N3iii111.23 (16)
Csi—Cs—Csix88.75 (4)N1i—Cs—C2ii115.67 (16)
Csi—Cs—Csx178.16 (6)N1i—Cs—N2ii127.6 (2)
Csi—Cs—Csxi94.04 (12)N1i—Cs—C3iii142.4 (2)
Csi—Cs—Csxii93.31 (12)N1i—Cs—N3iii130.34 (17)
Csi—Cs—Sr57.71 (7)C2ii—Cs—N2ii18.74 (3)
Csi—Cs—Srii128.17 (12)C2ii—Cs—C3iii91.10 (5)
Csi—Cs—Sri55.62 (7)C2ii—Cs—N3iii89.11 (6)
Csi—Cs—Srviii125.77 (11)N2ii—Cs—C3iii85.88 (4)
Csi—Cs—C152.06 (4)N2ii—Cs—N3iii89.50 (5)
Csi—Cs—C1i39.87 (4)C3iii—Cs—N3iii17.47 (3)
Csi—Cs—N152.61 (4)Csxiii—Sr—Cs108.15 (11)
Csi—Cs—N1i35.27 (4)Csxiii—Sr—Csi67.33 (6)
Csi—Cs—C2ii135.00 (18)Csxiii—Sr—Csviii71.79 (7)
Csi—Cs—N2ii134.15 (18)Csxiii—Sr—Csiv71.85 (11)
Csi—Cs—C3iii133.13 (17)Csxiii—Sr—Csxii180
Csi—Cs—N3iii135.35 (19)Csxiii—Sr—Csxiv108.21 (7)
Csviii—Cs—Csix178.16 (6)Csxiii—Sr—Csvi112.67 (6)
Csviii—Cs—Csx88.75 (4)Csxiii—Sr—N167.84 (8)
Csviii—Cs—Csxi84.87 (11)Csxiii—Sr—N1iv112.16 (8)
Csviii—Cs—Csxii84.16 (11)Csxiii—Sr—N2v55.97 (3)
Csviii—Cs—Sr51.21 (7)Csxiii—Sr—N2iii124.03 (3)
Csviii—Cs—Srii121.54 (11)Csxiii—Sr—N3i137.39 (4)
Csviii—Cs—Sri123.59 (12)Csxiii—Sr—N3vi42.61 (4)
Csviii—Cs—Srviii53.50 (6)Cs—Sr—Csi68.79 (6)
Csviii—Cs—C140.22 (4)Cs—Sr—Csviii73.18 (7)
Csviii—Cs—C1i126.52 (9)Cs—Sr—Csiv180
Csviii—Cs—N137.42 (4)Cs—Sr—Csxii71.85 (11)
Csviii—Cs—N1i124.14 (8)Cs—Sr—Csxiv106.82 (7)
Csviii—Cs—C2ii98.28 (9)Cs—Sr—Csvi111.21 (6)
Csviii—Cs—N2ii79.54 (8)Cs—Sr—N141.51 (8)
Csviii—Cs—C3iii73.00 (7)Cs—Sr—N1iv138.49 (8)
Csviii—Cs—N3iii90.47 (9)Cs—Sr—N2v105.29 (4)
Csix—Cs—Csx93.09 (6)Cs—Sr—N2iii74.71 (4)
Csix—Cs—Csxi95.39 (13)Cs—Sr—N3i52.52 (6)
Csix—Cs—Csxii95.81 (13)Cs—Sr—N3vi127.48 (6)
Csix—Cs—Sr127.44 (12)Csi—Sr—Csviii109.57 (11)
Csix—Cs—Srii59.69 (7)Csi—Sr—Csiv111.21 (6)
Csix—Cs—Sri55.27 (7)Csi—Sr—Csxii112.67 (6)
Csix—Cs—Srviii127.94 (12)Csi—Sr—Csxiv70.43 (11)
Csix—Cs—C1138.10 (8)Csi—Sr—Csvi180
Csix—Cs—C1i51.68 (4)Csi—Sr—N161.18 (7)
Csix—Cs—N1140.75 (6)Csi—Sr—N1iv118.82 (7)
Csix—Cs—N1i54.06 (4)Csi—Sr—N2v36.60 (5)
Csix—Cs—C2ii83.13 (9)Csi—Sr—N2iii143.40 (5)
Csix—Cs—N2ii101.85 (11)Csi—Sr—N3i70.10 (5)
Csix—Cs—C3iii108.22 (12)Csi—Sr—N3vi109.90 (5)
Csix—Cs—N3iii90.74 (10)Csviii—Sr—Csiv106.82 (7)
Csx—Cs—Csxi85.93 (12)Csviii—Sr—Csxii108.21 (7)
Csx—Cs—Csxii86.37 (12)Csviii—Sr—Csxiv180
Csx—Cs—Sr120.84 (11)Csviii—Sr—Csvi70.43 (11)
Csx—Cs—Srii52.95 (7)Csviii—Sr—N151.05 (8)
Csx—Cs—Sri125.72 (13)Csviii—Sr—N1iv128.95 (8)
Csx—Cs—Srviii52.97 (6)Csviii—Sr—N2v124.75 (7)
Csx—Cs—C1126.21 (7)Csviii—Sr—N2iii55.25 (7)
Csx—Cs—C1i141.80 (10)Csviii—Sr—N3i122.47 (4)
Csx—Cs—N1125.56 (5)Csviii—Sr—N3vi57.53 (4)
Csx—Cs—N1i146.56 (9)Csiv—Sr—Csxii108.15 (11)
Csx—Cs—C2ii45.51 (8)Csiv—Sr—Csxiv73.18 (7)
Csx—Cs—N2ii45.53 (9)Csiv—Sr—Csvi68.79 (6)
Csx—Cs—C3iii46.01 (8)Csiv—Sr—N1138.49 (8)
Csx—Cs—N3iii44.55 (9)Csiv—Sr—N1iv41.51 (8)
Csxi—Cs—Csxii166.72 (4)Csiv—Sr—N2v74.71 (4)
Csxi—Cs—Sr123.46 (9)Csiv—Sr—N2iii105.29 (4)
Csxi—Cs—Srii126.26 (10)Csiv—Sr—N3i127.48 (6)
Csxi—Cs—Sri59.14 (9)Csiv—Sr—N3vi52.52 (6)
Csxi—Cs—Srviii50.43 (7)Csxii—Sr—Csxiv71.79 (7)
Csxi—Cs—C175.93 (12)Csxii—Sr—Csvi67.33 (6)
Csxi—Cs—C1i108.98 (13)Csxii—Sr—N1112.16 (8)
Csxi—Cs—N194.11 (14)Csxii—Sr—N1iv67.84 (8)
Csxi—Cs—N1i90.80 (13)Csxii—Sr—N2v124.03 (3)
Csxi—Cs—C2ii43.39 (9)Csxii—Sr—N2iii55.97 (3)
Csxi—Cs—N2ii41.07 (9)Csxii—Sr—N3i42.61 (4)
Csxi—Cs—C3iii125.88 (9)Csxii—Sr—N3vi137.39 (4)
Csxi—Cs—N3iii130.40 (11)Csxiv—Sr—Csvi109.57 (11)
Csxii—Cs—Sr52.97 (8)Csxiv—Sr—N1128.95 (8)
Csxii—Cs—Srii55.18 (8)Csxiv—Sr—N1iv51.05 (8)
Csxii—Cs—Sri133.85 (9)Csxiv—Sr—N2v55.25 (7)
Csxii—Cs—Srviii116.50 (7)Csxiv—Sr—N2iii124.75 (7)
Csxii—Cs—C1100.15 (13)Csxiv—Sr—N3i57.53 (4)
Csxii—Cs—C1i83.65 (13)Csxiv—Sr—N3vi122.47 (4)
Csxii—Cs—N181.64 (13)Csvi—Sr—N1118.82 (7)
Csxii—Cs—N1i101.55 (14)Csvi—Sr—N1iv61.18 (7)
Csxii—Cs—C2ii131.46 (10)Csvi—Sr—N2v143.40 (5)
Csxii—Cs—N2ii128.90 (10)Csvi—Sr—N2iii36.60 (5)
Csxii—Cs—C3iii43.02 (8)Csvi—Sr—N3i109.90 (5)
Csxii—Cs—N3iii42.36 (10)Csvi—Sr—N3vi70.10 (5)
Sr—Cs—Srii108.15 (15)N1—Sr—N1iv180
Sr—Cs—Sri113.18 (5)N1—Sr—N2v90.4970 (12)
Sr—Cs—Srviii104.58 (4)N1—Sr—N2iii89.5030 (12)
Sr—Cs—C147.71 (5)N1—Sr—N3i90.1559 (18)
Sr—Cs—C1i80.76 (9)N1—Sr—N3vi89.8441 (18)
Sr—Cs—N129.36 (6)N1iv—Sr—N2v89.5030 (12)
Sr—Cs—N1i88.41 (8)N1iv—Sr—N2iii90.4970 (12)
Sr—Cs—C2ii149.38 (7)N1iv—Sr—N3i89.8441 (18)
Sr—Cs—N2ii130.69 (6)N1iv—Sr—N3vi90.1559 (18)
Sr—Cs—C3iii78.33 (11)N2v—Sr—N2iii180
Sr—Cs—N3iii88.72 (14)N2v—Sr—N3i89.952 (2)
Srii—Cs—Sri114.82 (5)N2v—Sr—N3vi90.048 (2)
Srii—Cs—Srviii105.80 (4)N2iii—Sr—N3i90.048 (2)
Srii—Cs—C1154.37 (18)N2iii—Sr—N3vi89.952 (2)
Srii—Cs—C1i91.92 (10)N3i—Sr—N3vi180
Srii—Cs—N1136.3 (2)C1—Fe—C1vii180
Srii—Cs—N1i105.47 (9)C1—Fe—C290.5021 (17)
Srii—Cs—C2ii84.45 (6)C1—Fe—C2vii89.4979 (17)
Srii—Cs—N2ii94.42 (6)C1—Fe—C390.4341 (12)
Srii—Cs—C3iii48.54 (6)C1—Fe—C3vii89.5659 (12)
Srii—Cs—N3iii31.08 (4)C1vii—Fe—C289.4979 (17)
Sri—Cs—Srviii109.57 (15)C1vii—Fe—C2vii90.5021 (17)
Sri—Cs—C186.72 (10)C1vii—Fe—C389.5660 (12)
Sri—Cs—C1i50.37 (4)C1vii—Fe—C3vii90.4341 (12)
Sri—Cs—N199.12 (9)C2—Fe—C2vii180
Sri—Cs—N1i33.14 (5)C2—Fe—C390.387 (2)
Sri—Cs—C2ii84.36 (13)C2—Fe—C3vii89.613 (2)
Sri—Cs—N2ii94.50 (16)C2vii—Fe—C389.613 (2)
Sri—Cs—C3iii163.24 (9)C2vii—Fe—C3vii90.387 (2)
Sri—Cs—N3iii145.89 (8)C3—Fe—C3vii180
Srviii—Cs—C177.56 (8)Cs—C1—Csviii99.91 (7)
Srviii—Cs—C1i158.40 (18)Cs—C1—Fe112.69 (12)
Srviii—Cs—N186.35 (7)Cs—C1—N168.07 (12)
Srviii—Cs—N1i140.12 (19)Csviii—C1—Fe103.06 (12)
Srviii—Cs—C2ii44.81 (5)Csviii—C1—N175.62 (12)
Srviii—Cs—N2ii26.11 (2)Fe—C1—N1178.6228 (6)
Srviii—Cs—C3iii77.49 (3)Cs—N1—Csviii107.31 (6)
Srviii—Cs—N3iii88.16 (4)Cs—N1—Sr109.13 (13)
C1—Cs—C1i91.87 (6)Cs—N1—C193.41 (13)
C1—Cs—N118.52 (2)Csviii—N1—Sr95.82 (12)
C1—Cs—N1i84.74 (7)Csviii—N1—C186.01 (12)
C1—Cs—C2ii112.70 (17)Sr—N1—C1155.5560 (16)
C1—Cs—N2ii97.66 (14)Csxiii—C2—Fe110.22 (4)
C1—Cs—C3iii109.87 (10)Csxiii—C2—N269.56 (4)
C1—Cs—N3iii126.34 (13)Fe—C2—N2178.6331 (10)
C1i—Cs—N189.26 (7)Csxiii—N2—Srxv117.29 (5)
C1i—Cs—N1i18.369 (10)Csxiii—N2—C291.71 (5)
C1i—Cs—C2ii127.70 (13)Srxv—N2—C2150.6891 (7)
C1i—Cs—N2ii143.06 (18)Csxvi—C3—Fe120.47 (5)
C1i—Cs—C3iii124.0 (2)Csxvi—C3—N359.13 (5)
C1i—Cs—N3iii113.08 (18)Fe—C3—N3179.4092 (8)
N1—Cs—N1i87.85 (6)Csxvi—N3—Srviii106.31 (4)
N1—Cs—C2ii127.37 (16)Csxvi—N3—C3103.40 (4)
N1—Cs—N2ii110.12 (12)Srviii—N3—C3150.1635 (8)
N1—Cs—C3iii96.46 (12)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z+1; (v) x1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z+1/2; (vii) x, y, z; (viii) x+1/2, y+1/2, z+1/2; (ix) x+3/2, y1/2, z+1/2; (x) x+3/2, y+1/2, z+1/2; (xi) x+1, y, z; (xii) x+1, y, z+1; (xiii) x1, y, z; (xiv) x1/2, y1/2, z+1/2; (xv) x1/2, y+1/2, z+1/2; (xvi) x1/2, y+1/2, z1/2.
Comparison of lattice parameters (Å, °), selected bond lengths (Å) and volumes (Å3) for Cs2Sr[Fe(CN)6] and Cs2Na[Mn(CN)6] top
Cs2Sr[Fe(CN)6]Cs2Na[Mn(CN)6]
a, b, c7.6237 (2), 7.7885 (2), 10.9600 (3)a, b, c7.597 (1), 7.806 (1), 10.950 (1)
α, β, γ90, 90.4165 (19), 90α, β, γ90, 90.07 (1), 90
V650.76 (4)V649.36
Cs polyhedron volume*44.56Cs polyhedron volume*44.46
Cs—C13.603 (4)Cs—C13.6291 (5)
Cs—N13.348 (4)Cs—N13.3688 (5)
Cs—C1i3.628 (3)Cs—C1i3.5936 (5)
Cs—N1i3.5232 (18)Cs—N1i3.4920 (5)
Cs—C2ii3.592 (6)Cs—C2ii3.5831 (4)
Cs—N2ii3.367 (6)Cs—N2ii3.3839 (3)
Cs—C3iii3.711 (5)Cs—C3iii3.7044 (4)
Cs—N3iii3.274 (6)Cs—N3iii3.2840 (3)
Sr octahedron volume*20.49Na octahedron volume*20.45
Fe octahedron volume*10.49Mn octahedron volume*10.47
*Atomic bond lengths were not compared since the positions of C, N, Fe and Sr were not refined. Volumes were calculated by VESTA V3.2.1 (Momma & Izumi, 2011). [Symmetry codes: (i) -x+1/2, y - 1/2, -z + 1/2; (ii) x + 1, y, z; (iii) x + 1/2, -y + 1/2, z + 1/2.]
 

Funding information

Funding for this research was provided by: the Center for Hierarchical Waste Forms (CHWM), an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0016574.

References

First citationBergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147–156.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGates-Rector, S. & Blanton, T. (2019). Powder Diffr. 34, 352–360.  CAS Google Scholar
First citationGray, H. B. & Beach, N. A. (1963). J. Am. Chem. Soc. 85, 2922–2927.  CrossRef CAS Google Scholar
First citationHaas, P. A. (1993). Sep. Sci. Technol. 28, 2479–2506.  CrossRef CAS Google Scholar
First citationKuznetsov, V. G., Popova, Z. V. & Seifer, G. B. (1970). Russ. J. Inorg. Chem. 15, 1084–1088.  Google Scholar
First citationLoye, H. C. zur, Besmann, T., Amoroso, J., Brinkman, K., Grandjean, A., Henager, C. H., Hu, S., Misture, S. T., Phillpot, S. R., Shustova, N. B., Wang, H., Koch, R. J., Morrison, G. & Dolgopolova, E. (2018). Chem. Mater. 30, 4475–4488.  Google Scholar
First citationMimura, H., Lehto, J. & Harjula, R. (1997). J. Nucl. Sci. Technol. 34, 484–489.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPadigi, P., Goncher, G., Evans, D. & Solanki, R. (2015). J. Power Sources, 273, 460–464.  Web of Science CrossRef CAS Google Scholar
First citationPanalytical (2011). X'Pert Data Collector. PANalytical BV, Almelo, The Netherlands.  Google Scholar
First citationPaolella, A., Faure, C., Timoshevskii, V., Marras, S., Bertoni, G., Guerfi, A., Vijh, A., Armand, M. & Zaghib, K. (2017). J. Mater. Chem. A, 5, 18919–18932.  CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSlivko, T., Kuligina, T. & Zimina, G. (1988). Russ. J. Inorg. Chem. 33, 1060.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZiegler, B., Haegele, R. & Babel, D. (1989). Z. Naturforsch. B, 44, 896–902.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds