research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of a series of bis­­(acetyl­aceto­nato)oxovanadium(IV) complexes containing N-donor pyridyl ligands

CROSSMARK_Color_square_no_text.svg

aElizabethtown College, Department of Chemistry and Biochemistry, 1 Alpha Drive, Elizabethtown, PA 17022-2298, USA, and bUniversity of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, IN 46556-5670, USA
*Correspondence e-mail: roodj@etown.edu

Edited by M. Zeller, Purdue University, USA (Received 1 May 2020; accepted 7 May 2020; online 15 May 2020)

Crystal structures for a series of bis­(acetyl­acetonato)oxovanadium(IV) complexes containing N-donor pyridyl ligands are reported, namely, bis­(acetyl­acetonato-κ2O,O′)oxido(pyridine-κN)vanadium(IV), [V(C5H7O2)2O(C5H5N)], 1, bis­(acetyl­acetonato-κ2O,O′)oxido(pyridine-4-carbo­nitrile-κN)vanadium(IV), [V(C5H7O2)2O(C6H4N2)], 2, and bis­(acetyl­acetonato-κ2O,O′)(4-meth­oxy­pyridine-κN)oxidovanadium(IV), [V(C5H7O2)2O(C6H7NO)], 3, Compounds 13 have the formulae VO(C5H7O2)2L, where L = pyridine (1), 4-cyano-pyridine (2), and 4-meth­oxy­pyridine (3). Compound 1 was previously reported [Meicheng et al. (1984[Meicheng, S., Lifeng, W. & Youqi, T. (1984). Kexue Tongbao (Chin. Sci. Bull.) 29, 759-764.]). Kexue Tongbao, 29, 759–764 and DaSilva, Spiazzi, Bortolotto & Burrow (2007). Acta Crystallogr., E63, m2422] and redetermined here at cryogenic temperatures. Compounds 1 and 2 as pyridine and 4-cyano­pyridine adducts, respectively, crystallize as distorted octa­hedral structures with the oxo and pyridyl ligands trans to one another. A crystallographic twofold axis runs through the O—V—N bonds. Compound 3 containing a 4-meth­oxy­pyridine ligand crystallizes as a distorted octa­hedral structure with the oxo and pyridyl ligands cis to one other, removing the twofold symmetry seen in the other complexes.

1. Chemical context

Oxovanadium(IV) complexes have been cited as having numerous practical pharmacological applications ranging from anti­cancer agents to anti-fungal agents and, more recently, as an insulin mimetic (Singh et al., 2014[Singh, R., Neerupama, G. K., Sharma, P. & Sachar, R. (2014). Chem. Sci. Trans. 3, 1099-1109.]; Abakumova et al., 2012[Abakumova, O. Y., Podobed, O. V., Belayeva, N. F. & Tochilkin, A. I. (2012). Biochem. Moscow Suppl. Ser. B, 6, 164-170.]; Amin et al., 2000[Amin, S. S., Cryer, K., Zhang, B., Dutta, S. K., Eaton, S. S., Anderson, O. P., Miller, S. M., Reul, B. A., Brichard, S. M. & Crans, D. C. (2000). Inorg. Chem. 39, 406-416.]). Currently investigations are underway to further understand how the oxovanadium complexes perform this wide array of tasks. As an insulin mimetic, it is postulated that oxovanadium complexes inter­act with multiple points of the cell signaling pathway associated with the insulin hormone (Amin et al., 2000[Amin, S. S., Cryer, K., Zhang, B., Dutta, S. K., Eaton, S. S., Anderson, O. P., Miller, S. M., Reul, B. A., Brichard, S. M. & Crans, D. C. (2000). Inorg. Chem. 39, 406-416.]; Srivastava & Mehdi, 2005[Srivastava, A. K. & Mehdi, M. Z. (2005). Diabet. Med. 22, 2-13.]). Alternatively, studies have shown that it inter­acts directly with glucose transporters found on the cellular surface (Hiromura et al. 2007[Hiromura, M., Nakayama, A., Adachi, Y., Doi, M. & Sakurai, H. (2007). J. Biol. Inorg. Chem. 12, 1275-1287.]; Makinen & Brady, 2002[Makinen, M. W. & Brady, M. J. (2002). J. Biol. Chem. 277, 12215-12220.]). Furthermore, vanadium has been found to have important inter­actions in DNA repair systems, which have made it a lucrative target for much oncological/pharmacological research (Abakumova et al., 2012[Abakumova, O. Y., Podobed, O. V., Belayeva, N. F. & Tochilkin, A. I. (2012). Biochem. Moscow Suppl. Ser. B, 6, 164-170.]; Kostova, 2009[Kostova, I. (2009). Anticancer Agents Med. Chem. 9, 827-842.]).

Oxovanadium complexes chelated by two acetyl­acetonate ligands form a five-coordinate bonding system that can act as a Lewis acid (Nenashev et al. 2015[Nenashev, R., Mordvinova, N., Zlomanov, V. & Kuznetsov, V. (2015). Inorg. Mater. 51, 891-896.]; Ugone et al., 2019[Ugone, V., Sanna, D., Sciortino, G., Maréchal, J.-D. & Garribba, E. (2019). Inorg. Chem. 58, 8064-8078.]; Costa Pessoa, 2015[Costa Pessoa, J. (2015). J. Inorg. Biochem. 147, 4-24.]; Correia et al. 2017[Correia, I., Chorna, I., Cavaco, I., Roy, S., Kuznetsov, M. L., Ribeiro, N., Justino, G., Marques, F., Santos-Silva, T., Santos, M. F. A., Santos, H. M., Capelo, J. L., Doutch, J. & Pessoa, J. C. (2017). Chem. Asian J. 12, 2062-2084.]). This system can undergo a reaction with a Lewis base to increase its coordination bonding number to six. Of the extensive studies regarding the properties and applications of such complexes, relatively few single-crystal structures have been reported. For instance, five compounds containing N-donor ligands, a focus of this work, have been characterized by single-crystal diffraction (Meicheng et al., 1983[Meicheng, S., Lifeng, W. & Zeying, Z. (1983). Huaxue Xuebao (Acta Chim. Sinica) 41, 985-992.], 1984[Meicheng, S., Lifeng, W. & Youqi, T. (1984). Kexue Tongbao (Chin. Sci. Bull.) 29, 759-764.]; Silva et al., 2013[Silva, T. F. S., Leod, T. C. O. M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Schiavon, M. A. & Pombeiro, A. J. L. (2013). J. Mol. Catal. A Chem. 367, 52-60.]; Kadirova et al., 2009[Kadirova, Z. C., Rahmonova, D. S., Talipov, S. A., Ashurov, J. M. & Parpiev, N. A. (2009). Acta Cryst. E65, m819.]; da Silva et al. 2007[Silva, R. M. S. da, Spiazzi, C. C., Bortolotto, R. & Burrow, R. A. (2007). Acta Cryst. E63, m2422.]; Caira et al., 1972[Caira, M. R., Haigh, J. M. & Nassimbeni, L. R. (1972). Inorg. Nucl. Chem. Lett. 8, 109-112.]). Given the structural dependence on functions and application, a deeper study of the mol­ecular structure of such complexes is warranted. In this work, we describe the structures of VO(C5H7O2)2L, where L = pyridine (1), 4-cyano-pyridine (2), and 4-meth­oxy­pyridine (3), and the isolation of different isomeric forms. The complexes were synthesized rapidly in an Anton Paar Monowave 50 synthesis reactor in 5 minutes at 323 K and crystallized upon cooling the mother liquor.

[Scheme 1]

2. Structural commentary

Figs. 1[link]–3[link][link] illustrate the mol­ecular structures of compounds 13. Compounds 1 and 2 crystallize in the monoclinic space group C2/c. In both complexes, a twofold axis runs along the O—V—N bonding axis, leading to an asymmetric unit that consists of half of the mol­ecular structure. Upon symmetry expansion, both 1 and 2 adopt distorted octa­hedral geometries around the vanadium metal center with the oxo and pyridyl ligands trans to one another. Each acetyl­acetonate ligand chelates the vanadium center through two oxygen atoms to form a five-membered ring. In 1 and 2, the equatorial plane consisting of the vanadium center and four acetyl­acetonate oxygen atoms distorts away from the V=O double bond. In 1, the Ooxo—V—Oacac bond angles are 98.05 (3)° and 99.84 (3)° and in 2 are 98.42 (4)° and 98.91 (3)°.

[Figure 1]
Figure 1
A view of compound 1, showing the atom labeling. Displacement ellipsoids are at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code (i) −x + 1, y, −z + [{3\over 2}]].
[Figure 2]
Figure 2
A view of compound 2, showing the atom labeling. Displacement ellipsoids are at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code (i) −x + 1, y, −z + [{3\over 2}]].
[Figure 3]
Figure 3
A view of compound 3, showing the atom labeling. Displacement ellipsoids are at the 50% probability level and H atoms have been omitted for clarity.

Compound 3 exists as a different isomeric form, with the oxo and 4-meth­oxy­pyridine ligand being cis to one another. This removes the twofold symmetry seen in compounds 1 and 2 and compound 3 crystallizes in the space group P21/n. Similarly to 1 and 2, compound 3 adopts a distorted octa­hedral geometry upon chelation by two bidentate acetyl­acetonate ligands.

The V—O and V=O bond lengths for 13 are are similar to those observed in related complexes (Singh et al., 2014[Singh, R., Neerupama, G. K., Sharma, P. & Sachar, R. (2014). Chem. Sci. Trans. 3, 1099-1109.]; Abakumova et al. 2012[Abakumova, O. Y., Podobed, O. V., Belayeva, N. F. & Tochilkin, A. I. (2012). Biochem. Moscow Suppl. Ser. B, 6, 164-170.]; Meicheng et al., 1983[Meicheng, S., Lifeng, W. & Zeying, Z. (1983). Huaxue Xuebao (Acta Chim. Sinica) 41, 985-992.]; Silva et al., 2013[Silva, T. F. S., Leod, T. C. O. M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Schiavon, M. A. & Pombeiro, A. J. L. (2013). J. Mol. Catal. A Chem. 367, 52-60.]; Kadirova et al., 2009[Kadirova, Z. C., Rahmonova, D. S., Talipov, S. A., Ashurov, J. M. & Parpiev, N. A. (2009). Acta Cryst. E65, m819.]). Most notable are variances in the V—N bond lengths in the complexes. In 1 and 2, the V—N bond lengths are of similar nature at 2.3861 (16) and 2.4022 (15) Å, respectively. However in 3, the V—N bond length is much shorter at 2.1140 (12) Å, likely from a combination of the cis-isomeric structure in 3 and the electron-donating meth­oxy group of the 4-meth­oxy­pyridine ligand.

3. Supra­molecular features

Several non-covalent inter­actions (Tables 1[link]–3[link][link]) exist in the supra­molecular structures of compounds 13. Figs. 4[link]–6[link][link] show the crystal packing diagrams for the compounds with the inter­actions shown as dashed orange lines. In 1, these inter­actions are centered around the oxo ligand, with methyl groups of the acetyl­acetonate ligands forming CH2—H⋯Oii inter­actions at a distance of 2.575 (9) Å between O1ii and H5A and the aryl protons of the pyridine ligand forming Ar—H⋯Oiii inter­actions at a distance of 2.429 (9) Å between O1iii and H7 [symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) x − [{1\over 2}], y − [{1\over 2}], z]. Similar inter­actions exist in 2 with CH2—H⋯Oii inter­actions at a distance of 2.591 (9) Å between the oxo ligand, O1ii, and H4C of the methyl group of the acetyl­acetonate and Ar—H⋯Oiii inter­actions at a distance of 2.588 (9) Å between the 4-cyano­pyridine proton H7 and O1iii [symmetry codes: (ii) −x + 1, −y + 2, −z + 1; (iii) x − [{1\over 2}], y − [{1\over 2}], z]. Compound 2 also displays inter­actions between the methyl groups of the acetyl­acetonate and the π-bond within 4-cyano­pyridine at a distance of 2.682 (9) Å from the proton to the center of the π-bond.

Table 1
Hydrogen-bond geometry (Å, °) for compound 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1ii 0.98 2.58 3.2589 (18) 127
C7—H7⋯O1iii 0.95 2.43 3.2487 (17) 144
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °) for compound 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4C⋯O1ii 0.98 2.47 3.4249 (16) 164
C7—H7⋯O1iii 0.95 2.59 3.4673 (14) 154
Symmetry codes: (ii) -x+1, -y+2, -z+1; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 3
Hydrogen-bond geometry (Å, °) for compound 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.57 3.488 (2) 163
C12—H12⋯O2ii 0.95 2.37 3.2567 (18) 156
C14—H14⋯O4iii 0.95 2.57 3.2462 (18) 129
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
Crystal packing diagram of compound 1 with non-covalent inter­actions shown with dotted orange lines.
[Figure 5]
Figure 5
Crystal packing diagram of compound 2 with non-covalent inter­actions shown with dotted orange lines.
[Figure 6]
Figure 6
Crystal packing diagram of compound 3 with non-covalent inter­actions shown with dotted orange lines.

Compared to 1 and 2, compound 3 displays different types of non-covalent inter­actions. The methine proton, H2, of the acetyl­acetonate inter­acts with the oxo ligand oxygen, O1i at a distance of 2.568 (8) Å and the aryl protons H12 and H14 inter­act with acetyl­acetonate oxygens atoms O2ii and O4iii at distances of 2.366 (8) Å and 2.569 (8) Å, respectively [symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iii) −x + 1, −y + 1, −z + 1]. Additionally, there are weaker inter­actions between the π-system of the acetyl­acetonate and 4-meth­oxy­pyridine, evident by a 3.196 (9) Å distance from C3 to C14iii.

4. Synthesis and crystallization

Bis(acetyl­acetonato)oxovanadium(IV) (VO(acac)2) and the N-donor ligands pyridine, 4-cyano­pyridine, and 4-meth­oxy­pyridine were purchased and used without further purification. To an Anton Paar Monowave synthesis reactor vial, a 1:1 molar ratio of VO(acac)2 and an N-donor ligand (0.75 mmol scale) was added and dissolved into 5 mL of di­chloro­methane. Once dissolved completely, each solution was reacted in an Anton Paar Monowave 50 synthesis reactor at 323 K for 5 min. Following all of the reactions, a slight precipitate was filtered and the resulting filtrate was allowed to slowly evaporate to produce single crystals suitable for X-ray diffraction studies. In addition to characterization by single crystal X-ray diffraction, each complex was characterized by FTIR spectroscopy. Compound 1 IR (neat) ν (cm−1): 3065(w), 2964(w), 1574(m), 1522(s), 1443(m), 1378(s) 1351(s), 1274(m), 1218(w), 1196(w), 1147(w), 1074(w), 1018(m), 964(s), 931(m), 890(w), 782(w), 763(m), 708(m), 676(m). Compound 2 IR (neat) ν(cm−1): 3084(w), 3034(w), 1557(m), 1540(w), 1522(s), 1411(m), 1375(s), 1277(m), 1211(w), 1190(w), 1018(m), 960(s), 929(m), 850(m), 789(m), 737(w), 679(m), 667(m). Compound 3 IR (neat) ν(cm−1): 3072(w), 3017(w), 1577(m), 1513(s), 1431(m), 1367(s), 1329(m), 1291(m), 1273(m), 1210(m), 1109(w), 1058(w), 1029(m), 948(s), 928(m), 836(m), 807(m), 780(m), 678(w), 658(m).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Single crystals were examined under Infineum V8512 oil. The datum crystal was affixed to a MiTeGen loop and transferred to the cold nitro­gen stream of a Bruker APEXII diffractometer equipped with an Oxford Cryosystems 700 low-temperature apparatus. Unit-cell parameters were determined using reflections harvested from three sets of 12 0.5° ω scans scans. An optimal data-collection strategy was determined for an arbitrary hemisphere of data to 99.8% completeness to a resolution of 0.8 Å. (Bruker, 2015[Bruker (2015). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, WI, USA.]) Unit-cell parameters were refined using reflections harvested from the data collection with I ≥ 10σ(I). All data were corrected for Lorentz and polarization effects, and runs were scaled using SADABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]). The structures were solved using the Autostructure option within APEX3. This option employs an iterative application of the direct methods, Patterson synthesis, and dual-space routines of SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]). The models were refined routinely (SHELXL; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Hydrogen atoms were placed at calculated geometries and allowed to ride on the position of the parent atom. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Hydrogen displacement parameters were set to 1.5Ueq(C) for methyl and 1.2Ueq(C) for all other hydrogen atoms.

Table 4
Experimental details

  1 2 3
Crystal data
Chemical formula [V(C5H7O2)2O(C5H5N)] [V(C5H7O2)2O(C6H4N2)] [V(C5H7O2)2O(C6H7NO)]
Mr 344.25 369.26 374.28
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 120 120 120
a, b, c (Å) 7.8820 (5), 15.2092 (11), 13.9871 (9) 9.1930 (9), 13.5080 (9), 13.3651 (9) 9.6619 (15), 11.9922 (19), 15.344 (2)
β (°) 103.367 (2) 99.030 (3) 94.651 (2)
V3) 1631.33 (19) 1639.1 (2) 1772.0 (5)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.63 0.63 0.59
Crystal size (mm) 0.23 × 0.14 × 0.11 0.15 × 0.11 × 0.07 0.32 × 0.19 × 0.11
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker Kappa X8-APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.912, 0.966 0.927, 0.980 0.862, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 17837, 2037, 1882 21763, 2038, 1832 25688, 4413, 3730
Rint 0.025 0.032 0.033
(sin θ/λ)max−1) 0.667 0.667 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.06 0.027, 0.071, 1.08 0.030, 0.081, 1.05
No. of reflections 2037 2038 4413
No. of parameters 104 114 222
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.26 0.41, −0.40 0.33, −0.36
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, WI, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Bruker, 2015[Bruker (2015). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, WI, USA.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Bruker, 2015) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(acetylacetonato-κ2O,O')oxido(pyridine-κN)vanadium(IV) (compound1) top
Crystal data top
[V(C5H7O2)2O(C5H5N)]F(000) = 716
Mr = 344.25Dx = 1.402 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.8820 (5) ÅCell parameters from 8119 reflections
b = 15.2092 (11) Åθ = 2.7–28.3°
c = 13.9871 (9) ŵ = 0.63 mm1
β = 103.367 (2)°T = 120 K
V = 1631.33 (19) Å3Tablet, blue
Z = 40.23 × 0.14 × 0.11 mm
Data collection top
Bruker APEXII
diffractometer
2037 independent reflections
Radiation source: fine-focus sealed tube1882 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.025
combination of ω and φ–scansθmax = 28.3°, θmin = 2.7°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.912, Tmax = 0.966k = 2020
17837 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.4639P]
where P = (Fo2 + 2Fc2)/3
2037 reflections(Δ/σ)max < 0.001
104 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.5000000.41643 (2)0.7500000.01694 (10)
O10.5000000.52179 (9)0.7500000.0239 (3)
O20.54371 (12)0.39403 (6)0.61740 (7)0.0211 (2)
O30.24437 (11)0.39799 (6)0.69551 (7)0.0212 (2)
N10.5000000.25955 (10)0.7500000.0193 (3)
C10.43127 (17)0.37920 (9)0.53797 (9)0.0209 (3)
C20.25102 (18)0.37547 (10)0.52875 (10)0.0264 (3)
H20.1798050.3650610.4650640.032*
C30.16766 (17)0.38580 (8)0.60560 (10)0.0211 (3)
C40.02841 (18)0.38382 (11)0.58352 (12)0.0312 (3)
H4A0.0664330.3566740.6385910.047*
H4B0.0728550.3495110.5236590.047*
H4C0.0736460.4439870.5739240.047*
C50.5033 (2)0.36549 (12)0.44857 (11)0.0322 (3)
H5A0.5425580.4219330.4276310.048*
H5B0.4122680.3409440.3953980.048*
H5C0.6019900.3246550.4643610.048*
C60.37706 (16)0.21376 (9)0.78046 (9)0.0224 (3)
H60.2892060.2452420.8024910.027*
C70.37197 (19)0.12280 (10)0.78135 (10)0.0274 (3)
H70.2821690.0927120.8030980.033*
C80.5000000.07661 (13)0.7500000.0293 (4)
H80.5000020.0141450.7500000.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01327 (15)0.02129 (16)0.01593 (15)0.0000.00271 (10)0.000
O10.0223 (6)0.0235 (7)0.0260 (7)0.0000.0059 (5)0.000
O20.0176 (4)0.0282 (5)0.0176 (4)0.0010 (3)0.0040 (3)0.0010 (3)
O30.0142 (4)0.0279 (5)0.0207 (4)0.0012 (3)0.0021 (3)0.0002 (4)
N10.0155 (7)0.0221 (7)0.0198 (7)0.0000.0033 (5)0.000
C10.0230 (6)0.0206 (6)0.0185 (6)0.0018 (5)0.0037 (5)0.0021 (5)
C20.0206 (6)0.0354 (8)0.0203 (6)0.0013 (5)0.0014 (5)0.0029 (5)
C30.0170 (6)0.0195 (6)0.0249 (6)0.0011 (4)0.0004 (5)0.0001 (5)
C40.0163 (6)0.0408 (8)0.0333 (8)0.0005 (6)0.0004 (6)0.0075 (6)
C50.0312 (8)0.0463 (9)0.0195 (6)0.0008 (7)0.0069 (6)0.0013 (6)
C60.0170 (6)0.0276 (7)0.0227 (6)0.0019 (5)0.0047 (5)0.0003 (5)
C70.0286 (7)0.0284 (7)0.0244 (7)0.0090 (5)0.0043 (5)0.0005 (5)
C80.0403 (12)0.0217 (9)0.0228 (9)0.0000.0013 (8)0.000
Geometric parameters (Å, º) top
V1—O11.6024 (14)C2—H20.9500
V1—O21.9925 (9)C3—C41.5047 (18)
V1—O2i1.9925 (9)C4—H4A0.9800
V1—O3i2.0023 (9)C4—H4B0.9800
V1—O32.0023 (9)C4—H4C0.9800
V1—N12.3861 (16)C5—H5A0.9800
O2—C11.2710 (16)C5—H5B0.9800
O3—C31.2766 (16)C5—H5C0.9800
N1—C61.3402 (15)C6—C71.384 (2)
N1—C6i1.3402 (15)C6—H60.9500
C1—C21.3977 (19)C7—C81.3816 (18)
C1—C51.5025 (19)C7—H70.9500
C2—C31.392 (2)C8—H80.9500
O1—V1—O299.84 (3)C1—C2—H2117.4
O1—V1—O2i99.85 (3)O3—C3—C2125.19 (12)
O2—V1—O2i160.31 (6)O3—C3—C4115.80 (12)
O1—V1—O3i98.05 (3)C2—C3—C4119.01 (12)
O2—V1—O3i87.43 (4)C3—C4—H4A109.5
O2i—V1—O3i89.83 (4)C3—C4—H4B109.5
O1—V1—O398.05 (3)H4A—C4—H4B109.5
O2—V1—O389.83 (4)C3—C4—H4C109.5
O2i—V1—O387.42 (4)H4A—C4—H4C109.5
O3i—V1—O3163.90 (6)H4B—C4—H4C109.5
O1—V1—N1180.0C1—C5—H5A109.5
O2—V1—N180.16 (3)C1—C5—H5B109.5
O2i—V1—N180.15 (3)H5A—C5—H5B109.5
O3i—V1—N181.95 (3)C1—C5—H5C109.5
O3—V1—N181.95 (3)H5A—C5—H5C109.5
C1—O2—V1127.47 (9)H5B—C5—H5C109.5
C3—O3—V1126.95 (9)N1—C6—C7123.15 (13)
C6—N1—C6i117.39 (16)N1—C6—H6118.4
C6—N1—V1121.31 (8)C7—C6—H6118.4
C6i—N1—V1121.30 (8)C8—C7—C6118.72 (14)
O2—C1—C2125.19 (12)C8—C7—H7120.6
O2—C1—C5115.52 (12)C6—C7—H7120.6
C2—C1—C5119.28 (12)C7—C8—C7i118.87 (19)
C3—C2—C1125.12 (13)C7—C8—H8120.6
C3—C2—H2117.4C7i—C8—H8120.6
V1—O2—C1—C20.2 (2)C1—C2—C3—O31.8 (2)
V1—O2—C1—C5179.40 (9)C1—C2—C3—C4177.47 (13)
O2—C1—C2—C31.3 (2)C6i—N1—C6—C70.21 (9)
C5—C1—C2—C3179.11 (14)V1—N1—C6—C7179.79 (9)
V1—O3—C3—C25.89 (19)N1—C6—C7—C80.41 (18)
V1—O3—C3—C4173.40 (9)C6—C7—C8—C7i0.19 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1ii0.982.583.2589 (18)127
C7—H7···O1iii0.952.433.2487 (17)144
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1/2, y1/2, z.
Bis(acetylacetonato-κ2O,O')oxido(pyridine-4-carbonitrile-κN)vanadium(IV) (compound2) top
Crystal data top
[V(C5H7O2)2O(C6H4N2)]F(000) = 764
Mr = 369.26Dx = 1.496 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 9.1930 (9) ÅCell parameters from 7973 reflections
b = 13.5080 (9) Åθ = 2.7–28.1°
c = 13.3651 (9) ŵ = 0.63 mm1
β = 99.030 (3)°T = 120 K
V = 1639.1 (2) Å3Block, green
Z = 40.15 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII
diffractometer
2038 independent reflections
Radiation source: fine-focus sealed tube1832 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.032
combination of ω and φ–scansθmax = 28.3°, θmin = 2.7°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.927, Tmax = 0.980k = 1818
21763 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.6979P]
where P = (Fo2 + 2Fc2)/3
2038 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.5000000.89112 (2)0.7500000.01271 (10)
O10.5000001.00987 (10)0.7500000.0210 (3)
O20.60596 (10)0.86813 (7)0.63185 (7)0.0166 (2)
O30.31046 (10)0.86962 (7)0.65896 (7)0.0151 (2)
N10.5000000.71328 (11)0.7500000.0130 (3)
N20.5000000.31564 (14)0.7500000.0318 (4)
C10.54997 (15)0.87153 (9)0.53874 (10)0.0157 (3)
C20.39870 (16)0.87878 (10)0.50203 (10)0.0195 (3)
H20.3694780.8860230.4310150.023*
C30.28850 (15)0.87607 (9)0.56257 (10)0.0155 (3)
C40.65451 (16)0.86478 (11)0.46315 (11)0.0214 (3)
H4A0.6536740.7972280.4363280.032*
H4B0.7542270.8815060.4963400.032*
H4C0.6238370.9112080.4074920.032*
C50.12947 (16)0.88186 (11)0.51467 (11)0.0223 (3)
H5A0.1214090.8709640.4415160.033*
H5B0.0903050.9474150.5271560.033*
H5C0.0730290.8309930.5441140.033*
C60.37746 (14)0.66216 (10)0.75924 (9)0.0148 (3)
H60.2905480.6979480.7659240.018*
C70.37194 (14)0.55958 (10)0.75947 (10)0.0164 (3)
H70.2833030.5257260.7659170.020*
C80.5000000.50744 (14)0.7500000.0161 (4)
C90.5000000.40014 (15)0.7500000.0222 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01153 (15)0.01478 (16)0.01141 (15)0.0000.00052 (11)0.000
O10.0213 (7)0.0169 (7)0.0235 (7)0.0000.0005 (6)0.000
O20.0149 (4)0.0214 (5)0.0137 (4)0.0006 (3)0.0032 (4)0.0027 (3)
O30.0127 (4)0.0194 (5)0.0126 (4)0.0007 (3)0.0002 (3)0.0002 (3)
N10.0133 (7)0.0150 (7)0.0108 (7)0.0000.0026 (5)0.000
N20.0394 (11)0.0174 (9)0.0429 (12)0.0000.0196 (9)0.000
C10.0198 (6)0.0124 (6)0.0158 (6)0.0018 (5)0.0055 (5)0.0022 (4)
C20.0215 (7)0.0261 (7)0.0108 (6)0.0043 (5)0.0016 (5)0.0008 (5)
C30.0170 (6)0.0136 (6)0.0150 (6)0.0023 (4)0.0009 (5)0.0013 (5)
C40.0248 (7)0.0232 (7)0.0179 (7)0.0058 (5)0.0092 (6)0.0039 (5)
C50.0171 (6)0.0310 (8)0.0168 (7)0.0039 (5)0.0031 (5)0.0014 (6)
C60.0134 (6)0.0181 (6)0.0135 (6)0.0005 (5)0.0035 (5)0.0003 (5)
C70.0162 (6)0.0186 (6)0.0151 (6)0.0032 (5)0.0044 (5)0.0001 (5)
C80.0219 (9)0.0148 (9)0.0121 (8)0.0000.0042 (7)0.000
C90.0257 (10)0.0212 (10)0.0218 (10)0.0000.0107 (8)0.000
Geometric parameters (Å, º) top
V1—O11.6040 (14)C2—H20.9500
V1—O3i1.9838 (9)C3—C51.5031 (18)
V1—O31.9838 (9)C4—H4A0.9800
V1—O2i2.0055 (9)C4—H4B0.9800
V1—O22.0055 (9)C4—H4C0.9800
V1—N12.4022 (15)C5—H5A0.9800
O2—C11.2706 (17)C5—H5B0.9800
O3—C31.2752 (17)C5—H5C0.9800
N1—C61.3435 (15)C6—C71.3866 (19)
N1—C6i1.3435 (15)C6—H60.9500
N2—C91.141 (3)C7—C81.3946 (16)
C1—C21.4035 (19)C7—H70.9500
C1—C41.5024 (18)C8—C91.449 (3)
C2—C31.3928 (19)
O1—V1—O3i98.42 (3)O3—C3—C2125.06 (13)
O1—V1—O398.42 (3)O3—C3—C5115.03 (12)
O3i—V1—O3163.17 (6)C2—C3—C5119.91 (12)
O1—V1—O2i98.91 (3)C1—C4—H4A109.5
O3i—V1—O2i89.01 (4)C1—C4—H4B109.5
O3—V1—O2i88.39 (4)H4A—C4—H4B109.5
O1—V1—O298.91 (3)C1—C4—H4C109.5
O3i—V1—O288.39 (4)H4A—C4—H4C109.5
O3—V1—O289.01 (4)H4B—C4—H4C109.5
O2i—V1—O2162.19 (6)C3—C5—H5A109.5
O1—V1—N1180.0C3—C5—H5B109.5
O3i—V1—N181.58 (3)H5A—C5—H5B109.5
O3—V1—N181.58 (3)C3—C5—H5C109.5
O2i—V1—N181.09 (3)H5A—C5—H5C109.5
O2—V1—N181.09 (3)H5B—C5—H5C109.5
C1—O2—V1126.40 (9)N1—C6—C7123.05 (12)
C3—O3—V1126.45 (9)N1—C6—H6118.5
C6—N1—C6i118.13 (15)C7—C6—H6118.5
C6—N1—V1120.93 (8)C6—C7—C8118.22 (12)
C6i—N1—V1120.93 (8)C6—C7—H7120.9
O2—C1—C2124.87 (12)C8—C7—H7120.9
O2—C1—C4116.92 (12)C7i—C8—C7119.33 (17)
C2—C1—C4118.19 (12)C7i—C8—C9120.33 (8)
C3—C2—C1124.49 (13)C7—C8—C9120.33 (8)
C3—C2—H2117.8N2—C9—C8180.0
C1—C2—H2117.8
V1—O2—C1—C29.23 (18)C1—C2—C3—C5178.42 (13)
V1—O2—C1—C4172.30 (9)C6i—N1—C6—C70.12 (9)
O2—C1—C2—C34.8 (2)V1—N1—C6—C7179.88 (9)
C4—C1—C2—C3173.61 (13)N1—C6—C7—C80.22 (17)
V1—O3—C3—C214.38 (18)C6—C7—C8—C7i0.11 (8)
V1—O3—C3—C5165.06 (9)C6—C7—C8—C9179.89 (8)
C1—C2—C3—O32.2 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4C···O1ii0.982.473.4249 (16)164
C7—H7···O1iii0.952.593.4673 (14)154
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x1/2, y1/2, z.
Bis(acetylacetonato-κ2O,O')(4-methoxypyridine-κN)oxidovanadium(IV) (compound3) top
Crystal data top
[V(C5H7O2)2O(C6H7NO)]F(000) = 780
Mr = 374.28Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6619 (15) ÅCell parameters from 9171 reflections
b = 11.9922 (19) Åθ = 2.4–28.3°
c = 15.344 (2) ŵ = 0.59 mm1
β = 94.651 (2)°T = 120 K
V = 1772.0 (5) Å3Block, blue
Z = 40.32 × 0.19 × 0.11 mm
Data collection top
Bruker Kappa X8-APEXII
diffractometer
4413 independent reflections
Radiation source: fine-focus sealed tube3730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 2.2°
combination of ω and φ–scansh = 1212
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.862, Tmax = 0.983l = 2020
25688 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.1201P]
where P = (Fo2 + 2Fc2)/3
4413 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.46984 (2)0.46573 (2)0.27536 (2)0.01335 (7)
O10.53209 (11)0.36808 (9)0.21879 (7)0.0206 (2)
O20.52992 (10)0.59883 (9)0.20819 (6)0.0187 (2)
O30.63443 (10)0.49106 (8)0.36048 (7)0.0167 (2)
O40.37408 (11)0.59132 (8)0.35341 (7)0.0175 (2)
O50.28270 (11)0.46703 (8)0.20760 (6)0.0173 (2)
O60.26958 (12)0.12492 (9)0.54929 (7)0.0244 (2)
N10.39173 (13)0.35591 (10)0.37014 (8)0.0153 (2)
C10.63492 (16)0.66210 (12)0.22605 (10)0.0185 (3)
C20.73408 (16)0.64880 (13)0.29670 (10)0.0198 (3)
H20.8093490.6999610.3023430.024*
C30.72947 (15)0.56495 (12)0.35957 (9)0.0161 (3)
C40.84276 (16)0.55651 (13)0.43262 (10)0.0222 (3)
H4A0.8019100.5383710.4872920.033*
H4B0.8919150.6278840.4390420.033*
H4C0.9082010.4977670.4190940.033*
C50.6492 (2)0.75837 (15)0.16467 (12)0.0334 (4)
H5A0.6564430.7300500.1052960.050*
H5B0.7329600.8010130.1833350.050*
H5C0.5676320.8067960.1653620.050*
C60.24885 (15)0.62275 (12)0.35059 (9)0.0167 (3)
C70.14287 (16)0.58216 (14)0.29076 (10)0.0215 (3)
H70.0503170.6054040.2973960.026*
C80.16543 (16)0.51020 (13)0.22263 (10)0.0193 (3)
C90.21222 (17)0.71170 (13)0.41458 (10)0.0226 (3)
H9A0.2424060.6878970.4742060.034*
H9B0.1114970.7233720.4095650.034*
H9C0.2589890.7815070.4014520.034*
C100.04535 (18)0.47785 (17)0.15869 (12)0.0320 (4)
H10A0.0694070.4926880.0989570.048*
H10B0.0367550.5215530.1705400.048*
H10C0.0253550.3982750.1650350.048*
C110.28395 (15)0.28757 (12)0.34893 (9)0.0177 (3)
H110.2382560.2936820.2919340.021*
C120.23542 (15)0.20886 (12)0.40496 (10)0.0184 (3)
H120.1579140.1631430.3872020.022*
C130.30337 (15)0.19861 (12)0.48803 (9)0.0171 (3)
C140.41468 (15)0.26970 (12)0.51178 (9)0.0178 (3)
H140.4622360.2652160.5683360.021*
C150.45407 (15)0.34604 (12)0.45204 (9)0.0174 (3)
H150.5291310.3946130.4690250.021*
C160.15152 (19)0.05480 (15)0.52768 (11)0.0289 (4)
H16A0.0692470.1012270.5136760.043*
H16B0.1360440.0066900.5775950.043*
H16C0.1686040.0085560.4769930.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01255 (12)0.01250 (12)0.01468 (12)0.00034 (9)0.00089 (8)0.00034 (8)
O10.0192 (5)0.0202 (5)0.0224 (5)0.0020 (4)0.0010 (4)0.0016 (4)
O20.0180 (5)0.0185 (5)0.0191 (5)0.0031 (4)0.0018 (4)0.0043 (4)
O30.0132 (5)0.0166 (5)0.0196 (5)0.0025 (4)0.0022 (4)0.0028 (4)
O40.0155 (5)0.0173 (5)0.0190 (5)0.0005 (4)0.0022 (4)0.0022 (4)
O50.0162 (5)0.0176 (5)0.0173 (5)0.0002 (4)0.0031 (4)0.0015 (4)
O60.0245 (6)0.0265 (6)0.0216 (5)0.0115 (5)0.0014 (4)0.0063 (4)
N10.0151 (6)0.0142 (5)0.0163 (6)0.0009 (5)0.0007 (4)0.0001 (4)
C10.0189 (7)0.0172 (7)0.0199 (7)0.0017 (6)0.0035 (6)0.0020 (5)
C20.0164 (7)0.0199 (7)0.0230 (7)0.0051 (6)0.0019 (6)0.0003 (6)
C30.0132 (6)0.0170 (6)0.0182 (7)0.0004 (5)0.0013 (5)0.0024 (5)
C40.0160 (7)0.0246 (8)0.0250 (8)0.0026 (6)0.0047 (6)0.0006 (6)
C50.0366 (10)0.0311 (9)0.0315 (9)0.0130 (8)0.0041 (7)0.0151 (7)
C60.0172 (7)0.0167 (7)0.0162 (6)0.0002 (5)0.0022 (5)0.0026 (5)
C70.0129 (7)0.0282 (8)0.0233 (7)0.0017 (6)0.0003 (6)0.0023 (6)
C80.0147 (7)0.0217 (7)0.0207 (7)0.0014 (6)0.0029 (5)0.0015 (6)
C90.0224 (8)0.0238 (8)0.0218 (7)0.0028 (6)0.0029 (6)0.0042 (6)
C100.0188 (8)0.0435 (11)0.0320 (9)0.0003 (7)0.0087 (7)0.0111 (8)
C110.0186 (7)0.0173 (7)0.0165 (7)0.0031 (6)0.0035 (5)0.0013 (5)
C120.0169 (7)0.0176 (7)0.0201 (7)0.0046 (6)0.0011 (5)0.0022 (5)
C130.0174 (7)0.0162 (6)0.0178 (7)0.0015 (5)0.0025 (5)0.0007 (5)
C140.0166 (7)0.0202 (7)0.0160 (6)0.0022 (6)0.0020 (5)0.0003 (5)
C150.0159 (7)0.0180 (7)0.0176 (7)0.0035 (6)0.0023 (5)0.0013 (5)
C160.0308 (9)0.0289 (9)0.0271 (8)0.0160 (7)0.0030 (7)0.0037 (7)
Geometric parameters (Å, º) top
V1—O11.6035 (11)C5—H5C0.9800
V1—O31.9975 (10)C6—C71.406 (2)
V1—O22.0110 (11)C6—C91.511 (2)
V1—O52.0115 (10)C7—C81.386 (2)
V1—N12.1440 (12)C7—H70.9500
V1—O42.1767 (11)C8—C101.508 (2)
O2—C11.2786 (18)C9—H9A0.9800
O3—C31.2770 (17)C9—H9B0.9800
O4—C61.2647 (18)C9—H9C0.9800
O5—C81.2835 (18)C10—H10A0.9800
O6—C131.3494 (17)C10—H10B0.9800
O6—C161.4342 (19)C10—H10C0.9800
N1—C111.3442 (18)C11—C121.384 (2)
N1—C151.3541 (18)C11—H110.9500
C1—C21.396 (2)C12—C131.391 (2)
C1—C51.503 (2)C12—H120.9500
C2—C31.397 (2)C13—C141.397 (2)
C2—H20.9500C14—C151.371 (2)
C3—C41.505 (2)C14—H140.9500
C4—H4A0.9800C15—H150.9500
C4—H4B0.9800C16—H16A0.9800
C4—H4C0.9800C16—H16B0.9800
C5—H5A0.9800C16—H16C0.9800
C5—H5B0.9800
O1—V1—O398.71 (5)H5B—C5—H5C109.5
O1—V1—O299.54 (5)O4—C6—C7124.29 (14)
O3—V1—O288.10 (4)O4—C6—C9117.52 (13)
O1—V1—O594.97 (5)C7—C6—C9118.18 (13)
O3—V1—O5166.27 (4)C8—C7—C6123.87 (14)
O2—V1—O590.78 (4)C8—C7—H7118.1
O1—V1—N194.97 (5)C6—C7—H7118.1
O3—V1—N187.44 (4)O5—C8—C7125.57 (13)
O2—V1—N1165.31 (5)O5—C8—C10115.03 (14)
O5—V1—N190.24 (5)C7—C8—C10119.40 (14)
O1—V1—O4176.32 (5)C6—C9—H9A109.5
O3—V1—O483.48 (4)C6—C9—H9B109.5
O2—V1—O483.45 (4)H9A—C9—H9B109.5
O5—V1—O482.80 (4)C6—C9—H9C109.5
N1—V1—O482.13 (4)H9A—C9—H9C109.5
C1—O2—V1128.18 (9)H9B—C9—H9C109.5
C3—O3—V1129.31 (9)C8—C10—H10A109.5
C6—O4—V1129.46 (9)C8—C10—H10B109.5
C8—O5—V1132.83 (9)H10A—C10—H10B109.5
C13—O6—C16117.11 (12)C8—C10—H10C109.5
C11—N1—C15116.68 (12)H10A—C10—H10C109.5
C11—N1—V1121.24 (10)H10B—C10—H10C109.5
C15—N1—V1121.92 (10)N1—C11—C12124.07 (13)
O2—C1—C2125.53 (13)N1—C11—H11118.0
O2—C1—C5115.67 (13)C12—C11—H11118.0
C2—C1—C5118.80 (14)C11—C12—C13118.10 (13)
C1—C2—C3124.06 (14)C11—C12—H12121.0
C1—C2—H2118.0C13—C12—H12121.0
C3—C2—H2118.0O6—C13—C12124.98 (13)
O3—C3—C2124.77 (13)O6—C13—C14116.26 (13)
O3—C3—C4115.17 (13)C12—C13—C14118.76 (13)
C2—C3—C4120.05 (13)C15—C14—C13118.85 (13)
C3—C4—H4A109.5C15—C14—H14120.6
C3—C4—H4B109.5C13—C14—H14120.6
H4A—C4—H4B109.5N1—C15—C14123.52 (13)
C3—C4—H4C109.5N1—C15—H15118.2
H4A—C4—H4C109.5C14—C15—H15118.2
H4B—C4—H4C109.5O6—C16—H16A109.5
C1—C5—H5A109.5O6—C16—H16B109.5
C1—C5—H5B109.5H16A—C16—H16B109.5
H5A—C5—H5B109.5O6—C16—H16C109.5
C1—C5—H5C109.5H16A—C16—H16C109.5
H5A—C5—H5C109.5H16B—C16—H16C109.5
V1—O2—C1—C22.0 (2)C6—C7—C8—O53.7 (3)
V1—O2—C1—C5177.67 (11)C6—C7—C8—C10175.99 (16)
O2—C1—C2—C31.8 (3)C15—N1—C11—C120.6 (2)
C5—C1—C2—C3177.87 (15)V1—N1—C11—C12174.86 (11)
V1—O3—C3—C22.2 (2)N1—C11—C12—C130.9 (2)
V1—O3—C3—C4177.27 (10)C16—O6—C13—C122.3 (2)
C1—C2—C3—O30.4 (2)C16—O6—C13—C14177.13 (14)
C1—C2—C3—C4179.04 (14)C11—C12—C13—O6179.03 (14)
V1—O4—C6—C72.3 (2)C11—C12—C13—C141.6 (2)
V1—O4—C6—C9179.17 (9)O6—C13—C14—C15179.74 (13)
O4—C6—C7—C86.1 (3)C12—C13—C14—C150.8 (2)
C9—C6—C7—C8172.47 (15)C11—N1—C15—C141.4 (2)
V1—O5—C8—C78.0 (2)V1—N1—C15—C14173.97 (11)
V1—O5—C8—C10172.33 (11)C13—C14—C15—N10.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.573.488 (2)163
C12—H12···O2ii0.952.373.2567 (18)156
C14—H14···O4iii0.952.573.2462 (18)129
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

JR gratefully acknowledges Elizabethtown College and the Department of Chemistry and Biochemistry for funding and support.

Funding information

We also acknowledge the National Science Foundation (grant No. CHE-0958425) for instrument support.

References

First citationAbakumova, O. Y., Podobed, O. V., Belayeva, N. F. & Tochilkin, A. I. (2012). Biochem. Moscow Suppl. Ser. B, 6, 164–170.  CrossRef Google Scholar
First citationAmin, S. S., Cryer, K., Zhang, B., Dutta, S. K., Eaton, S. S., Anderson, O. P., Miller, S. M., Reul, B. A., Brichard, S. M. & Crans, D. C. (2000). Inorg. Chem. 39, 406–416.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2015). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, WI, USA.  Google Scholar
First citationCaira, M. R., Haigh, J. M. & Nassimbeni, L. R. (1972). Inorg. Nucl. Chem. Lett. 8, 109–112.  CSD CrossRef CAS Web of Science Google Scholar
First citationCorreia, I., Chorna, I., Cavaco, I., Roy, S., Kuznetsov, M. L., Ribeiro, N., Justino, G., Marques, F., Santos-Silva, T., Santos, M. F. A., Santos, H. M., Capelo, J. L., Doutch, J. & Pessoa, J. C. (2017). Chem. Asian J. 12, 2062–2084.  CrossRef CAS PubMed Google Scholar
First citationCosta Pessoa, J. (2015). J. Inorg. Biochem. 147, 4–24.  CrossRef CAS PubMed Google Scholar
First citationHiromura, M., Nakayama, A., Adachi, Y., Doi, M. & Sakurai, H. (2007). J. Biol. Inorg. Chem. 12, 1275–1287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKadirova, Z. C., Rahmonova, D. S., Talipov, S. A., Ashurov, J. M. & Parpiev, N. A. (2009). Acta Cryst. E65, m819.  CSD CrossRef IUCr Journals Google Scholar
First citationKostova, I. (2009). Anticancer Agents Med. Chem. 9, 827–842.  CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakinen, M. W. & Brady, M. J. (2002). J. Biol. Chem. 277, 12215–12220.  CrossRef PubMed CAS Google Scholar
First citationMeicheng, S., Lifeng, W. & Youqi, T. (1984). Kexue Tongbao (Chin. Sci. Bull.) 29, 759–764.  Google Scholar
First citationMeicheng, S., Lifeng, W. & Zeying, Z. (1983). Huaxue Xuebao (Acta Chim. Sinica) 41, 985–992.  Google Scholar
First citationNenashev, R., Mordvinova, N., Zlomanov, V. & Kuznetsov, V. (2015). Inorg. Mater. 51, 891–896.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, T. F. S., Leod, T. C. O. M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Schiavon, M. A. & Pombeiro, A. J. L. (2013). J. Mol. Catal. A Chem. 367, 52–60.  CSD CrossRef CAS Google Scholar
First citationSilva, R. M. S. da, Spiazzi, C. C., Bortolotto, R. & Burrow, R. A. (2007). Acta Cryst. E63, m2422.  CSD CrossRef IUCr Journals Google Scholar
First citationSingh, R., Neerupama, G. K., Sharma, P. & Sachar, R. (2014). Chem. Sci. Trans. 3, 1099–1109.  Google Scholar
First citationSrivastava, A. K. & Mehdi, M. Z. (2005). Diabet. Med. 22, 2–13.  CrossRef PubMed CAS Google Scholar
First citationUgone, V., Sanna, D., Sciortino, G., Maréchal, J.-D. & Garribba, E. (2019). Inorg. Chem. 58, 8064–8078.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds