research communications
Crystal structures of a series of bis(acetylacetonato)oxovanadium(IV) complexes containing N-donor pyridyl ligands
aElizabethtown College, Department of Chemistry and Biochemistry, 1 Alpha Drive, Elizabethtown, PA 17022-2298, USA, and bUniversity of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, IN 46556-5670, USA
*Correspondence e-mail: roodj@etown.edu
Crystal structures for a series of bis(acetylacetonato)oxovanadium(IV) complexes containing N-donor pyridyl ligands are reported, namely, bis(acetylacetonato-κ2O,O′)oxido(pyridine-κN)vanadium(IV), [V(C5H7O2)2O(C5H5N)], 1, bis(acetylacetonato-κ2O,O′)oxido(pyridine-4-carbonitrile-κN)vanadium(IV), [V(C5H7O2)2O(C6H4N2)], 2, and bis(acetylacetonato-κ2O,O′)(4-methoxypyridine-κN)oxidovanadium(IV), [V(C5H7O2)2O(C6H7NO)], 3, Compounds 1–3 have the formulae VO(C5H7O2)2L, where L = pyridine (1), 4-cyano-pyridine (2), and 4-methoxypyridine (3). Compound 1 was previously reported [Meicheng et al. (1984). Kexue Tongbao, 29, 759–764 and DaSilva, Spiazzi, Bortolotto & Burrow (2007). Acta Crystallogr., E63, m2422] and redetermined here at cryogenic temperatures. Compounds 1 and 2 as pyridine and 4-cyanopyridine adducts, respectively, crystallize as distorted octahedral structures with the oxo and pyridyl ligands trans to one another. A crystallographic twofold axis runs through the O—V—N bonds. Compound 3 containing a 4-methoxypyridine ligand crystallizes as a distorted octahedral structure with the oxo and pyridyl ligands cis to one other, removing the twofold symmetry seen in the other complexes.
1. Chemical context
Oxovanadium(IV) complexes have been cited as having numerous practical pharmacological applications ranging from anticancer agents to anti-fungal agents and, more recently, as an insulin mimetic (Singh et al., 2014; Abakumova et al., 2012; Amin et al., 2000). Currently investigations are underway to further understand how the oxovanadium complexes perform this wide array of tasks. As an insulin mimetic, it is postulated that oxovanadium complexes interact with multiple points of the cell signaling pathway associated with the insulin hormone (Amin et al., 2000; Srivastava & Mehdi, 2005). Alternatively, studies have shown that it interacts directly with glucose transporters found on the cellular surface (Hiromura et al. 2007; Makinen & Brady, 2002). Furthermore, vanadium has been found to have important interactions in DNA repair systems, which have made it a lucrative target for much oncological/pharmacological research (Abakumova et al., 2012; Kostova, 2009).
Oxovanadium complexes chelated by two acetylacetonate ligands form a five-coordinate bonding system that can act as a et al. 2015; Ugone et al., 2019; Costa Pessoa, 2015; Correia et al. 2017). This system can undergo a reaction with a to increase its coordination to six. Of the extensive studies regarding the properties and applications of such complexes, relatively few single-crystal structures have been reported. For instance, five compounds containing N-donor ligands, a focus of this work, have been characterized by single-crystal diffraction (Meicheng et al., 1983, 1984; Silva et al., 2013; Kadirova et al., 2009; da Silva et al. 2007; Caira et al., 1972). Given the structural dependence on functions and application, a deeper study of the molecular structure of such complexes is warranted. In this work, we describe the structures of VO(C5H7O2)2L, where L = pyridine (1), 4-cyano-pyridine (2), and 4-methoxypyridine (3), and the isolation of different isomeric forms. The complexes were synthesized rapidly in an Anton Paar Monowave 50 synthesis reactor in 5 minutes at 323 K and crystallized upon cooling the mother liquor.
(Nenashev2. Structural commentary
Figs. 1–3 illustrate the molecular structures of compounds 1–3. Compounds 1 and 2 crystallize in the monoclinic C2/c. In both complexes, a twofold axis runs along the O—V—N bonding axis, leading to an that consists of half of the molecular structure. Upon symmetry expansion, both 1 and 2 adopt distorted octahedral geometries around the vanadium metal center with the oxo and pyridyl ligands trans to one another. Each acetylacetonate ligand chelates the vanadium center through two oxygen atoms to form a five-membered ring. In 1 and 2, the equatorial plane consisting of the vanadium center and four acetylacetonate oxygen atoms distorts away from the V=O double bond. In 1, the Ooxo—V—Oacac bond angles are 98.05 (3)° and 99.84 (3)° and in 2 are 98.42 (4)° and 98.91 (3)°.
Compound 3 exists as a different isomeric form, with the oxo and 4-methoxypyridine ligand being cis to one another. This removes the twofold symmetry seen in compounds 1 and 2 and compound 3 crystallizes in the P21/n. Similarly to 1 and 2, compound 3 adopts a distorted octahedral geometry upon by two bidentate acetylacetonate ligands.
The V—O and V=O bond lengths for 1–3 are are similar to those observed in related complexes (Singh et al., 2014; Abakumova et al. 2012; Meicheng et al., 1983; Silva et al., 2013; Kadirova et al., 2009). Most notable are variances in the V—N bond lengths in the complexes. In 1 and 2, the V—N bond lengths are of similar nature at 2.3861 (16) and 2.4022 (15) Å, respectively. However in 3, the V—N bond length is much shorter at 2.1140 (12) Å, likely from a combination of the cis-isomeric structure in 3 and the electron-donating methoxy group of the 4-methoxypyridine ligand.
3. Supramolecular features
Several non-covalent interactions (Tables 1–3) exist in the supramolecular structures of compounds 1–3. Figs. 4–6 show the crystal packing diagrams for the compounds with the interactions shown as dashed orange lines. In 1, these interactions are centered around the oxo ligand, with methyl groups of the acetylacetonate ligands forming CH2—H⋯Oii interactions at a distance of 2.575 (9) Å between O1ii and H5A and the aryl protons of the pyridine ligand forming Ar—H⋯Oiii interactions at a distance of 2.429 (9) Å between O1iii and H7 [symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) x − , y − , z]. Similar interactions exist in 2 with CH2—H⋯Oii interactions at a distance of 2.591 (9) Å between the oxo ligand, O1ii, and H4C of the methyl group of the acetylacetonate and Ar—H⋯Oiii interactions at a distance of 2.588 (9) Å between the 4-cyanopyridine proton H7 and O1iii [symmetry codes: (ii) −x + 1, −y + 2, −z + 1; (iii) x − , y − , z]. Compound 2 also displays interactions between the methyl groups of the acetylacetonate and the π-bond within 4-cyanopyridine at a distance of 2.682 (9) Å from the proton to the center of the π-bond.
|
|
|
Compared to 1 and 2, compound 3 displays different types of non-covalent interactions. The methine proton, H2, of the acetylacetonate interacts with the oxo ligand oxygen, O1i at a distance of 2.568 (8) Å and the aryl protons H12 and H14 interact with acetylacetonate oxygens atoms O2ii and O4iii at distances of 2.366 (8) Å and 2.569 (8) Å, respectively [symmetry codes: (i) −x + , y + , −z + ; (ii) −x + , y − , −z + ; (iii) −x + 1, −y + 1, −z + 1]. Additionally, there are weaker interactions between the π-system of the acetylacetonate and 4-methoxypyridine, evident by a 3.196 (9) Å distance from C3 to C14iii.
4. Synthesis and crystallization
Bis(acetylacetonato)oxovanadium(IV) (VO(acac)2) and the N-donor ligands pyridine, 4-cyanopyridine, and 4-methoxypyridine were purchased and used without further purification. To an Anton Paar Monowave synthesis reactor vial, a 1:1 molar ratio of VO(acac)2 and an N-donor ligand (0.75 mmol scale) was added and dissolved into 5 mL of dichloromethane. Once dissolved completely, each solution was reacted in an Anton Paar Monowave 50 synthesis reactor at 323 K for 5 min. Following all of the reactions, a slight precipitate was filtered and the resulting filtrate was allowed to slowly evaporate to produce single crystals suitable for X-ray diffraction studies. In addition to characterization by single crystal X-ray diffraction, each complex was characterized by FTIR spectroscopy. Compound 1 IR (neat) ν (cm−1): 3065(w), 2964(w), 1574(m), 1522(s), 1443(m), 1378(s) 1351(s), 1274(m), 1218(w), 1196(w), 1147(w), 1074(w), 1018(m), 964(s), 931(m), 890(w), 782(w), 763(m), 708(m), 676(m). Compound 2 IR (neat) ν(cm−1): 3084(w), 3034(w), 1557(m), 1540(w), 1522(s), 1411(m), 1375(s), 1277(m), 1211(w), 1190(w), 1018(m), 960(s), 929(m), 850(m), 789(m), 737(w), 679(m), 667(m). Compound 3 IR (neat) ν(cm−1): 3072(w), 3017(w), 1577(m), 1513(s), 1431(m), 1367(s), 1329(m), 1291(m), 1273(m), 1210(m), 1109(w), 1058(w), 1029(m), 948(s), 928(m), 836(m), 807(m), 780(m), 678(w), 658(m).
5. Refinement
Crystal data, data collection and structure . Single crystals were examined under Infineum V8512 oil. The datum crystal was affixed to a MiTeGen loop and transferred to the cold nitrogen stream of a Bruker APEXII diffractometer equipped with an Oxford Cryosystems 700 low-temperature apparatus. Unit-cell parameters were determined using reflections harvested from three sets of 12 0.5° ω scans scans. An optimal data-collection strategy was determined for an arbitrary hemisphere of data to 99.8% completeness to a resolution of 0.8 Å. (Bruker, 2015) Unit-cell parameters were refined using reflections harvested from the data collection with I ≥ 10σ(I). All data were corrected for Lorentz and polarization effects, and runs were scaled using SADABS (Krause et al., 2015). The structures were solved using the Autostructure option within APEX3. This option employs an iterative application of the Patterson synthesis, and dual-space routines of SHELXT (Sheldrick, 2015a). The models were refined routinely (SHELXL; Sheldrick, 2015b). Hydrogen atoms were placed at calculated geometries and allowed to ride on the position of the parent atom. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Hydrogen displacement parameters were set to 1.5Ueq(C) for methyl and 1.2Ueq(C) for all other hydrogen atoms.
details are summarized in Table 4Supporting information
https://doi.org/10.1107/S2056989020006246/zl2781sup1.cif
contains datablocks compound1, compound2, compound3, global. DOI:Structure factors: contains datablock compound1. DOI: https://doi.org/10.1107/S2056989020006246/zl2781compound1sup2.hkl
Structure factors: contains datablock compound2. DOI: https://doi.org/10.1107/S2056989020006246/zl2781compound2sup3.hkl
Structure factors: contains datablock compound3. DOI: https://doi.org/10.1107/S2056989020006246/zl2781compound3sup4.hkl
For all structures, data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Bruker, 2015) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[V(C5H7O2)2O(C5H5N)] | F(000) = 716 |
Mr = 344.25 | Dx = 1.402 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8820 (5) Å | Cell parameters from 8119 reflections |
b = 15.2092 (11) Å | θ = 2.7–28.3° |
c = 13.9871 (9) Å | µ = 0.63 mm−1 |
β = 103.367 (2)° | T = 120 K |
V = 1631.33 (19) Å3 | Tablet, blue |
Z = 4 | 0.23 × 0.14 × 0.11 mm |
Bruker APEXII diffractometer | 2037 independent reflections |
Radiation source: fine-focus sealed tube | 1882 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.025 |
combination of ω and φ–scans | θmax = 28.3°, θmin = 2.7° |
Absorption correction: numerical (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.912, Tmax = 0.966 | k = −20→20 |
17837 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0362P)2 + 1.4639P] where P = (Fo2 + 2Fc2)/3 |
2037 reflections | (Δ/σ)max < 0.001 |
104 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.500000 | 0.41643 (2) | 0.750000 | 0.01694 (10) | |
O1 | 0.500000 | 0.52179 (9) | 0.750000 | 0.0239 (3) | |
O2 | 0.54371 (12) | 0.39403 (6) | 0.61740 (7) | 0.0211 (2) | |
O3 | 0.24437 (11) | 0.39799 (6) | 0.69551 (7) | 0.0212 (2) | |
N1 | 0.500000 | 0.25955 (10) | 0.750000 | 0.0193 (3) | |
C1 | 0.43127 (17) | 0.37920 (9) | 0.53797 (9) | 0.0209 (3) | |
C2 | 0.25102 (18) | 0.37547 (10) | 0.52875 (10) | 0.0264 (3) | |
H2 | 0.179805 | 0.365061 | 0.465064 | 0.032* | |
C3 | 0.16766 (17) | 0.38580 (8) | 0.60560 (10) | 0.0211 (3) | |
C4 | −0.02841 (18) | 0.38382 (11) | 0.58352 (12) | 0.0312 (3) | |
H4A | −0.066433 | 0.356674 | 0.638591 | 0.047* | |
H4B | −0.072855 | 0.349511 | 0.523659 | 0.047* | |
H4C | −0.073646 | 0.443987 | 0.573924 | 0.047* | |
C5 | 0.5033 (2) | 0.36549 (12) | 0.44857 (11) | 0.0322 (3) | |
H5A | 0.542558 | 0.421933 | 0.427631 | 0.048* | |
H5B | 0.412268 | 0.340944 | 0.395398 | 0.048* | |
H5C | 0.601990 | 0.324655 | 0.464361 | 0.048* | |
C6 | 0.37706 (16) | 0.21376 (9) | 0.78046 (9) | 0.0224 (3) | |
H6 | 0.289206 | 0.245242 | 0.802491 | 0.027* | |
C7 | 0.37197 (19) | 0.12280 (10) | 0.78135 (10) | 0.0274 (3) | |
H7 | 0.282169 | 0.092712 | 0.803098 | 0.033* | |
C8 | 0.500000 | 0.07661 (13) | 0.750000 | 0.0293 (4) | |
H8 | 0.500002 | 0.014145 | 0.750000 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.01327 (15) | 0.02129 (16) | 0.01593 (15) | 0.000 | 0.00271 (10) | 0.000 |
O1 | 0.0223 (6) | 0.0235 (7) | 0.0260 (7) | 0.000 | 0.0059 (5) | 0.000 |
O2 | 0.0176 (4) | 0.0282 (5) | 0.0176 (4) | −0.0010 (3) | 0.0040 (3) | 0.0010 (3) |
O3 | 0.0142 (4) | 0.0279 (5) | 0.0207 (4) | 0.0012 (3) | 0.0021 (3) | −0.0002 (4) |
N1 | 0.0155 (7) | 0.0221 (7) | 0.0198 (7) | 0.000 | 0.0033 (5) | 0.000 |
C1 | 0.0230 (6) | 0.0206 (6) | 0.0185 (6) | 0.0018 (5) | 0.0037 (5) | 0.0021 (5) |
C2 | 0.0206 (6) | 0.0354 (8) | 0.0203 (6) | 0.0013 (5) | −0.0014 (5) | −0.0029 (5) |
C3 | 0.0170 (6) | 0.0195 (6) | 0.0249 (6) | 0.0011 (4) | 0.0004 (5) | 0.0001 (5) |
C4 | 0.0163 (6) | 0.0408 (8) | 0.0333 (8) | 0.0005 (6) | −0.0004 (6) | −0.0075 (6) |
C5 | 0.0312 (8) | 0.0463 (9) | 0.0195 (6) | 0.0008 (7) | 0.0069 (6) | −0.0013 (6) |
C6 | 0.0170 (6) | 0.0276 (7) | 0.0227 (6) | −0.0019 (5) | 0.0047 (5) | −0.0003 (5) |
C7 | 0.0286 (7) | 0.0284 (7) | 0.0244 (7) | −0.0090 (5) | 0.0043 (5) | 0.0005 (5) |
C8 | 0.0403 (12) | 0.0217 (9) | 0.0228 (9) | 0.000 | 0.0013 (8) | 0.000 |
V1—O1 | 1.6024 (14) | C2—H2 | 0.9500 |
V1—O2 | 1.9925 (9) | C3—C4 | 1.5047 (18) |
V1—O2i | 1.9925 (9) | C4—H4A | 0.9800 |
V1—O3i | 2.0023 (9) | C4—H4B | 0.9800 |
V1—O3 | 2.0023 (9) | C4—H4C | 0.9800 |
V1—N1 | 2.3861 (16) | C5—H5A | 0.9800 |
O2—C1 | 1.2710 (16) | C5—H5B | 0.9800 |
O3—C3 | 1.2766 (16) | C5—H5C | 0.9800 |
N1—C6 | 1.3402 (15) | C6—C7 | 1.384 (2) |
N1—C6i | 1.3402 (15) | C6—H6 | 0.9500 |
C1—C2 | 1.3977 (19) | C7—C8 | 1.3816 (18) |
C1—C5 | 1.5025 (19) | C7—H7 | 0.9500 |
C2—C3 | 1.392 (2) | C8—H8 | 0.9500 |
O1—V1—O2 | 99.84 (3) | C1—C2—H2 | 117.4 |
O1—V1—O2i | 99.85 (3) | O3—C3—C2 | 125.19 (12) |
O2—V1—O2i | 160.31 (6) | O3—C3—C4 | 115.80 (12) |
O1—V1—O3i | 98.05 (3) | C2—C3—C4 | 119.01 (12) |
O2—V1—O3i | 87.43 (4) | C3—C4—H4A | 109.5 |
O2i—V1—O3i | 89.83 (4) | C3—C4—H4B | 109.5 |
O1—V1—O3 | 98.05 (3) | H4A—C4—H4B | 109.5 |
O2—V1—O3 | 89.83 (4) | C3—C4—H4C | 109.5 |
O2i—V1—O3 | 87.42 (4) | H4A—C4—H4C | 109.5 |
O3i—V1—O3 | 163.90 (6) | H4B—C4—H4C | 109.5 |
O1—V1—N1 | 180.0 | C1—C5—H5A | 109.5 |
O2—V1—N1 | 80.16 (3) | C1—C5—H5B | 109.5 |
O2i—V1—N1 | 80.15 (3) | H5A—C5—H5B | 109.5 |
O3i—V1—N1 | 81.95 (3) | C1—C5—H5C | 109.5 |
O3—V1—N1 | 81.95 (3) | H5A—C5—H5C | 109.5 |
C1—O2—V1 | 127.47 (9) | H5B—C5—H5C | 109.5 |
C3—O3—V1 | 126.95 (9) | N1—C6—C7 | 123.15 (13) |
C6—N1—C6i | 117.39 (16) | N1—C6—H6 | 118.4 |
C6—N1—V1 | 121.31 (8) | C7—C6—H6 | 118.4 |
C6i—N1—V1 | 121.30 (8) | C8—C7—C6 | 118.72 (14) |
O2—C1—C2 | 125.19 (12) | C8—C7—H7 | 120.6 |
O2—C1—C5 | 115.52 (12) | C6—C7—H7 | 120.6 |
C2—C1—C5 | 119.28 (12) | C7—C8—C7i | 118.87 (19) |
C3—C2—C1 | 125.12 (13) | C7—C8—H8 | 120.6 |
C3—C2—H2 | 117.4 | C7i—C8—H8 | 120.6 |
V1—O2—C1—C2 | −0.2 (2) | C1—C2—C3—O3 | −1.8 (2) |
V1—O2—C1—C5 | 179.40 (9) | C1—C2—C3—C4 | 177.47 (13) |
O2—C1—C2—C3 | −1.3 (2) | C6i—N1—C6—C7 | −0.21 (9) |
C5—C1—C2—C3 | 179.11 (14) | V1—N1—C6—C7 | 179.79 (9) |
V1—O3—C3—C2 | 5.89 (19) | N1—C6—C7—C8 | 0.41 (18) |
V1—O3—C3—C4 | −173.40 (9) | C6—C7—C8—C7i | −0.19 (9) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O1ii | 0.98 | 2.58 | 3.2589 (18) | 127 |
C7—H7···O1iii | 0.95 | 2.43 | 3.2487 (17) | 144 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1/2, y−1/2, z. |
[V(C5H7O2)2O(C6H4N2)] | F(000) = 764 |
Mr = 369.26 | Dx = 1.496 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1930 (9) Å | Cell parameters from 7973 reflections |
b = 13.5080 (9) Å | θ = 2.7–28.1° |
c = 13.3651 (9) Å | µ = 0.63 mm−1 |
β = 99.030 (3)° | T = 120 K |
V = 1639.1 (2) Å3 | Block, green |
Z = 4 | 0.15 × 0.11 × 0.07 mm |
Bruker APEXII diffractometer | 2038 independent reflections |
Radiation source: fine-focus sealed tube | 1832 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.032 |
combination of ω and φ–scans | θmax = 28.3°, θmin = 2.7° |
Absorption correction: numerical (SADABS; Krause et al., 2015) | h = −12→12 |
Tmin = 0.927, Tmax = 0.980 | k = −18→18 |
21763 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0324P)2 + 1.6979P] where P = (Fo2 + 2Fc2)/3 |
2038 reflections | (Δ/σ)max = 0.001 |
114 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.500000 | 0.89112 (2) | 0.750000 | 0.01271 (10) | |
O1 | 0.500000 | 1.00987 (10) | 0.750000 | 0.0210 (3) | |
O2 | 0.60596 (10) | 0.86813 (7) | 0.63185 (7) | 0.0166 (2) | |
O3 | 0.31046 (10) | 0.86962 (7) | 0.65896 (7) | 0.0151 (2) | |
N1 | 0.500000 | 0.71328 (11) | 0.750000 | 0.0130 (3) | |
N2 | 0.500000 | 0.31564 (14) | 0.750000 | 0.0318 (4) | |
C1 | 0.54997 (15) | 0.87153 (9) | 0.53874 (10) | 0.0157 (3) | |
C2 | 0.39870 (16) | 0.87878 (10) | 0.50203 (10) | 0.0195 (3) | |
H2 | 0.369478 | 0.886023 | 0.431015 | 0.023* | |
C3 | 0.28850 (15) | 0.87607 (9) | 0.56257 (10) | 0.0155 (3) | |
C4 | 0.65451 (16) | 0.86478 (11) | 0.46315 (11) | 0.0214 (3) | |
H4A | 0.653674 | 0.797228 | 0.436328 | 0.032* | |
H4B | 0.754227 | 0.881506 | 0.496340 | 0.032* | |
H4C | 0.623837 | 0.911208 | 0.407492 | 0.032* | |
C5 | 0.12947 (16) | 0.88186 (11) | 0.51467 (11) | 0.0223 (3) | |
H5A | 0.121409 | 0.870964 | 0.441516 | 0.033* | |
H5B | 0.090305 | 0.947415 | 0.527156 | 0.033* | |
H5C | 0.073029 | 0.830993 | 0.544114 | 0.033* | |
C6 | 0.37746 (14) | 0.66216 (10) | 0.75924 (9) | 0.0148 (3) | |
H6 | 0.290548 | 0.697948 | 0.765924 | 0.018* | |
C7 | 0.37194 (14) | 0.55958 (10) | 0.75947 (10) | 0.0164 (3) | |
H7 | 0.283303 | 0.525726 | 0.765917 | 0.020* | |
C8 | 0.500000 | 0.50744 (14) | 0.750000 | 0.0161 (4) | |
C9 | 0.500000 | 0.40014 (15) | 0.750000 | 0.0222 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.01153 (15) | 0.01478 (16) | 0.01141 (15) | 0.000 | 0.00052 (11) | 0.000 |
O1 | 0.0213 (7) | 0.0169 (7) | 0.0235 (7) | 0.000 | −0.0005 (6) | 0.000 |
O2 | 0.0149 (4) | 0.0214 (5) | 0.0137 (4) | 0.0006 (3) | 0.0032 (4) | 0.0027 (3) |
O3 | 0.0127 (4) | 0.0194 (5) | 0.0126 (4) | 0.0007 (3) | 0.0002 (3) | 0.0002 (3) |
N1 | 0.0133 (7) | 0.0150 (7) | 0.0108 (7) | 0.000 | 0.0026 (5) | 0.000 |
N2 | 0.0394 (11) | 0.0174 (9) | 0.0429 (12) | 0.000 | 0.0196 (9) | 0.000 |
C1 | 0.0198 (6) | 0.0124 (6) | 0.0158 (6) | 0.0018 (5) | 0.0055 (5) | 0.0022 (4) |
C2 | 0.0215 (7) | 0.0261 (7) | 0.0108 (6) | 0.0043 (5) | 0.0016 (5) | 0.0008 (5) |
C3 | 0.0170 (6) | 0.0136 (6) | 0.0150 (6) | 0.0023 (4) | −0.0009 (5) | −0.0013 (5) |
C4 | 0.0248 (7) | 0.0232 (7) | 0.0179 (7) | 0.0058 (5) | 0.0092 (6) | 0.0039 (5) |
C5 | 0.0171 (6) | 0.0310 (8) | 0.0168 (7) | 0.0039 (5) | −0.0031 (5) | −0.0014 (6) |
C6 | 0.0134 (6) | 0.0181 (6) | 0.0135 (6) | 0.0005 (5) | 0.0035 (5) | 0.0003 (5) |
C7 | 0.0162 (6) | 0.0186 (6) | 0.0151 (6) | −0.0032 (5) | 0.0044 (5) | 0.0001 (5) |
C8 | 0.0219 (9) | 0.0148 (9) | 0.0121 (8) | 0.000 | 0.0042 (7) | 0.000 |
C9 | 0.0257 (10) | 0.0212 (10) | 0.0218 (10) | 0.000 | 0.0107 (8) | 0.000 |
V1—O1 | 1.6040 (14) | C2—H2 | 0.9500 |
V1—O3i | 1.9838 (9) | C3—C5 | 1.5031 (18) |
V1—O3 | 1.9838 (9) | C4—H4A | 0.9800 |
V1—O2i | 2.0055 (9) | C4—H4B | 0.9800 |
V1—O2 | 2.0055 (9) | C4—H4C | 0.9800 |
V1—N1 | 2.4022 (15) | C5—H5A | 0.9800 |
O2—C1 | 1.2706 (17) | C5—H5B | 0.9800 |
O3—C3 | 1.2752 (17) | C5—H5C | 0.9800 |
N1—C6 | 1.3435 (15) | C6—C7 | 1.3866 (19) |
N1—C6i | 1.3435 (15) | C6—H6 | 0.9500 |
N2—C9 | 1.141 (3) | C7—C8 | 1.3946 (16) |
C1—C2 | 1.4035 (19) | C7—H7 | 0.9500 |
C1—C4 | 1.5024 (18) | C8—C9 | 1.449 (3) |
C2—C3 | 1.3928 (19) | ||
O1—V1—O3i | 98.42 (3) | O3—C3—C2 | 125.06 (13) |
O1—V1—O3 | 98.42 (3) | O3—C3—C5 | 115.03 (12) |
O3i—V1—O3 | 163.17 (6) | C2—C3—C5 | 119.91 (12) |
O1—V1—O2i | 98.91 (3) | C1—C4—H4A | 109.5 |
O3i—V1—O2i | 89.01 (4) | C1—C4—H4B | 109.5 |
O3—V1—O2i | 88.39 (4) | H4A—C4—H4B | 109.5 |
O1—V1—O2 | 98.91 (3) | C1—C4—H4C | 109.5 |
O3i—V1—O2 | 88.39 (4) | H4A—C4—H4C | 109.5 |
O3—V1—O2 | 89.01 (4) | H4B—C4—H4C | 109.5 |
O2i—V1—O2 | 162.19 (6) | C3—C5—H5A | 109.5 |
O1—V1—N1 | 180.0 | C3—C5—H5B | 109.5 |
O3i—V1—N1 | 81.58 (3) | H5A—C5—H5B | 109.5 |
O3—V1—N1 | 81.58 (3) | C3—C5—H5C | 109.5 |
O2i—V1—N1 | 81.09 (3) | H5A—C5—H5C | 109.5 |
O2—V1—N1 | 81.09 (3) | H5B—C5—H5C | 109.5 |
C1—O2—V1 | 126.40 (9) | N1—C6—C7 | 123.05 (12) |
C3—O3—V1 | 126.45 (9) | N1—C6—H6 | 118.5 |
C6—N1—C6i | 118.13 (15) | C7—C6—H6 | 118.5 |
C6—N1—V1 | 120.93 (8) | C6—C7—C8 | 118.22 (12) |
C6i—N1—V1 | 120.93 (8) | C6—C7—H7 | 120.9 |
O2—C1—C2 | 124.87 (12) | C8—C7—H7 | 120.9 |
O2—C1—C4 | 116.92 (12) | C7i—C8—C7 | 119.33 (17) |
C2—C1—C4 | 118.19 (12) | C7i—C8—C9 | 120.33 (8) |
C3—C2—C1 | 124.49 (13) | C7—C8—C9 | 120.33 (8) |
C3—C2—H2 | 117.8 | N2—C9—C8 | 180.0 |
C1—C2—H2 | 117.8 | ||
V1—O2—C1—C2 | −9.23 (18) | C1—C2—C3—C5 | −178.42 (13) |
V1—O2—C1—C4 | 172.30 (9) | C6i—N1—C6—C7 | −0.12 (9) |
O2—C1—C2—C3 | −4.8 (2) | V1—N1—C6—C7 | 179.88 (9) |
C4—C1—C2—C3 | 173.61 (13) | N1—C6—C7—C8 | 0.22 (17) |
V1—O3—C3—C2 | 14.38 (18) | C6—C7—C8—C7i | −0.11 (8) |
V1—O3—C3—C5 | −165.06 (9) | C6—C7—C8—C9 | 179.89 (8) |
C1—C2—C3—O3 | 2.2 (2) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4C···O1ii | 0.98 | 2.47 | 3.4249 (16) | 164 |
C7—H7···O1iii | 0.95 | 2.59 | 3.4673 (14) | 154 |
Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) x−1/2, y−1/2, z. |
[V(C5H7O2)2O(C6H7NO)] | F(000) = 780 |
Mr = 374.28 | Dx = 1.403 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6619 (15) Å | Cell parameters from 9171 reflections |
b = 11.9922 (19) Å | θ = 2.4–28.3° |
c = 15.344 (2) Å | µ = 0.59 mm−1 |
β = 94.651 (2)° | T = 120 K |
V = 1772.0 (5) Å3 | Block, blue |
Z = 4 | 0.32 × 0.19 × 0.11 mm |
Bruker Kappa X8-APEXII diffractometer | 4413 independent reflections |
Radiation source: fine-focus sealed tube | 3730 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 8.33 pixels mm-1 | θmax = 28.4°, θmin = 2.2° |
combination of ω and φ–scans | h = −12→12 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −16→16 |
Tmin = 0.862, Tmax = 0.983 | l = −20→20 |
25688 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0348P)2 + 1.1201P] where P = (Fo2 + 2Fc2)/3 |
4413 reflections | (Δ/σ)max < 0.001 |
222 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.46984 (2) | 0.46573 (2) | 0.27536 (2) | 0.01335 (7) | |
O1 | 0.53209 (11) | 0.36808 (9) | 0.21879 (7) | 0.0206 (2) | |
O2 | 0.52992 (10) | 0.59883 (9) | 0.20819 (6) | 0.0187 (2) | |
O3 | 0.63443 (10) | 0.49106 (8) | 0.36048 (7) | 0.0167 (2) | |
O4 | 0.37408 (11) | 0.59132 (8) | 0.35341 (7) | 0.0175 (2) | |
O5 | 0.28270 (11) | 0.46703 (8) | 0.20760 (6) | 0.0173 (2) | |
O6 | 0.26958 (12) | 0.12492 (9) | 0.54929 (7) | 0.0244 (2) | |
N1 | 0.39173 (13) | 0.35591 (10) | 0.37014 (8) | 0.0153 (2) | |
C1 | 0.63492 (16) | 0.66210 (12) | 0.22605 (10) | 0.0185 (3) | |
C2 | 0.73408 (16) | 0.64880 (13) | 0.29670 (10) | 0.0198 (3) | |
H2 | 0.809349 | 0.699961 | 0.302343 | 0.024* | |
C3 | 0.72947 (15) | 0.56495 (12) | 0.35957 (9) | 0.0161 (3) | |
C4 | 0.84276 (16) | 0.55651 (13) | 0.43262 (10) | 0.0222 (3) | |
H4A | 0.801910 | 0.538371 | 0.487292 | 0.033* | |
H4B | 0.891915 | 0.627884 | 0.439042 | 0.033* | |
H4C | 0.908201 | 0.497767 | 0.419094 | 0.033* | |
C5 | 0.6492 (2) | 0.75837 (15) | 0.16467 (12) | 0.0334 (4) | |
H5A | 0.656443 | 0.730050 | 0.105296 | 0.050* | |
H5B | 0.732960 | 0.801013 | 0.183335 | 0.050* | |
H5C | 0.567632 | 0.806796 | 0.165362 | 0.050* | |
C6 | 0.24885 (15) | 0.62275 (12) | 0.35059 (9) | 0.0167 (3) | |
C7 | 0.14287 (16) | 0.58216 (14) | 0.29076 (10) | 0.0215 (3) | |
H7 | 0.050317 | 0.605404 | 0.297396 | 0.026* | |
C8 | 0.16543 (16) | 0.51020 (13) | 0.22263 (10) | 0.0193 (3) | |
C9 | 0.21222 (17) | 0.71170 (13) | 0.41458 (10) | 0.0226 (3) | |
H9A | 0.242406 | 0.687897 | 0.474206 | 0.034* | |
H9B | 0.111497 | 0.723372 | 0.409565 | 0.034* | |
H9C | 0.258989 | 0.781507 | 0.401452 | 0.034* | |
C10 | 0.04535 (18) | 0.47785 (17) | 0.15869 (12) | 0.0320 (4) | |
H10A | 0.069407 | 0.492688 | 0.098957 | 0.048* | |
H10B | −0.036755 | 0.521553 | 0.170540 | 0.048* | |
H10C | 0.025355 | 0.398275 | 0.165035 | 0.048* | |
C11 | 0.28395 (15) | 0.28757 (12) | 0.34893 (9) | 0.0177 (3) | |
H11 | 0.238256 | 0.293682 | 0.291934 | 0.021* | |
C12 | 0.23542 (15) | 0.20886 (12) | 0.40496 (10) | 0.0184 (3) | |
H12 | 0.157914 | 0.163143 | 0.387202 | 0.022* | |
C13 | 0.30337 (15) | 0.19861 (12) | 0.48803 (9) | 0.0171 (3) | |
C14 | 0.41468 (15) | 0.26970 (12) | 0.51178 (9) | 0.0178 (3) | |
H14 | 0.462236 | 0.265216 | 0.568336 | 0.021* | |
C15 | 0.45407 (15) | 0.34604 (12) | 0.45204 (9) | 0.0174 (3) | |
H15 | 0.529131 | 0.394613 | 0.469025 | 0.021* | |
C16 | 0.15152 (19) | 0.05480 (15) | 0.52768 (11) | 0.0289 (4) | |
H16A | 0.069247 | 0.101227 | 0.513676 | 0.043* | |
H16B | 0.136044 | 0.006690 | 0.577595 | 0.043* | |
H16C | 0.168604 | 0.008556 | 0.476993 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.01255 (12) | 0.01250 (12) | 0.01468 (12) | −0.00034 (9) | −0.00089 (8) | 0.00034 (8) |
O1 | 0.0192 (5) | 0.0202 (5) | 0.0224 (5) | 0.0020 (4) | 0.0010 (4) | −0.0016 (4) |
O2 | 0.0180 (5) | 0.0185 (5) | 0.0191 (5) | −0.0031 (4) | −0.0018 (4) | 0.0043 (4) |
O3 | 0.0132 (5) | 0.0166 (5) | 0.0196 (5) | −0.0025 (4) | −0.0022 (4) | 0.0028 (4) |
O4 | 0.0155 (5) | 0.0173 (5) | 0.0190 (5) | 0.0005 (4) | −0.0022 (4) | −0.0022 (4) |
O5 | 0.0162 (5) | 0.0176 (5) | 0.0173 (5) | −0.0002 (4) | −0.0031 (4) | −0.0015 (4) |
O6 | 0.0245 (6) | 0.0265 (6) | 0.0216 (5) | −0.0115 (5) | −0.0014 (4) | 0.0063 (4) |
N1 | 0.0151 (6) | 0.0142 (5) | 0.0163 (6) | −0.0009 (5) | −0.0007 (4) | 0.0001 (4) |
C1 | 0.0189 (7) | 0.0172 (7) | 0.0199 (7) | −0.0017 (6) | 0.0035 (6) | 0.0020 (5) |
C2 | 0.0164 (7) | 0.0199 (7) | 0.0230 (7) | −0.0051 (6) | 0.0019 (6) | 0.0003 (6) |
C3 | 0.0132 (6) | 0.0170 (6) | 0.0182 (7) | 0.0004 (5) | 0.0013 (5) | −0.0024 (5) |
C4 | 0.0160 (7) | 0.0246 (8) | 0.0250 (8) | −0.0026 (6) | −0.0047 (6) | −0.0006 (6) |
C5 | 0.0366 (10) | 0.0311 (9) | 0.0315 (9) | −0.0130 (8) | −0.0041 (7) | 0.0151 (7) |
C6 | 0.0172 (7) | 0.0167 (7) | 0.0162 (6) | 0.0002 (5) | 0.0022 (5) | 0.0026 (5) |
C7 | 0.0129 (7) | 0.0282 (8) | 0.0233 (7) | 0.0017 (6) | −0.0003 (6) | −0.0023 (6) |
C8 | 0.0147 (7) | 0.0217 (7) | 0.0207 (7) | −0.0014 (6) | −0.0029 (5) | 0.0015 (6) |
C9 | 0.0224 (8) | 0.0238 (8) | 0.0218 (7) | 0.0028 (6) | 0.0029 (6) | −0.0042 (6) |
C10 | 0.0188 (8) | 0.0435 (11) | 0.0320 (9) | 0.0003 (7) | −0.0087 (7) | −0.0111 (8) |
C11 | 0.0186 (7) | 0.0173 (7) | 0.0165 (7) | −0.0031 (6) | −0.0035 (5) | −0.0013 (5) |
C12 | 0.0169 (7) | 0.0176 (7) | 0.0201 (7) | −0.0046 (6) | −0.0011 (5) | −0.0022 (5) |
C13 | 0.0174 (7) | 0.0162 (6) | 0.0178 (7) | −0.0015 (5) | 0.0025 (5) | 0.0007 (5) |
C14 | 0.0166 (7) | 0.0202 (7) | 0.0160 (6) | −0.0022 (6) | −0.0020 (5) | 0.0003 (5) |
C15 | 0.0159 (7) | 0.0180 (7) | 0.0176 (7) | −0.0035 (6) | −0.0023 (5) | −0.0013 (5) |
C16 | 0.0308 (9) | 0.0289 (9) | 0.0271 (8) | −0.0160 (7) | 0.0030 (7) | 0.0037 (7) |
V1—O1 | 1.6035 (11) | C5—H5C | 0.9800 |
V1—O3 | 1.9975 (10) | C6—C7 | 1.406 (2) |
V1—O2 | 2.0110 (11) | C6—C9 | 1.511 (2) |
V1—O5 | 2.0115 (10) | C7—C8 | 1.386 (2) |
V1—N1 | 2.1440 (12) | C7—H7 | 0.9500 |
V1—O4 | 2.1767 (11) | C8—C10 | 1.508 (2) |
O2—C1 | 1.2786 (18) | C9—H9A | 0.9800 |
O3—C3 | 1.2770 (17) | C9—H9B | 0.9800 |
O4—C6 | 1.2647 (18) | C9—H9C | 0.9800 |
O5—C8 | 1.2835 (18) | C10—H10A | 0.9800 |
O6—C13 | 1.3494 (17) | C10—H10B | 0.9800 |
O6—C16 | 1.4342 (19) | C10—H10C | 0.9800 |
N1—C11 | 1.3442 (18) | C11—C12 | 1.384 (2) |
N1—C15 | 1.3541 (18) | C11—H11 | 0.9500 |
C1—C2 | 1.396 (2) | C12—C13 | 1.391 (2) |
C1—C5 | 1.503 (2) | C12—H12 | 0.9500 |
C2—C3 | 1.397 (2) | C13—C14 | 1.397 (2) |
C2—H2 | 0.9500 | C14—C15 | 1.371 (2) |
C3—C4 | 1.505 (2) | C14—H14 | 0.9500 |
C4—H4A | 0.9800 | C15—H15 | 0.9500 |
C4—H4B | 0.9800 | C16—H16A | 0.9800 |
C4—H4C | 0.9800 | C16—H16B | 0.9800 |
C5—H5A | 0.9800 | C16—H16C | 0.9800 |
C5—H5B | 0.9800 | ||
O1—V1—O3 | 98.71 (5) | H5B—C5—H5C | 109.5 |
O1—V1—O2 | 99.54 (5) | O4—C6—C7 | 124.29 (14) |
O3—V1—O2 | 88.10 (4) | O4—C6—C9 | 117.52 (13) |
O1—V1—O5 | 94.97 (5) | C7—C6—C9 | 118.18 (13) |
O3—V1—O5 | 166.27 (4) | C8—C7—C6 | 123.87 (14) |
O2—V1—O5 | 90.78 (4) | C8—C7—H7 | 118.1 |
O1—V1—N1 | 94.97 (5) | C6—C7—H7 | 118.1 |
O3—V1—N1 | 87.44 (4) | O5—C8—C7 | 125.57 (13) |
O2—V1—N1 | 165.31 (5) | O5—C8—C10 | 115.03 (14) |
O5—V1—N1 | 90.24 (5) | C7—C8—C10 | 119.40 (14) |
O1—V1—O4 | 176.32 (5) | C6—C9—H9A | 109.5 |
O3—V1—O4 | 83.48 (4) | C6—C9—H9B | 109.5 |
O2—V1—O4 | 83.45 (4) | H9A—C9—H9B | 109.5 |
O5—V1—O4 | 82.80 (4) | C6—C9—H9C | 109.5 |
N1—V1—O4 | 82.13 (4) | H9A—C9—H9C | 109.5 |
C1—O2—V1 | 128.18 (9) | H9B—C9—H9C | 109.5 |
C3—O3—V1 | 129.31 (9) | C8—C10—H10A | 109.5 |
C6—O4—V1 | 129.46 (9) | C8—C10—H10B | 109.5 |
C8—O5—V1 | 132.83 (9) | H10A—C10—H10B | 109.5 |
C13—O6—C16 | 117.11 (12) | C8—C10—H10C | 109.5 |
C11—N1—C15 | 116.68 (12) | H10A—C10—H10C | 109.5 |
C11—N1—V1 | 121.24 (10) | H10B—C10—H10C | 109.5 |
C15—N1—V1 | 121.92 (10) | N1—C11—C12 | 124.07 (13) |
O2—C1—C2 | 125.53 (13) | N1—C11—H11 | 118.0 |
O2—C1—C5 | 115.67 (13) | C12—C11—H11 | 118.0 |
C2—C1—C5 | 118.80 (14) | C11—C12—C13 | 118.10 (13) |
C1—C2—C3 | 124.06 (14) | C11—C12—H12 | 121.0 |
C1—C2—H2 | 118.0 | C13—C12—H12 | 121.0 |
C3—C2—H2 | 118.0 | O6—C13—C12 | 124.98 (13) |
O3—C3—C2 | 124.77 (13) | O6—C13—C14 | 116.26 (13) |
O3—C3—C4 | 115.17 (13) | C12—C13—C14 | 118.76 (13) |
C2—C3—C4 | 120.05 (13) | C15—C14—C13 | 118.85 (13) |
C3—C4—H4A | 109.5 | C15—C14—H14 | 120.6 |
C3—C4—H4B | 109.5 | C13—C14—H14 | 120.6 |
H4A—C4—H4B | 109.5 | N1—C15—C14 | 123.52 (13) |
C3—C4—H4C | 109.5 | N1—C15—H15 | 118.2 |
H4A—C4—H4C | 109.5 | C14—C15—H15 | 118.2 |
H4B—C4—H4C | 109.5 | O6—C16—H16A | 109.5 |
C1—C5—H5A | 109.5 | O6—C16—H16B | 109.5 |
C1—C5—H5B | 109.5 | H16A—C16—H16B | 109.5 |
H5A—C5—H5B | 109.5 | O6—C16—H16C | 109.5 |
C1—C5—H5C | 109.5 | H16A—C16—H16C | 109.5 |
H5A—C5—H5C | 109.5 | H16B—C16—H16C | 109.5 |
V1—O2—C1—C2 | 2.0 (2) | C6—C7—C8—O5 | 3.7 (3) |
V1—O2—C1—C5 | −177.67 (11) | C6—C7—C8—C10 | −175.99 (16) |
O2—C1—C2—C3 | −1.8 (3) | C15—N1—C11—C12 | −0.6 (2) |
C5—C1—C2—C3 | 177.87 (15) | V1—N1—C11—C12 | 174.86 (11) |
V1—O3—C3—C2 | 2.2 (2) | N1—C11—C12—C13 | −0.9 (2) |
V1—O3—C3—C4 | −177.27 (10) | C16—O6—C13—C12 | −2.3 (2) |
C1—C2—C3—O3 | −0.4 (2) | C16—O6—C13—C14 | 177.13 (14) |
C1—C2—C3—C4 | 179.04 (14) | C11—C12—C13—O6 | −179.03 (14) |
V1—O4—C6—C7 | −2.3 (2) | C11—C12—C13—C14 | 1.6 (2) |
V1—O4—C6—C9 | 179.17 (9) | O6—C13—C14—C15 | 179.74 (13) |
O4—C6—C7—C8 | −6.1 (3) | C12—C13—C14—C15 | −0.8 (2) |
C9—C6—C7—C8 | 172.47 (15) | C11—N1—C15—C14 | 1.4 (2) |
V1—O5—C8—C7 | 8.0 (2) | V1—N1—C15—C14 | −173.97 (11) |
V1—O5—C8—C10 | −172.33 (11) | C13—C14—C15—N1 | −0.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.57 | 3.488 (2) | 163 |
C12—H12···O2ii | 0.95 | 2.37 | 3.2567 (18) | 156 |
C14—H14···O4iii | 0.95 | 2.57 | 3.2462 (18) | 129 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
JR gratefully acknowledges Elizabethtown College and the Department of Chemistry and Biochemistry for funding and support.
Funding information
We also acknowledge the National Science Foundation (grant No. CHE-0958425) for instrument support.
References
Abakumova, O. Y., Podobed, O. V., Belayeva, N. F. & Tochilkin, A. I. (2012). Biochem. Moscow Suppl. Ser. B, 6, 164–170. CrossRef Google Scholar
Amin, S. S., Cryer, K., Zhang, B., Dutta, S. K., Eaton, S. S., Anderson, O. P., Miller, S. M., Reul, B. A., Brichard, S. M. & Crans, D. C. (2000). Inorg. Chem. 39, 406–416. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2015). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, WI, USA. Google Scholar
Caira, M. R., Haigh, J. M. & Nassimbeni, L. R. (1972). Inorg. Nucl. Chem. Lett. 8, 109–112. CSD CrossRef CAS Web of Science Google Scholar
Correia, I., Chorna, I., Cavaco, I., Roy, S., Kuznetsov, M. L., Ribeiro, N., Justino, G., Marques, F., Santos-Silva, T., Santos, M. F. A., Santos, H. M., Capelo, J. L., Doutch, J. & Pessoa, J. C. (2017). Chem. Asian J. 12, 2062–2084. CrossRef CAS PubMed Google Scholar
Costa Pessoa, J. (2015). J. Inorg. Biochem. 147, 4–24. CrossRef CAS PubMed Google Scholar
Hiromura, M., Nakayama, A., Adachi, Y., Doi, M. & Sakurai, H. (2007). J. Biol. Inorg. Chem. 12, 1275–1287. Web of Science CrossRef PubMed CAS Google Scholar
Kadirova, Z. C., Rahmonova, D. S., Talipov, S. A., Ashurov, J. M. & Parpiev, N. A. (2009). Acta Cryst. E65, m819. CSD CrossRef IUCr Journals Google Scholar
Kostova, I. (2009). Anticancer Agents Med. Chem. 9, 827–842. CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Makinen, M. W. & Brady, M. J. (2002). J. Biol. Chem. 277, 12215–12220. CrossRef PubMed CAS Google Scholar
Meicheng, S., Lifeng, W. & Youqi, T. (1984). Kexue Tongbao (Chin. Sci. Bull.) 29, 759–764. Google Scholar
Meicheng, S., Lifeng, W. & Zeying, Z. (1983). Huaxue Xuebao (Acta Chim. Sinica) 41, 985–992. Google Scholar
Nenashev, R., Mordvinova, N., Zlomanov, V. & Kuznetsov, V. (2015). Inorg. Mater. 51, 891–896. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, T. F. S., Leod, T. C. O. M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Schiavon, M. A. & Pombeiro, A. J. L. (2013). J. Mol. Catal. A Chem. 367, 52–60. CSD CrossRef CAS Google Scholar
Silva, R. M. S. da, Spiazzi, C. C., Bortolotto, R. & Burrow, R. A. (2007). Acta Cryst. E63, m2422. CSD CrossRef IUCr Journals Google Scholar
Singh, R., Neerupama, G. K., Sharma, P. & Sachar, R. (2014). Chem. Sci. Trans. 3, 1099–1109. Google Scholar
Srivastava, A. K. & Mehdi, M. Z. (2005). Diabet. Med. 22, 2–13. CrossRef PubMed CAS Google Scholar
Ugone, V., Sanna, D., Sciortino, G., Maréchal, J.-D. & Garribba, E. (2019). Inorg. Chem. 58, 8064–8078. CrossRef PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.