research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-(naphthalen-2-yl)-N-[(Z)-4-propoxybenzyl­­idene]-1,3-thia­zol-2-amine

CROSSMARK_Color_square_no_text.svg

aSalahaddin University, College of Science, Department of Chemistry, Erbil, Iraq, bKoya University, Faculty of Science and Health, Department of Chemistry, Koya, Iraq, and cSalahaddin University, College of Education, Department of Chemistry, Erbil, Iraq
*Correspondence e-mail: ropak.shekhmohamad@su.edu.krd, wali.hmd@koyauniversity.org

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 April 2020; accepted 17 May 2020; online 29 May 2020)

The asymmetric unit of the title compound, C23H20N2OS, contains one slightly bent mol­ecule. The naphthalene ring system and the thia­zole ring are twisted with respect to each other, making a dihedral angle of 13.69 (10)°; the anisole ring is inclined to the plane of the naphthalene ring system, the dihedral angle being 14.22 (12)°. In the crystal structure, mol­ecules are linked by C—H⋯π inter­actions, resulting in the formation of sheets parallel to (100). Within the sheets, very weak ππ stacking inter­actions lead to additional stabilization. Hirshfeld surface analysis and fingerprint plots reveal that the cohesion in the crystal structure is dominated by H⋯H (42.5%) and C⋯H/H⋯C (37.2%) contacts.

1. Chemical context

A Schiff base (Schiff, 1864[Schiff, H. (1864). Ann. Chem. Pharm. 131, 118-119.]) is a compound having the general formula RN=CR2 (R = H, hydro­carb­yl) and thus belongs to the family of imines (McNaught & Wilkinson, 1997[McNaught, A. D. & Wilkinson, A. (1997). Compendium of Chemical Terminology. Blackwell Science Oxford.]). The chemistry of Schiff bases and their derivatives has been an inter­esting field of research since their discovery. Subsequently, Schiff bases have constituted a significant class of compounds for new drug development, exhibiting biological activities including anti­microbial, anti-tuberculosis, anti­oxidant, anti-inflammatory, anti­convulsant, anti­depressant, anxiolytic, anti­hypertensive, anti­cancer and anti­fungal properties. The search for Schiff base-containing compounds with more selective activity and lower side effects continues to be an active area in medicinal chemistry (Kumar et al., 2017[Kumar, J., Rai, A. & Raj, V. (2017). Org. Med. Chem. J. 1, 555-564.]). Likewise, heterocyclic compounds play an essential role in medicinal chemistry, or as key templates for the development of various therapeutic agents. As part of this family, thia­zoles (Ghawla Amit et al., 2014[Ghawla Amit, C. P., Sunaina, Singh Mansimran, Kaur Kuldeep & Dhawan, R. K. (2014). Int. J. Pharmacol. Pharm. Sci. 2, 1-8.]) and their derivatives have been found to possess anti­convulsant, anti­microbial, anti-inflammatory, anti­cancer, anti-HIV, anti­diabetic, anti-Alzheimer, anti­hypertensive, and anti­oxidant activities. As a result of their potent and significant biological activities, they have excellent pharmaceutical importance (Kaur & Goyal, 2018[Kaur, H. & Goyal, A. (2018). Int. J. Pharm. Drug. Anal, 6, 509-522.]).

[Scheme 1]

Here we report on the synthesis, structure determination and Hirshfeld analysis of a Schiff base, C23H20N2OS, (I), comprising a thia­zole entity.

2. Structural commentary

The asymmetric unit of (I) contains one mol­ecule (Fig. 1[link]). The mol­ecule is slightly bent, with the naphthalene ring system and the thia­zole ring inclined to each other, subtending a dihedral angle of 13.69 (10)°; the anisole moiety is inclined to the plane of the naphthalene ring system, the dihedral angle being 14.22 (12)°. The C18—O1 and C21—O1 bond lengths are typical of single bonds (Table 1[link]). The bond-length distribution in the thia­zole ring is normal. The C11—N1 bond has single-bond character and the C13—N1 bond double-bond character, with bond lengths of 1.380 (3) and 1.304 (3) Å, respectively.

Table 1
Selected bond lengths (Å)

S1—C12 1.690 (3) N1—C13 1.304 (3)
S1—C13 1.713 (3) N1—C11 1.380 (3)
O1—C18 1.362 (3) N2—C14 1.284 (3)
O1—C21 1.431 (3) N2—C13 1.393 (3)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal structure, mol­ecules are connected into sheets extending along (100) by C4—H4⋯Cg3i and C16—H16⋯Cg3ii inter­actions (Table 2[link]; Fig. 2[link]), where Cg3 is the centroid of the C5–C10 ring. Within the sheets, very weak ππ stacking inter­actions are observed with a centroid-to-centroid distance Cg1⋯Cg4 = 4.494 (2) Å, where Cg1 and Cg4 are the centroids of the S1/C12/C11/N1/C13 and the C15–C20 phenyl ring, respectively (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg3i 0.93 2.83 3.496 130
C16—H16⋯Cg3ii 0.93 3.00 3.607 125
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing of the title compound in a view along the b axis. C—H⋯π(ring) inter­actions are indicated by dashed lines.
[Figure 3]
Figure 3
A view of the crystal packing of the title compound along the b axis. π(Cg1)⋯π(Cg4) inter­actions are indicated by dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-(4,6-dihydro­naphthalen-1-yl)thia­zol-2-amine moiety revealed two hits, viz. 4-(pyren-1-yl)-1,3-thia­zol-2-amine (pyrene thia­zole conjugate, PTC), C19H12N2S (SOPREW; Mahapatra et al., 2014[Mahapatra, A. K., Mondal, S., Maiti, K., Manna, S. K., Maji, R., Mandal, D., Mandal, S., Goswami, S., Quah, C. K. & Fun, H.-K. (2014). RSC Adv. 4, 56605-56614.]), and (E)-4-(4-chloro­phen­yl)-N-(1,3-benzodioxol-5-yl­methyl­ene)-5-(1H-1,2,4-tria­zol-1-yl)-1,3-thia­zol-2-amine, C19H12ClN5O2S (XAZJUE; Shao et al., 2006[Shao, L., Zhang, Q., Zhou, X. & Fang, J.-X. (2006). Acta Cryst. E62, o334-o335.]). In the crystal packing of PTC, the two mol­ecules are connected into symmetrical dimers by pairs of N—H⋯N hydrogen bonds at a distance of 2.49 Å and are stacked along the a axis by weak aromatic ππ stacking inter­actions between the benzene rings in adjacent mol­ecules [centroid-to-centroid distances of 3.5741 (10) Å]. Distinctive bond lengths (e.g. N1—C11, N—C13, S1—C12, S1—C13) in (I) are the same within standard deviations as the corres­ponding bond lengths in the structure of XAZJUE. In XAZJUE, the mol­ecules are linked by weak C—H⋯O hydrogen bonds into a three-dimensional network.

5. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in (I). Hirshfeld surface analysis was performed using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.0638 (red) to 1.3242 (blue) a.u., and the results are illustrated in Fig. 4[link]a. The red spots identified in Fig. 4[link]a correspond to the near-type H⋯π contacts resulting from hydrogen bonds of the type C—H⋯π(ring) (Table 2[link]). The view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potentials with a fixed colour scale of −0.049 (red) to 0.034 (blue) a.u. is given in Fig. 4[link]b, emphasizing on C—H⋯π(ring) contacts.

[Figure 4]
Figure 4
(a) Hirshfeld surfaces of the title compound mapped over dnorm, with a fixed colour scale of −0.0638 (red) to 1.3242 (blue) a.u., and (b) the mol­ecular electrostatic potential surface of the title compound obtained over Hirshfeld surface containing C—H⋯π inter­actions, with a fixed colour scale of −0.049 (red) to 0.034 (blue) a.u..

Fig. 5[link]a shows the two-dimensional fingerprint as the sum of all contacts contributing to the Hirshfeld surface indicated in normal mode. Fig. 5[link]b illustrates the two-dimensional fingerprint of (di, de) points related to H⋯H contacts that represent a 42.5% contribution in the title structure. In Fig. 5[link]c, two symmetrical wings on the left and right sides indicate C⋯H/H⋯C inter­actions with a contribution of 37.2%. Furthermore, there are S⋯H/H⋯S (8.2%; Fig. 5[link]d), N⋯H/H⋯N (7.5%; Fig. 5[link]e) and O⋯H/H⋯O (2.2%; Fig. 5[link]f) contacts contributing to the overall crystal packing of (I).

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound, with a dnorm view (a), and delineated into relative contributions of the atom pairs to the Hirshfeld surface (bf).

6. Synthesis and crystallization

Compound (I) was prepared by adding 4-N-propoxybenzaldehyde (0.145 g, 0.885 mmol) dropwise under constant stirring to a solution of 2-amino-4-(2-naphth­yl)thia­zole (0.2 g, 0.885 mmol) in 1-propanol (10 ml). The reaction was catalysed by NaOH (0.1 g), and the mixture stirred for 1 h in a water bath at approximately 278–283 K. The reaction was monitored by thin-layer chromatography (TLC) using ethyl acetate and n-hexane (3:7 v:v), and had an Rf of 0.675. The formed precipitate was filtered off, washed with 1-propanol, and dried. The resulting solid was further purified by washing with ethanol and diethyl ether. Single crystals of (I) for X-ray analysis were obtained by slow evaporation of an acetone solution (yield 60%, m.p. 411-413 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were placed in idealized positions and refined using a riding model with C—H = 0.93-0.97 Å and Uiso(H) = 1.5Ueq(C-meth­yl) or 1.2Ueq(C) for other C-bound H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C23H20N2OS
Mr 372.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 19.1636 (11), 6.0482 (3), 17.023 (1)
β (°) 104.370 (5)
V3) 1911.32 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.68 × 0.29 × 0.05
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.919, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 12341, 3770, 1951
Rint 0.078
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.087, 0.96
No. of reflections 3770
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.16
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

4-(Naphthalen-2-yl)-N-[(Z)-4-propoxybenzylidene]-1,3-thiazol-2-amine top
Crystal data top
C23H20N2OSF(000) = 784
Mr = 372.47Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.1636 (11) ÅCell parameters from 9076 reflections
b = 6.0482 (3) Åθ = 1.8–31.6°
c = 17.023 (1) ŵ = 0.18 mm1
β = 104.370 (5)°T = 296 K
V = 1911.32 (19) Å3Stick, yellow
Z = 40.68 × 0.29 × 0.05 mm
Data collection top
STOE IPDS 2
diffractometer
3770 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1951 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.078
rotation method scansθmax = 26.0°, θmin = 2.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1923
Tmin = 0.919, Tmax = 0.989k = 77
12341 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0235P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
3770 reflectionsΔρmax = 0.12 e Å3
245 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72771 (5)0.01821 (13)0.45111 (4)0.0700 (2)
O10.57359 (10)0.7728 (3)0.00225 (10)0.0614 (5)
N10.78855 (12)0.3982 (3)0.46984 (12)0.0518 (6)
N20.71496 (12)0.3175 (4)0.33523 (12)0.0574 (6)
C150.69256 (14)0.5693 (4)0.22324 (14)0.0471 (6)
C60.88892 (13)0.4646 (4)0.76167 (14)0.0486 (6)
C80.84752 (13)0.4163 (4)0.61580 (15)0.0467 (6)
C110.80536 (13)0.2954 (4)0.54458 (15)0.0481 (6)
C70.85390 (13)0.3407 (4)0.69324 (15)0.0497 (7)
H70.8345230.2036830.7007430.060*
C200.63762 (14)0.4417 (4)0.17593 (14)0.0552 (7)
H200.6267870.3049890.1949860.066*
C180.61554 (13)0.7170 (4)0.07205 (14)0.0494 (7)
C130.74782 (15)0.2697 (4)0.41597 (15)0.0526 (7)
C50.91907 (14)0.6724 (4)0.75068 (16)0.0520 (7)
C90.87997 (14)0.6206 (4)0.60570 (16)0.0542 (7)
H90.8776760.6719260.5536180.065*
C190.59913 (14)0.5150 (5)0.10142 (14)0.0557 (7)
H190.5620530.4289850.0706460.067*
C100.91444 (14)0.7434 (5)0.67047 (16)0.0581 (7)
H100.9354200.8769630.6618790.070*
C170.67016 (15)0.8446 (5)0.11727 (16)0.0570 (7)
H170.6818290.9792230.0974210.068*
C140.72982 (13)0.5003 (5)0.30469 (13)0.0548 (7)
H140.7653980.5912330.3355070.066*
C160.70766 (14)0.7699 (5)0.19294 (15)0.0574 (7)
H160.7440070.8576550.2241020.069*
C10.89269 (14)0.3919 (5)0.84200 (16)0.0592 (7)
H10.8739070.2546320.8504050.071*
C120.77718 (16)0.0891 (4)0.54435 (16)0.0617 (7)
H120.7842400.0015490.5897690.074*
C20.92348 (16)0.5211 (6)0.90667 (17)0.0732 (9)
H20.9248330.4726610.9588770.088*
C210.59299 (17)0.9645 (5)0.04130 (15)0.0699 (8)
H21A0.6426700.9535820.0446450.084*
H21B0.5879911.0962210.0106730.084*
C40.95124 (16)0.7990 (5)0.81968 (18)0.0696 (8)
H40.9715850.9352920.8131450.084*
C30.95304 (17)0.7257 (6)0.89530 (18)0.0761 (9)
H30.9741480.8124650.9399970.091*
C220.54367 (17)0.9770 (6)0.12479 (17)0.0846 (10)
H22A0.5547841.1096520.1513390.102*
H22B0.4943940.9895040.1201380.102*
C230.54931 (19)0.7806 (7)0.17675 (18)0.0990 (12)
H23A0.5181000.8011440.2298400.149*
H23B0.5353170.6496280.1527090.149*
H23C0.5981230.7654720.1809400.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0868 (6)0.0596 (5)0.0589 (4)0.0121 (5)0.0092 (4)0.0028 (4)
O10.0618 (12)0.0702 (13)0.0472 (10)0.0091 (10)0.0041 (9)0.0089 (9)
N10.0573 (14)0.0520 (13)0.0459 (13)0.0032 (12)0.0128 (11)0.0038 (11)
N20.0621 (15)0.0622 (15)0.0476 (13)0.0043 (13)0.0130 (11)0.0051 (12)
C150.0488 (16)0.0527 (17)0.0402 (13)0.0014 (14)0.0117 (12)0.0031 (12)
C60.0387 (14)0.0577 (17)0.0493 (14)0.0052 (14)0.0107 (12)0.0021 (14)
C80.0437 (15)0.0471 (15)0.0496 (16)0.0062 (13)0.0123 (12)0.0080 (12)
C110.0460 (15)0.0497 (16)0.0494 (15)0.0075 (13)0.0134 (13)0.0084 (13)
C70.0462 (16)0.0480 (16)0.0553 (16)0.0014 (13)0.0136 (13)0.0053 (13)
C200.0679 (19)0.0524 (17)0.0463 (15)0.0097 (15)0.0159 (14)0.0010 (13)
C180.0457 (15)0.0578 (18)0.0437 (15)0.0019 (14)0.0093 (12)0.0005 (13)
C130.0562 (17)0.0571 (18)0.0452 (15)0.0088 (15)0.0140 (13)0.0041 (14)
C50.0432 (16)0.0509 (17)0.0607 (18)0.0018 (14)0.0103 (13)0.0005 (14)
C90.0556 (17)0.0562 (17)0.0497 (16)0.0031 (15)0.0107 (14)0.0123 (13)
C190.0610 (17)0.0587 (18)0.0450 (14)0.0186 (16)0.0085 (13)0.0065 (14)
C100.0540 (17)0.0513 (17)0.0680 (19)0.0011 (15)0.0135 (15)0.0109 (15)
C170.0616 (18)0.0525 (17)0.0563 (17)0.0101 (15)0.0135 (14)0.0033 (13)
C140.0522 (17)0.0664 (19)0.0446 (14)0.0054 (16)0.0101 (12)0.0054 (15)
C160.0545 (17)0.0619 (19)0.0534 (17)0.0124 (15)0.0085 (14)0.0033 (14)
C10.0509 (17)0.073 (2)0.0528 (17)0.0034 (15)0.0119 (14)0.0007 (15)
C120.0750 (19)0.0530 (18)0.0530 (16)0.0017 (17)0.0079 (14)0.0076 (14)
C20.072 (2)0.094 (2)0.0542 (17)0.005 (2)0.0168 (15)0.0041 (18)
C210.085 (2)0.0626 (19)0.0587 (17)0.0039 (18)0.0113 (16)0.0097 (16)
C40.066 (2)0.067 (2)0.075 (2)0.0083 (17)0.0159 (17)0.0091 (17)
C30.076 (2)0.087 (3)0.062 (2)0.012 (2)0.0097 (17)0.0188 (18)
C220.084 (2)0.099 (3)0.0621 (19)0.002 (2)0.0013 (17)0.028 (2)
C230.100 (3)0.139 (3)0.0546 (19)0.035 (3)0.0144 (19)0.005 (2)
Geometric parameters (Å, º) top
S1—C121.690 (3)C9—C101.357 (4)
S1—C131.713 (3)C9—H90.9300
O1—C181.362 (3)C19—H190.9300
O1—C211.431 (3)C10—H100.9300
N1—C131.304 (3)C17—C161.386 (3)
N1—C111.380 (3)C17—H170.9300
N2—C141.284 (3)C14—H140.9300
N2—C131.393 (3)C16—H160.9300
C15—C161.377 (3)C1—C21.360 (4)
C15—C201.390 (3)C1—H10.9300
C15—C141.454 (3)C12—H120.9300
C6—C71.407 (3)C2—C31.394 (4)
C6—C51.415 (3)C2—H20.9300
C6—C11.421 (3)C21—C221.501 (3)
C8—C71.372 (3)C21—H21A0.9700
C8—C91.413 (3)C21—H21B0.9700
C8—C111.473 (3)C4—C31.354 (4)
C11—C121.359 (3)C4—H40.9300
C7—H70.9300C3—H30.9300
C20—C191.373 (3)C22—C231.501 (4)
C20—H200.9300C22—H22A0.9700
C18—C171.372 (3)C22—H22B0.9700
C18—C191.386 (3)C23—H23A0.9600
C5—C41.409 (4)C23—H23B0.9600
C5—C101.413 (3)C23—H23C0.9600
C12—S1—C1388.87 (14)C18—C17—H17120.5
C18—O1—C21118.1 (2)C16—C17—H17120.5
C13—N1—C11110.0 (2)N2—C14—C15121.8 (3)
C14—N2—C13119.1 (2)N2—C14—H14119.1
C16—C15—C20118.1 (2)C15—C14—H14119.1
C16—C15—C14120.7 (3)C15—C16—C17121.8 (3)
C20—C15—C14121.0 (2)C15—C16—H16119.1
C7—C6—C5119.3 (2)C17—C16—H16119.1
C7—C6—C1122.1 (3)C2—C1—C6120.6 (3)
C5—C6—C1118.5 (2)C2—C1—H1119.7
C7—C8—C9118.1 (2)C6—C1—H1119.7
C7—C8—C11121.7 (2)C11—C12—S1111.4 (2)
C9—C8—C11120.1 (2)C11—C12—H12124.3
C12—C11—N1114.2 (2)S1—C12—H12124.3
C12—C11—C8126.4 (2)C1—C2—C3120.5 (3)
N1—C11—C8119.3 (2)C1—C2—H2119.8
C8—C7—C6121.9 (2)C3—C2—H2119.8
C8—C7—H7119.0O1—C21—C22107.8 (2)
C6—C7—H7119.0O1—C21—H21A110.1
C19—C20—C15120.8 (2)C22—C21—H21A110.1
C19—C20—H20119.6O1—C21—H21B110.1
C15—C20—H20119.6C22—C21—H21B110.1
O1—C18—C17125.0 (2)H21A—C21—H21B108.5
O1—C18—C19114.8 (2)C3—C4—C5121.1 (3)
C17—C18—C19120.2 (2)C3—C4—H4119.4
N1—C13—N2128.0 (2)C5—C4—H4119.4
N1—C13—S1115.54 (19)C4—C3—C2120.5 (3)
N2—C13—S1116.3 (2)C4—C3—H3119.8
C4—C5—C10123.4 (3)C2—C3—H3119.8
C4—C5—C6118.8 (2)C21—C22—C23113.4 (3)
C10—C5—C6117.9 (2)C21—C22—H22A108.9
C10—C9—C8121.3 (2)C23—C22—H22A108.9
C10—C9—H9119.3C21—C22—H22B108.9
C8—C9—H9119.3C23—C22—H22B108.9
C20—C19—C18120.0 (2)H22A—C22—H22B107.7
C20—C19—H19120.0C22—C23—H23A109.5
C18—C19—H19120.0C22—C23—H23B109.5
C9—C10—C5121.3 (3)H23A—C23—H23B109.5
C9—C10—H10119.3C22—C23—H23C109.5
C5—C10—H10119.3H23A—C23—H23C109.5
C18—C17—C16119.0 (2)H23B—C23—H23C109.5
C13—N1—C11—C120.8 (3)C15—C20—C19—C180.9 (4)
C13—N1—C11—C8176.4 (2)O1—C18—C19—C20179.7 (2)
C7—C8—C11—C129.7 (4)C17—C18—C19—C200.1 (4)
C9—C8—C11—C12173.2 (3)C8—C9—C10—C50.2 (4)
C7—C8—C11—N1167.1 (2)C4—C5—C10—C9176.9 (3)
C9—C8—C11—N110.0 (3)C6—C5—C10—C92.3 (4)
C9—C8—C7—C62.6 (4)O1—C18—C17—C16178.6 (2)
C11—C8—C7—C6174.5 (2)C19—C18—C17—C161.0 (4)
C5—C6—C7—C80.5 (4)C13—N2—C14—C15174.3 (2)
C1—C6—C7—C8176.9 (2)C16—C15—C14—N2177.6 (3)
C16—C15—C20—C190.6 (4)C20—C15—C14—N21.9 (4)
C14—C15—C20—C19175.3 (2)C20—C15—C16—C170.5 (4)
C21—O1—C18—C178.3 (4)C14—C15—C16—C17176.4 (2)
C21—O1—C18—C19172.1 (2)C18—C17—C16—C151.3 (4)
C11—N1—C13—N2174.8 (2)C7—C6—C1—C2176.4 (3)
C11—N1—C13—S10.4 (3)C5—C6—C1—C21.1 (4)
C14—N2—C13—N17.1 (4)N1—C11—C12—S10.9 (3)
C14—N2—C13—S1177.7 (2)C8—C11—C12—S1176.1 (2)
C12—S1—C13—N10.0 (2)C13—S1—C12—C110.5 (2)
C12—S1—C13—N2175.9 (2)C6—C1—C2—C31.1 (4)
C7—C6—C5—C4177.3 (2)C18—O1—C21—C22174.3 (2)
C1—C6—C5—C40.3 (4)C10—C5—C4—C3178.6 (3)
C7—C6—C5—C101.9 (4)C6—C5—C4—C30.5 (4)
C1—C6—C5—C10179.5 (2)C5—C4—C3—C20.6 (5)
C7—C8—C9—C102.3 (4)C1—C2—C3—C40.3 (5)
C11—C8—C9—C10174.9 (2)O1—C21—C22—C2361.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3i0.932.833.496130
C16—H16···Cg3ii0.933.003.607125
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

Funding information

Funding for this research was provided by: Ondokuz Mayıs University (award No. PYO.FEN.1906.19.001).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhawla Amit, C. P., Sunaina, Singh Mansimran, Kaur Kuldeep & Dhawan, R. K. (2014). Int. J. Pharmacol. Pharm. Sci. 2, 1–8.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaur, H. & Goyal, A. (2018). Int. J. Pharm. Drug. Anal, 6, 509–522.  Google Scholar
First citationKumar, J., Rai, A. & Raj, V. (2017). Org. Med. Chem. J. 1, 555–564.  Google Scholar
First citationMahapatra, A. K., Mondal, S., Maiti, K., Manna, S. K., Maji, R., Mandal, D., Mandal, S., Goswami, S., Quah, C. K. & Fun, H.-K. (2014). RSC Adv. 4, 56605–56614.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcNaught, A. D. & Wilkinson, A. (1997). Compendium of Chemical Terminology. Blackwell Science Oxford.  Google Scholar
First citationSchiff, H. (1864). Ann. Chem. Pharm. 131, 118–119.  CrossRef Google Scholar
First citationShao, L., Zhang, Q., Zhou, X. & Fang, J.-X. (2006). Acta Cryst. E62, o334–o335.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds