research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 6-cyclo­propyl-1,3-di­phenylfulvene and 6-(2,3-di­meth­­oxy­naphth­yl)-1,3-di­phenylfulvene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Chemistry Research Center, United States Air Force, Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: Gary.Balaich@usafa.edu

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 28 April 2020; accepted 13 May 2020; online 22 May 2020)

The title compounds, 6-cyclo­propyl-1,3-diphenylfulvene, C21H18, [systematic name: 5-(cyclo­propyl­methyl­idene)-1,3-di­phen­yl­cyclo­penta-1,3-diene], 1, and 6-(2,3-di­meth­oxy­naphth­yl)-1,3-diphenylfulvene, C30H24O2, {systematic name: 5-[(3,4-di­meth­oxy­naphthalen-2-yl)methyl­idene]-1,3-di­phenyl­cyclo­penta-1,3-di­ene}, 2, were prepared from 1,3-di­phenyl­cyclo­penta­diene, pyrrolidine, and the corresponding aldehydes in an ethano­lic solution. Each structure crystallizes with one mol­ecule per asymmetric unit and exhibits the alternating short and long bond lengths typical of fulvenes. A network of C—H⋯C ring inter­actions as well as C—H⋯O inter­actions is observed, resulting in the compact packing found in each structure.

1. Chemical context

Penta­fulvenes are a unique class of cross-conjugated organic mol­ecules commonly synthesized using aldehyde and cyclo­penta­diene starting materials under a variety of conditions (Thiele, 1900[Thiele, J. (1900). Ber. Dtsch. Chem. Ges. 33, 666-673.]; Stone & Little, 1984[Stone, K. J. & Little, R. D. (1984). J. Org. Chem. 49, 1849-1853.]; Sieverding et al., 2019[Sieverding, P., Osterbrink, J., Besson, C. & Kögerler, P. (2019). J. Org. Chem. 84, 486-494.]). Substituted and highly colored penta­fulvenes are of particular inter­est because of their unique optical and thermal properties and for their potential use in electronic applications (Peloquin et al., 2012[Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371-6376.]; Godman et al., 2016[Godman, N. P., Adas, S. K., Hellwig, K. M., Ball, D. W., Balaich, G. J. & Iacono, S. T. (2016). J. Org. Chem. 81, 9630-9638.]; Shurdha et al., 2014[Shurdha, E., Repasy, B. K., Miller, H. A., Dees, K., Iacono, S. T., Ball, D. W. & Balaich, G. J. (2014). RSC Adv. 4, 41989-41992.]). In synthetic organometallic chemistry, the fulvene unit is known to coordinate to metals, forming organometallic complexes of varying hapticity (Peloquin et al., 2018[Peloquin, A. J., Smith, M. B., O'Connell, B. J., Ghiassi, K. B., Balaich, G. J. & Iacono, S. T. (2018). Acta Cryst. E74, 1190-1194.]; Ma et al., 2011[Ma, Z. H., Liu, X. H., Han, Z. G., Zheng, X. Z. & Lin, J. (2011). Transition Met. Chem. 36, 207-210.], 2012[Ma, Z. H., Tian, L. J., Li, S. Z., Han, Z. G., Zheng, X. Z. & Lin, J. (2012). Transition Met. Chem. 37, 135-140.]; Beckhaus, 2018[Beckhaus, R. (2018). Coord. Chem. Rev. 376, 467-477.]). More recently, 1,3,6-tris­ubstituted fulvenes have been used as starting materials in the synthesis of bridged cyclo­penta­diene ligands and ansa-Ln complexes (Adas & Balaich, 2018[Adas, S. K. & Balaich, G. J. (2018). J. Organomet. Chem. 857, 200-206.]). As a continuation of our work in this area, we report herein the crystal structures of 6-cyclo­propyl-1,3-diphenylfulvene, 1, and 6-(2,3-di­meth­oxy­naphth­yl)-1,3-diphenylfulvene, 2.

[Scheme 1]

2. Structural commentary

Compounds 1 (Fig. 1[link]) and 2 (Fig. 2[link]) crystallize in the ortho­rhom­bic space groups Pbca and P212121, respectively. Both fulvenes crystallize with one mol­ecule per asymmetric unit (Z′ = 1), exhibit the expected alternating short–long bond lengths within the fulvene core and display very similar bond lengths and angles (Table 1[link]). Similar tilt angles of the phenyl substituents from the plane of the fulvene ring are also observed for 1 [1-Ph, 44.88 (4)°; 3-Ph 13.34 (4)°] and 2 [1-Ph, 30.82 (7)°; 3-Ph 17.19 (7)°]. Surprisingly, the rotation of the 6-substituent from the cyclo­penta­dienyl core is greater for fulvene 1 [87.20 (6)°], than for the larger 2,3-di­meth­oxy­naphthalene substituent in fulvene 2, [55.63 (5)°].

Table 1
Selected bond distances and angles (Å) for fulvenes 1 and 2

  1 2
C1—C2 1.3577 (13) 1.357 (2)
C1—C5 1.4774 (13) 1.489 (2)
C2—C3 1.4699 (13) 1.475 (2)
C3—C4 1.3621 (13) 1.354 (2)
C4—C5 1.4538 (13) 1.455 (2)
C5—C6 1.3520 (13) 1.351 (2)
C1—C7 1.4721 (13) 1.475 (2)
C3—13 1.4704 (13) 1.469 (2)
C6—C19 1.4570 (13) 1.476 (2)
     
C2—C1—C5 107.36 (8) 106.64 (15)
C1—C2—C3 109.71 (8) 110.03 (15)
C2—C3—C4 107.70 (8) 107.90 (15)
C3—C4—C5 109.12 (8) 109.07 (16)
C4—C5—C1 106.08 (8) 106.34 (14)
C4—C5—C6 126.91 (9) 126.27 (16)
C1—C5—C6 126.72 (9) 127.15 (16)
[Figure 1]
Figure 1
The mol­ecular structure of 1. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 2. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

Fulvene 1 packs side by side along the a-axis direction with mol­ecules oriented in such a way that the 6-cyclo­propyl groups are sandwiched between the 1-Ph and 3-Ph rings of adjacent fulvene mol­ecules. The closest contacts caused by this stacking sequence in the a-axis direction are between the 1-Ph ring atom H9 and the exocyclic C6 atom of an adjacent fulvene (C—H⋯C = 2.90 Å). Other C—H⋯C contacts (C12⋯H19 = 2.83, C2⋯H10 = 2.85, C14⋯H20B = 2.85, C11⋯H19 = 2.86 Å) lead to the formation of a network that results in sets of zigzag chains running perpendicular to the a-axis direction and that extend in the direction parallel to the bc plane (Fig. 3[link]).

[Figure 3]
Figure 3
The packing of 6-cyclo­propyl-1,3-di­phenyl­fulvene, 1, viewed along the c-axis direction. Hydrogen atoms are omitted for clarity.

Fulvene 2 packs so that the 1-Ph groups are oriented towards the space between the 2,3-di­meth­oxy­naphthyl groups and the 3-Ph rings of adjacent fulvene mol­ecules along the b-axis direction. A view down the a axis (Fig. 4[link]) reveals layers of inter­laced 2,3-di­meth­oxy­naphthyl groups (H, head) oriented H–H and separated from layers of inter­laced 1,3-di­phenyl­fulvene groups (T, tail) oriented T–T, with the layers running perpendicular to the c-axis direction and producing a layer sequence of H–H–T–T along the c-axis direction. In the H–H layers, short inter­molecular contacts of the C—H⋯O type (O1⋯H22 = 2.50 and O2⋯H24 = 2.53 Å; Table 2[link]) occur between adjacent 2,3-di­meth­oxy­naphthyl groups running along the b-axis direction (Fig. 4[link]). The meth­oxy groups apparently prevent the naphthyl rings from forming any ππ stacking inter­actions, with the angle between the mean planes of the 2,3-di­meth­oxy­naphthyl groups oriented at 124.37 (5)° at least partially enforced by the C—H⋯O inter­actions.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O1i 0.95 2.50 3.429 (2) 164
C24—H24⋯O2i 0.95 2.53 3.241 (2) 131
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
The packing of 6-(2,3-di­meth­oxy­naphth­yl)-1,3-di­phenyl­fulvene, 2, viewed along the a-axis direction (left) and C—H⋯O inter­actions (right). Hydrogen atoms are omitted for clarity (left).

4. Database survey

A survey of the December 2019 release of the Cambridge Structural Database, with updates through November 2019, was made using the program Conquest (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search for 1,3-diphenyl-6-substituted fulvenes yielded 88 results. The bond lengths and angles in 1 and 2 are consistent with those in the previously reported literature.

5. Synthesis and crystallization

Each compound was prepared according to the established literature procedure (Peloquin et al., 2012[Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371-6376.]; Godman et al., 2016[Godman, N. P., Adas, S. K., Hellwig, K. M., Ball, D. W., Balaich, G. J. & Iacono, S. T. (2016). J. Org. Chem. 81, 9630-9638.]).

6-(Cyclo­prop­yl)-1,3-diphenylfulvene, 1. Orange crystals suitable for single crystal X-ray diffraction were obtained from petroleum ether by slow evaporation.

6-(2,3-Di­meth­oxy­napth­yl)-1,3-diphenylfulvene, 2. Red crystals suitable for single crystal X-ray diffraction were obtained from slow diffusion of petroleum ether into a DCM solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions (0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C21H18 C30H24O2
Mr 270.35 416.49
Crystal system, space group Orthorhombic, Pbca Orthorhombic, P212121
Temperature (K) 100 100
a, b, c (Å) 12.9844 (2), 11.9583 (1), 19.3729 (2) 7.3431 (1), 11.5468 (1), 25.7555 (3)
V3) 3008.06 (6) 2183.79 (4)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.07 0.08
Crystal size (mm) 0.38 × 0.25 × 0.15 0.27 × 0.15 × 0.13
 
Data collection
Diffractometer XtaLAB Synergy, Single source at offset/far, HyPix3000 XtaLAB Synergy, Single source at offset/far, HyPix3000
Absorption correction Empirical (using intensity measurements) (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Empirical (using intensity measurements) (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.404, 1.000 0.735, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 74031, 3353, 2967 54562, 4798, 4437
Rint 0.030 0.036
(sin θ/λ)max−1) 0.648 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.08 0.034, 0.082, 1.04
No. of reflections 3353 4798
No. of parameters 190 291
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.19 0.16, −0.19
Absolute structure Flack x determined using 1774 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.3 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-(Cyclopropylmethylidene)-1,3-diphenylcyclopenta-1,3-diene (1) top
Crystal data top
C21H18Dx = 1.194 Mg m3
Mr = 270.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 50470 reflections
a = 12.9844 (2) Åθ = 2.1–27.4°
b = 11.9583 (1) ŵ = 0.07 mm1
c = 19.3729 (2) ÅT = 100 K
V = 3008.06 (6) Å3Block, orange
Z = 80.38 × 0.25 × 0.15 mm
F(000) = 1152
Data collection top
XtaLAB Synergy, Single source at offset/far, HyPix3000
diffractometer
3353 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source2967 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 27.4°, θmin = 2.1°
ω scansh = 1616
Absorption correction: empirical (using intensity measurements)
(CrysAlisPro; Rigaku OD, 2019)
k = 1515
Tmin = 0.404, Tmax = 1.000l = 2424
74031 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.045P)2 + 0.7758P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3353 reflectionsΔρmax = 0.20 e Å3
190 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44298 (7)0.64490 (8)0.32819 (5)0.0198 (2)
C20.50655 (7)0.60105 (8)0.37681 (5)0.0203 (2)
H20.50510.61910.42460.024*
C30.57790 (7)0.52136 (8)0.34441 (5)0.0204 (2)
C40.55715 (7)0.51958 (8)0.27550 (5)0.0227 (2)
H40.59180.47500.24220.027*
C50.47342 (7)0.59679 (8)0.26098 (5)0.0216 (2)
C60.43760 (7)0.62688 (8)0.19814 (5)0.0224 (2)
H60.38230.67880.19650.027*
C70.35860 (7)0.72504 (8)0.33954 (5)0.0207 (2)
C80.26145 (8)0.70904 (9)0.30946 (5)0.0249 (2)
H80.25020.64660.28010.030*
C90.18165 (8)0.78343 (9)0.32221 (5)0.0293 (2)
H90.11630.77180.30130.035*
C100.19672 (8)0.87480 (9)0.36532 (6)0.0316 (2)
H100.14220.92600.37370.038*
C110.29212 (8)0.89076 (9)0.39608 (6)0.0298 (2)
H110.30260.95260.42600.036*
C120.37234 (8)0.81683 (8)0.38334 (5)0.0242 (2)
H120.43730.82870.40460.029*
C130.65376 (7)0.45139 (8)0.38061 (5)0.0214 (2)
C140.65376 (7)0.44071 (8)0.45261 (5)0.0240 (2)
H140.60780.48480.47940.029*
C150.72009 (8)0.36649 (8)0.48540 (5)0.0278 (2)
H150.71870.35970.53430.033*
C160.78805 (9)0.30253 (9)0.44717 (6)0.0311 (2)
H160.83190.25030.46960.037*
C170.79200 (9)0.31494 (9)0.37585 (6)0.0318 (2)
H170.84000.27270.34950.038*
C180.72593 (8)0.38887 (8)0.34322 (5)0.0269 (2)
H180.72960.39740.29450.032*
C190.47766 (8)0.58544 (8)0.13271 (5)0.0245 (2)
H190.53380.52840.13600.029*
C200.48463 (8)0.66600 (9)0.07225 (5)0.0268 (2)
H20A0.45980.74340.07950.032*
H20B0.54470.65920.04110.032*
C210.40700 (9)0.57559 (9)0.07072 (5)0.0298 (2)
H21A0.41880.51250.03860.036*
H21B0.33390.59680.07690.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (4)0.0180 (4)0.0203 (4)0.0038 (3)0.0031 (3)0.0006 (3)
C20.0216 (4)0.0199 (4)0.0194 (4)0.0045 (4)0.0023 (3)0.0010 (3)
C30.0212 (4)0.0181 (4)0.0218 (5)0.0036 (4)0.0017 (4)0.0002 (3)
C40.0256 (5)0.0218 (5)0.0208 (5)0.0028 (4)0.0020 (4)0.0006 (4)
C50.0236 (5)0.0202 (4)0.0209 (5)0.0002 (4)0.0021 (4)0.0007 (4)
C60.0236 (5)0.0213 (5)0.0223 (5)0.0019 (4)0.0016 (4)0.0001 (4)
C70.0232 (5)0.0203 (4)0.0187 (4)0.0013 (4)0.0045 (4)0.0026 (3)
C80.0246 (5)0.0271 (5)0.0230 (5)0.0025 (4)0.0035 (4)0.0011 (4)
C90.0225 (5)0.0363 (6)0.0291 (5)0.0013 (4)0.0040 (4)0.0068 (4)
C100.0300 (5)0.0297 (5)0.0350 (6)0.0086 (4)0.0107 (4)0.0063 (4)
C110.0359 (6)0.0217 (5)0.0318 (5)0.0025 (4)0.0073 (4)0.0014 (4)
C120.0267 (5)0.0211 (5)0.0248 (5)0.0016 (4)0.0026 (4)0.0006 (4)
C130.0221 (4)0.0184 (4)0.0237 (5)0.0039 (4)0.0019 (4)0.0003 (4)
C140.0234 (5)0.0243 (5)0.0244 (5)0.0057 (4)0.0002 (4)0.0007 (4)
C150.0312 (5)0.0272 (5)0.0252 (5)0.0087 (4)0.0065 (4)0.0046 (4)
C160.0321 (5)0.0248 (5)0.0366 (6)0.0004 (4)0.0138 (5)0.0019 (4)
C170.0314 (6)0.0292 (5)0.0348 (6)0.0074 (4)0.0080 (4)0.0071 (4)
C180.0290 (5)0.0277 (5)0.0240 (5)0.0028 (4)0.0036 (4)0.0037 (4)
C190.0285 (5)0.0250 (5)0.0199 (5)0.0059 (4)0.0001 (4)0.0002 (4)
C200.0300 (5)0.0298 (5)0.0207 (5)0.0005 (4)0.0025 (4)0.0014 (4)
C210.0327 (5)0.0344 (6)0.0223 (5)0.0031 (4)0.0024 (4)0.0032 (4)
Geometric parameters (Å, º) top
C1—C21.3577 (13)C11—C121.3882 (14)
C1—C51.4774 (13)C12—H120.9500
C1—C71.4721 (13)C13—C141.4008 (14)
C2—H20.9500C13—C181.4006 (14)
C2—C31.4699 (13)C14—H140.9500
C3—C41.3621 (13)C14—C151.3903 (14)
C3—C131.4704 (13)C15—H150.9500
C4—H40.9500C15—C161.3829 (16)
C4—C51.4538 (13)C16—H160.9500
C5—C61.3520 (13)C16—C171.3905 (16)
C6—H60.9500C17—H170.9500
C6—C191.4570 (13)C17—C181.3847 (14)
C7—C81.4027 (14)C18—H180.9500
C7—C121.3988 (13)C19—H191.0000
C8—H80.9500C19—C201.5193 (14)
C8—C91.3879 (14)C19—C211.5159 (14)
C9—H90.9500C20—H20A0.9900
C9—C101.3891 (16)C20—H20B0.9900
C10—H100.9500C20—C211.4784 (15)
C10—C111.3878 (16)C21—H21A0.9900
C11—H110.9500C21—H21B0.9900
C2—C1—C5107.36 (8)C14—C13—C3121.79 (9)
C2—C1—C7126.89 (9)C18—C13—C3120.35 (9)
C7—C1—C5125.75 (8)C18—C13—C14117.80 (9)
C1—C2—H2125.1C13—C14—H14119.6
C1—C2—C3109.71 (8)C15—C14—C13120.88 (9)
C3—C2—H2125.1C15—C14—H14119.6
C2—C3—C13125.97 (8)C14—C15—H15119.9
C4—C3—C2107.70 (8)C16—C15—C14120.24 (10)
C4—C3—C13126.23 (9)C16—C15—H15119.9
C3—C4—H4125.4C15—C16—H16120.1
C3—C4—C5109.12 (8)C15—C16—C17119.78 (10)
C5—C4—H4125.4C17—C16—H16120.1
C4—C5—C1106.08 (8)C16—C17—H17120.0
C6—C5—C1126.72 (9)C18—C17—C16119.93 (10)
C6—C5—C4126.91 (9)C18—C17—H17120.0
C5—C6—H6117.6C13—C18—H18119.4
C5—C6—C19124.75 (9)C17—C18—C13121.28 (10)
C19—C6—H6117.6C17—C18—H18119.4
C8—C7—C1121.23 (9)C6—C19—H19115.9
C12—C7—C1120.44 (9)C6—C19—C20118.44 (9)
C12—C7—C8118.28 (9)C6—C19—C21119.97 (9)
C7—C8—H8119.7C20—C19—H19115.9
C9—C8—C7120.66 (10)C21—C19—H19115.9
C9—C8—H8119.7C21—C19—C2058.30 (7)
C8—C9—H9119.8C19—C20—H20A117.7
C8—C9—C10120.40 (10)C19—C20—H20B117.7
C10—C9—H9119.8H20A—C20—H20B114.8
C9—C10—H10120.3C21—C20—C1960.74 (7)
C11—C10—C9119.48 (10)C21—C20—H20A117.7
C11—C10—H10120.3C21—C20—H20B117.7
C10—C11—H11119.8C19—C21—H21A117.7
C10—C11—C12120.38 (10)C19—C21—H21B117.7
C12—C11—H11119.8C20—C21—C1960.96 (7)
C7—C12—H12119.6C20—C21—H21A117.7
C11—C12—C7120.79 (10)C20—C21—H21B117.7
C11—C12—H12119.6H21A—C21—H21B114.8
5-[(3,4-Dimethoxynaphthalen-2-yl)methylidene]-1,3-diphenylcyclopenta-1,3-diene (2) top
Crystal data top
C30H24O2Dx = 1.267 Mg m3
Mr = 416.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 35583 reflections
a = 7.3431 (1) Åθ = 1.9–27.3°
b = 11.5468 (1) ŵ = 0.08 mm1
c = 25.7555 (3) ÅT = 100 K
V = 2183.79 (4) Å3Block, red
Z = 40.27 × 0.15 × 0.13 mm
F(000) = 880
Data collection top
XtaLAB Synergy, Single source at offset/far, HyPix3000
diffractometer
4798 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source4437 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.0000 pixels mm-1θmax = 27.4°, θmin = 1.9°
ω scansh = 99
Absorption correction: empirical (using intensity measurements)
(CrysAlisPro; Rigaku OD, 2019)
k = 1414
Tmin = 0.735, Tmax = 1.000l = 3232
54562 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3848P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.16 e Å3
4798 reflectionsΔρmin = 0.18 e Å3
291 parametersAbsolute structure: Flack x determined using 1774 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.3 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44518 (18)0.62766 (11)0.68257 (5)0.0247 (3)
O20.61050 (17)0.49358 (11)0.75201 (5)0.0259 (3)
C10.0406 (2)0.65397 (15)0.55785 (7)0.0198 (4)
C20.0799 (2)0.59770 (15)0.51299 (7)0.0211 (4)
H20.13460.63220.48340.025*
C30.0254 (2)0.47506 (15)0.51698 (7)0.0197 (4)
C40.0428 (3)0.45757 (16)0.56522 (6)0.0207 (4)
H40.08550.38570.57840.025*
C50.0400 (2)0.56652 (15)0.59360 (6)0.0196 (4)
C60.1117 (2)0.58571 (15)0.64113 (7)0.0204 (4)
H60.10980.66350.65310.024*
C70.0696 (2)0.77839 (15)0.56788 (7)0.0201 (4)
C80.1120 (3)0.82200 (15)0.61722 (7)0.0232 (4)
H80.11920.77050.64590.028*
C90.1436 (3)0.93976 (16)0.62481 (8)0.0276 (4)
H90.17100.96780.65860.033*
C100.1352 (3)1.01607 (17)0.58346 (8)0.0302 (4)
H100.15701.09630.58870.036*
C110.0945 (3)0.97418 (17)0.53435 (8)0.0302 (4)
H110.08951.02600.50580.036*
C120.0612 (3)0.85764 (16)0.52664 (7)0.0252 (4)
H120.03210.83070.49280.030*
C130.0383 (2)0.38948 (15)0.47494 (6)0.0198 (4)
C140.1483 (3)0.40870 (16)0.43146 (7)0.0240 (4)
H140.21670.47830.42890.029*
C150.1585 (3)0.32715 (17)0.39190 (7)0.0274 (4)
H150.23510.34080.36280.033*
C160.0574 (3)0.22612 (16)0.39474 (7)0.0252 (4)
H160.06380.17070.36750.030*
C170.0532 (3)0.20609 (16)0.43754 (7)0.0243 (4)
H170.12330.13710.43950.029*
C180.0617 (3)0.28622 (16)0.47734 (7)0.0229 (4)
H180.13630.27110.50670.028*
C190.1926 (2)0.49925 (15)0.67648 (7)0.0194 (4)
C200.3601 (2)0.52592 (15)0.69714 (7)0.0206 (4)
C210.4485 (3)0.45362 (15)0.73404 (6)0.0211 (4)
C220.3672 (3)0.35129 (15)0.74809 (7)0.0216 (4)
H220.42690.30120.77190.026*
C230.1953 (3)0.31938 (15)0.72749 (6)0.0198 (4)
C240.1143 (3)0.21256 (16)0.74162 (7)0.0233 (4)
H240.17630.16200.76470.028*
C250.0526 (3)0.18134 (16)0.72228 (7)0.0254 (4)
H250.10430.10870.73140.030*
C260.1476 (3)0.25666 (16)0.68892 (7)0.0250 (4)
H260.26440.23530.67620.030*
C270.0726 (2)0.36052 (16)0.67463 (6)0.0222 (4)
H270.13930.41110.65260.027*
C280.1027 (2)0.39369 (15)0.69210 (6)0.0187 (4)
C290.5376 (3)0.61847 (19)0.63345 (8)0.0317 (4)
H29A0.45670.58190.60800.048*
H29B0.64760.57140.63760.048*
H29C0.57140.69600.62130.048*
C300.6930 (3)0.42942 (18)0.79361 (8)0.0297 (4)
H30A0.72120.35080.78170.044*
H30B0.60850.42560.82300.044*
H30C0.80550.46810.80450.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0290 (7)0.0200 (6)0.0252 (6)0.0041 (6)0.0044 (6)0.0013 (5)
O20.0258 (6)0.0266 (7)0.0251 (7)0.0008 (6)0.0095 (6)0.0015 (5)
C10.0178 (8)0.0220 (9)0.0195 (8)0.0005 (7)0.0003 (7)0.0025 (7)
C20.0220 (9)0.0227 (9)0.0186 (8)0.0009 (8)0.0026 (7)0.0029 (7)
C30.0175 (8)0.0227 (9)0.0189 (8)0.0013 (7)0.0002 (7)0.0006 (7)
C40.0225 (8)0.0208 (9)0.0187 (8)0.0006 (7)0.0008 (7)0.0008 (7)
C50.0182 (8)0.0218 (9)0.0188 (8)0.0006 (7)0.0002 (7)0.0022 (7)
C60.0214 (8)0.0184 (8)0.0212 (8)0.0014 (7)0.0005 (7)0.0004 (7)
C70.0167 (8)0.0206 (9)0.0229 (9)0.0004 (7)0.0033 (7)0.0032 (7)
C80.0244 (9)0.0224 (9)0.0226 (9)0.0014 (8)0.0031 (7)0.0023 (7)
C90.0281 (10)0.0264 (10)0.0283 (10)0.0029 (8)0.0048 (8)0.0039 (8)
C100.0294 (10)0.0193 (9)0.0420 (11)0.0030 (8)0.0075 (9)0.0002 (8)
C110.0322 (10)0.0247 (10)0.0336 (10)0.0016 (9)0.0049 (9)0.0108 (8)
C120.0250 (9)0.0269 (10)0.0239 (9)0.0012 (8)0.0017 (8)0.0027 (7)
C130.0198 (8)0.0220 (9)0.0174 (8)0.0025 (7)0.0010 (7)0.0013 (7)
C140.0258 (9)0.0248 (9)0.0215 (9)0.0000 (8)0.0017 (7)0.0013 (7)
C150.0312 (10)0.0309 (10)0.0201 (9)0.0032 (8)0.0048 (8)0.0002 (8)
C160.0294 (10)0.0253 (9)0.0211 (9)0.0052 (8)0.0031 (8)0.0043 (7)
C170.0251 (9)0.0227 (9)0.0252 (9)0.0000 (8)0.0026 (8)0.0002 (7)
C180.0249 (9)0.0250 (9)0.0189 (9)0.0002 (8)0.0010 (7)0.0015 (7)
C190.0240 (9)0.0186 (9)0.0155 (8)0.0026 (7)0.0000 (7)0.0027 (7)
C200.0251 (9)0.0187 (9)0.0179 (8)0.0016 (8)0.0005 (7)0.0025 (7)
C210.0228 (9)0.0235 (9)0.0170 (8)0.0039 (7)0.0025 (7)0.0038 (7)
C220.0257 (9)0.0227 (9)0.0164 (8)0.0047 (7)0.0025 (7)0.0001 (7)
C230.0243 (9)0.0207 (9)0.0145 (8)0.0031 (7)0.0019 (7)0.0016 (7)
C240.0295 (10)0.0232 (9)0.0172 (8)0.0031 (8)0.0007 (7)0.0007 (7)
C250.0317 (10)0.0233 (9)0.0210 (9)0.0039 (8)0.0044 (8)0.0011 (7)
C260.0236 (9)0.0295 (10)0.0219 (9)0.0030 (8)0.0000 (8)0.0008 (7)
C270.0237 (9)0.0248 (9)0.0182 (8)0.0027 (8)0.0000 (7)0.0005 (7)
C280.0219 (8)0.0195 (8)0.0148 (8)0.0021 (7)0.0016 (7)0.0019 (6)
C290.0296 (10)0.0336 (11)0.0320 (10)0.0052 (9)0.0038 (9)0.0054 (9)
C300.0308 (10)0.0321 (11)0.0261 (10)0.0024 (9)0.0096 (9)0.0006 (8)
Geometric parameters (Å, º) top
O1—C201.383 (2)C14—C151.389 (3)
O1—C291.439 (2)C15—H150.9500
O2—C211.357 (2)C15—C161.385 (3)
O2—C301.436 (2)C16—H160.9500
C1—C21.357 (2)C16—C171.389 (3)
C1—C51.489 (2)C17—H170.9500
C1—C71.475 (2)C17—C181.382 (3)
C2—H20.9500C18—H180.9500
C2—C31.475 (2)C19—C201.375 (2)
C3—C41.354 (2)C19—C281.443 (2)
C3—C131.469 (2)C20—C211.422 (2)
C4—H40.9500C21—C221.372 (3)
C4—C51.455 (2)C22—H220.9500
C5—C61.351 (2)C22—C231.418 (3)
C6—H60.9500C23—C241.417 (3)
C6—C191.476 (2)C23—C281.425 (2)
C7—C81.402 (2)C24—H240.9500
C7—C121.403 (2)C24—C251.371 (3)
C8—H80.9500C25—H250.9500
C8—C91.393 (3)C25—C261.408 (3)
C9—H90.9500C26—H260.9500
C9—C101.384 (3)C26—C271.370 (3)
C10—H100.9500C27—H270.9500
C10—C111.387 (3)C27—C281.417 (3)
C11—H110.9500C29—H29A0.9800
C11—C121.382 (3)C29—H29B0.9800
C12—H120.9500C29—H29C0.9800
C13—C141.398 (2)C30—H30A0.9800
C13—C181.402 (3)C30—H30B0.9800
C14—H140.9500C30—H30C0.9800
C20—O1—C29112.90 (14)C17—C16—H16120.1
C21—O2—C30116.64 (15)C16—C17—H17119.9
C2—C1—C5106.64 (15)C18—C17—C16120.23 (18)
C2—C1—C7125.79 (16)C18—C17—H17119.9
C7—C1—C5127.55 (15)C13—C18—H18119.6
C1—C2—H2125.0C17—C18—C13120.86 (17)
C1—C2—C3110.03 (15)C17—C18—H18119.6
C3—C2—H2125.0C20—C19—C6116.56 (16)
C4—C3—C2107.90 (15)C20—C19—C28119.35 (16)
C4—C3—C13126.85 (17)C28—C19—C6124.01 (16)
C13—C3—C2125.22 (15)O1—C20—C21118.28 (16)
C3—C4—H4125.5C19—C20—O1119.31 (16)
C3—C4—C5109.07 (16)C19—C20—C21122.39 (17)
C5—C4—H4125.5O2—C21—C20115.38 (16)
C4—C5—C1106.34 (14)O2—C21—C22125.74 (16)
C6—C5—C1127.15 (16)C22—C21—C20118.88 (17)
C6—C5—C4126.27 (16)C21—C22—H22119.6
C5—C6—H6116.4C21—C22—C23120.82 (16)
C5—C6—C19127.22 (16)C23—C22—H22119.6
C19—C6—H6116.4C22—C23—C28120.52 (16)
C8—C7—C1122.72 (16)C24—C23—C22120.26 (17)
C8—C7—C12117.49 (16)C24—C23—C28119.22 (17)
C12—C7—C1119.75 (16)C23—C24—H24119.6
C7—C8—H8119.5C25—C24—C23120.73 (18)
C9—C8—C7120.99 (17)C25—C24—H24119.6
C9—C8—H8119.5C24—C25—H25119.9
C8—C9—H9119.8C24—C25—C26120.15 (18)
C10—C9—C8120.40 (18)C26—C25—H25119.9
C10—C9—H9119.8C25—C26—H26119.8
C9—C10—H10120.3C27—C26—C25120.37 (18)
C9—C10—C11119.30 (17)C27—C26—H26119.8
C11—C10—H10120.3C26—C27—H27119.4
C10—C11—H11119.7C26—C27—C28121.11 (17)
C12—C11—C10120.59 (18)C28—C27—H27119.4
C12—C11—H11119.7C23—C28—C19117.96 (16)
C7—C12—H12119.4C27—C28—C19123.74 (16)
C11—C12—C7121.22 (17)C27—C28—C23118.30 (16)
C11—C12—H12119.4O1—C29—H29A109.5
C14—C13—C3121.39 (16)O1—C29—H29B109.5
C14—C13—C18118.22 (16)O1—C29—H29C109.5
C18—C13—C3120.38 (16)H29A—C29—H29B109.5
C13—C14—H14119.6H29A—C29—H29C109.5
C15—C14—C13120.73 (17)H29B—C29—H29C109.5
C15—C14—H14119.6O2—C30—H30A109.5
C14—C15—H15119.9O2—C30—H30B109.5
C16—C15—C14120.21 (18)O2—C30—H30C109.5
C16—C15—H15119.9H30A—C30—H30B109.5
C15—C16—H16120.1H30A—C30—H30C109.5
C15—C16—C17119.73 (17)H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O1i0.952.503.429 (2)164
C24—H24···O2i0.952.533.241 (2)131
Symmetry code: (i) x+1, y1/2, z+3/2.
Selected bond distances and angles (Å) for fulvenes 1 and 2 top
12
C1—C21.3577 (13)1.357 (2)
C1—C51.4774 (13)1.489 (2)
C2—C31.4699 (13)1.475 (2)
C3—C41.3621 (13)1.354 (2)
C4—C51.4538 (13)1.455 (2)
C5—C61.3520 (13)1.351 (2)
C1—C71.4721 (13)1.475 (2)
C3—131.4704 (13)1.469 (2)
C6—C191.4570 (13)1.476 (2)
C2—C1—C5107.36 (8)106.64 (15)
C1—C2—C3109.71 (8)110.03 (15)
C2—C3—C4107.70 (8)107.90 (15)
C3—C4—C5109.12 (8)109.07 (16)
C4—C5—C1106.08 (8)106.34 (14)
C4—C5—C6126.91 (9)126.27 (16)
C1—C5—C6126.72 (9)127.15 (16)
 

Funding information

Funding for this research was provided by: Air Force Office of Scientific Research; National Research Council (award to LCB).

References

First citationAdas, S. K. & Balaich, G. J. (2018). J. Organomet. Chem. 857, 200–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeckhaus, R. (2018). Coord. Chem. Rev. 376, 467–477.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGodman, N. P., Adas, S. K., Hellwig, K. M., Ball, D. W., Balaich, G. J. & Iacono, S. T. (2016). J. Org. Chem. 81, 9630–9638.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMa, Z. H., Liu, X. H., Han, Z. G., Zheng, X. Z. & Lin, J. (2011). Transition Met. Chem. 36, 207–210.  CrossRef CAS Google Scholar
First citationMa, Z. H., Tian, L. J., Li, S. Z., Han, Z. G., Zheng, X. Z. & Lin, J. (2012). Transition Met. Chem. 37, 135–140.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeloquin, A. J., Smith, M. B., O'Connell, B. J., Ghiassi, K. B., Balaich, G. J. & Iacono, S. T. (2018). Acta Cryst. E74, 1190–1194.  CrossRef IUCr Journals Google Scholar
First citationPeloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371–6376.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShurdha, E., Repasy, B. K., Miller, H. A., Dees, K., Iacono, S. T., Ball, D. W. & Balaich, G. J. (2014). RSC Adv. 4, 41989–41992.  CrossRef CAS Google Scholar
First citationSieverding, P., Osterbrink, J., Besson, C. & Kögerler, P. (2019). J. Org. Chem. 84, 486–494.  CrossRef CAS PubMed Google Scholar
First citationStone, K. J. & Little, R. D. (1984). J. Org. Chem. 49, 1849–1853.  CrossRef CAS Web of Science Google Scholar
First citationThiele, J. (1900). Ber. Dtsch. Chem. Ges. 33, 666–673.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds