research communications
H-1,2,3-triazole
Hirshfeld surface analysis, interaction energy and DFT studies of 4-[(4-allyl-2-methoxyphenoxy)methyl]-1-(4-methoxyphenyl)-1aLaboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP 2390, 40001 Marrakech, Morocco, bLaboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: AbdelmaoujoudTaia2018@gmail.com
In the title molecule, C20H21N3O3, the allyl substituent is rotated out of the plane of its attached phenyl ring [torsion angle 100.66 (15)°]. In the crystal, C—HMthphn⋯OMthphn (Mthphn = methoxyphenyl) hydrogen bonds lead to the formation of (100) layers that are connected into a three-dimensional network by C—H⋯π(ring) interactions, together with π–π stacking interactions [centroid-to-centroid distance = 3.7318 (10) Å] between parallel phenyl rings. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.7%) and H⋯C/C⋯H (23.3%) interactions. Computational chemistry reveals that the C—HMthphn⋯OMthphn hydrogen is 47.1 kJ mol−1. The theoretical structure, optimized by density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined molecular structure. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; triazole; hydrogen bonding; C—H⋯π(ring) interaction; π-stacking.
CCDC reference: 2005277
1. Chemical context
Clove essential oil is extracted from cloves, which come from a tree belonging to the Myrtaceae family (Chang & Miau, 1984), originating from the Moluccas in Indonesia. Eugenol (C10H12O2) is the major constituent of clove essential oil with a percentage of 75–90% (Patra & Saxena, 2010). Eugenol is a molecule that belongs to the family of phenylpropenes; its aromatic ring, an alcohol function and an allylic entity explain its high reactivity. Several studies have revealed various biological activities for eugenol, including antiviral (Benencia & Courreges, 2000), anti-leishmania (Ueda-Nakamura et al., 2006), antibacterial (Pathirana et al., 2019), antifungal (Wang et al., 2010), anti-inflammatory (Daniel et al., 2009), antioxidant (Mahboub & Memmou., 2015), anesthetic analgesic (Guenette et al., 2007), anticancer (Hussain et al., 2011) or anti-diabetes (Mnafgui et al., 2013) properties. On the other hand, 1,2,3-triazoles are known by their diverse biological activities being used as antileishmania (Teixeira et al., 2018), antimicrobial (Glowacka et al., 2019) or antiviral (Bankowska, et al., 2014) agents. In this context, we have synthesized the title compound, (I), through cycloaddition reaction of 1-azido-4-methoxybenzene with 4-allyl-2-methoxy-1-(prop-2-ynyloxy) benzene; the latter was previously prepared by O-alkylation of eugenol by propargile (Taia et al., 2020).
We report herein the synthesis, molecular and crystal structures of (I), along with the results of a Hirshfeld surface analysis, an interaction energy calculation, and a density functional theory (DFT) study.
2. Structural commentary
The title molecule is non-planar (Fig. 1), with the A (C1–C6) and C (C13–C18) benzene rings inclined to the B (C11/C12/N1–N3) triazole ring by 25.76 (4) and 24.97 (4)°, respectively. The allyl group is rotated out of the plane of the A ring as indicated by the C3—C4—C7—C8 torsion angle of 100.66 (15)°. Both methoxy groups are virtually coplanar with their attached rings with C3—C2—O2—C20 and C17—C16—O3—C19 torsion angles, respectively, of 5.04 (16) and 3.73 (16)°. There are no unusual bond lengths or bond angles in the molecule.
3. Supramolecular features
In the Mthphn⋯OMthphn (Mthphn = methoxyphenyl) hydrogen bonds (Table 1, Fig. 2). These are stacked along the a axis through C6—H6⋯Cg3(x, − − y, − + z) interactions (Table 1) as well as through π—-π stacking interactions between inversion-related C rings [Cg3⋯Cg3(1 − x, −y, 1 − z] with a centroid-to-centroid distance of 3.7318 (10) Å (Fig. 3).
(100) layers are formed by C—H4. Hirshfeld surface analysis
In order to visualize and quantify the intermolecular interactions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near hydrogen atoms (H6 and H19B), and near O3 indicate their roles in hydrogen bonding; they also appear as blue and red regions corresponding to positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 5. The HS plotted over the shape-index (Fig. 6) clearly reveals π–π stacking interactions (visualized as red and blue areas) in (I), as discussed above.
The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯C, N⋯C/C⋯N, O⋯C/C⋯O and O⋯N/N⋯O contacts (McKinnon et al., 2007) are illustrated in Fig. 7b–i, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 48.7% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 0.95 Å. In the presence of C—H⋯π interactions, the pair of characteristic wings of H⋯C/C⋯H contacts (23.3% contribution to the HS, Fig. 7c) has the tips at de + di = 2.68 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯N/N⋯H contacts (12.3% contribution, Fig. 7d) has a distribution of points with small and slightly larger tips at de + di = 2.72 and 2.70 Å, respectively. The H⋯O/O⋯H contacts (Fig. 7e, 11.3% contribution) have a symmetric distribution of points with the tips at de + di = 2.48 Å. The C⋯C contacts, Fig. 7f, have an arrow-shaped distribution of points with the tip at de = di = 1.68 Å. Finally, N⋯C/C⋯N (Fig. 7g), O⋯C/C⋯O (Fig. 7h) and O⋯N/N⋯O (Fig. 7i) interactions contribute only 1.0%, 0.9% and 0.6%, respectively, to the overall HS and thus have minor significance.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using a CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of molecules was generated within a radius of 3.8 Å by default (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). In (I), the relevant C19—H19B⋯O3 hydrogen-bonding interaction energies (in kJ mol−1) were calculated as −20.6 (Eele), −5.7 (Epol), −49.3 (Edis), 35.4 (Erep) and −47.1 (Etot).
6. DFT calculations
Density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009) was used to optimize the molecular structure of (I) in the gas phase. Theoretical and experimental results in terms of bond lengths and angles are in good agreement (Table 2).
|
The highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) together with the energy gap between them (ΔE = ELUMO – EHOMO) are shown in Fig. 8. Table 3 collates calculated energies, including those for EHOMO and ELUMO, (χ), hardness (η), potential (μ), (ω) and softness (σ).
|
7. Database survey
An eugenol 4-allyl-2-methoxyphenol analogue has been reported by Ghosh et al. (2005). Others similar compounds have also been reported (Ogata et al., 2000; Yoo et al., 2005; Sadeghian et al., 2008; Ma et al. 2010).
8. Synthesis and crystallization
To a solution of 4-allyl-2-methoxy-1-(prop-2-ynyloxy) benzene (0.4 ml, 2.5 mmol) in anhydrous acetonitrile, 1-azido-4-methoxybenzene (0.30 ml, 2.5 mmol) and 10 mg copper (I) iodide (CuI) were added. The mixture was refluxed for 2 h. After cooling, the reaction mixture was extracted three times with dichloromethane. The organic phase was dried with sodium sulfate and purified by on silica gel, hexane–ethyl acetate (v/v = 80/20). Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 88%).
9. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in a difference-Fourier map and were refined freely.
details are summarized in Table 4Supporting information
CCDC reference: 2005277
https://doi.org/10.1107/S2056989020006994/wm5559sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020006994/wm5559Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020006994/wm5559Isup3.cdx
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C20H21N3O3 | F(000) = 744 |
Mr = 351.40 | Dx = 1.327 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.212 (3) Å | Cell parameters from 9905 reflections |
b = 5.9584 (12) Å | θ = 2.2–29.3° |
c = 19.450 (4) Å | µ = 0.09 mm−1 |
β = 110.537 (3)° | T = 150 K |
V = 1759.5 (6) Å3 | Block, colourless |
Z = 4 | 0.38 × 0.33 × 0.32 mm |
Bruker SMART APEX CCD diffractometer | 4788 independent reflections |
Radiation source: fine-focus sealed tube | 3978 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.3°, θmin = 2.2° |
φ and ω scans | h = −22→21 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.88, Tmax = 0.97 | l = −26→26 |
32548 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.132 | All H-atom parameters refined |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0858P)2 + 0.1761P] where P = (Fo2 + 2Fc2)/3 |
4788 reflections | (Δ/σ)max < 0.001 |
319 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.22952 (5) | −0.13314 (13) | 0.17036 (4) | 0.02658 (18) | |
O2 | 0.13208 (6) | 0.21761 (14) | 0.12923 (5) | 0.0343 (2) | |
O3 | 0.45455 (5) | 0.16414 (14) | 0.66870 (4) | 0.03039 (19) | |
N1 | 0.35850 (6) | −0.22912 (14) | 0.39234 (4) | 0.02175 (18) | |
N2 | 0.36971 (7) | −0.45263 (15) | 0.38817 (5) | 0.0295 (2) | |
N3 | 0.34449 (6) | −0.50475 (15) | 0.31817 (5) | 0.0293 (2) | |
C1 | 0.19702 (6) | −0.09553 (18) | 0.09610 (5) | 0.0237 (2) | |
C2 | 0.14239 (7) | 0.09424 (18) | 0.07352 (6) | 0.0253 (2) | |
C3 | 0.10348 (7) | 0.14141 (19) | −0.00049 (6) | 0.0298 (2) | |
H3 | 0.0643 (10) | 0.270 (3) | −0.0155 (8) | 0.039 (4)* | |
C4 | 0.11724 (7) | 0.0034 (2) | −0.05366 (6) | 0.0314 (2) | |
C5 | 0.17275 (8) | −0.1789 (2) | −0.03076 (6) | 0.0331 (3) | |
H5 | 0.1821 (11) | −0.278 (3) | −0.0671 (9) | 0.043 (4)* | |
C6 | 0.21292 (7) | −0.2286 (2) | 0.04393 (6) | 0.0290 (2) | |
H6 | 0.2500 (9) | −0.359 (2) | 0.0595 (8) | 0.031 (3)* | |
C7 | 0.07032 (8) | 0.0524 (3) | −0.13467 (7) | 0.0394 (3) | |
H7A | 0.0142 (12) | 0.144 (3) | −0.1426 (10) | 0.051 (5)* | |
H7B | 0.0508 (15) | −0.099 (4) | −0.1622 (13) | 0.086 (7)* | |
C8 | 0.12580 (9) | 0.1689 (3) | −0.17069 (7) | 0.0451 (3) | |
H8 | 0.1781 (14) | 0.088 (3) | −0.1728 (11) | 0.066 (5)* | |
C9 | 0.10758 (12) | 0.3641 (4) | −0.20373 (8) | 0.0597 (5) | |
H9 | 0.0469 (18) | 0.449 (4) | −0.2068 (14) | 0.099 (8)* | |
H9B | 0.1442 (14) | 0.434 (4) | −0.2293 (12) | 0.071 (6)* | |
C10 | 0.28746 (7) | −0.31981 (18) | 0.19593 (6) | 0.0249 (2) | |
H10A | 0.2564 (9) | −0.465 (2) | 0.1772 (8) | 0.028 (3)* | |
H10B | 0.3377 (9) | −0.304 (2) | 0.1801 (7) | 0.026 (3)* | |
C11 | 0.31793 (6) | −0.31470 (17) | 0.27769 (6) | 0.0230 (2) | |
C12 | 0.32669 (7) | −0.13692 (17) | 0.32445 (6) | 0.0232 (2) | |
H12 | 0.3179 (9) | 0.025 (2) | 0.3173 (8) | 0.031 (3)* | |
C13 | 0.38036 (6) | −0.12328 (16) | 0.46256 (5) | 0.0210 (2) | |
C14 | 0.44278 (7) | −0.22392 (18) | 0.52340 (6) | 0.0246 (2) | |
H14 | 0.4712 (9) | −0.363 (2) | 0.5174 (8) | 0.029 (3)* | |
C15 | 0.46548 (7) | −0.12254 (18) | 0.59111 (6) | 0.0249 (2) | |
H15 | 0.5101 (11) | −0.194 (3) | 0.6325 (9) | 0.040 (4)* | |
C16 | 0.42651 (6) | 0.08019 (17) | 0.59909 (5) | 0.0226 (2) | |
C17 | 0.36412 (7) | 0.17993 (17) | 0.53822 (6) | 0.0240 (2) | |
H17 | 0.3362 (10) | 0.328 (3) | 0.5429 (8) | 0.039 (4)* | |
C18 | 0.34120 (7) | 0.07693 (17) | 0.46974 (5) | 0.0232 (2) | |
H18 | 0.2975 (8) | 0.148 (2) | 0.4265 (7) | 0.025 (3)* | |
C19 | 0.41329 (10) | 0.3629 (2) | 0.68101 (7) | 0.0373 (3) | |
H19A | 0.3554 (13) | 0.341 (3) | 0.6731 (10) | 0.050 (5)* | |
H19B | 0.4447 (11) | 0.399 (3) | 0.7326 (10) | 0.047 (4)* | |
H19C | 0.4223 (12) | 0.480 (3) | 0.6507 (10) | 0.056 (5)* | |
C20 | 0.07124 (9) | 0.3989 (2) | 0.10918 (8) | 0.0374 (3) | |
H20A | 0.0124 (13) | 0.347 (3) | 0.0825 (11) | 0.060 (5)* | |
H20B | 0.0740 (10) | 0.471 (3) | 0.1585 (10) | 0.047 (4)* | |
H20C | 0.0901 (10) | 0.514 (3) | 0.0820 (9) | 0.046 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0318 (4) | 0.0271 (4) | 0.0177 (4) | 0.0090 (3) | 0.0046 (3) | 0.0019 (3) |
O2 | 0.0408 (5) | 0.0298 (4) | 0.0294 (4) | 0.0122 (3) | 0.0088 (3) | 0.0000 (3) |
O3 | 0.0365 (4) | 0.0303 (4) | 0.0194 (4) | 0.0041 (3) | 0.0036 (3) | −0.0023 (3) |
N1 | 0.0260 (4) | 0.0191 (4) | 0.0178 (4) | 0.0022 (3) | 0.0048 (3) | 0.0024 (3) |
N2 | 0.0424 (5) | 0.0192 (4) | 0.0227 (4) | 0.0025 (4) | 0.0063 (4) | 0.0018 (3) |
N3 | 0.0394 (5) | 0.0216 (4) | 0.0222 (4) | 0.0017 (4) | 0.0051 (4) | 0.0006 (3) |
C1 | 0.0232 (4) | 0.0261 (5) | 0.0187 (5) | 0.0007 (4) | 0.0035 (3) | 0.0012 (4) |
C2 | 0.0241 (5) | 0.0244 (5) | 0.0251 (5) | 0.0012 (4) | 0.0057 (4) | 0.0009 (4) |
C3 | 0.0269 (5) | 0.0297 (5) | 0.0272 (5) | 0.0027 (4) | 0.0025 (4) | 0.0060 (4) |
C4 | 0.0275 (5) | 0.0396 (6) | 0.0217 (5) | −0.0023 (4) | 0.0018 (4) | 0.0041 (4) |
C5 | 0.0338 (6) | 0.0409 (6) | 0.0209 (5) | 0.0036 (5) | 0.0051 (4) | −0.0023 (5) |
C6 | 0.0289 (5) | 0.0317 (5) | 0.0229 (5) | 0.0057 (4) | 0.0045 (4) | −0.0008 (4) |
C7 | 0.0349 (6) | 0.0502 (8) | 0.0241 (6) | −0.0033 (5) | −0.0010 (4) | 0.0065 (5) |
C8 | 0.0337 (6) | 0.0741 (10) | 0.0234 (6) | 0.0000 (6) | 0.0047 (5) | 0.0015 (6) |
C9 | 0.0578 (9) | 0.0807 (12) | 0.0296 (7) | −0.0256 (9) | 0.0014 (6) | 0.0125 (7) |
C10 | 0.0273 (5) | 0.0240 (5) | 0.0199 (5) | 0.0057 (4) | 0.0040 (4) | 0.0003 (4) |
C11 | 0.0238 (4) | 0.0222 (5) | 0.0207 (5) | 0.0020 (3) | 0.0051 (4) | 0.0015 (4) |
C12 | 0.0267 (5) | 0.0221 (5) | 0.0189 (5) | 0.0035 (4) | 0.0055 (4) | 0.0036 (4) |
C13 | 0.0240 (4) | 0.0206 (4) | 0.0170 (4) | −0.0005 (3) | 0.0055 (3) | 0.0017 (3) |
C14 | 0.0270 (5) | 0.0238 (5) | 0.0217 (5) | 0.0059 (4) | 0.0070 (4) | 0.0035 (4) |
C15 | 0.0258 (5) | 0.0264 (5) | 0.0196 (5) | 0.0043 (4) | 0.0044 (4) | 0.0042 (4) |
C16 | 0.0247 (4) | 0.0234 (5) | 0.0185 (4) | −0.0017 (3) | 0.0061 (3) | 0.0005 (4) |
C17 | 0.0287 (5) | 0.0194 (4) | 0.0225 (5) | 0.0020 (4) | 0.0074 (4) | 0.0016 (4) |
C18 | 0.0263 (5) | 0.0206 (4) | 0.0197 (5) | 0.0024 (3) | 0.0045 (4) | 0.0042 (4) |
C19 | 0.0553 (8) | 0.0269 (6) | 0.0247 (6) | 0.0042 (5) | 0.0079 (5) | −0.0040 (4) |
C20 | 0.0363 (6) | 0.0290 (6) | 0.0471 (7) | 0.0098 (5) | 0.0148 (5) | 0.0040 (5) |
O1—C1 | 1.3712 (12) | C8—H8 | 0.99 (2) |
O1—C10 | 1.4279 (12) | C9—H9 | 1.09 (3) |
O2—C2 | 1.3673 (13) | C9—H9B | 0.99 (2) |
O2—C20 | 1.4220 (14) | C10—C11 | 1.4908 (14) |
O3—C16 | 1.3631 (12) | C10—H10A | 1.002 (14) |
O3—C19 | 1.4213 (15) | C10—H10B | 0.971 (14) |
N1—N2 | 1.3504 (13) | C11—C12 | 1.3708 (15) |
N1—C12 | 1.3541 (13) | C12—H12 | 0.978 (15) |
N1—C13 | 1.4315 (13) | C13—C18 | 1.3812 (14) |
N2—N3 | 1.3142 (13) | C13—C14 | 1.3942 (14) |
N3—C11 | 1.3600 (13) | C14—C15 | 1.3764 (15) |
C1—C6 | 1.3814 (15) | C14—H14 | 0.975 (14) |
C1—C2 | 1.4082 (14) | C15—C16 | 1.3969 (15) |
C2—C3 | 1.3827 (15) | C15—H15 | 0.970 (17) |
C3—C4 | 1.3991 (17) | C16—C17 | 1.3921 (14) |
C3—H3 | 0.974 (16) | C17—C18 | 1.3935 (14) |
C4—C5 | 1.3808 (17) | C17—H17 | 1.010 (16) |
C4—C7 | 1.5185 (16) | C18—H18 | 0.984 (13) |
C5—C6 | 1.3995 (16) | C19—H19A | 0.905 (19) |
C5—H5 | 0.972 (17) | C19—H19B | 0.977 (18) |
C6—H6 | 0.964 (15) | C19—H19C | 0.956 (19) |
C7—C8 | 1.491 (2) | C20—H20A | 0.96 (2) |
C7—H7A | 1.025 (18) | C20—H20B | 1.037 (18) |
C7—H7B | 1.04 (2) | C20—H20C | 0.979 (17) |
C8—C9 | 1.312 (2) | ||
O1···O2 | 2.5723 (13) | C18···H12 | 2.871 (15) |
O1···H12 | 2.870 (14) | C19···H17 | 2.543 (15) |
O2···H10Ai | 2.681 (14) | C19···O1vi | 3.3285 (19) |
O3···H19Bii | 2.579 (18) | C20···H3 | 2.508 (15) |
N2···C18iii | 3.3320 (15) | C20···H10Ai | 2.938 (15) |
N2···H14 | 2.532 (15) | H3···H7A | 2.43 (2) |
N2···H18iii | 2.864 (13) | H3···H20A | 2.38 (3) |
N2···H14iv | 2.812 (15) | H3···H20C | 2.31 (2) |
N3···H12iii | 2.834 (12) | H5···H7B | 2.52 (3) |
N3···H15iv | 2.848 (18) | H6···H10A | 2.34 (2) |
C12···C15v | 3.5436 (18) | H6···H10B | 2.30 (2) |
C13···C15v | 3.3633 (17) | H6···C17ix | 2.791 (14) |
C13···C14v | 3.4679 (17) | H6···C18ix | 2.955 (15) |
C14···C14v | 3.5463 (18) | H7A···H9 | 2.37 (3) |
C14···C18v | 3.5668 (18) | H7B···H9x | 2.50 (4) |
C19···C1vi | 3.589 (2) | H8···N3ix | 2.808 (1) |
C19···C10vi | 3.4746 (19) | H9···H20Bxi | 2.50 (3) |
C1···H20Ciii | 2.856 (18) | H9B···O2xii | 2.837 (5) |
C3···H20C | 2.792 (17) | H10B···C16ix | 2.976 (14) |
C3···H20A | 2.82 (2) | H10B···C19xii | 2.897 (13) |
C4···H20Avii | 2.88 (2) | H12···H18 | 2.377 (19) |
C5···H20Avii | 2.98 (2) | H14···H14iv | 2.107 (19) |
C6···H20Ciii | 2.811 (17) | H15···H19Ciii | 2.51 (3) |
C6···H10A | 2.814 (4) | H15···H19Bii | 2.53 (2) |
C6···H10B | 2.748 (13) | H17···H19A | 2.44 (2) |
C9···H7Bviii | 2.96 (2) | H17···H19C | 2.26 (2) |
C10···H6 | 2.517 (15) | H18···C8vi | 2.970 (13) |
C12···H18 | 2.776 (13) | H19A···O1vi | 2.67 (2) |
C15···H19Ciii | 2.830 (18) | H19A···C1vi | 2.91 (2) |
C17···H19C | 2.725 (18) | H19C···H10Bvi | 2.55 (2) |
C17···H19A | 2.843 (19) | ||
C1—O1—C10 | 117.19 (8) | C11—C10—H10A | 110.0 (8) |
C2—O2—C20 | 117.19 (10) | O1—C10—H10B | 109.5 (8) |
C16—O3—C19 | 117.42 (9) | C11—C10—H10B | 109.6 (8) |
N2—N1—C12 | 110.77 (8) | H10A—C10—H10B | 109.9 (11) |
N2—N1—C13 | 119.89 (8) | N3—C11—C12 | 108.73 (9) |
C12—N1—C13 | 129.33 (9) | N3—C11—C10 | 121.31 (9) |
N3—N2—N1 | 107.21 (8) | C12—C11—C10 | 129.94 (9) |
N2—N3—C11 | 108.86 (9) | N1—C12—C11 | 104.42 (9) |
O1—C1—C6 | 125.33 (9) | N1—C12—H12 | 121.7 (8) |
O1—C1—C2 | 115.27 (9) | C11—C12—H12 | 133.8 (8) |
C6—C1—C2 | 119.40 (10) | C18—C13—C14 | 120.55 (9) |
O2—C2—C3 | 125.30 (10) | C18—C13—N1 | 120.54 (8) |
O2—C2—C1 | 115.02 (9) | C14—C13—N1 | 118.91 (9) |
C3—C2—C1 | 119.68 (10) | C15—C14—C13 | 119.62 (10) |
C2—C3—C4 | 121.15 (10) | C15—C14—H14 | 120.6 (8) |
C2—C3—H3 | 118.9 (9) | C13—C14—H14 | 119.7 (8) |
C4—C3—H3 | 119.9 (9) | C14—C15—C16 | 120.42 (9) |
C5—C4—C3 | 118.60 (10) | C14—C15—H15 | 118.3 (9) |
C5—C4—C7 | 121.24 (11) | C16—C15—H15 | 121.3 (9) |
C3—C4—C7 | 120.15 (11) | O3—C16—C17 | 125.29 (9) |
C4—C5—C6 | 120.98 (11) | O3—C16—C15 | 114.93 (9) |
C4—C5—H5 | 119.5 (10) | C17—C16—C15 | 119.78 (9) |
C6—C5—H5 | 119.5 (10) | C16—C17—C18 | 119.70 (9) |
C1—C6—C5 | 120.15 (10) | C16—C17—H17 | 120.7 (9) |
C1—C6—H6 | 119.3 (9) | C18—C17—H17 | 119.6 (9) |
C5—C6—H6 | 120.5 (9) | C13—C18—C17 | 119.94 (9) |
C8—C7—C4 | 114.32 (10) | C13—C18—H18 | 120.2 (8) |
C8—C7—H7A | 109.4 (10) | C17—C18—H18 | 119.8 (8) |
C4—C7—H7A | 110.7 (10) | O3—C19—H19A | 111.9 (11) |
C8—C7—H7B | 106.6 (13) | O3—C19—H19B | 104.5 (10) |
C4—C7—H7B | 108.6 (13) | H19A—C19—H19B | 110.0 (15) |
H7A—C7—H7B | 106.9 (16) | O3—C19—H19C | 108.7 (11) |
C9—C8—C7 | 125.01 (16) | H19A—C19—H19C | 111.8 (15) |
C9—C8—H8 | 117.5 (12) | H19B—C19—H19C | 109.6 (15) |
C7—C8—H8 | 117.4 (12) | O2—C20—H20A | 111.5 (11) |
C8—C9—H9 | 118.7 (14) | O2—C20—H20B | 105.0 (9) |
C8—C9—H9B | 123.1 (13) | H20A—C20—H20B | 110.1 (14) |
H9—C9—H9B | 118.0 (18) | O2—C20—H20C | 111.3 (9) |
O1—C10—C11 | 106.67 (8) | H20A—C20—H20C | 111.8 (15) |
O1—C10—H10A | 111.1 (8) | H20B—C20—H20C | 106.8 (14) |
C12—N1—N2—N3 | −0.64 (12) | N2—N3—C11—C12 | −0.22 (12) |
C13—N1—N2—N3 | 179.75 (8) | N2—N3—C11—C10 | 178.55 (9) |
N1—N2—N3—C11 | 0.52 (12) | O1—C10—C11—N3 | 154.23 (9) |
C10—O1—C1—C6 | 2.77 (15) | O1—C10—C11—C12 | −27.29 (15) |
C10—O1—C1—C2 | −178.10 (9) | N2—N1—C12—C11 | 0.49 (11) |
C20—O2—C2—C3 | 5.04 (16) | C13—N1—C12—C11 | −179.94 (9) |
C20—O2—C2—C1 | −174.39 (10) | N3—C11—C12—N1 | −0.16 (11) |
O1—C1—C2—O2 | 2.06 (14) | C10—C11—C12—N1 | −178.80 (10) |
C6—C1—C2—O2 | −178.75 (10) | N2—N1—C13—C18 | −155.77 (10) |
O1—C1—C2—C3 | −177.40 (9) | C12—N1—C13—C18 | 24.69 (15) |
C6—C1—C2—C3 | 1.79 (16) | N2—N1—C13—C14 | 25.16 (14) |
O2—C2—C3—C4 | −179.27 (10) | C12—N1—C13—C14 | −154.37 (10) |
C1—C2—C3—C4 | 0.13 (16) | C18—C13—C14—C15 | −0.03 (15) |
C2—C3—C4—C5 | −1.79 (17) | N1—C13—C14—C15 | 179.04 (9) |
C2—C3—C4—C7 | 177.07 (10) | C13—C14—C15—C16 | −0.10 (16) |
C3—C4—C5—C6 | 1.55 (18) | C19—O3—C16—C17 | 3.73 (16) |
C7—C4—C5—C6 | −177.30 (11) | C19—O3—C16—C15 | −176.25 (10) |
O1—C1—C6—C5 | 177.07 (10) | C14—C15—C16—O3 | −179.83 (9) |
C2—C1—C6—C5 | −2.03 (17) | C14—C15—C16—C17 | 0.19 (15) |
C4—C5—C6—C1 | 0.35 (18) | O3—C16—C17—C18 | 179.87 (9) |
C5—C4—C7—C8 | −80.52 (17) | C15—C16—C17—C18 | −0.16 (15) |
C3—C4—C7—C8 | 100.66 (15) | C14—C13—C18—C17 | 0.06 (15) |
C4—C7—C8—C9 | −121.28 (16) | N1—C13—C18—C17 | −178.99 (9) |
C1—O1—C10—C11 | 176.23 (8) | C16—C17—C18—C13 | 0.03 (15) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y−1, z; (iv) −x+1, −y−1, −z+1; (v) −x+1, −y, −z+1; (vi) x, −y+1/2, z+1/2; (vii) −x, −y, −z; (viii) −x, y+1/2, −z−1/2; (ix) x, −y−1/2, z−1/2; (x) −x, y−1/2, −z−1/2; (xi) −x, −y+1, −z; (xii) x, −y+1/2, z−1/2. |
Cg3 is the centroid of the benzene ring C (C13–C18). |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cg3xiii | 0.964 (15) | 2.825 (15) | 3.5168 (15) | 129.4 (11) |
C19—H19B···O3xiv | 0.977 (18) | 2.578 (18) | 3.4587 (16) | 150.0 (14) |
Symmetry codes: (xiii) x, −y−3/2, z−3/2; (xiv) −x+1, y+1/2, −z+3/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
O1—C1 | 1.3712 (12) | 1.39510 |
O1—C10 | 1.4279 (12) | 1.45830 |
O2—C2 | 1.3673 (13) | 1.39818 |
O2—C20 | 1.4220 (14) | 1.46747 |
O3—C16 | 1.3631 (12) | 1.38746 |
O3—C19 | 1.4213 (15) | 1.45298 |
N1—N2 | 1.3504 (13) | 1.39727 |
N1—C12 | 1.3541 (13) | 1.36977 |
N1—C13 | 1.4315 (13) | 1.42427 |
N2—N3 | 1.3142 (13) | 1.32619 |
N3—C11 | 1.3600 (13) | 1.38002 |
C8—C9 | 1.312 (2) | 1.33811 |
C1—O1—C10 | 117.19 (8) | 117.72628 |
C2—O2—C20 | 117.19 (10) | 117.20245 |
C16—O3—C19 | 117.42 (9) | 118.93805 |
N2—N1—C12 | 110.77 (8) | 110.09008 |
N2—N1—C13 | 119.89 (8) | 120.52180 |
C12—N1—C13 | 129.33 (9) | 129.38444 |
N3—N2—N1 | 107.21 (8) | 106.61104 |
N2—N3—C11 | 108.86 (9) | 109.15766 |
O1—C1—C6 | 125.33 (9) | 124.33053 |
Total Energy TE (eV) | -31679.5273 |
EHOMO (eV) | -5.8256 |
ELUMO (eV) | -1.0718 |
Gap, ΔE (eV) | 4.7547 |
Dipole moment, µ (Debye) | 2.6382 |
Ionization potential, I (eV) | 5.8256 |
Electron affinity, A | 1.0718 |
Electronegativity, χ | 3.4491 |
Hardness, η | 2.3773 |
Electrophilicity index, ω | 2.5021 |
Softness, σ | 0.4206 |
Fraction of electron transferred, ΔN | 0.7468 |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Bankowska, E., Balzarini, J., Głowacka, I. E. & Wróblewski, A. E. (2014). Monatsh. Chem. 145, 663–673. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Benencia, F. & Courreges, M. C. (2000). Phytother. Res. 14, 495–500. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chang, H. T. & Miau, R. H. (1984). Fl. Reipubl. Popularis Sin. 53, 28–135. Google Scholar
Daniel, A. N., Sartoretto, S. M., Schmidt, G., Caparroz-Assef, S. M., Bersani-Amado, C. A. & Cuman, R. K. N. (2009). Rev. Bras. Farmacogn. 19, 212–217. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US Google Scholar
Ghosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J. & Kumar, A. P. (2005). J. Biol. Chem. 280, 5812–5819. Web of Science CrossRef PubMed CAS Google Scholar
Glowacka, I. E., Grzonkowski, P., Lisiecki, P. & Kalinowski, L. (2019). Arch. Pharm. 352, 1–4. Google Scholar
Guenette, S. A., Helie, P., Beaudry, F. & Vachon, P. (2007). J. Vet. Anesth. Analg.. 34, 164–170. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hussain, A., Brahmbhatt, K., Priyani, A., Ahmed, M., Rizvi, T. A. & Sharma, C. (2011). Cancer Biother. Radiopharm. 26, 519–527. Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Y.-T., Li, H.-Q., Shi, X.-W., Zhang, A.-L. & Gao, J.-M. (2010). Acta Cryst. E66, o2946. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mahboub, R. & Memmou, F. (2015). Nat. Prod. Res. 29, 966–971. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mnafgui, K., Kaanich, F., Derbali, A., Hamden, K., Derbali, F., Slama, S., Allouche, N. & Elfeki, A. (2013). Arch. Physiol. & Biochem. 119, 225–233. Google Scholar
Ogata, M., Hoshi, M., Urano, S. & Endo, T. (2000). Chem. Pharm. Bull. 48, 1467–1469. Google Scholar
Pathirana, H. N. K. S., Wimalasena, S. H. M. P., De Silva, B. C. J., Hossain, S., Gang-Joon & Heo (2019). Vet. Res. 56, 31–38. Google Scholar
Patra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198–1222. Web of Science CrossRef CAS PubMed Google Scholar
Sadeghian, H., Seyedi, S. M., Saberi, M. R., Arghiani, Z. & Riazi, M. (2008). Bioorg. Med. Chem. 16, 890–901. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Taia, A., Essaber, M., Hökelek, T., Aatif, A., Mague, J. T., Alsalme, A. & Al-Zaqri, N. (2020). Acta Cryst. E76, 344–348. Google Scholar
Teixeira, R. R., Gazolla, P. A. R., da Silva, A. M., Borsodi, M. P. G., Bergmann, B. R., Ferreira, R. S., Vaz, B. G., Vasconcelos, G. A. & Lima, W. P. (2018). Eur. J. Med. Chem. 146, 274–286. Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Ueda-Nakamura, T., Mendonça-Filho, R. R., Morgado-Díaz, J. A., Korehisa Maza, P., Prado Dias Filho, B., Aparício Garcia Cortez, D., Alviano, D. S., Rosa, M. S., Lopes, A. H., Alviano, C. S. & Nakamura, C. V. (2006). Parasitol. Int. 55, 99–105. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Wang, C., Zhang, J., Chen, H., Fan, Y. & Shi, Z. (2010). Trop. Plant. Pathol. 35, 137–143. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoo, C. B., Han, K. T., Cho, K. S., Ha, J., Park, H. J., Nam, J. H., Kil, U. H. & Lee, K. T. (2005). Cancer Lett. 225, 41–52. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.