research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, inter­action energy and DFT studies of 4-[(4-allyl-2-meth­­oxy­phen­­oxy)meth­yl]-1-(4-meth­­oxy­phen­yl)-1H-1,2,3-triazole

CROSSMARK_Color_square_no_text.svg

aLaboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP 2390, 40001 Marrakech, Morocco, bLaboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: AbdelmaoujoudTaia2018@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 May 2020; accepted 22 May 2020; online 29 May 2020)

In the title mol­ecule, C20H21N3O3, the allyl substituent is rotated out of the plane of its attached phenyl ring [torsion angle 100.66 (15)°]. In the crystal, C—HMthphn⋯OMthphn (Mthphn = meth­oxy­phen­yl) hydrogen bonds lead to the formation of (100) layers that are connected into a three-dimensional network by C—H⋯π(ring) inter­actions, together with ππ stacking inter­actions [centroid-to-centroid distance = 3.7318 (10) Å] between parallel phenyl rings. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.7%) and H⋯C/C⋯H (23.3%) inter­actions. Computational chemistry reveals that the C—HMthphn⋯OMthphn hydrogen bond energy is 47.1 kJ mol−1. The theoretical structure, optimized by density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined mol­ecular structure. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Clove essential oil is extracted from cloves, which come from a tree belonging to the Myrtaceae family (Chang & Miau, 1984[Chang, H. T. & Miau, R. H. (1984). Fl. Reipubl. Popularis Sin. 53, 28-135.]), originating from the Moluccas in Indonesia. Eugenol (C10H12O2) is the major constituent of clove essential oil with a percentage of 75–90% (Patra & Saxena, 2010[Patra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198-1222.]). Eugenol is a mol­ecule that belongs to the family of phenyl­propenes; its aromatic ring, an alcohol function and an allylic entity explain its high reactivity. Several studies have revealed various biological activities for eugenol, including anti­viral (Benencia & Courreges, 2000[Benencia, F. & Courreges, M. C. (2000). Phytother. Res. 14, 495-500.]), anti-leishmania (Ueda-Nakamura et al., 2006[Ueda-Nakamura, T., Mendonça-Filho, R. R., Morgado-Díaz, J. A., Korehisa Maza, P., Prado Dias Filho, B., Aparício Garcia Cortez, D., Alviano, D. S., Rosa, M. S., Lopes, A. H., Alviano, C. S. & Nakamura, C. V. (2006). Parasitol. Int. 55, 99-105.]), anti­bacterial (Pathirana et al., 2019[Pathirana, H. N. K. S., Wimalasena, S. H. M. P., De Silva, B. C. J., Hossain, S., Gang-Joon & Heo (2019). Vet. Res. 56, 31-38.]), anti­fungal (Wang et al., 2010[Wang, C., Zhang, J., Chen, H., Fan, Y. & Shi, Z. (2010). Trop. Plant. Pathol. 35, 137-143.]), anti-inflammatory (Daniel et al., 2009[Daniel, A. N., Sartoretto, S. M., Schmidt, G., Caparroz-Assef, S. M., Bersani-Amado, C. A. & Cuman, R. K. N. (2009). Rev. Bras. Farmacogn. 19, 212-217.]), anti­oxidant (Mahboub & Memmou., 2015[Mahboub, R. & Memmou, F. (2015). Nat. Prod. Res. 29, 966-971.]), anesthetic analgesic (Guenette et al., 2007[Guenette, S. A., Helie, P., Beaudry, F. & Vachon, P. (2007). J. Vet. Anesth. Analg.. 34, 164-170.]), anti­cancer (Hussain et al., 2011[Hussain, A., Brahmbhatt, K., Priyani, A., Ahmed, M., Rizvi, T. A. & Sharma, C. (2011). Cancer Biother. Radiopharm. 26, 519-527.]) or anti-diabetes (Mnafgui et al., 2013[Mnafgui, K., Kaanich, F., Derbali, A., Hamden, K., Derbali, F., Slama, S., Allouche, N. & Elfeki, A. (2013). Arch. Physiol. & Biochem. 119, 225-233.]) properties. On the other hand, 1,2,3-triazoles are known by their diverse biological activities being used as anti­leishmania (Teixeira et al., 2018[Teixeira, R. R., Gazolla, P. A. R., da Silva, A. M., Borsodi, M. P. G., Bergmann, B. R., Ferreira, R. S., Vaz, B. G., Vasconcelos, G. A. & Lima, W. P. (2018). Eur. J. Med. Chem. 146, 274-286.]), anti­microbial (Glowacka et al., 2019[Glowacka, I. E., Grzonkowski, P., Lisiecki, P. & Kalinowski, L. (2019). Arch. Pharm. 352, 1-4.]) or anti­viral (Bankowska, et al., 2014[Bankowska, E., Balzarini, J., Głowacka, I. E. & Wróblewski, A. E. (2014). Monatsh. Chem. 145, 663-673.]) agents. In this context, we have synthesized the title compound, (I)[link], through cyclo­addition reaction of 1-azido-4-meth­oxy­benzene with 4-allyl-2-meth­oxy-1-(prop-2-yn­yloxy) benzene; the latter was previously prepared by O-alkyl­ation of eugenol by propargile (Taia et al., 2020[Taia, A., Essaber, M., Hökelek, T., Aatif, A., Mague, J. T., Alsalme, A. & Al-Zaqri, N. (2020). Acta Cryst. E76, 344-348.]).

[Scheme 1]

We report herein the synthesis, mol­ecular and crystal structures of (I)[link], along with the results of a Hirshfeld surface analysis, an inter­action energy calculation, and a density functional theory (DFT) study.

2. Structural commentary

The title mol­ecule is non-planar (Fig. 1[link]), with the A (C1–C6) and C (C13–C18) benzene rings inclined to the B (C11/C12/N1–N3) triazole ring by 25.76 (4) and 24.97 (4)°, respectively. The allyl group is rotated out of the plane of the A ring as indicated by the C3—C4—C7—C8 torsion angle of 100.66 (15)°. Both meth­oxy groups are virtually coplanar with their attached rings with C3—C2—O2—C20 and C17—C16—O3—C19 torsion angles, respectively, of 5.04 (16) and 3.73 (16)°. There are no unusual bond lengths or bond angles in the mol­ecule.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure, (100) layers are formed by C—HMthphn⋯OMthphn (Mthphn = meth­oxy­phen­yl) hydrogen bonds (Table 1[link], Fig. 2[link]). These are stacked along the a axis through C6—H6⋯Cg3(x, −[{1\over 2}] − y, −[{1\over 2}] + z) inter­actions (Table 1[link]) as well as through π—-π stacking inter­actions between inversion-related C rings [Cg3⋯Cg3(1 − x, −y, 1 − z] with a centroid-to-centroid distance of 3.7318 (10) Å (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the benzene ring C (C13–C18).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg3xiii 0.964 (15) 2.825 (15) 3.5168 (15) 129.4 (11)
C19—H19B⋯O3xiv 0.977 (18) 2.578 (18) 3.4587 (16) 150.0 (14)
Symmetry codes: (xiii) [x, -y-{\script{3\over 2}}, z-{\script{3\over 2}}]; (xiv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A portion of one layer viewed along the a axis, with C—HMthphn⋯OMthphn (Mthphn = meth­oxy­phen­yl) hydrogen bonds depicted by dashed lines.
[Figure 3]
Figure 3
Projection of the crystal structure along the b axis. C—HMthphn⋯OMthphn (Mthphn = meth­oxy­phen­yl) hydrogen bonds and ππ stacking and C—H⋯π(ring) inter­actions are depicted, respectively, by black, orange and green dashed lines.

4. Hirshfeld surface analysis

In order to visualize and qu­antify the inter­molecular inter­actions in the crystal of (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near hydrogen atoms (H6 and H19B), and near O3 indicate their roles in hydrogen bonding; they also appear as blue and red regions corresponding to positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]), as shown in Fig. 5[link]. The HS plotted over the shape-index (Fig. 6[link]) clearly reveals ππ stacking inter­actions (visualized as red and blue areas) in (I)[link], as discussed above.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range of −0.2587 to 1.3813 a.u..
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u..
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯C, N⋯C/C⋯N, O⋯C/C⋯O and O⋯N/N⋯O contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link]bi, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 48.7% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 0.95 Å. In the presence of C—H⋯π inter­actions, the pair of characteristic wings of H⋯C/C⋯H contacts (23.3% contribution to the HS, Fig. 7[link]c) has the tips at de + di = 2.68 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯N/N⋯H contacts (12.3% contribution, Fig. 7[link]d) has a distribution of points with small and slightly larger tips at de + di = 2.72 and 2.70 Å, respectively. The H⋯O/O⋯H contacts (Fig. 7[link]e, 11.3% contribution) have a symmetric distribution of points with the tips at de + di = 2.48 Å. The C⋯C contacts, Fig. 7[link]f, have an arrow-shaped distribution of points with the tip at de = di = 1.68 Å. Finally, N⋯C/C⋯N (Fig. 7[link]g), O⋯C/C⋯O (Fig. 7[link]h) and O⋯N/N⋯O (Fig. 7[link]i) inter­actions contribute only 1.0%, 0.9% and 0.6%, respectively, to the overall HS and thus have minor significance.

[Figure 7]
Figure 7
Two-dimensional fingerprint plots for (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H, (e) H⋯O/O⋯H, (f) C⋯C, (g) N⋯C/C⋯N, (h) O⋯C/C⋯O and (i) O⋯N/N⋯O inter­actions. di and de refer to the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies were calculated using a CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules was generated within a radius of 3.8 Å by default (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). In (I)[link], the relevant C19—H19B⋯O3 hydrogen-bonding inter­action energies (in kJ mol−1) were calculated as −20.6 (Eele), −5.7 (Epol), −49.3 (Edis), 35.4 (Erep) and −47.1 (Etot).

6. DFT calculations

Density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US]) was used to optimize the mol­ecular structure of (I)[link] in the gas phase. Theoretical and experimental results in terms of bond lengths and angles are in good agreement (Table 2[link]).

Table 2
Comparison of selected bond length and angles (Å, °) between exerimental data (X-ray) and theory [B3LYP/6–311G(d,p)]

Bonds/angles X-ray B3LYP/6–311G(d,p)
O1—C1 1.3712 (12) 1.39510
O1—C10 1.4279 (12) 1.45830
O2—C2 1.3673 (13) 1.39818
O2—C20 1.4220 (14) 1.46747
O3—C16 1.3631 (12) 1.38746
O3—C19 1.4213 (15) 1.45298
N1—N2 1.3504 (13) 1.39727
N1—C12 1.3541 (13) 1.36977
N1—C13 1.4315 (13) 1.42427
N2—N3 1.3142 (13) 1.32619
N3—C11 1.3600 (13) 1.38002
C8—C9 1.312 (2) 1.33811
     
C1—O1—C10 117.19 (8) 117.72628
C2—O2—C20 117.19 (10) 117.20245
C16—O3—C19 117.42 (9) 118.93805
N2—N1—C12 110.77 (8) 110.09008
N2—N1—C13 119.89 (8) 120.52180
C12—N1—C13 129.33 (9) 129.38444
N3—N2—N1 107.21 (8) 106.61104
N2—N3—C11 108.86 (9) 109.15766
O1—C1—C6 125.33 (9) 124.33053

The highest-occupied mol­ecular orbital (HOMO) and the lowest-unoccupied mol­ecular orbital (LUMO) together with the energy gap between them (ΔE = ELUMOEHOMO) are shown in Fig. 8[link]. Table 3[link] collates calculated energies, including those for EHOMO and ELUMO, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ).

Table 3
Calculated energies and other parameters for (I)

Total Energy TE (eV) −31679.5273
EHOMO (eV) −5.8256
ELUMO (eV) −1.0718
Gap, ΔE (eV) 4.7547
Dipole moment, μ (Debye) 2.6382
Ionization potential, I (eV) 5.8256
Electron affinity, A 1.0718
Electronegativity, χ 3.4491
Hardness, η 2.3773
Electrophilicity index, ω 2.5021
Softness, σ 0.4206
Fraction of electron transferred, ΔN 0.7468
[Figure 8]
Figure 8
HOMO and LUMO of (I)[link], and the energy band gap between them.

7. Database survey

An eugenol 4-allyl-2-meth­oxy­phenol analogue has been reported by Ghosh et al. (2005[Ghosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J. & Kumar, A. P. (2005). J. Biol. Chem. 280, 5812-5819.]). Others similar compounds have also been reported (Ogata et al., 2000[Ogata, M., Hoshi, M., Urano, S. & Endo, T. (2000). Chem. Pharm. Bull. 48, 1467-1469.]; Yoo et al., 2005[Yoo, C. B., Han, K. T., Cho, K. S., Ha, J., Park, H. J., Nam, J. H., Kil, U. H. & Lee, K. T. (2005). Cancer Lett. 225, 41-52.]; Sadeghian et al., 2008[Sadeghian, H., Seyedi, S. M., Saberi, M. R., Arghiani, Z. & Riazi, M. (2008). Bioorg. Med. Chem. 16, 890-901.]; Ma et al. 2010[Ma, Y.-T., Li, H.-Q., Shi, X.-W., Zhang, A.-L. & Gao, J.-M. (2010). Acta Cryst. E66, o2946.]).

8. Synthesis and crystallization

To a solution of 4-allyl-2-meth­oxy-1-(prop-2-yn­yloxy) benzene (0.4 ml, 2.5 mmol) in anhydrous aceto­nitrile, 1-azido-4-meth­oxy­benzene (0.30 ml, 2.5 mmol) and 10 mg copper (I)[link] iodide (CuI) were added. The mixture was refluxed for 2 h. After cooling, the reaction mixture was extracted three times with di­chloro­methane. The organic phase was dried with sodium sulfate and purified by column chromatography on silica gel, eluent hexa­ne–ethyl acetate (v/v = 80/20). Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 88%).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms were located in a difference-Fourier map and were refined freely.

Table 4
Experimental details

Crystal data
Chemical formula C20H21N3O3
Mr 351.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 16.212 (3), 5.9584 (12), 19.450 (4)
β (°) 110.537 (3)
V3) 1759.5 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.38 × 0.33 × 0.32
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.88, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 32548, 4788, 3978
Rint 0.027
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.09
No. of reflections 4788
No. of parameters 319
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.54, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) andpublCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

4-[(4-Allyl-2-methoxyphenoxy)methyl]-1-(4-methoxyphenyl)-1H-1,2,3-triazole top
Crystal data top
C20H21N3O3F(000) = 744
Mr = 351.40Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.212 (3) ÅCell parameters from 9905 reflections
b = 5.9584 (12) Åθ = 2.2–29.3°
c = 19.450 (4) ŵ = 0.09 mm1
β = 110.537 (3)°T = 150 K
V = 1759.5 (6) Å3Block, colourless
Z = 40.38 × 0.33 × 0.32 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4788 independent reflections
Radiation source: fine-focus sealed tube3978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 2.2°
φ and ω scansh = 2221
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.88, Tmax = 0.97l = 2626
32548 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.132All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0858P)2 + 0.1761P]
where P = (Fo2 + 2Fc2)/3
4788 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22952 (5)0.13314 (13)0.17036 (4)0.02658 (18)
O20.13208 (6)0.21761 (14)0.12923 (5)0.0343 (2)
O30.45455 (5)0.16414 (14)0.66870 (4)0.03039 (19)
N10.35850 (6)0.22912 (14)0.39234 (4)0.02175 (18)
N20.36971 (7)0.45263 (15)0.38817 (5)0.0295 (2)
N30.34449 (6)0.50475 (15)0.31817 (5)0.0293 (2)
C10.19702 (6)0.09553 (18)0.09610 (5)0.0237 (2)
C20.14239 (7)0.09424 (18)0.07352 (6)0.0253 (2)
C30.10348 (7)0.14141 (19)0.00049 (6)0.0298 (2)
H30.0643 (10)0.270 (3)0.0155 (8)0.039 (4)*
C40.11724 (7)0.0034 (2)0.05366 (6)0.0314 (2)
C50.17275 (8)0.1789 (2)0.03076 (6)0.0331 (3)
H50.1821 (11)0.278 (3)0.0671 (9)0.043 (4)*
C60.21292 (7)0.2286 (2)0.04393 (6)0.0290 (2)
H60.2500 (9)0.359 (2)0.0595 (8)0.031 (3)*
C70.07032 (8)0.0524 (3)0.13467 (7)0.0394 (3)
H7A0.0142 (12)0.144 (3)0.1426 (10)0.051 (5)*
H7B0.0508 (15)0.099 (4)0.1622 (13)0.086 (7)*
C80.12580 (9)0.1689 (3)0.17069 (7)0.0451 (3)
H80.1781 (14)0.088 (3)0.1728 (11)0.066 (5)*
C90.10758 (12)0.3641 (4)0.20373 (8)0.0597 (5)
H90.0469 (18)0.449 (4)0.2068 (14)0.099 (8)*
H9B0.1442 (14)0.434 (4)0.2293 (12)0.071 (6)*
C100.28746 (7)0.31981 (18)0.19593 (6)0.0249 (2)
H10A0.2564 (9)0.465 (2)0.1772 (8)0.028 (3)*
H10B0.3377 (9)0.304 (2)0.1801 (7)0.026 (3)*
C110.31793 (6)0.31470 (17)0.27769 (6)0.0230 (2)
C120.32669 (7)0.13692 (17)0.32445 (6)0.0232 (2)
H120.3179 (9)0.025 (2)0.3173 (8)0.031 (3)*
C130.38036 (6)0.12328 (16)0.46256 (5)0.0210 (2)
C140.44278 (7)0.22392 (18)0.52340 (6)0.0246 (2)
H140.4712 (9)0.363 (2)0.5174 (8)0.029 (3)*
C150.46548 (7)0.12254 (18)0.59111 (6)0.0249 (2)
H150.5101 (11)0.194 (3)0.6325 (9)0.040 (4)*
C160.42651 (6)0.08019 (17)0.59909 (5)0.0226 (2)
C170.36412 (7)0.17993 (17)0.53822 (6)0.0240 (2)
H170.3362 (10)0.328 (3)0.5429 (8)0.039 (4)*
C180.34120 (7)0.07693 (17)0.46974 (5)0.0232 (2)
H180.2975 (8)0.148 (2)0.4265 (7)0.025 (3)*
C190.41329 (10)0.3629 (2)0.68101 (7)0.0373 (3)
H19A0.3554 (13)0.341 (3)0.6731 (10)0.050 (5)*
H19B0.4447 (11)0.399 (3)0.7326 (10)0.047 (4)*
H19C0.4223 (12)0.480 (3)0.6507 (10)0.056 (5)*
C200.07124 (9)0.3989 (2)0.10918 (8)0.0374 (3)
H20A0.0124 (13)0.347 (3)0.0825 (11)0.060 (5)*
H20B0.0740 (10)0.471 (3)0.1585 (10)0.047 (4)*
H20C0.0901 (10)0.514 (3)0.0820 (9)0.046 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0318 (4)0.0271 (4)0.0177 (4)0.0090 (3)0.0046 (3)0.0019 (3)
O20.0408 (5)0.0298 (4)0.0294 (4)0.0122 (3)0.0088 (3)0.0000 (3)
O30.0365 (4)0.0303 (4)0.0194 (4)0.0041 (3)0.0036 (3)0.0023 (3)
N10.0260 (4)0.0191 (4)0.0178 (4)0.0022 (3)0.0048 (3)0.0024 (3)
N20.0424 (5)0.0192 (4)0.0227 (4)0.0025 (4)0.0063 (4)0.0018 (3)
N30.0394 (5)0.0216 (4)0.0222 (4)0.0017 (4)0.0051 (4)0.0006 (3)
C10.0232 (4)0.0261 (5)0.0187 (5)0.0007 (4)0.0035 (3)0.0012 (4)
C20.0241 (5)0.0244 (5)0.0251 (5)0.0012 (4)0.0057 (4)0.0009 (4)
C30.0269 (5)0.0297 (5)0.0272 (5)0.0027 (4)0.0025 (4)0.0060 (4)
C40.0275 (5)0.0396 (6)0.0217 (5)0.0023 (4)0.0018 (4)0.0041 (4)
C50.0338 (6)0.0409 (6)0.0209 (5)0.0036 (5)0.0051 (4)0.0023 (5)
C60.0289 (5)0.0317 (5)0.0229 (5)0.0057 (4)0.0045 (4)0.0008 (4)
C70.0349 (6)0.0502 (8)0.0241 (6)0.0033 (5)0.0010 (4)0.0065 (5)
C80.0337 (6)0.0741 (10)0.0234 (6)0.0000 (6)0.0047 (5)0.0015 (6)
C90.0578 (9)0.0807 (12)0.0296 (7)0.0256 (9)0.0014 (6)0.0125 (7)
C100.0273 (5)0.0240 (5)0.0199 (5)0.0057 (4)0.0040 (4)0.0003 (4)
C110.0238 (4)0.0222 (5)0.0207 (5)0.0020 (3)0.0051 (4)0.0015 (4)
C120.0267 (5)0.0221 (5)0.0189 (5)0.0035 (4)0.0055 (4)0.0036 (4)
C130.0240 (4)0.0206 (4)0.0170 (4)0.0005 (3)0.0055 (3)0.0017 (3)
C140.0270 (5)0.0238 (5)0.0217 (5)0.0059 (4)0.0070 (4)0.0035 (4)
C150.0258 (5)0.0264 (5)0.0196 (5)0.0043 (4)0.0044 (4)0.0042 (4)
C160.0247 (4)0.0234 (5)0.0185 (4)0.0017 (3)0.0061 (3)0.0005 (4)
C170.0287 (5)0.0194 (4)0.0225 (5)0.0020 (4)0.0074 (4)0.0016 (4)
C180.0263 (5)0.0206 (4)0.0197 (5)0.0024 (3)0.0045 (4)0.0042 (4)
C190.0553 (8)0.0269 (6)0.0247 (6)0.0042 (5)0.0079 (5)0.0040 (4)
C200.0363 (6)0.0290 (6)0.0471 (7)0.0098 (5)0.0148 (5)0.0040 (5)
Geometric parameters (Å, º) top
O1—C11.3712 (12)C8—H80.99 (2)
O1—C101.4279 (12)C9—H91.09 (3)
O2—C21.3673 (13)C9—H9B0.99 (2)
O2—C201.4220 (14)C10—C111.4908 (14)
O3—C161.3631 (12)C10—H10A1.002 (14)
O3—C191.4213 (15)C10—H10B0.971 (14)
N1—N21.3504 (13)C11—C121.3708 (15)
N1—C121.3541 (13)C12—H120.978 (15)
N1—C131.4315 (13)C13—C181.3812 (14)
N2—N31.3142 (13)C13—C141.3942 (14)
N3—C111.3600 (13)C14—C151.3764 (15)
C1—C61.3814 (15)C14—H140.975 (14)
C1—C21.4082 (14)C15—C161.3969 (15)
C2—C31.3827 (15)C15—H150.970 (17)
C3—C41.3991 (17)C16—C171.3921 (14)
C3—H30.974 (16)C17—C181.3935 (14)
C4—C51.3808 (17)C17—H171.010 (16)
C4—C71.5185 (16)C18—H180.984 (13)
C5—C61.3995 (16)C19—H19A0.905 (19)
C5—H50.972 (17)C19—H19B0.977 (18)
C6—H60.964 (15)C19—H19C0.956 (19)
C7—C81.491 (2)C20—H20A0.96 (2)
C7—H7A1.025 (18)C20—H20B1.037 (18)
C7—H7B1.04 (2)C20—H20C0.979 (17)
C8—C91.312 (2)
O1···O22.5723 (13)C18···H122.871 (15)
O1···H122.870 (14)C19···H172.543 (15)
O2···H10Ai2.681 (14)C19···O1vi3.3285 (19)
O3···H19Bii2.579 (18)C20···H32.508 (15)
N2···C18iii3.3320 (15)C20···H10Ai2.938 (15)
N2···H142.532 (15)H3···H7A2.43 (2)
N2···H18iii2.864 (13)H3···H20A2.38 (3)
N2···H14iv2.812 (15)H3···H20C2.31 (2)
N3···H12iii2.834 (12)H5···H7B2.52 (3)
N3···H15iv2.848 (18)H6···H10A2.34 (2)
C12···C15v3.5436 (18)H6···H10B2.30 (2)
C13···C15v3.3633 (17)H6···C17ix2.791 (14)
C13···C14v3.4679 (17)H6···C18ix2.955 (15)
C14···C14v3.5463 (18)H7A···H92.37 (3)
C14···C18v3.5668 (18)H7B···H9x2.50 (4)
C19···C1vi3.589 (2)H8···N3ix2.808 (1)
C19···C10vi3.4746 (19)H9···H20Bxi2.50 (3)
C1···H20Ciii2.856 (18)H9B···O2xii2.837 (5)
C3···H20C2.792 (17)H10B···C16ix2.976 (14)
C3···H20A2.82 (2)H10B···C19xii2.897 (13)
C4···H20Avii2.88 (2)H12···H182.377 (19)
C5···H20Avii2.98 (2)H14···H14iv2.107 (19)
C6···H20Ciii2.811 (17)H15···H19Ciii2.51 (3)
C6···H10A2.814 (4)H15···H19Bii2.53 (2)
C6···H10B2.748 (13)H17···H19A2.44 (2)
C9···H7Bviii2.96 (2)H17···H19C2.26 (2)
C10···H62.517 (15)H18···C8vi2.970 (13)
C12···H182.776 (13)H19A···O1vi2.67 (2)
C15···H19Ciii2.830 (18)H19A···C1vi2.91 (2)
C17···H19C2.725 (18)H19C···H10Bvi2.55 (2)
C17···H19A2.843 (19)
C1—O1—C10117.19 (8)C11—C10—H10A110.0 (8)
C2—O2—C20117.19 (10)O1—C10—H10B109.5 (8)
C16—O3—C19117.42 (9)C11—C10—H10B109.6 (8)
N2—N1—C12110.77 (8)H10A—C10—H10B109.9 (11)
N2—N1—C13119.89 (8)N3—C11—C12108.73 (9)
C12—N1—C13129.33 (9)N3—C11—C10121.31 (9)
N3—N2—N1107.21 (8)C12—C11—C10129.94 (9)
N2—N3—C11108.86 (9)N1—C12—C11104.42 (9)
O1—C1—C6125.33 (9)N1—C12—H12121.7 (8)
O1—C1—C2115.27 (9)C11—C12—H12133.8 (8)
C6—C1—C2119.40 (10)C18—C13—C14120.55 (9)
O2—C2—C3125.30 (10)C18—C13—N1120.54 (8)
O2—C2—C1115.02 (9)C14—C13—N1118.91 (9)
C3—C2—C1119.68 (10)C15—C14—C13119.62 (10)
C2—C3—C4121.15 (10)C15—C14—H14120.6 (8)
C2—C3—H3118.9 (9)C13—C14—H14119.7 (8)
C4—C3—H3119.9 (9)C14—C15—C16120.42 (9)
C5—C4—C3118.60 (10)C14—C15—H15118.3 (9)
C5—C4—C7121.24 (11)C16—C15—H15121.3 (9)
C3—C4—C7120.15 (11)O3—C16—C17125.29 (9)
C4—C5—C6120.98 (11)O3—C16—C15114.93 (9)
C4—C5—H5119.5 (10)C17—C16—C15119.78 (9)
C6—C5—H5119.5 (10)C16—C17—C18119.70 (9)
C1—C6—C5120.15 (10)C16—C17—H17120.7 (9)
C1—C6—H6119.3 (9)C18—C17—H17119.6 (9)
C5—C6—H6120.5 (9)C13—C18—C17119.94 (9)
C8—C7—C4114.32 (10)C13—C18—H18120.2 (8)
C8—C7—H7A109.4 (10)C17—C18—H18119.8 (8)
C4—C7—H7A110.7 (10)O3—C19—H19A111.9 (11)
C8—C7—H7B106.6 (13)O3—C19—H19B104.5 (10)
C4—C7—H7B108.6 (13)H19A—C19—H19B110.0 (15)
H7A—C7—H7B106.9 (16)O3—C19—H19C108.7 (11)
C9—C8—C7125.01 (16)H19A—C19—H19C111.8 (15)
C9—C8—H8117.5 (12)H19B—C19—H19C109.6 (15)
C7—C8—H8117.4 (12)O2—C20—H20A111.5 (11)
C8—C9—H9118.7 (14)O2—C20—H20B105.0 (9)
C8—C9—H9B123.1 (13)H20A—C20—H20B110.1 (14)
H9—C9—H9B118.0 (18)O2—C20—H20C111.3 (9)
O1—C10—C11106.67 (8)H20A—C20—H20C111.8 (15)
O1—C10—H10A111.1 (8)H20B—C20—H20C106.8 (14)
C12—N1—N2—N30.64 (12)N2—N3—C11—C120.22 (12)
C13—N1—N2—N3179.75 (8)N2—N3—C11—C10178.55 (9)
N1—N2—N3—C110.52 (12)O1—C10—C11—N3154.23 (9)
C10—O1—C1—C62.77 (15)O1—C10—C11—C1227.29 (15)
C10—O1—C1—C2178.10 (9)N2—N1—C12—C110.49 (11)
C20—O2—C2—C35.04 (16)C13—N1—C12—C11179.94 (9)
C20—O2—C2—C1174.39 (10)N3—C11—C12—N10.16 (11)
O1—C1—C2—O22.06 (14)C10—C11—C12—N1178.80 (10)
C6—C1—C2—O2178.75 (10)N2—N1—C13—C18155.77 (10)
O1—C1—C2—C3177.40 (9)C12—N1—C13—C1824.69 (15)
C6—C1—C2—C31.79 (16)N2—N1—C13—C1425.16 (14)
O2—C2—C3—C4179.27 (10)C12—N1—C13—C14154.37 (10)
C1—C2—C3—C40.13 (16)C18—C13—C14—C150.03 (15)
C2—C3—C4—C51.79 (17)N1—C13—C14—C15179.04 (9)
C2—C3—C4—C7177.07 (10)C13—C14—C15—C160.10 (16)
C3—C4—C5—C61.55 (18)C19—O3—C16—C173.73 (16)
C7—C4—C5—C6177.30 (11)C19—O3—C16—C15176.25 (10)
O1—C1—C6—C5177.07 (10)C14—C15—C16—O3179.83 (9)
C2—C1—C6—C52.03 (17)C14—C15—C16—C170.19 (15)
C4—C5—C6—C10.35 (18)O3—C16—C17—C18179.87 (9)
C5—C4—C7—C880.52 (17)C15—C16—C17—C180.16 (15)
C3—C4—C7—C8100.66 (15)C14—C13—C18—C170.06 (15)
C4—C7—C8—C9121.28 (16)N1—C13—C18—C17178.99 (9)
C1—O1—C10—C11176.23 (8)C16—C17—C18—C130.03 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+3/2; (iii) x, y1, z; (iv) x+1, y1, z+1; (v) x+1, y, z+1; (vi) x, y+1/2, z+1/2; (vii) x, y, z; (viii) x, y+1/2, z1/2; (ix) x, y1/2, z1/2; (x) x, y1/2, z1/2; (xi) x, y+1, z; (xii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the benzene ring C (C13–C18).
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg3xiii0.964 (15)2.825 (15)3.5168 (15)129.4 (11)
C19—H19B···O3xiv0.977 (18)2.578 (18)3.4587 (16)150.0 (14)
Symmetry codes: (xiii) x, y3/2, z3/2; (xiv) x+1, y+1/2, z+3/2.
Comparison of selected bond length and angles (Å, °) between exerimental data (X-ray) and theory [B3LYP/6-311G(d,p)] top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C11.3712 (12)1.39510
O1—C101.4279 (12)1.45830
O2—C21.3673 (13)1.39818
O2—C201.4220 (14)1.46747
O3—C161.3631 (12)1.38746
O3—C191.4213 (15)1.45298
N1—N21.3504 (13)1.39727
N1—C121.3541 (13)1.36977
N1—C131.4315 (13)1.42427
N2—N31.3142 (13)1.32619
N3—C111.3600 (13)1.38002
C8—C91.312 (2)1.33811
C1—O1—C10117.19 (8)117.72628
C2—O2—C20117.19 (10)117.20245
C16—O3—C19117.42 (9)118.93805
N2—N1—C12110.77 (8)110.09008
N2—N1—C13119.89 (8)120.52180
C12—N1—C13129.33 (9)129.38444
N3—N2—N1107.21 (8)106.61104
N2—N3—C11108.86 (9)109.15766
O1—C1—C6125.33 (9)124.33053
Calculated energies and other parameters for (I) top
Total Energy TE (eV)-31679.5273
EHOMO (eV)-5.8256
ELUMO (eV)-1.0718
Gap, ΔE (eV)4.7547
Dipole moment, µ (Debye)2.6382
Ionization potential, I (eV)5.8256
Electron affinity, A1.0718
Electronegativity, χ3.4491
Hardness, η2.3773
Electrophilicity index, ω2.5021
Softness, σ0.4206
Fraction of electron transferred, ΔN0.7468
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBankowska, E., Balzarini, J., Głowacka, I. E. & Wróblewski, A. E. (2014). Monatsh. Chem. 145, 663–673.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBenencia, F. & Courreges, M. C. (2000). Phytother. Res. 14, 495–500.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, H. T. & Miau, R. H. (1984). Fl. Reipubl. Popularis Sin. 53, 28–135.  Google Scholar
First citationDaniel, A. N., Sartoretto, S. M., Schmidt, G., Caparroz-Assef, S. M., Bersani-Amado, C. A. & Cuman, R. K. N. (2009). Rev. Bras. Farmacogn. 19, 212–217.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US  Google Scholar
First citationGhosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J. & Kumar, A. P. (2005). J. Biol. Chem. 280, 5812–5819.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGlowacka, I. E., Grzonkowski, P., Lisiecki, P. & Kalinowski, L. (2019). Arch. Pharm. 352, 1–4.  Google Scholar
First citationGuenette, S. A., Helie, P., Beaudry, F. & Vachon, P. (2007). J. Vet. Anesth. Analg.. 34, 164–170.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHussain, A., Brahmbhatt, K., Priyani, A., Ahmed, M., Rizvi, T. A. & Sharma, C. (2011). Cancer Biother. Radiopharm. 26, 519–527.  Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Y.-T., Li, H.-Q., Shi, X.-W., Zhang, A.-L. & Gao, J.-M. (2010). Acta Cryst. E66, o2946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMahboub, R. & Memmou, F. (2015). Nat. Prod. Res. 29, 966–971.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMnafgui, K., Kaanich, F., Derbali, A., Hamden, K., Derbali, F., Slama, S., Allouche, N. & Elfeki, A. (2013). Arch. Physiol. & Biochem. 119, 225–233.  Google Scholar
First citationOgata, M., Hoshi, M., Urano, S. & Endo, T. (2000). Chem. Pharm. Bull. 48, 1467–1469.  Google Scholar
First citationPathirana, H. N. K. S., Wimalasena, S. H. M. P., De Silva, B. C. J., Hossain, S., Gang-Joon & Heo (2019). Vet. Res. 56, 31–38.  Google Scholar
First citationPatra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198–1222.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSadeghian, H., Seyedi, S. M., Saberi, M. R., Arghiani, Z. & Riazi, M. (2008). Bioorg. Med. Chem. 16, 890–901.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTaia, A., Essaber, M., Hökelek, T., Aatif, A., Mague, J. T., Alsalme, A. & Al-Zaqri, N. (2020). Acta Cryst. E76, 344–348.  Google Scholar
First citationTeixeira, R. R., Gazolla, P. A. R., da Silva, A. M., Borsodi, M. P. G., Bergmann, B. R., Ferreira, R. S., Vaz, B. G., Vasconcelos, G. A. & Lima, W. P. (2018). Eur. J. Med. Chem. 146, 274–286.  Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationUeda-Nakamura, T., Mendonça-Filho, R. R., Morgado-Díaz, J. A., Korehisa Maza, P., Prado Dias Filho, B., Aparício Garcia Cortez, D., Alviano, D. S., Rosa, M. S., Lopes, A. H., Alviano, C. S. & Nakamura, C. V. (2006). Parasitol. Int. 55, 99–105.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C., Zhang, J., Chen, H., Fan, Y. & Shi, Z. (2010). Trop. Plant. Pathol. 35, 137–143.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoo, C. B., Han, K. T., Cho, K. S., Ha, J., Park, H. J., Nam, J. H., Kil, U. H. & Lee, K. T. (2005). Cancer Lett. 225, 41–52.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds