research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-O-Mono­alkyl isosorbide ethers with C8, C10, C12 and C14 chain lengths

CROSSMARK_Color_square_no_text.svg

aUniversität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
*Correspondence e-mail: felix.geburtig@chemie.uni-hamburg.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 7 May 2020; accepted 18 May 2020; online 29 May 2020)

The title compounds, 6-(octyloxy)hexa­hydro­furo[3,2-b]furan-3-ol, C14H26O4, 6-(decyl­oxy)hexa­hydro­furo[3,2-b]furan-3-ol, C16H30O4, 6-(do­decyl­oxy)hexa­hydro­furo[3,2-b]furan-3-ol, C18H34O4, and 6-(tetra­decyl­oxy)hexa­hydro­furo[3,2-b]furan-3-ol, C20H38O4, consist of a polar headgroup (isosorbide) and a lipophilic alkyl chain linked via an ether bridge. Isosorbide is a biobased diol, containing two fused furan rings. One inter­molecular hydrogen bond connects the mol­ecules between the free endo hy­droxy group and the opposing ether oxygen of the V-shaped head group. Thus the mol­ecule layers inter­lock like in a herringbone pattern parallel to the bc plane.

1. Chemical context

We are inter­ested in the synthesis and characterization of amphiphiles and liquid crystals based on renewable resources with a special focus on glycolipid structures. The mol­ecules of the reported crystal structures are precursor compounds to possible liquid crystals, which may already present some liquid crystal properties. The exact geometric shape of the mol­ecule under consideration is decisive for the explanation of observed desired liquid crystal properties. (Vill et al., 1988[Vill, V., Fischer, F. & Thiem, J. (1988). Z. Naturforsch. Teil A, 42, 1119-1125.]; Vill et al., 1989[Vill, V., Fischer, F. & Thiem, J. (1989). Z. Naturforsch. Teil A, 43, 675-679.]; Etzbach et al., 1995[Etzbach, K.-H., Delavier, P., Siemensmeyer, K., Wagenblast, G., Laupichler, L. & Vill, V. (1995). DE Patent 4342280.]). These reported precursors and their corresponding endo-isomers (5-O-alkyl­isosorbide) were also examined for thermotropic and lyotropic liquid crystal properties. In contrast to the exo-isomers presented here, the endo-isomers are colorless fluids at standard conditions for temperature and pressure. The exo-isomers crystallize in colorless needles at given conditions.

[Scheme 1]

2. Structural commentary

The Flack parameters and associated e.s.d. values in the title compounds are −0.7 (5) (3a), −0.18 (13) (3b), 1.6 (9) (3c) and −1.1 (10) (3d). None of the esd values meets the criterion for enanti­opure-sufficient inversion-distinguishing power (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), which is expected given that compounds 3a, 3b and 3d were measured using Mo radiation and Friedif values are in the range of 6 to 7 (Mo) and 33 to 35 (Cu), respectively (Flack et al., 2007[Flack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257-265.]; Flack, 2008[Flack, H. D. (2008). Acta Chim. Slov. 55, 689-691.]). Absolute configurations were thus established from unchanging chiral centers of enanti­opure starting materials (_chemical_absolute_configuration syn). The Flack parameter of the reported compounds is essentially inconclusive. Nevertheless, the structure analysis confirms the formation of compound 3ad. Fig. 1[link] shows compound 3d with a chain length of C14. The other compounds with chain lengths of C8, C10 and C12 have a strong structural similarity and are not shown explicitly. Geometric parameters are given in Table 1[link].

Table 1
Selected geometry parameters and inter­molecular torsion angles (Å, °)

Compound 3a Iso-C8 3b Iso-C10 3c Iso-C12 3d Iso-C14
C2—C3—O3 111.02 (18) 111.40 (19) 110.8 (3) 111.3 (3)
O1—C4—C5 110.78 (18) 111.05 (19) 110.8 (3) 110.5 (3)
O2—C2 1.422 (3) 1.422 (3) 1.424 (5) 1.430 (4)
Torsion angle O2—C2⋯C2—O2i 52.375 53.870 53.646 54.854
Symmetry code: (i) −x, y + [{1\over 2}], −z −  for 3a and −x, y − [{1\over 2}], −z + 1 for 3b, 3c and 3d.
[Figure 1]
Figure 1
Molecular structure of the title compound 3d with chain length C14 in the crystal. Ellipsoids represent 50% probability levels.

3. Supra­molecular features

Van der Waals forces cause the mol­ecules to stack in layers. A classical inter­molecular hydrogen bond is observed (Table 2[link], Fig. 2[link]) between the polar headgroups of two neighboring layers. Because each polar headgroup functions as hydrogen-bond acceptor and donor, the hydrogen bond reinforces the connection between the layers and strengthens the coherence within the layer, inter­locking the mol­ecules into a herringbone pattern parallel to the bc plane. The inter­molecular torsion angle O2—C2⋯C2—O2i (Table 1[link]) is between 52 and 55°. This intermolecular torsion angle directly corresponds to the opening angle of the herringbone pattern (Figs. 3[link] and 4[link]).

Table 2
Hydrogen-bond geometry (Å,°)

Compound 3a Iso-C8 3b Iso-C10 3c Iso-C12 3d Iso-C14
O4—H4 0.88 (3) 0.89 (4) 0.90 (7) 0.83 (4)
H4⋯O1i 2.00 (3) 1.97 (5) 1.96 (7) 2.03 (4)
O4⋯O1i 2.827 (2) 2.823 (3) 2.830 (4) 2.834 (4)
O4—H4⋯O1i 155 (3) 160 (4) 162 (5) 161 (4)
Symmetry code: (i) −x, y + [{1\over 2}], −z −  for 3a and −x, y − [{1\over 2}], −z + 1 for 3b, 3c and 3d.
[Figure 2]
Figure 2
Crystal structure of the title compound 3d with chain length C14 in the crystal. Ellipsoids represent 50% probability levels.
[Figure 3]
Figure 3
Packing diagram of 3d projected parallel to the ac plane. Dashed lines indicate the inter­molecular hydrogen bonds. Hydrogen atoms not involved in the hydrogen-bonding system are omitted.
[Figure 4]
Figure 4
Detail of the packing diagram of 3a with the inter­molecular torsion angle highlighted in green. The inter­molecular torsion angle corresponds to the opening angle of the herringbone pattern. Ellipsoids represent 50% probability levels.

Regarding the angle of the inter­molecular hydrogen bond O4—H4⋯O1i, it can be seen that the angle varies slightly with the chain length of the non-polar chain between 155 and 162°; the distance between the donor and acceptor of the hydrogen bond also stays roughly the same: 2.823–2.834 Å (Table 2[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for isosorbide derivates gave only seven hits, whereby only three hits were mono-substituted: NOZVUW (Sagawa et al., 2019[Sagawa, T., Kobayashi, H., Murata, C., Shichibu, Y., Konishi, K. & Fukuoka, A. (2019). ACS Sustainable Chem. Eng. 7, 14883-14888.]) is the 2-acetamide-2-de­oxy­isosorbide, PIMKOO (Kanters et al., 1993[Kanters, J. A., Schouten, A., Sterk, G. J. & de Jong, M. H. (1993). J. Mol. Struct. 298, 113-120.]) is the isosorbide-2-mononitrate and TUQGET (Santschi et al., 2015[Santschi, N., Wagner, S., Daniliuc, C., Hermann, S., Schäfers, M. & Gilmour, R. (2015). ChemMedChem, 10, 1724-1732.]) the isosorbide-5-mononitrate. Therefore, none of them represent mono-alkyl ethers. PIMKOL (Kanters et al., 1993[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) is the isosorbide dinitrate of the corresponding isosorbide-2-mononitrate whereas WECBUE (Wu et al., 2017[Wu, J., Thiyagarajan, S., Guerra, C. F., Eduard, P., Lutz, M., Noordover, B. A. J., Koning, C. E., van Es, D. S. (2017). ChemSusChem, 10, 3202-3211.]) is the di­nitrile. MOVFUY (Harata & Kawano, 2002[Harata, K. & Kawano, K. (2002). Carbohydr. Res. 337, 537-547.]) is a bis­(α-cyclo­dextrin) clathrate of isosorbide dinitrate and TECRIC (Hušák et al., 1996[Hušák, M., Kratochvíl, B., Jegorov, A., Mat'ha, V., Stuchlík, M. & Andrýsek, T. (1996). Z. Kristallogr. 211, 313-318.]) is a cyclo­sporine di­methyl­isosorbide solvate. Only the latter is an alkyl ether, but disubstituted. Regarding the angle C2—C3—O3 constituted by the annulated tetra­hydro­furan rings, it is noticeable that the angles of the reported compounds here are larger than those of the mono- and dinitrates whereas the angle O1—C4—C5 is smaller. The cyclo­sporine di­methyl­isosorbide solvate has a larger angle for O1—C4—C5 whereas the angle for C2—C3—O3 is smaller in comparison to compounds presented here. The di­nitrile isosorbide shows a comparable angle for the angle O1—C4—C5, but the C2—C3—O3 angle is larger in that compound compared to the mono-alkyl ethers. The same applies to the isosorbide dinitrate clathrate. The 2-acetamide-2-de­oxy­isosorbide shows angles that are comparable to the mono-alkyl ethers reported here.

5. Synthesis and crystallization

Isosorbide 1 (30 mmol) and potassium hydroxide (30 mmol) were dissolved under stirring in 15 mL dimethyl sulfoxide at 400 K. Bromo alkane 2 (20 mmol) was added slowly. The solution was kept at 400 K under stirring for 24h. The solution was cooled to room temperature and acidified to pH = 1 with 37% hydro­chloric acid. Triple extraction with 50 mL of ethyl acetate and drying the collected organic phases over magnesium sulfate gave a golden-yellow raw product after removal of the solvent under reduced pressure. The raw product was separated and purified by column chromatography (solvent: petroleum ether 50–70/ethyl acetate 1:1). Evaporation of the solvent under reduced pressure afforded compound 3 as colorless crystals and compound 4 as colorless syrup-like fluids in a combined yield of 30 to 50% (Zhu et al., 2008[Zhu, Y., Durand, M., Molinier, V. & Aubry, J.-M. (2008). Green Chem. 10, 532-540.]).

2-O-Octylisosorbide

Rf = 0.38.

ESI–MS: m/z = 259.26 (M + H)+, 296.08 (M + K)+.

1H NMR (400 MHz, chloro­form-d) δ (ppm) = 4.60 (t, J = 5.0 Hz, 1H, H4), 4.45 (d, J = 4.5 Hz, 1H, H3), 4.27 (dq, J = 7.2 Hz, 5.7 Hz, 1H, H5), 4.06–3.95 (m, 2H, H2, H1a), 3.91–3.81 (m, 2H, H6, H1b), 3.57 (dd, J = 9.5 Hz, 5.7 Hz, 1H, H6b), 3.48 (td, J = 6.7Hz, 2.0 Hz, 2H, H7), 2.64 (d, J = 7.1 Hz, 1H, OH), 1.56 (d, J = 11.0 Hz, 2H, H8), 1.35–1.23 (m, 10H, H9–H13), 0.88 (t, J = 6.7 Hz, 3H, H14).

13C NMR (101 MHz, chloro­form-d) δ (ppm) = 86.1 (C3), 84.3 (C1), 81.9 (C4), 73.8 (C6), 73.7 (C2), 72.4 (C5), 70.1 (C7), 32.0 (C10), 29.9 (C8), 29.5 (C9), 29.4 (C11), 26.2 (C12), 22.8 (C13), 14.2 (C14).

2-O-Decyl­isosorbide

Rf = 0.41.

ESI–MS: m/z = 287.22 (M + H)+, 309.21 (M + Na)+.

1H NMR (400 MHz, chloro­form-d) δ (ppm) = 4.61 (t, J = 5.0 Hz, 1H, H4), 4.45 (d, J = 4.6 Hz, 1H, H3), 4.27 (m, 1H, H5), 4.06–3.96 (m, 2H, H2, H1a), 3.88 (dd, J = 9.9 Hz, 3.7 Hz, 1H, H1b), 3.85 (dd, J = 10.0Hz, 6.3 Hz, 1H, H6a), 3.57 (dd, J = 9.4 Hz, 5.7 Hz, 1H, H6b), 3.48 (td, J = 6.6 Hz, 2.0 Hz, 2H, H7), 2.64 (d, J = 7.1 Hz, 1H, OH), 1.58–1.52 (m, 2H, H8), 1.35–1.17 (m, 14H, H9–H15), 0.88 (t, J = 6.7Hz, 3H, H16).

13C NMR (101 MHz, chloro­form-d) δ (ppm) = 86.1 (C3), 84.2 (C1), 81.8 (C4), 73.8 (C6), 73.6 (C2), 72.4 (C5), 70.1 (C7), 32.0–22.8 (C8–C15), 14.3 (C16).

2-O-Do­decyl­isosorbide

Rf = 0.56.

ESI–MS: m/z = 315.25 (M + H)+, 337.24 (M + Na)+.

m.p. = 327.2–328.7 K.

1H NMR (400 MHz, chloro­form–d) δ (ppm) = 4.60 (t, J = 5.0 Hz, 1H, H4), 4.44 (d, J = 4.5 Hz, 1H, H3), 4.27 (m, 1H, H5), 4.04–3.93 (m, 2H, H2, H1a), 3.87 (dd, J = 10.0, 3.6 Hz, 1H, H1b), 3.84 (dd, J = 9.9 Hz, 6.3 Hz, 1H, H6a), 3.56 (dd, J = 9.4 Hz, 5.7 Hz, 1H, H6b), 3.47 (td, J = 6.7 Hz, 2.0 Hz, 2H, H7), 2.67 (d, J = 7.0 Hz, 1H, OH), 1.61–1.49 (m, 2H, H8), 1.25 (s, 18H, H9–H17), 0.87 (t, J = 6.7 Hz, 3H, H18).

13C NMR (101 MHz, chloro­form-d) δ (ppm) = 86.1 (C3), 84.2 (C1), 81.8 (C4), 73.7 (C6), 73.6 (C2), 72.4 (C5), 70.1 (C7), 32.1–22.8 (C8–C17), 14.3 (C18).

2-O-Tetra­decyl­isosorbide

Rf = 0.69.

ESI–MS: m/z = 343.28 (M + Na)+, 365.27 (M + Na)+.

1H NMR (400 MHz, chloro­form–d) δ (ppm) = 4.60 (t, J = 4.9 Hz, 1H, H4), 4.45 (d, J = 4.5 Hz, 1H, H3), 4.27 (dq, J = 7.2 Hz, 5.7 Hz, 1H, H5), 4.04–3.97 (m, 2H, H2, H1a), 3.89 (dd, J = 9.9 Hz, 3.9 Hz, 1H, H1b), 3.85 (dd, J = 9.5Hz, 5.9 Hz, 1H, H6a), 3.57 (dd, J = 9.4 Hz, 5.6 Hz, 1H, H6b), 3.48 (td, J = 6.7 Hz, 3.0 Hz, 2H, H7), 2.65 (d, J = 7.1 Hz, 1H, OH), 1.58–1.52 (m, 2H, H8), 1.35–1.17 (m, 14H, H9–H19), 0.88 (t, J = 6.9 Hz, 3H, H20).

13C NMR (101MHz, chloro­form-d) δ (ppm) = 86.1 (C3), 84.2 (C1), 81.8 (C4), 73.7 (C6), 73.6 (C2), 72.4 (C5), 70.1 (C7), 32.1–22.8 (C8–C19), 14.3 (C20).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Methyl groups were refined as idealized rigid groups allowed to rotate but not tip (C—H = 0.98 Å and H—C—H = 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions (methyl­ene C—H = 0.98 and methine C—H = 1.00 Å). The Uiso(H) values were fixed at 1.5 (for the methyl H and hy­droxy H) or 1.2 times the equivalent Uiso value of the parent carbon atoms and oxygen atom, respectively.

Table 3
Experimental details

  Iso-C8 Iso-C10 Iso-C12 Iso-C14
Crystal data
Chemical formula C14H26O4 C16H30O4 C18H34O4 C20H38O4
Mr 258.35 286.40 314.45 342.50
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21 Monoclinic, P21
Temperature (K) 100 100 100 100
a, b, c (Å) 7.0008 (13), 5.5112 (10), 18.544 (3) 6.9892 (2), 5.4888 (2), 20.8041 (6) 7.0250 (5), 5.4674 (5), 23.377 (2) 7.040 (6), 5.438 (5), 25.56 (2)
β (°) 100.155 (4) 91.302 (3) 97.051 (9) 91.914 (9)
V3) 704.3 (2) 797.89 (4) 891.08 (14) 978.2 (14)
Z 2 2 2 2
Radiation type Mo Kα Cu Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.67 0.08 0.08
Crystal size (mm) 0.29 × 0.15 × 0.05 0.44 × 0.16 × 0.08 0.37 × 0.08 × 0.03 0.3 × 0.1 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD Rigaku Oxford Diffraction SuperNova, Dual, Atlas Rigaku Oxford Diffraction SuperNova, Dual, Atlas Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2016[Bruker (2016). BlS and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Numerical (SADABS; Bruker, 2016[Bruker (2016). BlS and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.604, 0.746 0.590, 1.000 0.534, 1.000 0.543, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16451, 3491, 3128 17428, 3268, 3028 20988, 4546, 3638 12041, 4278, 2949
Rint 0.048 0.048 0.089 0.069
(sin θ/λ)max−1) 0.668 0.632 0.692 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.10 0.042, 0.118, 1.07 0.082, 0.202, 1.10 0.055, 0.140, 1.04
No. of reflections 3491 3268 4546 4278
No. of parameters 167 185 203 221
No. of restraints 1 1 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.22 0.28, −0.21 0.50, −0.38 0.22, −0.24
Absolute structure Flack x determined using 1274 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1249 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1143 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 980 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.7 (5) −0.18 (13) −0.6 (9) −1.2 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), BlS (Bruker, 2016[Bruker (2016). BlS and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2019[Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 and SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: BlS (Bruker, 2016) for iso-c8, iso-c14; CrysAlis PRO (Rigaku OD, 2020) for iso-c10, iso-c12. Cell refinement: SAINT (Bruker, 2019) for iso-c8, iso-c14; CrysAlis PRO (Rigaku OD, 2020) for iso-c10, iso-c12. Data reduction: SAINT (Bruker, 2019) for iso-c8, iso-c14; CrysAlis PRO (Rigaku OD, 2020) for iso-c10, iso-c12. Program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a) for iso-c8, iso-c14; SHELXT2018/2 (Sheldrick, 2015a) for iso-c10, iso-c12. For all structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

6-(Octyloxy)hexahydrofuro[3,2-b]furan-3-ol (iso-c8) top
Crystal data top
C14H26O4F(000) = 284
Mr = 258.35Dx = 1.218 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.0008 (13) ÅCell parameters from 5399 reflections
b = 5.5112 (10) Åθ = 3.0–27.7°
c = 18.544 (3) ŵ = 0.09 mm1
β = 100.155 (4)°T = 100 K
V = 704.3 (2) Å3Plate, colourless
Z = 20.29 × 0.14 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3128 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.048
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Bruker, 2016)
h = 99
Tmin = 0.604, Tmax = 0.746k = 77
16451 measured reflectionsl = 2424
3491 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.0928P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.29 e Å3
3491 reflectionsΔρmin = 0.22 e Å3
167 parametersAbsolute structure: Flack x determined using 1274 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.7 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.3146 (2)1.1240 (3)0.46449 (9)0.0206 (4)
H40.204 (4)1.202 (6)0.4671 (15)0.031*
O30.2626 (2)1.1015 (3)0.66173 (9)0.0223 (4)
C60.3112 (3)1.2324 (5)0.59462 (13)0.0202 (5)
H6A0.2115341.3562610.5902000.024*
H6B0.4387541.3133620.5912090.024*
C50.3178 (3)1.0391 (4)0.53597 (12)0.0175 (5)
H50.4398860.9436000.5345710.021*
C40.1475 (3)0.8769 (4)0.56869 (12)0.0162 (4)
H4A0.1671510.7055880.5511890.019*
O10.0336 (2)0.9757 (3)0.55443 (8)0.0173 (3)
C10.1401 (3)1.0801 (4)0.62113 (12)0.0184 (5)
H1A0.1126531.2558420.6235370.022*
H1B0.2814441.0573190.6238380.022*
C20.0702 (3)0.9457 (4)0.68292 (12)0.0178 (5)
H20.0833661.0474200.7281870.021*
C30.1426 (3)0.8969 (4)0.65068 (12)0.0172 (4)
H30.1897430.7443990.6709460.021*
O20.1583 (2)0.7144 (3)0.69783 (9)0.0196 (4)
C70.3524 (3)0.7307 (5)0.73806 (13)0.0224 (5)
H7A0.3551690.8375690.7811340.027*
H7B0.4387040.8012470.7066500.027*
C80.4223 (3)0.4806 (5)0.76282 (13)0.0207 (5)
H8A0.4210570.3755830.7194260.025*
H8B0.3328550.4091700.7928370.025*
C90.6279 (3)0.4879 (5)0.80782 (13)0.0217 (5)
H9A0.7164910.5593540.7774330.026*
H9B0.6284850.5954070.8506280.026*
C100.7051 (3)0.2392 (5)0.83484 (12)0.0197 (5)
H10A0.6259670.1755940.8699140.024*
H10B0.6912870.1260990.7927670.024*
C110.9172 (3)0.2475 (5)0.87199 (13)0.0207 (5)
H11A0.9941960.3238530.8381520.025*
H11B0.9287970.3514710.9160940.025*
C121.0032 (3)0.0002 (4)0.89449 (13)0.0205 (5)
H12A0.9970270.1022420.8502060.025*
H12B0.9236410.0795220.9268770.025*
C131.2132 (3)0.0131 (5)0.93423 (13)0.0234 (5)
H13A1.2907020.1027210.9031870.028*
H13B1.2178350.1060710.9801900.028*
C141.3052 (4)0.2343 (5)0.95257 (15)0.0286 (6)
H14A1.3066950.3249550.9072090.043*
H14B1.2298300.3241640.9835270.043*
H14C1.4384970.2131840.9787930.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0132 (7)0.0254 (9)0.0228 (8)0.0035 (7)0.0025 (6)0.0041 (7)
O30.0213 (8)0.0237 (9)0.0231 (9)0.0053 (7)0.0074 (6)0.0009 (7)
C60.0159 (10)0.0189 (11)0.0264 (12)0.0016 (9)0.0056 (8)0.0013 (10)
C50.0129 (9)0.0176 (11)0.0223 (11)0.0009 (8)0.0040 (8)0.0014 (9)
C40.0142 (10)0.0113 (9)0.0237 (11)0.0013 (8)0.0053 (8)0.0014 (8)
O10.0127 (7)0.0192 (8)0.0208 (8)0.0004 (6)0.0052 (6)0.0002 (6)
C10.0154 (10)0.0162 (10)0.0234 (11)0.0010 (8)0.0030 (8)0.0009 (9)
C20.0169 (10)0.0164 (11)0.0198 (11)0.0006 (8)0.0026 (8)0.0004 (9)
C30.0139 (10)0.0139 (10)0.0243 (12)0.0002 (8)0.0045 (8)0.0026 (9)
O20.0151 (7)0.0172 (8)0.0251 (9)0.0001 (7)0.0002 (6)0.0024 (7)
C70.0152 (10)0.0240 (12)0.0267 (12)0.0029 (10)0.0004 (8)0.0034 (11)
C80.0157 (10)0.0209 (11)0.0244 (12)0.0006 (9)0.0008 (8)0.0020 (10)
C90.0160 (10)0.0220 (11)0.0260 (12)0.0025 (9)0.0008 (8)0.0028 (10)
C100.0155 (10)0.0222 (11)0.0211 (11)0.0011 (9)0.0022 (8)0.0006 (10)
C110.0154 (10)0.0217 (11)0.0252 (12)0.0005 (9)0.0039 (8)0.0011 (10)
C120.0159 (10)0.0215 (11)0.0242 (12)0.0005 (9)0.0039 (8)0.0010 (10)
C130.0154 (10)0.0255 (13)0.0287 (13)0.0008 (9)0.0023 (8)0.0019 (10)
C140.0220 (12)0.0317 (15)0.0311 (14)0.0053 (10)0.0024 (10)0.0023 (11)
Geometric parameters (Å, º) top
O4—H40.88 (3)C7—C81.507 (3)
O4—C51.410 (3)C8—H8A0.9900
O3—C61.427 (3)C8—H8B0.9900
O3—C31.442 (3)C8—C91.532 (3)
C6—H6A0.9900C9—H9A0.9900
C6—H6B0.9900C9—H9B0.9900
C6—C51.517 (3)C9—C101.525 (3)
C5—H51.0000C10—H10A0.9900
C5—C41.527 (3)C10—H10B0.9900
C4—H4A1.0000C10—C111.524 (3)
C4—O11.447 (2)C11—H11A0.9900
C4—C31.519 (3)C11—H11B0.9900
O1—C11.446 (3)C11—C121.520 (3)
C1—H1A0.9900C12—H12A0.9900
C1—H1B0.9900C12—H12B0.9900
C1—C21.516 (3)C12—C131.526 (3)
C2—H21.0000C13—H13A0.9900
C2—C31.528 (3)C13—H13B0.9900
C2—O21.422 (3)C13—C141.521 (4)
C3—H31.0000C14—H14A0.9800
O2—C71.433 (3)C14—H14B0.9800
C7—H7A0.9900C14—H14C0.9800
C7—H7B0.9900
C5—O4—H4105.8 (19)C8—C7—H7A109.8
C6—O3—C3109.08 (16)C8—C7—H7B109.8
O3—C6—H6A110.9C7—C8—H8A109.3
O3—C6—H6B110.9C7—C8—H8B109.3
O3—C6—C5104.04 (19)C7—C8—C9111.45 (19)
H6A—C6—H6B109.0H8A—C8—H8B108.0
C5—C6—H6A110.9C9—C8—H8A109.3
C5—C6—H6B110.9C9—C8—H8B109.3
O4—C5—C6115.94 (19)C8—C9—H9A108.9
O4—C5—H5107.8C8—C9—H9B108.9
O4—C5—C4115.27 (17)H9A—C9—H9B107.7
C6—C5—H5107.8C10—C9—C8113.56 (19)
C6—C5—C4101.72 (17)C10—C9—H9A108.9
C4—C5—H5107.8C10—C9—H9B108.9
C5—C4—H4A111.8C9—C10—H10A109.1
O1—C4—C5110.80 (18)C9—C10—H10B109.1
O1—C4—H4A111.8H10A—C10—H10B107.8
O1—C4—C3106.84 (17)C11—C10—C9112.47 (19)
C3—C4—C5103.52 (17)C11—C10—H10A109.1
C3—C4—H4A111.8C11—C10—H10B109.1
C1—O1—C4109.25 (16)C10—C11—H11A108.8
O1—C1—H1A110.7C10—C11—H11B108.8
O1—C1—H1B110.7H11A—C11—H11B107.7
O1—C1—C2105.42 (18)C12—C11—C10113.8 (2)
H1A—C1—H1B108.8C12—C11—H11A108.8
C2—C1—H1A110.7C12—C11—H11B108.8
C2—C1—H1B110.7C11—C12—H12A109.0
C1—C2—H2111.5C11—C12—H12B109.0
C1—C2—C3102.28 (18)C11—C12—C13113.0 (2)
C3—C2—H2111.5H12A—C12—H12B107.8
O2—C2—C1113.45 (18)C13—C12—H12A109.0
O2—C2—H2111.5C13—C12—H12B109.0
O2—C2—C3106.12 (17)C12—C13—H13A108.9
O3—C3—C4106.73 (17)C12—C13—H13B108.9
O3—C3—C2111.02 (18)H13A—C13—H13B107.7
O3—C3—H3111.4C14—C13—C12113.5 (2)
C4—C3—C2104.65 (17)C14—C13—H13A108.9
C4—C3—H3111.4C14—C13—H13B108.9
C2—C3—H3111.4C13—C14—H14A109.5
C2—O2—C7112.60 (18)C13—C14—H14B109.5
O2—C7—H7A109.8C13—C14—H14C109.5
O2—C7—H7B109.8H14A—C14—H14B109.5
O2—C7—C8109.21 (19)H14A—C14—H14C109.5
H7A—C7—H7B108.3H14B—C14—H14C109.5
O4—C5—C4—O144.0 (3)C1—C2—C3—O385.1 (2)
O4—C5—C4—C3158.17 (18)C1—C2—C3—C429.6 (2)
O3—C6—C5—O4164.56 (16)C1—C2—O2—C776.8 (2)
O3—C6—C5—C438.7 (2)C2—O2—C7—C8170.27 (18)
C6—O3—C3—C410.3 (2)C3—O3—C6—C531.1 (2)
C6—O3—C3—C2103.2 (2)C3—C4—O1—C16.4 (2)
C6—C5—C4—O182.3 (2)C3—C2—O2—C7171.63 (17)
C6—C5—C4—C331.9 (2)O2—C2—C3—O3155.71 (17)
C5—C4—O1—C1105.7 (2)O2—C2—C3—C489.5 (2)
C5—C4—C3—O314.4 (2)O2—C7—C8—C9178.64 (18)
C5—C4—C3—C2132.20 (18)C7—C8—C9—C10179.5 (2)
C4—O1—C1—C225.7 (2)C8—C9—C10—C11173.59 (19)
O1—C4—C3—O3102.57 (19)C9—C10—C11—C12175.6 (2)
O1—C4—C3—C215.2 (2)C10—C11—C12—C13177.75 (19)
O1—C1—C2—C334.0 (2)C11—C12—C13—C14176.2 (2)
O1—C1—C2—O279.9 (2)
6-(Decyloxy)hexahydrofuro[3,2-b]furan-3-ol (iso-c10) top
Crystal data top
C16H30O4F(000) = 316
Mr = 286.40Dx = 1.192 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 6.9892 (2) ÅCell parameters from 7114 reflections
b = 5.4888 (2) Åθ = 4.2–76.2°
c = 20.8041 (6) ŵ = 0.67 mm1
β = 91.302 (3)°T = 100 K
V = 797.89 (4) Å3Plate, colourless
Z = 20.44 × 0.16 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Atlas
diffractometer
3028 reflections with I > 2σ(I)
Detector resolution: 10.4127 pixels mm-1Rint = 0.048
ω scansθmax = 76.9°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 88
Tmin = 0.590, Tmax = 1.000k = 66
17428 measured reflectionsl = 2626
3268 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.1068P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.28 e Å3
3268 reflectionsΔρmin = 0.21 e Å3
185 parametersAbsolute structure: Flack x determined using 1249 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.18 (13)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.2948 (2)0.2388 (4)0.53094 (8)0.0285 (4)
C50.3362 (3)0.1528 (5)0.46833 (11)0.0261 (5)
H50.4570300.0556470.4696450.031*
C60.3615 (4)0.3478 (5)0.41677 (12)0.0285 (5)
H6A0.2591500.4720010.4204630.034*
H6B0.4872580.4292980.4201440.034*
O30.3497 (3)0.2169 (4)0.35754 (8)0.0295 (4)
C30.2217 (3)0.0132 (4)0.36691 (11)0.0253 (5)
H30.2792280.1403920.3492990.030*
C40.1813 (3)0.0076 (4)0.43919 (11)0.0236 (5)
H4A0.1895570.1799510.4544330.028*
O10.0067 (2)0.0944 (3)0.45089 (8)0.0260 (4)
C10.0779 (3)0.1993 (4)0.39222 (11)0.0271 (5)
H1A0.0492140.3758100.3900870.032*
H1B0.2179290.1760990.3896100.032*
C20.0268 (3)0.0629 (4)0.33802 (11)0.0253 (5)
H20.0390740.1652890.2983870.030*
O20.0557 (3)0.1676 (3)0.32444 (8)0.0274 (4)
C70.2266 (4)0.1490 (5)0.28830 (12)0.0300 (5)
H7A0.2031110.0451680.2500130.036*
H7B0.3293200.0728480.3149920.036*
C80.2878 (4)0.4002 (5)0.26759 (12)0.0278 (5)
H8A0.3107450.5028280.3061360.033*
H8B0.1835640.4759900.2415290.033*
C90.4700 (4)0.3917 (5)0.22816 (12)0.0282 (5)
H9A0.5744280.3194120.2548400.034*
H9B0.4476660.2840080.1905710.034*
C100.5339 (4)0.6413 (5)0.20451 (11)0.0266 (5)
H10A0.5467510.7530280.2417090.032*
H10B0.4340150.7082190.1749670.032*
C110.7238 (4)0.6321 (5)0.16973 (12)0.0283 (5)
H11A0.8212090.5544760.1983010.034*
H11B0.7080770.5286470.1309870.034*
C120.7967 (4)0.8820 (5)0.14951 (12)0.0282 (5)
H12A0.8132830.9855470.1882080.034*
H12B0.6995130.9600980.1209550.034*
C130.9863 (4)0.8696 (5)0.11464 (11)0.0277 (5)
H13A1.0827090.7891570.1430480.033*
H13B0.9690140.7673060.0757540.033*
C141.0631 (4)1.1179 (5)0.09472 (12)0.0282 (5)
H14A0.9639021.2029290.0684270.034*
H14B1.0884981.2169080.1337710.034*
C151.2459 (4)1.1010 (5)0.05646 (12)0.0305 (6)
H15A1.2189051.0075410.0165750.037*
H15B1.3431101.0096090.0820660.037*
C161.3286 (4)1.3485 (5)0.03860 (13)0.0346 (6)
H16A1.2331051.4407620.0134140.052*
H16B1.4432061.3249330.0130410.052*
H16C1.3625701.4388130.0778560.052*
H40.190 (6)0.330 (8)0.5295 (18)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0223 (8)0.0372 (9)0.0258 (8)0.0032 (8)0.0004 (6)0.0043 (7)
C50.0219 (11)0.0299 (12)0.0262 (11)0.0040 (9)0.0035 (9)0.0016 (9)
C60.0253 (12)0.0288 (11)0.0312 (12)0.0026 (10)0.0021 (9)0.0011 (10)
O30.0263 (9)0.0364 (9)0.0256 (8)0.0065 (7)0.0063 (6)0.0005 (7)
C30.0208 (11)0.0293 (11)0.0256 (11)0.0001 (9)0.0046 (9)0.0006 (9)
C40.0216 (11)0.0232 (10)0.0257 (10)0.0045 (9)0.0040 (8)0.0003 (9)
O10.0209 (8)0.0315 (8)0.0255 (8)0.0018 (7)0.0049 (6)0.0012 (6)
C10.0237 (11)0.0293 (11)0.0281 (11)0.0021 (9)0.0021 (9)0.0007 (9)
C20.0233 (12)0.0286 (12)0.0238 (10)0.0005 (9)0.0020 (9)0.0007 (9)
O20.0249 (9)0.0290 (8)0.0284 (8)0.0002 (7)0.0019 (7)0.0017 (7)
C70.0255 (12)0.0330 (12)0.0316 (12)0.0028 (10)0.0030 (10)0.0030 (10)
C80.0250 (12)0.0313 (12)0.0271 (11)0.0019 (10)0.0009 (9)0.0009 (9)
C90.0246 (12)0.0329 (12)0.0270 (11)0.0022 (10)0.0005 (9)0.0033 (10)
C100.0228 (12)0.0322 (11)0.0247 (10)0.0011 (10)0.0022 (8)0.0008 (9)
C110.0229 (12)0.0324 (12)0.0296 (11)0.0007 (10)0.0015 (9)0.0020 (10)
C120.0231 (12)0.0319 (11)0.0294 (11)0.0010 (9)0.0001 (9)0.0012 (10)
C130.0224 (12)0.0315 (12)0.0290 (11)0.0003 (9)0.0012 (9)0.0015 (10)
C140.0225 (12)0.0319 (12)0.0302 (11)0.0008 (10)0.0016 (9)0.0008 (10)
C150.0250 (13)0.0344 (13)0.0320 (12)0.0007 (10)0.0003 (10)0.0019 (10)
C160.0304 (13)0.0398 (15)0.0337 (12)0.0064 (11)0.0006 (10)0.0019 (11)
Geometric parameters (Å, º) top
O4—C51.409 (3)C8—C91.531 (3)
O4—H40.89 (4)C9—H9A0.9900
C5—H51.0000C9—H9B0.9900
C5—C61.523 (3)C9—C101.526 (3)
C5—C41.531 (3)C10—H10A0.9900
C6—H6A0.9900C10—H10B0.9900
C6—H6B0.9900C10—C111.527 (3)
C6—O31.430 (3)C11—H11A0.9900
O3—C31.442 (3)C11—H11B0.9900
C3—H31.0000C11—C121.526 (3)
C3—C41.528 (3)C12—H12A0.9900
C3—C21.526 (3)C12—H12B0.9900
C4—H4A1.0000C12—C131.527 (3)
C4—O11.444 (3)C13—H13A0.9900
O1—C11.448 (3)C13—H13B0.9900
C1—H1A0.9900C13—C141.525 (3)
C1—H1B0.9900C14—H14A0.9900
C1—C21.526 (3)C14—H14B0.9900
C2—H21.0000C14—C151.524 (3)
C2—O21.422 (3)C15—H15A0.9900
O2—C71.429 (3)C15—H15B0.9900
C7—H7A0.9900C15—C161.526 (4)
C7—H7B0.9900C16—H16A0.9800
C7—C81.510 (4)C16—H16B0.9800
C8—H8A0.9900C16—H16C0.9800
C8—H8B0.9900
C5—O4—H4108 (2)C9—C8—H8A109.3
O4—C5—H5108.0C9—C8—H8B109.3
O4—C5—C6115.7 (2)C8—C9—H9A108.9
O4—C5—C4115.25 (19)C8—C9—H9B108.9
C6—C5—H5108.0H9A—C9—H9B107.7
C6—C5—C4101.37 (18)C10—C9—C8113.5 (2)
C4—C5—H5108.0C10—C9—H9A108.9
C5—C6—H6A110.9C10—C9—H9B108.9
C5—C6—H6B110.9C9—C10—H10A109.0
H6A—C6—H6B108.9C9—C10—H10B109.0
O3—C6—C5104.2 (2)C9—C10—C11112.8 (2)
O3—C6—H6A110.9H10A—C10—H10B107.8
O3—C6—H6B110.9C11—C10—H10A109.0
C6—O3—C3108.71 (18)C11—C10—H10B109.0
O3—C3—H3111.2C10—C11—H11A108.8
O3—C3—C4106.92 (19)C10—C11—H11B108.8
O3—C3—C2111.40 (19)H11A—C11—H11B107.7
C4—C3—H3111.2C12—C11—C10113.6 (2)
C2—C3—H3111.2C12—C11—H11A108.8
C2—C3—C4104.72 (18)C12—C11—H11B108.8
C5—C4—H4A111.8C11—C12—H12A109.0
C3—C4—C5103.31 (19)C11—C12—H12B109.0
C3—C4—H4A111.8C11—C12—C13113.0 (2)
O1—C4—C5111.05 (19)H12A—C12—H12B107.8
O1—C4—C3106.51 (18)C13—C12—H12A109.0
O1—C4—H4A111.8C13—C12—H12B109.0
C4—O1—C1109.92 (17)C12—C13—H13A108.8
O1—C1—H1A110.7C12—C13—H13B108.8
O1—C1—H1B110.7H13A—C13—H13B107.7
O1—C1—C2105.05 (18)C14—C13—C12113.8 (2)
H1A—C1—H1B108.8C14—C13—H13A108.8
C2—C1—H1A110.7C14—C13—H13B108.8
C2—C1—H1B110.7C13—C14—H14A109.0
C3—C2—H2111.4C13—C14—H14B109.0
C1—C2—C3102.34 (18)H14A—C14—H14B107.8
C1—C2—H2111.4C15—C14—C13113.1 (2)
O2—C2—C3106.81 (18)C15—C14—H14A109.0
O2—C2—C1113.20 (19)C15—C14—H14B109.0
O2—C2—H2111.4C14—C15—H15A108.9
C2—O2—C7112.85 (19)C14—C15—H15B108.9
O2—C7—H7A109.8C14—C15—C16113.6 (2)
O2—C7—H7B109.8H15A—C15—H15B107.7
O2—C7—C8109.3 (2)C16—C15—H15A108.9
H7A—C7—H7B108.3C16—C15—H15B108.9
C8—C7—H7A109.8C15—C16—H16A109.5
C8—C7—H7B109.8C15—C16—H16B109.5
C7—C8—H8A109.3C15—C16—H16C109.5
C7—C8—H8B109.3H16A—C16—H16B109.5
C7—C8—C9111.7 (2)H16A—C16—H16C109.5
H8A—C8—H8B107.9H16B—C16—H16C109.5
O4—C5—C6—O3164.89 (19)C4—C3—C2—O289.3 (2)
O4—C5—C4—C3157.97 (19)C4—O1—C1—C225.1 (2)
O4—C5—C4—O144.1 (3)O1—C1—C2—C333.7 (2)
C5—C6—O3—C331.7 (2)O1—C1—C2—O280.9 (2)
C5—C4—O1—C1106.0 (2)C1—C2—O2—C776.9 (2)
C6—C5—C4—C332.2 (2)C2—C3—C4—C5132.86 (19)
C6—C5—C4—O181.6 (2)C2—C3—C4—O115.8 (2)
C6—O3—C3—C410.6 (2)C2—O2—C7—C8171.6 (2)
C6—O3—C3—C2103.3 (2)O2—C7—C8—C9179.61 (19)
O3—C3—C4—C514.6 (2)C7—C8—C9—C10178.3 (2)
O3—C3—C4—O1102.5 (2)C8—C9—C10—C11175.6 (2)
O3—C3—C2—C185.4 (2)C9—C10—C11—C12176.2 (2)
O3—C3—C2—O2155.46 (18)C10—C11—C12—C13179.8 (2)
C3—C4—O1—C15.8 (2)C11—C12—C13—C14179.3 (2)
C3—C2—O2—C7171.21 (18)C12—C13—C14—C15176.5 (2)
C4—C5—C6—O339.5 (2)C13—C14—C15—C16177.7 (2)
C4—C3—C2—C129.9 (2)
6-(Dodecyloxy)hexahydrofuro[3,2-b]furan-3-ol (iso-c12) top
Crystal data top
C18H34O4F(000) = 348
Mr = 314.45Dx = 1.172 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.0250 (5) ÅCell parameters from 3996 reflections
b = 5.4674 (5) Åθ = 3.5–28.5°
c = 23.377 (2) ŵ = 0.08 mm1
β = 97.051 (9)°T = 100 K
V = 891.08 (14) Å3Plate, colourless
Z = 20.37 × 0.08 × 0.03 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Atlas
diffractometer
3638 reflections with I > 2σ(I)
Detector resolution: 5.2063 pixels mm-1Rint = 0.089
ω scansθmax = 29.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 99
Tmin = 0.534, Tmax = 1.000k = 77
20988 measured reflectionsl = 3131
4546 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.082 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.8491P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.202(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.50 e Å3
4546 reflectionsΔρmin = 0.38 e Å3
203 parametersAbsolute structure: Flack x determined using 1143 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.6 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.3077 (4)0.3567 (6)0.47225 (13)0.0195 (7)
C50.3215 (5)0.2711 (8)0.52867 (18)0.0158 (9)
H50.4392600.1740980.5274430.019*
C60.3266 (6)0.4653 (9)0.57474 (19)0.0174 (9)
H6A0.4515970.5429570.5717830.021*
H6B0.2299560.5894550.5714680.021*
O30.2875 (4)0.3345 (7)0.62790 (13)0.0208 (7)
C30.1630 (5)0.1300 (8)0.61918 (19)0.0159 (9)
H30.2107640.0217980.6345610.019*
C40.1536 (5)0.1104 (8)0.55496 (18)0.0140 (8)
H4A0.1675960.0591040.5414990.017*
O10.0281 (4)0.2142 (6)0.54414 (12)0.0153 (6)
C10.1227 (5)0.3212 (9)0.59724 (17)0.0170 (9)
H1A0.2606270.3013480.5996730.020*
H1B0.0934790.4942610.5990720.020*
C20.0441 (5)0.1834 (7)0.64566 (19)0.0136 (8)
H20.0472540.2843340.6804100.016*
O20.1320 (4)0.0484 (6)0.65820 (13)0.0166 (7)
C70.3182 (6)0.0286 (9)0.6908 (2)0.0188 (9)
H7A0.4067580.0479070.6675600.023*
H7B0.3108620.0722660.7246280.023*
C80.3891 (6)0.2810 (8)0.7090 (2)0.0166 (9)
H8A0.2987900.3574840.7316490.020*
H8B0.3963660.3806910.6749850.020*
C90.5881 (6)0.2697 (9)0.74473 (19)0.0175 (9)
H9A0.5805930.1668280.7781820.021*
H9B0.6780270.1947110.7217040.021*
C100.6637 (5)0.5215 (9)0.76483 (19)0.0160 (9)
H10A0.5800270.5907080.7906750.019*
H10B0.6609870.6289910.7317170.019*
C110.8693 (6)0.5098 (9)0.7959 (2)0.0165 (9)
H11A0.8707430.4064460.8296910.020*
H11B0.9516710.4347850.7704820.020*
C120.9500 (6)0.7609 (8)0.8145 (2)0.0172 (9)
H12A0.8654180.8379720.8389360.021*
H12B0.9522580.8625090.7805710.021*
C131.1527 (6)0.7484 (8)0.8471 (2)0.0170 (9)
H13A1.1499000.6484910.8812960.020*
H13B1.2366800.6689100.8228590.020*
C141.2354 (6)0.9980 (9)0.8651 (2)0.0183 (9)
H14A1.1514321.0777650.8892860.022*
H14B1.2386371.0979240.8308940.022*
C151.4371 (6)0.9839 (9)0.8976 (2)0.0191 (10)
H15A1.4334040.8845110.9318530.023*
H15B1.5205320.9028060.8734560.023*
C161.5227 (6)1.2328 (9)0.9156 (2)0.0207 (10)
H16A1.4374111.3160010.9388480.025*
H16B1.5300161.3305260.8813050.025*
C171.7225 (6)1.2177 (10)0.9498 (2)0.0231 (11)
H17A1.7141321.1266330.9849970.028*
H17B1.8063471.1277490.9272840.028*
C181.8111 (7)1.4663 (11)0.9652 (2)0.0277 (11)
H18A1.8267471.5541780.9305070.042*
H18B1.9339621.4447040.9875580.042*
H18C1.7285671.5572210.9872120.042*
H40.207 (9)0.459 (13)0.475 (2)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0071 (12)0.0232 (18)0.0277 (16)0.0025 (13)0.0006 (11)0.0055 (14)
C50.0054 (16)0.013 (2)0.028 (2)0.0004 (15)0.0016 (15)0.0010 (17)
C60.0092 (17)0.013 (2)0.030 (2)0.0021 (17)0.0029 (15)0.0012 (19)
O30.0127 (13)0.0239 (18)0.0265 (16)0.0038 (13)0.0048 (11)0.0004 (14)
C30.0072 (17)0.010 (2)0.031 (2)0.0029 (16)0.0021 (15)0.0011 (18)
C40.0070 (17)0.0063 (18)0.029 (2)0.0008 (16)0.0033 (15)0.0031 (17)
O10.0075 (12)0.0128 (15)0.0262 (16)0.0019 (11)0.0044 (11)0.0004 (12)
C10.0082 (16)0.017 (2)0.026 (2)0.0018 (17)0.0013 (15)0.0008 (19)
C20.0085 (16)0.008 (2)0.024 (2)0.0031 (16)0.0011 (14)0.0010 (16)
O20.0072 (12)0.0112 (15)0.0304 (17)0.0017 (12)0.0016 (11)0.0012 (13)
C70.0082 (17)0.016 (2)0.031 (2)0.0039 (18)0.0027 (15)0.002 (2)
C80.0109 (17)0.012 (2)0.027 (2)0.0018 (17)0.0010 (15)0.0008 (19)
C90.0116 (18)0.015 (2)0.025 (2)0.0047 (17)0.0006 (15)0.0034 (18)
C100.0088 (17)0.018 (2)0.021 (2)0.0001 (17)0.0019 (14)0.0033 (18)
C110.0094 (17)0.012 (2)0.028 (2)0.0035 (16)0.0002 (15)0.0023 (18)
C120.0087 (17)0.015 (2)0.028 (2)0.0014 (17)0.0022 (15)0.0015 (19)
C130.0082 (17)0.013 (2)0.029 (2)0.0031 (16)0.0003 (15)0.0027 (18)
C140.0102 (17)0.016 (2)0.028 (2)0.0011 (17)0.0003 (15)0.0008 (19)
C150.0094 (18)0.020 (2)0.028 (2)0.0013 (18)0.0024 (16)0.0025 (19)
C160.0106 (18)0.024 (3)0.028 (2)0.0006 (18)0.0017 (16)0.002 (2)
C170.0114 (19)0.027 (3)0.031 (2)0.0001 (19)0.0006 (17)0.001 (2)
C180.019 (2)0.032 (3)0.032 (3)0.005 (2)0.0002 (18)0.002 (2)
Geometric parameters (Å, º) top
O4—C51.414 (5)C9—C101.529 (6)
O4—H40.90 (7)C10—H10A0.9700
C5—H50.9800C10—H10B0.9700
C5—C61.516 (6)C10—C111.536 (5)
C5—C41.537 (6)C11—H11A0.9700
C6—H6A0.9700C11—H11B0.9700
C6—H6B0.9700C11—C121.528 (6)
C6—O31.431 (5)C12—H12A0.9700
O3—C31.449 (5)C12—H12B0.9700
C3—H30.9800C12—C131.532 (5)
C3—C41.514 (6)C13—H13A0.9700
C3—C21.538 (5)C13—H13B0.9700
C4—H4A0.9800C13—C141.522 (6)
C4—O11.447 (4)C14—H14A0.9700
O1—C11.457 (5)C14—H14B0.9700
C1—H1A0.9700C14—C151.526 (6)
C1—H1B0.9700C15—H15A0.9700
C1—C21.519 (6)C15—H15B0.9700
C2—H20.9800C15—C161.526 (7)
C2—O21.425 (5)C16—H16A0.9700
O2—C71.435 (5)C16—H16B0.9700
C7—H7A0.9700C16—C171.530 (6)
C7—H7B0.9700C17—H17A0.9700
C7—C81.510 (6)C17—H17B0.9700
C8—H8A0.9700C17—C181.520 (7)
C8—H8B0.9700C18—H18A0.9600
C8—C91.539 (5)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700
C5—O4—H4107 (4)C10—C9—H9A109.0
O4—C5—H5107.8C10—C9—H9B109.0
O4—C5—C6116.2 (4)C9—C10—H10A109.2
O4—C5—C4115.2 (3)C9—C10—H10B109.2
C6—C5—H5107.8C9—C10—C11112.3 (3)
C6—C5—C4101.5 (3)H10A—C10—H10B107.9
C4—C5—H5107.8C11—C10—H10A109.2
C5—C6—H6A110.9C11—C10—H10B109.2
C5—C6—H6B110.9C10—C11—H11A109.0
H6A—C6—H6B108.9C10—C11—H11B109.0
O3—C6—C5104.4 (4)H11A—C11—H11B107.8
O3—C6—H6A110.9C12—C11—C10113.0 (3)
O3—C6—H6B110.9C12—C11—H11A109.0
C6—O3—C3108.6 (3)C12—C11—H11B109.0
O3—C3—H3111.3C11—C12—H12A109.0
O3—C3—C4107.1 (3)C11—C12—H12B109.0
O3—C3—C2110.7 (3)C11—C12—C13113.1 (3)
C4—C3—H3111.3H12A—C12—H12B107.8
C4—C3—C2105.0 (3)C13—C12—H12A109.0
C2—C3—H3111.3C13—C12—H12B109.0
C5—C4—H4A111.7C12—C13—H13A108.9
C3—C4—C5103.4 (3)C12—C13—H13B108.9
C3—C4—H4A111.7H13A—C13—H13B107.7
O1—C4—C5110.9 (3)C14—C13—C12113.4 (3)
O1—C4—C3107.0 (3)C14—C13—H13A108.9
O1—C4—H4A111.7C14—C13—H13B108.9
C4—O1—C1109.2 (3)C13—C14—H14A109.0
O1—C1—H1A110.7C13—C14—H14B109.0
O1—C1—H1B110.7C13—C14—C15113.1 (4)
O1—C1—C2105.4 (3)H14A—C14—H14B107.8
H1A—C1—H1B108.8C15—C14—H14A109.0
C2—C1—H1A110.7C15—C14—H14B109.0
C2—C1—H1B110.7C14—C15—H15A108.8
C3—C2—H2111.4C14—C15—H15B108.8
C1—C2—C3101.9 (3)H15A—C15—H15B107.7
C1—C2—H2111.4C16—C15—C14113.7 (4)
O2—C2—C3106.2 (3)C16—C15—H15A108.8
O2—C2—C1114.0 (3)C16—C15—H15B108.8
O2—C2—H2111.4C15—C16—H16A108.8
C2—O2—C7112.7 (3)C15—C16—H16B108.8
O2—C7—H7A109.9C15—C16—C17113.6 (4)
O2—C7—H7B109.9H16A—C16—H16B107.7
O2—C7—C8109.2 (3)C17—C16—H16A108.8
H7A—C7—H7B108.3C17—C16—H16B108.8
C8—C7—H7A109.9C16—C17—H17A108.9
C8—C7—H7B109.9C16—C17—H17B108.9
C7—C8—H8A109.4H17A—C17—H17B107.7
C7—C8—H8B109.4C18—C17—C16113.5 (4)
C7—C8—C9111.2 (3)C18—C17—H17A108.9
H8A—C8—H8B108.0C18—C17—H17B108.9
C9—C8—H8A109.4C17—C18—H18A109.5
C9—C8—H8B109.4C17—C18—H18B109.5
C8—C9—H9A109.0C17—C18—H18C109.5
C8—C9—H9B109.0H18A—C18—H18B109.5
H9A—C9—H9B107.8H18A—C18—H18C109.5
C10—C9—C8112.9 (3)H18B—C18—H18C109.5
O4—C5—C6—O3164.6 (3)C4—O1—C1—C225.6 (4)
O4—C5—C4—C3158.5 (3)O1—C1—C2—C333.7 (4)
O4—C5—C4—O144.1 (5)O1—C1—C2—O280.2 (4)
C5—C6—O3—C331.0 (4)C1—C2—O2—C777.0 (4)
C5—C4—O1—C1105.9 (4)C2—C3—C4—C5132.5 (3)
C6—C5—C4—C332.1 (4)C2—C3—C4—O115.4 (4)
C6—C5—C4—O182.3 (4)C2—O2—C7—C8172.5 (3)
C6—O3—C3—C410.0 (4)O2—C7—C8—C9179.4 (3)
C6—O3—C3—C2103.9 (4)C7—C8—C9—C10179.1 (4)
O3—C3—C4—C514.7 (4)C8—C9—C10—C11175.0 (3)
O3—C3—C4—O1102.4 (3)C9—C10—C11—C12178.0 (4)
O3—C3—C2—C185.6 (4)C10—C11—C12—C13178.2 (3)
O3—C3—C2—O2154.8 (3)C11—C12—C13—C14179.2 (4)
C3—C4—O1—C16.2 (4)C12—C13—C14—C15179.9 (4)
C3—C2—O2—C7171.6 (3)C13—C14—C15—C16179.6 (4)
C4—C5—C6—O338.9 (4)C14—C15—C16—C17178.3 (4)
C4—C3—C2—C129.7 (4)C15—C16—C17—C18177.3 (4)
C4—C3—C2—O289.9 (4)
6-(Tetradecyloxy)hexahydrofuro[3,2-b]furan-3-ol (iso-c14) top
Crystal data top
C20H38O4F(000) = 380
Mr = 342.50Dx = 1.163 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.040 (6) ÅCell parameters from 1866 reflections
b = 5.438 (5) Åθ = 2.4–23.7°
c = 25.56 (2) ŵ = 0.08 mm1
β = 91.914 (9)°T = 100 K
V = 978.2 (14) Å3Plate, colourless
Z = 20.3 × 0.1 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
2949 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.069
φ and ω scansθmax = 27.1°, θmin = 2.4°
Absorption correction: numerical
(SADABS; Bruker, 2016)
h = 99
Tmin = 0.543, Tmax = 0.746k = 66
12041 measured reflectionsl = 3232
4278 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.22 e Å3
4278 reflectionsΔρmin = 0.23 e Å3
221 parametersAbsolute structure: Flack x determined using 980 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 1.2 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.2928 (3)0.4743 (5)0.52486 (10)0.0275 (6)
H40.194 (6)0.559 (8)0.5245 (16)0.041*
O30.3534 (3)0.4511 (5)0.38374 (9)0.0296 (6)
C60.3661 (5)0.5840 (7)0.43214 (14)0.0264 (8)
H6A0.2667850.7126300.4351690.032*
H6B0.4924030.6619570.4349300.032*
C50.3353 (5)0.3874 (7)0.47378 (13)0.0249 (8)
H50.4539990.2869980.4749780.030*
C40.1807 (5)0.2270 (7)0.45005 (13)0.0233 (8)
H4A0.1865300.0527840.4624190.028*
O10.0060 (3)0.3353 (5)0.45978 (9)0.0251 (6)
C10.0720 (5)0.4407 (7)0.41133 (13)0.0261 (8)
H1A0.0422020.6184210.4095080.031*
H1B0.2111010.4191970.4089170.031*
C20.0320 (5)0.3032 (7)0.36763 (14)0.0247 (9)
H20.0471900.4068570.3354570.030*
C30.2239 (5)0.2490 (7)0.39142 (14)0.0246 (8)
H30.2796690.0929790.3770180.029*
O20.0514 (3)0.0703 (5)0.35619 (10)0.0267 (6)
C70.2197 (5)0.0927 (8)0.32631 (15)0.0286 (9)
H7A0.1927420.1956260.2949850.034*
H7B0.3215770.1733100.3477330.034*
C80.2838 (5)0.1587 (7)0.30984 (15)0.0264 (8)
H8A0.3103140.2601270.3414050.032*
H8B0.1800940.2390260.2890600.032*
C90.4616 (5)0.1482 (7)0.27738 (15)0.0274 (8)
H9A0.5651280.0691710.2984530.033*
H9B0.4351080.0438180.2462480.033*
C100.5289 (5)0.3998 (7)0.25933 (14)0.0254 (8)
H10A0.5439810.5094120.2901070.031*
H10B0.4306410.4722160.2353930.031*
C110.7171 (5)0.3883 (7)0.23132 (15)0.0274 (8)
H11A0.8137740.3093140.2547780.033*
H11B0.7003380.2835590.1998160.033*
C120.7903 (5)0.6391 (8)0.21489 (15)0.0269 (8)
H12A0.8101260.7424080.2464940.032*
H12B0.6923010.7197830.1921450.032*
C130.9754 (5)0.6271 (7)0.18580 (15)0.0285 (9)
H13A0.9556270.5230190.1543110.034*
H13B1.0734130.5467230.2086220.034*
C141.0495 (5)0.8774 (7)0.16902 (15)0.0277 (9)
H14A0.9497900.9600440.1471980.033*
H14B1.0733870.9794250.2006260.033*
C151.2308 (5)0.8655 (7)0.13841 (15)0.0277 (9)
H15A1.2067460.7639690.1067330.033*
H15B1.3303300.7820220.1601770.033*
C161.3060 (5)1.1164 (7)0.12173 (15)0.0275 (9)
H16A1.2081341.1977190.0990380.033*
H16B1.3264051.2197600.1532980.033*
C171.4905 (5)1.1042 (7)0.09257 (14)0.0265 (9)
H17A1.4694841.0023730.0607930.032*
H17B1.5877191.0207650.1151030.032*
C181.5675 (5)1.3533 (7)0.07642 (15)0.0280 (9)
H18A1.5925481.4535210.1082370.034*
H18B1.4690661.4390610.0546930.034*
C191.7495 (5)1.3374 (7)0.04580 (15)0.0296 (9)
H19A1.8461501.2456000.0669560.036*
H19B1.7229721.2427080.0132870.036*
C201.8309 (5)1.5850 (8)0.03147 (15)0.0339 (10)
H20A1.7369401.6764910.0100620.051*
H20B1.9461001.5609240.0116190.051*
H20C1.8622451.6778210.0634600.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0230 (12)0.0320 (16)0.0280 (14)0.0053 (12)0.0071 (11)0.0039 (12)
O30.0286 (13)0.0301 (15)0.0303 (14)0.0067 (12)0.0027 (11)0.0013 (12)
C60.0262 (18)0.024 (2)0.030 (2)0.0015 (16)0.0044 (15)0.0053 (17)
C50.0200 (17)0.027 (2)0.028 (2)0.0023 (15)0.0039 (14)0.0032 (17)
C40.0237 (18)0.0194 (18)0.027 (2)0.0050 (16)0.0022 (14)0.0019 (16)
O10.0198 (12)0.0271 (15)0.0288 (14)0.0010 (11)0.0045 (10)0.0001 (11)
C10.0271 (18)0.025 (2)0.0265 (19)0.0015 (16)0.0041 (15)0.0032 (17)
C20.0250 (18)0.022 (2)0.027 (2)0.0034 (16)0.0041 (15)0.0006 (16)
C30.0255 (19)0.0197 (19)0.029 (2)0.0009 (16)0.0031 (15)0.0018 (16)
O20.0261 (13)0.0242 (15)0.0305 (15)0.0023 (11)0.0102 (11)0.0011 (12)
C70.0239 (18)0.031 (2)0.031 (2)0.0005 (17)0.0083 (15)0.0042 (18)
C80.0256 (18)0.0230 (19)0.031 (2)0.0007 (16)0.0059 (15)0.0022 (17)
C90.0267 (19)0.027 (2)0.028 (2)0.0012 (17)0.0065 (15)0.0039 (17)
C100.0237 (18)0.028 (2)0.025 (2)0.0006 (16)0.0043 (14)0.0010 (17)
C110.0253 (18)0.028 (2)0.029 (2)0.0004 (17)0.0066 (15)0.0036 (17)
C120.0237 (18)0.031 (2)0.027 (2)0.0004 (16)0.0051 (15)0.0013 (17)
C130.0236 (18)0.033 (2)0.029 (2)0.0011 (17)0.0054 (15)0.0014 (18)
C140.0254 (18)0.028 (2)0.030 (2)0.0018 (17)0.0048 (15)0.0018 (17)
C150.0258 (19)0.026 (2)0.032 (2)0.0011 (16)0.0040 (15)0.0016 (17)
C160.0242 (19)0.029 (2)0.030 (2)0.0021 (16)0.0051 (15)0.0010 (17)
C170.0272 (18)0.023 (2)0.030 (2)0.0006 (16)0.0046 (15)0.0037 (17)
C180.0261 (19)0.027 (2)0.031 (2)0.0012 (16)0.0065 (16)0.0003 (17)
C190.026 (2)0.029 (2)0.033 (2)0.0006 (17)0.0029 (16)0.0006 (17)
C200.030 (2)0.033 (3)0.039 (2)0.0057 (18)0.0091 (17)0.0007 (19)
Geometric parameters (Å, º) top
O4—H40.83 (4)C10—C111.528 (5)
O4—C51.411 (4)C11—H11A0.9900
O3—C61.438 (4)C11—H11B0.9900
O3—C31.438 (4)C11—C121.522 (5)
C6—H6A0.9900C12—H12A0.9900
C6—H6B0.9900C12—H12B0.9900
C6—C51.519 (5)C12—C131.523 (5)
C5—H51.0000C13—H13A0.9900
C5—C41.535 (5)C13—H13B0.9900
C4—H4A1.0000C13—C141.524 (5)
C4—O11.454 (4)C14—H14A0.9900
C4—C31.524 (5)C14—H14B0.9900
O1—C11.455 (4)C14—C151.521 (5)
C1—H1A0.9900C15—H15A0.9900
C1—H1B0.9900C15—H15B0.9900
C1—C21.513 (5)C15—C161.529 (5)
C2—H21.0000C16—H16A0.9900
C2—C31.528 (5)C16—H16B0.9900
C2—O21.430 (4)C16—C171.520 (5)
C3—H31.0000C17—H17A0.9900
O2—C71.437 (4)C17—H17B0.9900
C7—H7A0.9900C17—C181.521 (5)
C7—H7B0.9900C18—H18A0.9900
C7—C81.504 (5)C18—H18B0.9900
C8—H8A0.9900C18—C191.526 (5)
C8—H8B0.9900C19—H19A0.9900
C8—C91.526 (5)C19—H19B0.9900
C9—H9A0.9900C19—C201.513 (6)
C9—H9B0.9900C20—H20A0.9800
C9—C101.525 (5)C20—H20B0.9800
C10—H10A0.9900C20—H20C0.9800
C10—H10B0.9900
C5—O4—H4109 (3)C11—C10—H10A109.0
C3—O3—C6108.9 (3)C11—C10—H10B109.0
O3—C6—H6A111.0C10—C11—H11A108.9
O3—C6—H6B111.0C10—C11—H11B108.9
O3—C6—C5103.7 (3)H11A—C11—H11B107.7
H6A—C6—H6B109.0C12—C11—C10113.5 (3)
C5—C6—H6A111.0C12—C11—H11A108.9
C5—C6—H6B111.0C12—C11—H11B108.9
O4—C5—C6115.7 (3)C11—C12—H12A108.9
O4—C5—H5107.8C11—C12—H12B108.9
O4—C5—C4115.1 (3)C11—C12—C13113.5 (3)
C6—C5—H5107.8H12A—C12—H12B107.7
C6—C5—C4102.1 (3)C13—C12—H12A108.9
C4—C5—H5107.8C13—C12—H12B108.9
C5—C4—H4A112.1C12—C13—H13A108.8
O1—C4—C5110.5 (3)C12—C13—H13B108.8
O1—C4—H4A112.1C12—C13—C14113.9 (3)
O1—C4—C3106.6 (3)H13A—C13—H13B107.7
C3—C4—C5102.9 (3)C14—C13—H13A108.8
C3—C4—H4A112.1C14—C13—H13B108.8
C4—O1—C1109.1 (3)C13—C14—H14A108.7
O1—C1—H1A110.6C13—C14—H14B108.7
O1—C1—H1B110.6H14A—C14—H14B107.6
O1—C1—C2105.9 (3)C15—C14—C13114.1 (3)
H1A—C1—H1B108.7C15—C14—H14A108.7
C2—C1—H1A110.6C15—C14—H14B108.7
C2—C1—H1B110.6C14—C15—H15A108.7
C1—C2—H2111.4C14—C15—H15B108.7
C1—C2—C3102.4 (3)C14—C15—C16114.2 (3)
C3—C2—H2111.4H15A—C15—H15B107.6
O2—C2—C1113.4 (3)C16—C15—H15A108.7
O2—C2—H2111.4C16—C15—H15B108.7
O2—C2—C3106.6 (3)C15—C16—H16A108.7
O3—C3—C4107.4 (3)C15—C16—H16B108.7
O3—C3—C2111.3 (3)H16A—C16—H16B107.6
O3—C3—H3111.0C17—C16—C15114.0 (3)
C4—C3—C2104.9 (3)C17—C16—H16A108.7
C4—C3—H3111.0C17—C16—H16B108.7
C2—C3—H3111.0C16—C17—H17A108.7
C2—O2—C7112.7 (3)C16—C17—H17B108.7
O2—C7—H7A109.8C16—C17—C18114.3 (3)
O2—C7—H7B109.8H17A—C17—H17B107.6
O2—C7—C8109.4 (3)C18—C17—H17A108.7
H7A—C7—H7B108.2C18—C17—H17B108.7
C8—C7—H7A109.8C17—C18—H18A108.8
C8—C7—H7B109.8C17—C18—H18B108.8
C7—C8—H8A109.2C17—C18—C19113.7 (3)
C7—C8—H8B109.2H18A—C18—H18B107.7
C7—C8—C9112.2 (3)C19—C18—H18A108.8
H8A—C8—H8B107.9C19—C18—H18B108.8
C9—C8—H8A109.2C18—C19—H19A108.8
C9—C8—H8B109.2C18—C19—H19B108.8
C8—C9—H9A108.8H19A—C19—H19B107.7
C8—C9—H9B108.8C20—C19—C18113.9 (3)
H9A—C9—H9B107.7C20—C19—H19A108.8
C10—C9—C8113.6 (3)C20—C19—H19B108.8
C10—C9—H9A108.8C19—C20—H20A109.5
C10—C9—H9B108.8C19—C20—H20B109.5
C9—C10—H10A109.0C19—C20—H20C109.5
C9—C10—H10B109.0H20A—C20—H20B109.5
C9—C10—C11112.8 (3)H20A—C20—H20C109.5
H10A—C10—H10B107.8H20B—C20—H20C109.5
O4—C5—C4—O144.5 (4)C2—O2—C7—C8172.6 (3)
O4—C5—C4—C3158.0 (3)C3—O3—C6—C531.2 (3)
O3—C6—C5—O4164.6 (3)C3—C4—O1—C14.8 (4)
O3—C6—C5—C438.8 (3)C3—C2—O2—C7171.1 (3)
C6—O3—C3—C410.6 (3)O2—C2—C3—O3154.9 (3)
C6—O3—C3—C2103.7 (3)O2—C2—C3—C489.3 (3)
C6—C5—C4—O181.7 (3)O2—C7—C8—C9179.4 (3)
C6—C5—C4—C331.8 (3)C7—C8—C9—C10179.2 (3)
C5—C4—O1—C1106.3 (3)C8—C9—C10—C11174.6 (3)
C5—C4—C3—O314.1 (3)C9—C10—C11—C12177.8 (3)
C5—C4—C3—C2132.6 (3)C10—C11—C12—C13178.6 (3)
C4—O1—C1—C224.4 (4)C11—C12—C13—C14179.8 (3)
O1—C4—C3—O3102.2 (3)C12—C13—C14—C15178.1 (3)
O1—C4—C3—C216.3 (4)C13—C14—C15—C16179.7 (3)
O1—C1—C2—C333.4 (3)C14—C15—C16—C17178.3 (3)
O1—C1—C2—O281.0 (3)C15—C16—C17—C18179.3 (3)
C1—C2—C3—O385.9 (3)C16—C17—C18—C19178.3 (3)
C1—C2—C3—C430.0 (4)C17—C18—C19—C20177.7 (3)
C1—C2—O2—C777.0 (4)
Selected geometry parameters and intermolecular torsion angles (Å, °) top
Compound3a3b3c3d
Iso-C8Iso-C10Iso-C12Iso-C14
C2—C3—O3111.02 (18)111.40 (19)110.8 (3)111.3 (3)
O1—C4—C5110.78 (18)111.05 (19)110.8 (3)110.5 (3)
O2—C21.422 (3)1.422 (3)1.424 (5)1.430 (4)
Torsion angle O2—C2···C2—O2i52.37553.87053.64654.854
Symmetry code: (i) x, y + 1, z.
Hydrogen-bond geometry (Å,°) top
Compound3a Iso-C83b Iso-C103c Iso-C123d Iso-C14
O4—H40.88 (3)0.89 (4)0.90 (7)0.83 (4)
H4···O1i2.00 (3)1.97 (5)1.96 (7)2.03 (4)
O4···O1i2.827 (2)2.823 (3)2.830 (4)2.834 (4)
O4—H4···O1i155 (3)160 (4)162 (5)161 (4)
Symmetry code: (i) -x, 1/2 + y, 1 - z for 3a and -x, y - 1/2, -z + 1 for 3b, 3c and 3d.
 

Acknowledgements

VV and FG would like to thank Klaus Brandenburg of Research Center Borstel – Leibniz Lung Center for the biochemical examinations.

References

First citationBruker (2016). BlS and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtzbach, K.-H., Delavier, P., Siemensmeyer, K., Wagenblast, G., Laupichler, L. & Vill, V. (1995). DE Patent 4342280.  Google Scholar
First citationFlack, H. D. (2008). Acta Chim. Slov. 55, 689–691.  CAS Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257–265.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarata, K. & Kawano, K. (2002). Carbohydr. Res. 337, 537–547.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHušák, M., Kratochvíl, B., Jegorov, A., Mat'ha, V., Stuchlík, M. & Andrýsek, T. (1996). Z. Kristallogr. 211, 313–318.  Google Scholar
First citationKanters, J. A., Schouten, A., Sterk, G. J. & de Jong, M. H. (1993). J. Mol. Struct. 298, 113–120.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSagawa, T., Kobayashi, H., Murata, C., Shichibu, Y., Konishi, K. & Fukuoka, A. (2019). ACS Sustainable Chem. Eng. 7, 14883-14888.  Google Scholar
First citationSantschi, N., Wagner, S., Daniliuc, C., Hermann, S., Schäfers, M. & Gilmour, R. (2015). ChemMedChem, 10, 1724–1732.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVill, V., Fischer, F. & Thiem, J. (1988). Z. Naturforsch. Teil A, 42, 1119–1125.  Google Scholar
First citationVill, V., Fischer, F. & Thiem, J. (1989). Z. Naturforsch. Teil A, 43, 675–679.  Google Scholar
First citationWu, J., Thiyagarajan, S., Guerra, C. F., Eduard, P., Lutz, M., Noordover, B. A. J., Koning, C. E., van Es, D. S. (2017). ChemSusChem, 10, 3202–3211.  Google Scholar
First citationZhu, Y., Durand, M., Molinier, V. & Aubry, J.-M. (2008). Green Chem. 10, 532–540.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds