research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Comparison of two MnIVMnIV-bis-μ-oxo complexes {[MnIV(N4(6-Me-DPEN))]2(μ-O)2}2+ and {[MnIV(N4(6-Me-DPPN))]2(μ-O)2}2+

CROSSMARK_Color_square_no_text.svg

aThe Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
*Correspondence e-mail: kovacs@chem.washington.edu

Edited by A. M. Chippindale, University of Reading, England (Received 3 February 2020; accepted 3 June 2020; online 9 June 2020)

The addition of tert-butyl hydro­peroxide (tBuOOH) to two structurally related MnII complexes containing N,N-bis­(6-methyl-2-pyridyl­meth­yl)ethane-1,2-di­amine (6-Me-DPEN) and N,N-bis­(6-methyl-2-pyridyl­meth­yl)propane-1,2-di­amine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis­{[N,N-bis­(6-methyl-2-pyridylmeth­yl)ethane-1,2-di­amine]­manganese(II)}(MnMn) bis­(tetra­phenyl­borate) dihydrate, [Mn(C16H22N4)2O2](C24H20B)2·2H2O or {[MnIV(N4(6-Me-DPEN))]2(μ-O)2}(2BPh4)(2H2O) (1) and di-μ-oxido-bis­{[N,N-bis­(6-methyl-2-pyridylmeth­yl)propane-1,3-di­amine]­manganese(II)}(MnMn) bis­(tetra­phenyl­borate) diethyl ether disolvate, [Mn(C17H24N4)2O2](C24H20B)2·2C4H10O or {[MnIV(N4(6-MeDPPN))]2(μ-O)2}(2BPh4)(2Et2O) (2). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2, as compared to that of the ethyl linker in 1, results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an MnIV oxidation state assignment for the Mn ions in both 1 and 2. The angles around the Mn centers are consistent with the local pseudo-octa­hedral geometry.

1. Chemical context

A heterometallic cubane cluster, MndangCaMn3O5, referred to as the oxygen-evolving complex (OEC), is involved in photosynthetic catalytic water oxidation (Umena et al., 2011[Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. (2011). Nature, 473, 55-60.]). The cluster is housed in the enzyme photosystem II (PSII) and consists of high-valent MnIII/IV ions linked by oxo bridges and one dangling MnIV/V ion. Water oxidation is thermodynamically unfavorable, and requires an energy input of 359 kJ mol−1 that is provided by sunlight (Yano & Yachandra, 2014[Yano, J. & Yachandra, V. (2014). Chem. Rev. 114, 4175-4205]). Although the exact details of the mechanism for water oxidation are unknown, two water mol­ecules are thought to bind to the cluster to produce one equivalent of di­oxy­gen, four electrons, and four protons (Kok et al., 1970[Kok, B., Forbush, B. & McGloin, M. (1970). Photochem. Photobiol. 11, 457-475.]). Sequential oxidation of the cluster, starting with the CaIIMnIVMn3IIIO5 core, generates partially oxidized states, Si (where i = number of stored oxidizing equivalents), which store oxidizing equivalents in preparation for O—O bond formation and O2 release (Hatakeyama et al., 2016[Hatakeyama, M., Ogata, K., Fujii, K., Yachandra, V. K., Yano, J. & Nakamura, S. (2016). Chem. Phys. Lett. 651, 243-250.]; Lohmiller et al., 2017[Lohmiller, T., Krewald, V., Sedoud, A., Rutherford, A. W., Neese, F., Lubitz, W., Pantazis, D. A. & Cox, N. (2017). J. Am. Chem. Soc. 139, 14412-14424.]; Renger, 2011[Renger, G. (2011). J. Photochem. Photobiol. B, 104, 35-43.]; Yano & Yachandra, 2014[Yano, J. & Yachandra, V. (2014). Chem. Rev. 114, 4175-4205]). Very little is known about the key OEC-catalyzed O—O bond-forming step, because it occurs following the rate-determining step (Retegan et al., 2016[Retegan, M., Krewald, V., Mamedov, F., Neese, F., Lubitz, W., Cox, N. & Pantazis, D. A. (2016). Chem. Sci. 7, 72-84.]). Proposed mechanisms for O—O bond formation involve either nucleophilic attack by an M—OH group (M = Mn or Ca) at an electrophilic MnV≡O site, or radical coupling between two MnIV oxyl radicals to afford an unobserved peroxo inter­mediate (Hatakeyama et al., 2016[Hatakeyama, M., Ogata, K., Fujii, K., Yachandra, V. K., Yano, J. & Nakamura, S. (2016). Chem. Phys. Lett. 651, 243-250.]; Lohmiller et al., 2017[Lohmiller, T., Krewald, V., Sedoud, A., Rutherford, A. W., Neese, F., Lubitz, W., Pantazis, D. A. & Cox, N. (2017). J. Am. Chem. Soc. 139, 14412-14424.]; Renger, 2011[Renger, G. (2011). J. Photochem. Photobiol. B, 104, 35-43.]; Yano & Yachandra, 2014[Yano, J. & Yachandra, V. (2014). Chem. Rev. 114, 4175-4205]). Developing a wide base of chemical information on a variety of Mn—O species similar to the fragments implicated in the key O—O bond-forming step should aid the development of a detailed understanding of photosynthetic water oxidation. Fundamental concepts obtained from these studies can then be applied towards the maintenance of stable energy reserves and improve the world's energy economy by storing solar energy in chemical bonds (Lewis, 2016[Lewis, N. S. (2016). Science, 351, 353-363.]).

[Scheme 1]

A key step in OEC-catalyzed water oxidation involves the formation of a peroxo O—O bond prior to di­oxy­gen evolution. Previous work by the Kovacs group has facilitated an understanding of the metal-ion properties that favor peroxo O—O bond formation versus cleavage, and O2 binding versus release (Coggins et al., 2012[Coggins, M. K., Toledo, S., Shaffer, E., Kaminsky, W., Shearer, J. & Kovacs, J. A. (2012). Inorg. Chem. 51, 6633-6644.], 2013a[Coggins, M. K., Brines, L. M. & Kovacs, J. A. (2013a). Inorg. Chem. 52, 12383-12393.],b[Coggins, M. K., Martin-Diaconescu, V., DeBeer, S. & Kovacs, J. A. (2013b). J. Am. Chem. Soc. 135, 4260-4272.],c[Coggins, M. K., Sun, X., Kwak, Y., Solomon, E. I., Rybak-Akimova, E. & Kovacs, J. A. (2013c). J. Am. Chem. Soc. 135, 5631-5640.]; Coggins & Kovacs, 2011[Coggins, M. K. & Kovacs, J. A. (2011). J. Am. Chem. Soc. 133, 12470-12473.]; Poon et al., 2019[Poon, P. C. Y., Dedushko, M., Sun, X., Yang, G., Toledo, S., Hayes, E. C., Johansen, A., Piquette, M. C., Rees, J. A., Stoll, S., Rybak-Akimova, E. & Kovacs, J. A. (2019). J. Am. Chem. Soc. 141, 15046-15057.]). Reversible di­oxy­gen binding and release was shown to strongly correlate with metal-ion Lewis acidity. Superoxo, peroxo, and reactive mixed-valent MnIIIMnIV bis-oxo inter­mediates were shown to form. In addition, thiol­ate ligands were shown to increase the HAT (hydrogen-atom transfer) reactivity of putative MnIVMnIV dimer inter­mediates, precluding their isolation (Poon et al., 2019[Poon, P. C. Y., Dedushko, M., Sun, X., Yang, G., Toledo, S., Hayes, E. C., Johansen, A., Piquette, M. C., Rees, J. A., Stoll, S., Rybak-Akimova, E. & Kovacs, J. A. (2019). J. Am. Chem. Soc. 141, 15046-15057.]). In contrast, alkoxide derivatives [MnIII(OMe2N4(6-Me-DPEN))](BPh4) (3) and [MnIII(OMe2N4(6-Me-DPPN))](BPh4)⋯Et2O (4) (Coggins et al., 2020[Coggins, M. K., Poon, P. C. Y. & Kovacs, J. A. (2020). Inorg. Chem. In preparation.]) react with tBuOOH to form ultimately the high-valent complexes described herein: {[MnIV(N4(6-Me-DPEN))]2(μ-O)2}2+ (1) and {[MnIV(N4(6-Me-DPPN))]2(μ-O)2}2+ (2). The isolation and crystallographic characterization of the bis-oxo complexes 1 and 2 (Figs. 1[link] and 2[link], formed via alkyl­peroxo Mn—OOtBu inter­mediates (Coggins et al., 2020[Coggins, M. K., Poon, P. C. Y. & Kovacs, J. A. (2020). Inorg. Chem. In preparation.]), further expands the available library of high-valent Mn–oxo dimers (Mullins & Pecoraro, 2008[Mullins, C. S. & Pecoraro, V. L. (2008). Coord. Chem. Rev. 252, 416-443.]), demonstrating the stability of the metal–oxo diamond core described previously (Que & Tolman, 2002[Que, L. & Tolman, W. B. (2002). Angew. Chem. Int. Ed. 41, 1114-1137.]).

[Figure 1]
Figure 1
Ellipsoid plot of {[MnIV(N4(6-Me-DPEN))]2(μ-O)2}2+ (1) showing the atom-labeling scheme. The anions and all hydrogen atoms have been removed for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code for primed atoms -x, −y + 1, −z + 1.
[Figure 2]
Figure 2
Ellipsoid plot of {[MnIV(N4(6-Me-DPPN))]2(μ-O)2}2+ (2) showing the atom-labeling scheme. The anions, solvent, disorder, and hydrogen atoms have been removed for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code for primed atoms: -x + 1, −y + 2, −z + 1.

2. Structural Commentary

2.1. Complex 1

Complex 1 possesses a non-crystallographic C2 rotation axis and the two Mn centers are crystallographically equivalent across an inversion center (−x, 1 − y, 1 − z). The Mn ion of 1 is in a pseudo-octa­hedral environment, with small deviations in the O—Mn—N angles relative to an ideal octa­hedral geometry: O1—Mn1—N1 = 93.76 (12), O1—Mn1—N2 = 92.13 (12), O1—Mn1—N3 = 174.90 (12), and O1—Mn1—N4 = 95.77 (12)°. As is true for all diamond cores, the O1—Mn1—O1′ angle is slightly compressed at 85.53 (12)°. Metrical parameters, Mn1—O1 = 1.829 (3) Å and Mn1—O1′= 1.835 (3) Å (Table 1[link]) fall within the reported range (1.8 to 1.9 Å) for oxo-bridged MnIV complexes (Krewald et al., 2013[Krewald, V., Lassalle-Kaiser, B., Boron, T. T., Pollock, C. J., Kern, J., Beckwith, M. A., Yachandra, V. K., Pecoraro, V. L., Yano, J., Neese, F. & DeBeer, S. (2013). Inorg. Chem. 52, 12904-12914.]; Mullins & Pecoraro, 2008[Mullins, C. S. & Pecoraro, V. L. (2008). Coord. Chem. Rev. 252, 416-443.]; Torayama et al., 1998[Torayama, H., Nishide, T., Asada, H., Fujiwara, M. & Matsushita, T. (1998). Polyhedron, 17, 105-118.]). The pyridine nitro­gen atoms are outside the typical bonding range, but are oriented towards the Mn ion at distances of Mn1—N1= 2.348 (3) Å and Mn1—N4 = 2.368 (3) Å. Unfavorable steric inter­actions involving the methyl group at the 6-position of the pyridine arm are likely to be responsible for the longer Mn—N(1,4) distances. Manganese–nitro­gen distances involving the amine arms fall within the normal Mn—N range (1.9 to 2.1 Å) for MnIV. The bond involving the tertiary amine [Mn1—N2 = 2.123 (3) Å] is slightly longer than that involving the secondary amine [Mn1—N3 = 2.111 (4) Å]. The Mn1⋯Mn1′ separation of 2.6899 (15) Å, falls within the normal range (2.6 to 2.8 Å) for bis-oxo-bridged MnIVMnIV dimers containing a diamond core. Complex 1 crystallizes with two crystallographically equivalent tetra­phenyl­borate counter-ions and two crystallographically equivalent water mol­ecules. The water mol­ecule is disordered over two sites with site occupancies refined to 0.870 (12) and 0.130 (12) for O2 and O2B respectively, with the applied constraint that both together give 100% occupancy.

Table 1
Comparison of key bond lengths and angles (Å, °) for complexes 1 and 2

  Complex 1 Complex 2
Mn1—O1 1.829 (3) 1.8325 (15)
Mn1—O1′ 1.835 (2) 1.8350 (15)
Mn1—N1 2.348 (3) 2.3251 (18)
Mn1—N2 2.123 (3) 2.1828 (18)
Mn1—N3 2.111 (4) 2.133 (6)
Mn1—N4 2.368 (3) 2.3522 (18)
Mn1—Mn1′ 2.6899 (15) 2.6825 (7)
     
O1—Mn1—N1 93.76 (12) 106.39 (7)
O1—Mn1—N2 92.13 (12) 174.90 (7)
O1—Mn1—N3 174.90 (12) 89.11 (13)
O1—Mn1—N4 95.77 (12) 103.70 (6)
O1—Mn1—O1′ 85.53 (3) 85.98 (7)
Symmetry codes for primed atoms are −x, 1 − y, 1 − z for 1 and 1 − x, 2 − y, 1 − z for 2.

2.2. Complex 2

Complex 2 also sits on an inversion center (1 − x, 2 − y, 1 − z), making the two Mn atoms crystallographically equivalent. There is disorder in the position of the propyl linker carbon atoms (C1, C2, C3). The site occupancies of N3, C1–C3 and N3B, C1B–C3B refined to 0.804 (5) and 0.196 (5), respectively, with the constraint of both together giving 100% occupancy. The Mn ion of 2 is again in a pseudo-octa­hedral environment, with small deviations in O—Mn—N angles relative to ideal octa­hedral geometry: O1—Mn1—N1 = 106.39 (7), O1—Mn1—N2 = 174.90 (7), O1—Mn1—N3 = 89.11 (13), and O1—Mn1—N4 = 103.70 (6)°. Again, as is true for all diamond cores, the O1—Mn1—O1′ angle of 2 is slightly compressed at 85.98 (7)°, and is similar to that in 1. Metrical parameters, Mn—O1 = 1.8325 (15) and Mn—O1′ = 1.8349 (15) Å, are also similar to those found in 1, and fall within the reported range (1.8 to 1.9 Å) for oxo-bridged MnIV complexes. The pyridine nitro­gen atoms are once again further from the Mn ions than expected for a formal Mn—N bond, but are oriented towards Mn at distances of Mn1—N1 = 2.3251 (18) Å and Mn1—N4 = 2.3522 (18) Å. This bond elongation is likely to be due to steric inter­ference from the methyl groups at the 6-position of the pyridine rings. The nitro­gens on the amine arms are much closer to the Mn center, and fall within the normal Mn—N range (1.9 to 2.1 Å) for MnIV. The Mn—N distance involving the tertiary amine [Mn1—N2 = 2.1828 (18) Å] is noticeably longer than that involving the secondary amine [Mn1—N3= 2.133 (6) Å]. The large difference between these bond lengths in 2, relative to those of 1, likely reflects the increased flexibility of the propyl linker in 2. The Mn1—Mn1′ distance [2.6825 (7) Å] in 2 is essentially the same as that found in 1, and falls within the normal range (2.6 to 2.8 Å) for bis-oxo-bridged MnIVMnIV dimers containing a diamond core. Complex 2 crystallizes with two tetra­phenyl­borate counter-ions and two diethyl ether mol­ecules per cation.

3. Database survey

The structures of 1 and 2 are analogous to other reported MnIVMnIV(μ-O)2 dimers. The Mn1—Mn1′ distances of 2.6899 (15) Å in 1 and 2.6825 (7) Å in 2 are comparable to other literature examples (Krewald et al., 2013[Krewald, V., Lassalle-Kaiser, B., Boron, T. T., Pollock, C. J., Kern, J., Beckwith, M. A., Yachandra, V. K., Pecoraro, V. L., Yano, J., Neese, F. & DeBeer, S. (2013). Inorg. Chem. 52, 12904-12914.]; Mullins & Pecoraro, 2008[Mullins, C. S. & Pecoraro, V. L. (2008). Coord. Chem. Rev. 252, 416-443.]; Torayama, et al., 1998[Torayama, H., Nishide, T., Asada, H., Fujiwara, M. & Matsushita, T. (1998). Polyhedron, 17, 105-118.]). The Mn—O bond lengths of 1.829 (3) and 1.835 (2) Å for 1 and 1.8350 (15) and 1.8325 (15) Å for 2 are also similar to literature reported values for MnIVMnIV(μ-O)2 dimers (Krewald et al., 2013[Krewald, V., Lassalle-Kaiser, B., Boron, T. T., Pollock, C. J., Kern, J., Beckwith, M. A., Yachandra, V. K., Pecoraro, V. L., Yano, J., Neese, F. & DeBeer, S. (2013). Inorg. Chem. 52, 12904-12914.]; Mullins & Pecoraro, 2008[Mullins, C. S. & Pecoraro, V. L. (2008). Coord. Chem. Rev. 252, 416-443.]; Torayama et al., 1998[Torayama, H., Nishide, T., Asada, H., Fujiwara, M. & Matsushita, T. (1998). Polyhedron, 17, 105-118.]). The octa­hedral geometry of the Mn centers of both structures are very similar in terms of bond angles, all of which are close to the ideal 90 and 180°. The similarities in bond lengths and angles show that 1 and 2 contain a metal–oxo diamond core motif, previously observed in manganese, iron and copper complexes (Que & Tolman, 2002[Que, L. & Tolman, W. B. (2002). Angew. Chem. Int. Ed. 41, 1114-1137.]).

4. Synthesis and crystallization

4.1. General methods

All syntheses were performed using Schlenk-line tech­niques or under an N2 atmosphere in a glovebox. Reagents and solvents were purchased from commercial vendors, were of highest available purity and were used without further purification unless otherwise noted. MeOH (Na), MeCN (CaH2), and CH2Cl2 (CaH2) were dried and distilled prior to use. Et2O was rigorously degassed and purified using solvent purification columns housed in a custom stainless steel cabinet and dispensed by a stainless steel Schlenk-line (GlassContour). Complexes 3 and 4 were synthesized as described by Coggins et al. (2020[Coggins, M. K., Poon, P. C. Y. & Kovacs, J. A. (2020). Inorg. Chem. In preparation.]).

4.2. Synthesis of 1 and 2

The addition of 1.5 equivalents of tBuOOH to CH2Cl2 solutions of alkoxide-ligated 3 and 4 in an anaerobic cell at room temperature results in the formation of 1 and 2, respectively. Single crystals of the isolated compounds in the form of brown plates for 1 and purple plates for 2 were obtained in up to 40% yield via slow evaporation and crystallization from CH2Cl2. Both reactions result in the loss of the Schiff-base arm present in the starting MnII complexes 3 and 4, most probably because the reactions were performed in moist air (Coggins et al., 2020[Coggins, M. K., Poon, P. C. Y. & Kovacs, J. A. (2020). Inorg. Chem. In preparation.]).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Scattering factors are taken from Waasmaier & Kirfel (1995[Waasmaier, D. & Kirfel, A. (1995). Acta Cryst. A51, 416-431.]). Hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å. Isotropic displacement parameters Ueq were fixed at 1.2Ueq(C) or 1.5Ueq(C-meth­yl). For the disordered water mol­ecule in complex 1, the water was set-up as a rigid group free to rotate and move during refinement, with DFIX restraints between O and H and between both H per water. The displacement parameters of O2 and O2B were made the same with the EADP constraint. Hydrogen-atom isotropic displacement parameters were fixed at 1.5 times that of the water oxygen atoms. For the disorder in complex 2, the geometry of both groups was set to be similar with the `SAME' option. Displacement parameters of N3-N3B, C1-C1B, C2-C2B, and C3-C3B were restrained with the SIMU command at 0.005 strength.

Table 2
Experimental details

  Complex 1 Complex 2
Crystal data
Chemical formula [Mn(C16H22N4)2O2](C24H20B)2·2H2O [Mn(C17H24N4)2O2](C24H20B)2·2C4H10O
Mr 1357.08 1497.34
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 12.169 (3), 12.404 (4), 13.845 (4) 15.9472 (16), 13.8380 (14), 17.5219 (17)
α, β, γ (°) 69.752 (7), 67.355 (8), 68.725 (7) 90, 91.123 (5), 90
V3) 1744.7 (8) 3865.9 (7)
Z 1 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.42 0.39
Crystal size (mm) 0.15 × 0.05 × 0.05 0.1 × 0.05 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD area-detector Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.940, 0.979 0.915, 0.947
No. of measured, independent and observed [I > 2σ(I)] reflections 22505, 8374, 3541 138191, 9679, 7420
Rint 0.099 0.068
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.163, 0.97 0.049, 0.134, 1.05
No. of reflections 8374 9679
No. of parameters 439 517
No. of restraints 6 29
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.46 0.66, −1.01
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012). Software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) for Complex1; SHELXL2014/7 (Sheldrick, 2015) for Complex2.

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)ethane-1,2-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) dihydrate (Complex1) top
Crystal data top
[Mn(C16H22N4)2O2](C24H20B)2·2H2OZ = 1
Mr = 1357.08F(000) = 716
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.169 (3) ÅCell parameters from 123 reflections
b = 12.404 (4) Åθ = 3–20°
c = 13.845 (4) ŵ = 0.42 mm1
α = 69.752 (7)°T = 100 K
β = 67.355 (8)°Plate, brown
γ = 68.725 (7)°0.15 × 0.05 × 0.05 mm
V = 1744.7 (8) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8374 independent reflections
Radiation source: fine-focus sealed tube3541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
φ and ω scansθmax = 28.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1616
Tmin = 0.940, Tmax = 0.979k = 1616
22505 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: mixed
wR(F2) = 0.163H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0563P)2]
where P = (Fo2 + 2Fc2)/3
8374 reflections(Δ/σ)max < 0.001
439 parametersΔρmax = 0.42 e Å3
6 restraintsΔρmin = 0.46 e Å3
Special details top

Experimental. 20 seconds exposure, 0.5 degree steps

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0240 (4)0.1880 (4)0.5092 (3)0.0284 (10)
C20.1120 (3)0.2320 (4)0.5589 (3)0.0329 (11)
H2A0.13320.31720.55530.049*
H2D0.13540.1880.63440.049*
H2C0.15670.21970.51960.049*
C30.0849 (4)0.0675 (4)0.5299 (3)0.0327 (11)
H30.04060.01160.57990.039*
C40.2083 (4)0.0281 (4)0.4788 (3)0.0346 (11)
H40.24970.05440.49240.042*
C50.2707 (4)0.1112 (4)0.4074 (3)0.0327 (11)
H50.35570.08610.36940.039*
C60.2102 (4)0.2291 (4)0.3915 (3)0.0285 (10)
C70.2745 (3)0.3250 (3)0.3235 (3)0.0309 (11)
H7A0.30890.34410.36780.037*
H7B0.34410.29530.26390.037*
C80.1587 (4)0.4141 (4)0.1926 (3)0.0348 (11)
H8A0.16940.32770.20610.042*
H8B0.21710.43910.12150.042*
C90.0271 (4)0.4810 (4)0.1887 (3)0.0362 (11)
H9A0.02150.56660.15440.043*
H9B0.00360.44870.14550.043*
C100.2493 (3)0.5339 (3)0.2369 (3)0.0320 (11)
H10A0.3160.52370.1690.038*
H10B0.28730.530.29010.038*
C110.1599 (4)0.6545 (3)0.2166 (3)0.0284 (10)
C120.2000 (4)0.7490 (4)0.1419 (3)0.0329 (11)
H120.28380.7390.09870.039*
C130.1151 (4)0.8603 (4)0.1305 (3)0.0373 (12)
H130.13990.9280.07980.045*
C140.0053 (4)0.8701 (4)0.1941 (3)0.0367 (12)
H140.06410.94570.18830.044*
C150.0415 (4)0.7715 (4)0.2660 (3)0.0325 (11)
C160.1737 (3)0.7774 (4)0.3317 (3)0.0386 (12)
H16A0.17670.71730.40020.058*
H16B0.21540.76180.29180.058*
H16C0.21510.85680.34580.058*
C170.3193 (4)0.4439 (4)0.1848 (3)0.0298 (10)
C180.4283 (4)0.5241 (4)0.2286 (3)0.0341 (11)
H180.49570.4940.27920.041*
C190.4418 (5)0.6461 (4)0.2008 (4)0.0457 (13)
H190.5180.69770.23120.055*
C200.3444 (5)0.6927 (4)0.1289 (4)0.0451 (13)
H200.3520.77560.11160.054*
C210.2375 (5)0.6174 (4)0.0834 (4)0.0447 (13)
H210.17050.64840.0330.054*
C220.2254 (4)0.4967 (4)0.1096 (3)0.0359 (11)
H220.15020.44690.07530.043*
C230.1523 (4)0.2334 (3)0.1934 (3)0.0264 (10)
C240.0855 (4)0.2006 (3)0.2661 (3)0.0302 (10)
H240.12880.20860.33790.036*
C250.0425 (4)0.1567 (4)0.2370 (3)0.0336 (11)
H250.08470.13520.28880.04*
C260.1079 (4)0.1444 (4)0.1341 (3)0.0349 (11)
H260.19540.11610.11390.042*
C270.0451 (4)0.1735 (4)0.0602 (4)0.0364 (11)
H270.08930.16430.01120.044*
C280.0825 (4)0.2163 (3)0.0902 (3)0.0322 (11)
H280.12410.23460.03850.039*
C290.3729 (3)0.2624 (3)0.3513 (3)0.0270 (10)
C300.4455 (4)0.1817 (4)0.4011 (3)0.0315 (11)
H300.45620.14430.35710.038*
C310.5026 (3)0.1534 (4)0.5111 (3)0.0332 (11)
H310.55020.09720.54070.04*
C320.4909 (4)0.2062 (4)0.5778 (4)0.0346 (11)
H320.53060.18770.65320.042*
C330.4207 (4)0.2862 (4)0.5334 (3)0.0353 (11)
H330.41070.32290.57830.042*
C340.3642 (4)0.3138 (4)0.4228 (3)0.0321 (11)
H340.31720.37050.39420.038*
C350.3633 (3)0.2597 (4)0.1567 (3)0.0283 (10)
C360.3433 (4)0.1403 (4)0.1619 (3)0.0354 (11)
H360.28680.08260.19850.042*
C370.4004 (4)0.1000 (4)0.1170 (3)0.0379 (12)
H370.3840.01710.12420.046*
C380.4817 (4)0.1818 (4)0.0615 (3)0.0385 (12)
H380.52290.15590.03120.046*
C390.5019 (4)0.3019 (4)0.0509 (3)0.0349 (11)
H390.5560.35920.01160.042*
C400.4439 (3)0.3389 (4)0.0972 (3)0.0289 (10)
H400.45930.4220.08830.035*
N10.0866 (3)0.2692 (3)0.4410 (3)0.0294 (8)
N20.1900 (3)0.4352 (3)0.2776 (3)0.0259 (8)
N30.0579 (3)0.4664 (3)0.3011 (3)0.0391 (10)
H3A0.07470.39440.32360.047*
H3B0.13030.52430.30310.047*
N40.0413 (3)0.6636 (3)0.2796 (2)0.0280 (8)
O10.1119 (2)0.4845 (2)0.4840 (2)0.0298 (7)
B10.3033 (4)0.2995 (4)0.2217 (4)0.0271 (12)
Mn10.02600 (6)0.47824 (6)0.40381 (5)0.0301 (2)
O20.3085 (5)0.4792 (4)0.5293 (7)0.095 (3)0.870 (12)
H2O0.25160.47010.51980.143*0.870 (12)
H2P0.3620.41870.52280.143*0.870 (12)
O2B0.347 (4)0.485 (3)0.442 (5)0.095 (3)0.130 (12)
H2Q0.29760.45690.44120.143*0.130 (12)
H2R0.41280.43810.42540.143*0.130 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (2)0.033 (3)0.022 (2)0.010 (2)0.008 (2)0.007 (2)
C20.026 (2)0.036 (3)0.030 (3)0.011 (2)0.002 (2)0.009 (2)
C30.032 (2)0.027 (2)0.035 (3)0.012 (2)0.007 (2)0.001 (2)
C40.027 (2)0.030 (2)0.041 (3)0.005 (2)0.010 (2)0.005 (2)
C50.025 (2)0.028 (3)0.040 (3)0.001 (2)0.009 (2)0.010 (2)
C60.021 (2)0.031 (2)0.028 (2)0.0078 (19)0.0009 (19)0.0061 (19)
C70.023 (2)0.034 (3)0.024 (2)0.003 (2)0.001 (2)0.0071 (19)
C80.030 (2)0.036 (3)0.030 (3)0.006 (2)0.003 (2)0.008 (2)
C90.033 (3)0.038 (3)0.033 (3)0.009 (2)0.008 (2)0.006 (2)
C100.021 (2)0.032 (3)0.032 (2)0.0058 (19)0.002 (2)0.006 (2)
C110.028 (2)0.026 (2)0.023 (2)0.005 (2)0.001 (2)0.0075 (19)
C120.028 (2)0.032 (3)0.028 (2)0.008 (2)0.003 (2)0.008 (2)
C130.043 (3)0.030 (3)0.027 (3)0.012 (2)0.004 (2)0.007 (2)
C140.040 (3)0.031 (3)0.022 (2)0.003 (2)0.001 (2)0.006 (2)
C150.027 (2)0.037 (3)0.025 (2)0.004 (2)0.002 (2)0.008 (2)
C160.025 (2)0.036 (3)0.040 (3)0.001 (2)0.004 (2)0.008 (2)
C170.032 (2)0.031 (2)0.025 (2)0.006 (2)0.013 (2)0.004 (2)
C180.038 (3)0.034 (3)0.027 (2)0.009 (2)0.009 (2)0.005 (2)
C190.062 (3)0.039 (3)0.033 (3)0.001 (3)0.019 (3)0.014 (2)
C200.073 (4)0.030 (3)0.042 (3)0.017 (3)0.027 (3)0.005 (2)
C210.051 (3)0.039 (3)0.047 (3)0.018 (3)0.019 (3)0.001 (2)
C220.036 (3)0.032 (3)0.036 (3)0.013 (2)0.011 (2)0.001 (2)
C230.028 (2)0.023 (2)0.027 (2)0.0116 (19)0.006 (2)0.0006 (19)
C240.026 (2)0.028 (2)0.028 (2)0.008 (2)0.003 (2)0.002 (2)
C250.034 (3)0.030 (2)0.031 (3)0.011 (2)0.009 (2)0.001 (2)
C260.025 (2)0.035 (3)0.037 (3)0.012 (2)0.001 (2)0.005 (2)
C270.032 (3)0.035 (3)0.033 (3)0.013 (2)0.002 (2)0.008 (2)
C280.032 (2)0.032 (3)0.028 (3)0.008 (2)0.008 (2)0.004 (2)
C290.020 (2)0.027 (2)0.028 (2)0.0006 (18)0.007 (2)0.006 (2)
C300.024 (2)0.031 (2)0.032 (3)0.005 (2)0.008 (2)0.002 (2)
C310.020 (2)0.033 (3)0.034 (3)0.0029 (19)0.003 (2)0.004 (2)
C320.021 (2)0.040 (3)0.029 (3)0.003 (2)0.002 (2)0.009 (2)
C330.029 (2)0.042 (3)0.027 (3)0.003 (2)0.001 (2)0.012 (2)
C340.024 (2)0.035 (3)0.031 (3)0.007 (2)0.004 (2)0.006 (2)
C350.018 (2)0.033 (3)0.022 (2)0.0097 (19)0.0077 (19)0.0051 (19)
C360.031 (2)0.035 (3)0.037 (3)0.011 (2)0.010 (2)0.003 (2)
C370.039 (3)0.032 (3)0.039 (3)0.010 (2)0.010 (2)0.006 (2)
C380.036 (3)0.052 (3)0.033 (3)0.022 (2)0.000 (2)0.017 (2)
C390.025 (2)0.046 (3)0.025 (2)0.005 (2)0.001 (2)0.010 (2)
C400.024 (2)0.030 (2)0.023 (2)0.003 (2)0.002 (2)0.009 (2)
N10.0274 (19)0.029 (2)0.0246 (19)0.0081 (16)0.0014 (17)0.0049 (16)
N20.0218 (18)0.0237 (19)0.0247 (19)0.0028 (15)0.0039 (16)0.0040 (16)
N30.027 (2)0.028 (2)0.044 (2)0.0044 (16)0.0006 (19)0.0038 (17)
N40.0206 (18)0.031 (2)0.0209 (19)0.0032 (16)0.0021 (16)0.0062 (16)
O10.0189 (14)0.0322 (17)0.0293 (16)0.0051 (13)0.0014 (13)0.0084 (13)
B10.024 (3)0.029 (3)0.025 (3)0.007 (2)0.005 (2)0.005 (2)
Mn10.0197 (3)0.0288 (4)0.0290 (4)0.0030 (3)0.0022 (3)0.0064 (3)
O20.063 (3)0.082 (3)0.163 (8)0.007 (3)0.046 (4)0.068 (4)
O2B0.063 (3)0.082 (3)0.163 (8)0.007 (3)0.046 (4)0.068 (4)
Geometric parameters (Å, º) top
C1—N11.353 (5)C22—H220.95
C1—C31.389 (5)C23—C241.396 (5)
C1—C21.496 (5)C23—C281.397 (5)
C2—H2A0.98C23—B11.666 (6)
C2—H2D0.98C24—C251.392 (5)
C2—H2C0.98C24—H240.95
C3—C41.371 (5)C25—C261.369 (6)
C3—H30.95C25—H250.95
C4—C51.379 (5)C26—C271.381 (6)
C4—H40.95C26—H260.95
C5—C61.361 (5)C27—C281.387 (5)
C5—H50.95C27—H270.95
C6—N11.370 (5)C28—H280.95
C6—C71.499 (5)C29—C301.398 (5)
C7—N21.487 (5)C29—C341.401 (6)
C7—H7A0.99C29—B11.640 (6)
C7—H7B0.99C30—C311.386 (5)
C8—N21.493 (5)C30—H300.95
C8—C91.525 (5)C31—C321.374 (6)
C8—H8A0.99C31—H310.95
C8—H8B0.99C32—C331.372 (5)
C9—N31.492 (5)C32—H320.95
C9—H9A0.99C33—C341.389 (5)
C9—H9B0.99C33—H330.95
C10—N21.479 (5)C34—H340.95
C10—C111.504 (5)C35—C361.392 (5)
C10—H10A0.99C35—C401.403 (5)
C10—H10B0.99C35—B11.631 (6)
C11—N41.356 (4)C36—C371.385 (6)
C11—C121.368 (5)C36—H360.95
C12—C131.391 (5)C37—C381.384 (6)
C12—H120.95C37—H370.95
C13—C141.374 (5)C38—C391.382 (6)
C13—H130.95C38—H380.95
C14—C151.376 (5)C39—C401.382 (6)
C14—H140.95C39—H390.95
C15—N41.354 (5)C40—H400.95
C15—C161.501 (5)N1—Mn12.348 (3)
C16—H16A0.98N2—Mn12.123 (3)
C16—H16B0.98N3—Mn12.111 (4)
C16—H16C0.98N3—H3A0.91
C17—C181.399 (5)N3—H3B0.91
C17—C221.405 (5)N4—Mn12.368 (3)
C17—B11.642 (6)O1—Mn11.829 (3)
C18—C191.390 (6)O1—Mn1i1.835 (2)
C18—H180.95Mn1—O1i1.835 (2)
C19—C201.385 (6)Mn1—Mn1i2.6899 (15)
C19—H190.95O2—H2O0.8037
C20—C211.362 (6)O2—H2P0.8012
C20—H200.95O2B—H2Q0.8011
C21—C221.378 (6)O2B—H2R0.8066
C21—H210.95
N1—C1—C3120.3 (4)C25—C26—C27119.2 (4)
N1—C1—C2118.0 (4)C25—C26—H26120.4
C3—C1—C2121.7 (4)C27—C26—H26120.4
C1—C2—H2A109.5C26—C27—C28119.9 (4)
C1—C2—H2D109.5C26—C27—H27120
H2A—C2—H2D109.5C28—C27—H27120
C1—C2—H2C109.5C27—C28—C23122.7 (4)
H2A—C2—H2C109.5C27—C28—H28118.7
H2D—C2—H2C109.5C23—C28—H28118.7
C4—C3—C1120.8 (4)C30—C29—C34113.9 (4)
C4—C3—H3119.6C30—C29—B1125.5 (4)
C1—C3—H3119.6C34—C29—B1120.6 (4)
C3—C4—C5118.4 (4)C31—C30—C29123.4 (4)
C3—C4—H4120.8C31—C30—H30118.3
C5—C4—H4120.8C29—C30—H30118.3
C6—C5—C4119.7 (4)C32—C31—C30120.4 (4)
C6—C5—H5120.2C32—C31—H31119.8
C4—C5—H5120.2C30—C31—H31119.8
C5—C6—N1122.2 (4)C33—C32—C31118.8 (4)
C5—C6—C7122.7 (4)C33—C32—H32120.6
N1—C6—C7115.0 (3)C31—C32—H32120.6
N2—C7—C6112.1 (3)C32—C33—C34120.1 (4)
N2—C7—H7A109.2C32—C33—H33119.9
C6—C7—H7A109.2C34—C33—H33119.9
N2—C7—H7B109.2C33—C34—C29123.5 (4)
C6—C7—H7B109.2C33—C34—H34118.3
H7A—C7—H7B107.9C29—C34—H34118.3
N2—C8—C9113.1 (3)C36—C35—C40114.1 (4)
N2—C8—H8A108.9C36—C35—B1121.4 (4)
C9—C8—H8A108.9C40—C35—B1124.4 (4)
N2—C8—H8B108.9C37—C36—C35124.2 (4)
C9—C8—H8B108.9C37—C36—H36117.9
H8A—C8—H8B107.8C35—C36—H36117.9
N3—C9—C8108.6 (3)C38—C37—C36119.3 (4)
N3—C9—H9A110C38—C37—H37120.4
C8—C9—H9A110C36—C37—H37120.4
N3—C9—H9B110C39—C38—C37118.9 (4)
C8—C9—H9B110C39—C38—H38120.6
H9A—C9—H9B108.3C37—C38—H38120.6
N2—C10—C11112.7 (3)C40—C39—C38120.3 (4)
N2—C10—H10A109C40—C39—H39119.9
C11—C10—H10A109C38—C39—H39119.9
N2—C10—H10B109C39—C40—C35123.2 (4)
C11—C10—H10B109C39—C40—H40118.4
H10A—C10—H10B107.8C35—C40—H40118.4
N4—C11—C12123.2 (4)C1—N1—C6118.4 (3)
N4—C11—C10116.1 (3)C1—N1—Mn1130.7 (3)
C12—C11—C10120.6 (4)C6—N1—Mn1110.5 (2)
C11—C12—C13118.5 (4)C10—N2—C7108.6 (3)
C11—C12—H12120.8C10—N2—C8113.0 (3)
C13—C12—H12120.8C7—N2—C8109.7 (3)
C14—C13—C12118.6 (4)C10—N2—Mn1107.9 (2)
C14—C13—H13120.7C7—N2—Mn1108.2 (2)
C12—C13—H13120.7C8—N2—Mn1109.3 (2)
C13—C14—C15120.6 (4)C9—N3—Mn1109.4 (3)
C13—C14—H14119.7C9—N3—H3A109.8
C15—C14—H14119.7Mn1—N3—H3A109.8
N4—C15—C14121.0 (4)C9—N3—H3B109.8
N4—C15—C16116.9 (4)Mn1—N3—H3B109.8
C14—C15—C16122.1 (4)H3A—N3—H3B108.2
C15—C16—H16A109.5C15—N4—C11118.0 (3)
C15—C16—H16B109.5C15—N4—Mn1132.6 (3)
H16A—C16—H16B109.5C11—N4—Mn1109.3 (2)
C15—C16—H16C109.5Mn1—O1—Mn1i94.47 (12)
H16A—C16—H16C109.5C35—B1—C29109.0 (3)
H16B—C16—H16C109.5C35—B1—C17111.5 (4)
C18—C17—C22114.7 (4)C29—B1—C17108.8 (3)
C18—C17—B1121.9 (4)C35—B1—C23109.3 (3)
C22—C17—B1123.4 (4)C29—B1—C23111.2 (3)
C19—C18—C17122.5 (4)C17—B1—C23107.1 (3)
C19—C18—H18118.7O1—Mn1—O1i85.53 (12)
C17—C18—H18118.7O1—Mn1—N3174.90 (12)
C20—C19—C18120.2 (4)O1i—Mn1—N399.56 (13)
C20—C19—H19119.9O1—Mn1—N292.13 (12)
C18—C19—H19119.9O1i—Mn1—N2177.66 (13)
C21—C20—C19118.8 (4)N3—Mn1—N282.78 (13)
C21—C20—H20120.6O1—Mn1—N193.76 (12)
C19—C20—H20120.6O1i—Mn1—N1105.29 (11)
C20—C21—C22120.7 (4)N3—Mn1—N184.68 (12)
C20—C21—H21119.6N2—Mn1—N174.79 (11)
C22—C21—H21119.6O1—Mn1—N495.77 (12)
C21—C22—C17123.0 (4)O1i—Mn1—N4104.76 (11)
C21—C22—H22118.5N3—Mn1—N483.23 (12)
C17—C22—H22118.5N2—Mn1—N475.49 (11)
C24—C23—C28115.5 (4)N1—Mn1—N4149.05 (11)
C24—C23—B1123.3 (4)O1—Mn1—Mn1i42.86 (8)
C28—C23—B1121.0 (4)O1i—Mn1—Mn1i42.67 (9)
C25—C24—C23122.3 (4)N3—Mn1—Mn1i142.23 (10)
C25—C24—H24118.9N2—Mn1—Mn1i134.99 (10)
C23—C24—H24118.9N1—Mn1—Mn1i102.97 (9)
C26—C25—C24120.4 (4)N4—Mn1—Mn1i104.02 (9)
C26—C25—H25119.8H2O—O2—H2P104.8
C24—C25—H25119.8H2Q—O2B—H2R105
Symmetry code: (i) x, y+1, z+1.
Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)propane-1,3-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) diethyl ether disolvate (Complex2) top
Crystal data top
[Mn(C17H24N4)2O2](C24H20B)2·2C4H10OF(000) = 1592
Mr = 1497.34Dx = 1.286 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 110 reflections
a = 15.9472 (16) Åθ = 3–20°
b = 13.8380 (14) ŵ = 0.39 mm1
c = 17.5219 (17) ÅT = 100 K
β = 91.123 (5)°Plate, purple
V = 3865.9 (7) Å30.1 × 0.05 × 0.05 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9679 independent reflections
Radiation source: fine-focus sealed tube7420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2121
Tmin = 0.915, Tmax = 0.947k = 1818
138191 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0542P)2 + 5.0764P]
where P = (Fo2 + 2Fc2)/3
9679 reflections(Δ/σ)max = 0.004
517 parametersΔρmax = 0.66 e Å3
29 restraintsΔρmin = 1.01 e Å3
Special details top

Experimental. 20 seconds exposure, 0.5 degree steps, 40mm distance

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N30.5515 (5)0.7880 (5)0.4465 (3)0.0164 (8)0.804 (5)
H1A0.4987170.7710710.4310040.02*0.804 (5)
H1B0.5802430.8030820.4038010.02*0.804 (5)
C10.5915 (2)0.7006 (3)0.4806 (2)0.0218 (8)0.804 (5)
H1C0.6035480.653840.4395510.026*0.804 (5)
H1D0.551830.6697390.5158960.026*0.804 (5)
C20.67233 (16)0.72410 (19)0.52387 (16)0.0205 (6)0.804 (5)
H2A0.7058930.6642160.5292380.025*0.804 (5)
H2B0.7050930.7703830.4933440.025*0.804 (5)
C30.6596 (7)0.7667 (5)0.6026 (4)0.0194 (10)0.804 (5)
H3A0.7142960.7662170.6302930.023*0.804 (5)
H3B0.6213770.7236340.6305790.023*0.804 (5)
N3B0.552 (2)0.791 (2)0.4623 (14)0.020 (3)0.196 (5)
H1B10.5012060.7611270.4682060.024*0.196 (5)
H1B20.5554560.8038090.4115610.024*0.196 (5)
C1B0.6166 (11)0.7148 (15)0.4790 (9)0.023 (3)0.196 (5)
H1B30.6002770.6535620.4536740.028*0.196 (5)
H1B40.6712790.7355170.4587790.028*0.196 (5)
C2B0.6246 (7)0.6993 (8)0.5636 (6)0.023 (2)0.196 (5)
H2B10.6564390.6389840.5731990.028*0.196 (5)
H2B20.5678630.6905890.5844780.028*0.196 (5)
C3B0.668 (3)0.781 (3)0.6058 (19)0.018 (3)0.196 (5)
H3B10.6779290.7613920.6594680.021*0.196 (5)
H3B20.7233570.7922650.5828270.021*0.196 (5)
C40.69163 (14)0.94311 (17)0.60980 (12)0.0214 (4)
H4A0.7367620.9201650.6449150.026*
H4B0.6686411.0035760.6311680.026*
C50.72837 (13)0.96430 (15)0.53303 (12)0.0184 (4)
C60.80978 (13)0.99839 (16)0.52841 (13)0.0214 (4)
H60.8447971.0033350.572730.026*
C70.83877 (14)1.02508 (18)0.45742 (13)0.0256 (5)
H70.8941351.0493120.4524560.031*
C80.78671 (14)1.01622 (18)0.39401 (13)0.0251 (5)
H80.8059831.0336760.3449350.03*
C90.70530 (14)0.98125 (16)0.40284 (12)0.0199 (4)
C100.64684 (14)0.97137 (18)0.33522 (12)0.0239 (5)
H10A0.6577550.9100920.3091930.036*
H10B0.6558281.0251230.2999040.036*
H10C0.5887270.9724210.3523840.036*
C110.57251 (13)0.87692 (16)0.67526 (12)0.0198 (4)
H11A0.5610890.9457840.6863120.024*
H11B0.6037860.8492790.7194760.024*
C120.49079 (13)0.82365 (16)0.66401 (12)0.0199 (4)
C130.45371 (14)0.77419 (17)0.72304 (13)0.0248 (5)
H130.4811830.7680840.77140.03*
C140.37523 (15)0.73375 (18)0.70960 (14)0.0280 (5)
H140.3477120.6999180.7490890.034*
C150.33745 (14)0.74296 (17)0.63861 (14)0.0254 (5)
H150.2832110.7166220.629230.03*
C160.37914 (13)0.79116 (15)0.58043 (13)0.0206 (4)
C170.34223 (14)0.79910 (17)0.50155 (13)0.0237 (5)
H17A0.3680060.8535770.4750410.036*
H17B0.2816140.8096640.504470.036*
H17C0.3528920.739260.4734390.036*
C180.4398 (3)0.8992 (4)0.9245 (2)0.0780 (13)
H18A0.4608190.842420.8974220.117*
H18B0.4735170.9096030.9710870.117*
H18C0.3811160.8885760.937870.117*
C190.4452 (3)0.9794 (3)0.8780 (2)0.0687 (11)
H19A0.4116120.9692580.8305790.082*
H19B0.5042970.990350.8638970.082*
O20.4151 (2)1.0594 (3)0.9173 (2)0.0911 (10)
C200.4051 (2)1.1363 (3)0.87248 (19)0.0541 (8)
H20A0.3566261.1270910.8371180.065*
H20B0.4559341.1470180.8419940.065*
C210.3904 (3)1.2211 (5)0.9244 (3)0.0941 (18)
H21A0.3826451.2797930.893720.141*
H21B0.3399891.2094850.9542140.141*
H21C0.4388151.2293160.9590660.141*
C220.09092 (13)1.17753 (16)0.28704 (13)0.0211 (4)
C230.11769 (14)1.26414 (17)0.25359 (14)0.0260 (5)
H230.1209681.2672590.1995670.031*
C240.13964 (14)1.34558 (18)0.29605 (16)0.0299 (5)
H240.1570211.4027950.2709130.036*
C250.13615 (15)1.34325 (18)0.37494 (16)0.0312 (6)
H250.151861.398280.4043160.037*
C260.10935 (15)1.25932 (18)0.41053 (15)0.0287 (5)
H260.1064391.2567130.4645940.034*
C270.08681 (14)1.17918 (17)0.36692 (14)0.0243 (5)
H270.0677481.1229390.3923920.029*
C280.11586 (13)1.07869 (15)0.15746 (12)0.0193 (4)
C290.08354 (14)1.05345 (16)0.08536 (13)0.0214 (4)
H290.0247841.0438980.0794140.026*
C300.13412 (15)1.04168 (17)0.02163 (13)0.0243 (5)
H300.1093621.0250210.0263430.029*
C310.21998 (15)1.05422 (16)0.02824 (14)0.0254 (5)
H310.254691.0451070.0146140.03*
C320.25456 (14)1.08035 (16)0.09852 (14)0.0240 (5)
H320.3133971.0896790.1038910.029*
C330.20347 (14)1.09291 (17)0.16106 (13)0.0231 (4)
H330.2286161.1119010.2083210.028*
C340.04087 (13)1.09627 (15)0.21570 (12)0.0187 (4)
C350.08489 (13)1.18282 (17)0.22570 (13)0.0220 (4)
H350.0548651.238140.2431010.026*
C360.17108 (14)1.19132 (18)0.21119 (14)0.0260 (5)
H360.1984871.2512770.2194020.031*
C370.21652 (14)1.11247 (18)0.18487 (13)0.0252 (5)
H370.2750041.1178590.1743660.03*
C380.17535 (14)1.02566 (17)0.17411 (12)0.0227 (5)
H380.2058280.970850.1563570.027*
C390.08937 (14)1.01809 (16)0.18916 (12)0.0203 (4)
H390.0626120.9577030.1811420.024*
C400.07372 (13)0.98213 (15)0.28312 (12)0.0178 (4)
C410.01626 (13)0.95352 (16)0.33934 (12)0.0202 (4)
H410.0320730.9922640.3467610.024*
C420.02706 (14)0.87168 (17)0.38412 (12)0.0231 (5)
H420.0131440.8559060.421430.028*
C430.09664 (15)0.81266 (17)0.37452 (13)0.0243 (5)
H430.1051790.7571550.4056090.029*
C440.15325 (14)0.83664 (17)0.31857 (13)0.0241 (5)
H440.2005080.7963910.3104760.029*
C450.14154 (13)0.91924 (16)0.27402 (12)0.0209 (4)
H450.1812620.9334160.2359020.025*
N20.62427 (11)0.86938 (13)0.60570 (10)0.0177 (3)
N40.67697 (11)0.95591 (13)0.47178 (10)0.0174 (3)
N10.45540 (11)0.83090 (13)0.59378 (10)0.0186 (4)
O10.47256 (9)0.96773 (10)0.43771 (8)0.0173 (3)
B10.06033 (14)1.08398 (18)0.23509 (14)0.0183 (4)
Mn10.54141 (2)0.91694 (2)0.51245 (2)0.01497 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0174 (11)0.0186 (12)0.013 (2)0.0024 (10)0.0015 (15)0.0061 (15)
C10.022 (2)0.0159 (18)0.0272 (14)0.0004 (15)0.0027 (14)0.0024 (11)
C20.0167 (13)0.0180 (13)0.0269 (14)0.0031 (10)0.0009 (10)0.0024 (10)
C30.018 (3)0.016 (3)0.0236 (15)0.0048 (18)0.0020 (14)0.0014 (15)
N3B0.022 (4)0.026 (4)0.012 (6)0.002 (4)0.000 (5)0.001 (5)
C1B0.024 (6)0.015 (5)0.031 (4)0.000 (5)0.003 (5)0.002 (4)
C2B0.018 (4)0.020 (4)0.032 (4)0.006 (3)0.002 (3)0.001 (3)
C3B0.016 (5)0.017 (6)0.020 (4)0.001 (5)0.001 (4)0.002 (4)
C40.0188 (10)0.0266 (11)0.0187 (10)0.0047 (9)0.0032 (8)0.0012 (8)
C50.0163 (10)0.0179 (10)0.0209 (10)0.0015 (8)0.0004 (8)0.0001 (8)
C60.0157 (10)0.0251 (11)0.0233 (10)0.0007 (8)0.0025 (8)0.0013 (9)
C70.0167 (10)0.0322 (13)0.0281 (12)0.0029 (9)0.0043 (9)0.0026 (10)
C80.0210 (11)0.0335 (13)0.0209 (11)0.0003 (9)0.0068 (8)0.0001 (9)
C90.0201 (10)0.0197 (10)0.0200 (10)0.0014 (8)0.0028 (8)0.0020 (8)
C100.0237 (11)0.0290 (12)0.0190 (10)0.0003 (9)0.0014 (8)0.0021 (9)
C110.0202 (10)0.0232 (11)0.0160 (9)0.0008 (8)0.0013 (8)0.0016 (8)
C120.0187 (10)0.0190 (10)0.0220 (10)0.0037 (8)0.0029 (8)0.0022 (8)
C130.0227 (11)0.0281 (12)0.0237 (11)0.0043 (9)0.0028 (9)0.0069 (9)
C140.0237 (11)0.0263 (12)0.0344 (13)0.0024 (9)0.0105 (10)0.0109 (10)
C150.0168 (10)0.0230 (11)0.0366 (13)0.0003 (9)0.0034 (9)0.0046 (10)
C160.0170 (10)0.0147 (10)0.0300 (11)0.0027 (8)0.0018 (8)0.0000 (8)
C170.0180 (10)0.0204 (11)0.0325 (12)0.0022 (8)0.0019 (9)0.0003 (9)
C180.086 (3)0.089 (3)0.058 (2)0.010 (3)0.017 (2)0.012 (2)
C190.071 (3)0.068 (3)0.066 (2)0.003 (2)0.014 (2)0.010 (2)
O20.077 (2)0.082 (2)0.115 (3)0.0006 (17)0.0279 (19)0.010 (2)
C200.056 (2)0.067 (2)0.0385 (17)0.0003 (17)0.0055 (14)0.0105 (16)
C210.058 (3)0.161 (5)0.064 (3)0.016 (3)0.012 (2)0.032 (3)
C220.0125 (9)0.0216 (11)0.0293 (11)0.0008 (8)0.0001 (8)0.0020 (9)
C230.0192 (11)0.0269 (12)0.0322 (12)0.0016 (9)0.0045 (9)0.0019 (10)
C240.0192 (11)0.0231 (12)0.0475 (15)0.0020 (9)0.0030 (10)0.0016 (10)
C250.0195 (11)0.0234 (12)0.0505 (16)0.0003 (9)0.0063 (10)0.0114 (11)
C260.0237 (11)0.0296 (13)0.0325 (13)0.0043 (10)0.0071 (9)0.0082 (10)
C270.0183 (10)0.0218 (11)0.0326 (12)0.0015 (8)0.0032 (9)0.0024 (9)
C280.0157 (10)0.0173 (10)0.0250 (10)0.0011 (8)0.0024 (8)0.0016 (8)
C290.0191 (10)0.0194 (10)0.0259 (11)0.0010 (8)0.0015 (8)0.0013 (8)
C300.0279 (12)0.0211 (11)0.0241 (11)0.0022 (9)0.0032 (9)0.0019 (9)
C310.0281 (12)0.0191 (11)0.0293 (12)0.0020 (9)0.0100 (9)0.0021 (9)
C320.0162 (10)0.0225 (11)0.0335 (12)0.0018 (8)0.0046 (9)0.0038 (9)
C330.0179 (10)0.0265 (12)0.0250 (11)0.0005 (9)0.0002 (8)0.0015 (9)
C340.0175 (10)0.0208 (10)0.0179 (10)0.0019 (8)0.0019 (8)0.0026 (8)
C350.0177 (10)0.0225 (11)0.0258 (11)0.0017 (8)0.0021 (8)0.0004 (9)
C360.0192 (11)0.0266 (12)0.0323 (12)0.0042 (9)0.0047 (9)0.0039 (10)
C370.0144 (10)0.0361 (13)0.0252 (11)0.0003 (9)0.0011 (8)0.0059 (10)
C380.0181 (10)0.0297 (12)0.0202 (10)0.0063 (9)0.0000 (8)0.0039 (9)
C390.0191 (10)0.0206 (10)0.0214 (10)0.0008 (8)0.0021 (8)0.0021 (8)
C400.0153 (10)0.0193 (10)0.0187 (10)0.0017 (8)0.0018 (8)0.0026 (8)
C410.0171 (10)0.0220 (10)0.0216 (10)0.0004 (8)0.0004 (8)0.0021 (8)
C420.0220 (11)0.0275 (12)0.0197 (10)0.0055 (9)0.0006 (8)0.0010 (9)
C430.0291 (12)0.0200 (11)0.0235 (11)0.0005 (9)0.0057 (9)0.0013 (9)
C440.0224 (11)0.0220 (11)0.0280 (11)0.0043 (9)0.0008 (9)0.0034 (9)
C450.0179 (10)0.0227 (11)0.0220 (10)0.0001 (8)0.0005 (8)0.0032 (9)
N20.0160 (8)0.0188 (9)0.0182 (8)0.0001 (7)0.0002 (7)0.0013 (7)
N40.0157 (8)0.0177 (8)0.0187 (8)0.0008 (7)0.0002 (6)0.0007 (7)
N10.0176 (8)0.0166 (8)0.0216 (9)0.0009 (7)0.0008 (7)0.0013 (7)
O10.0174 (7)0.0169 (7)0.0173 (7)0.0008 (6)0.0015 (5)0.0013 (6)
B10.0132 (10)0.0192 (11)0.0226 (11)0.0002 (9)0.0013 (8)0.0014 (9)
Mn10.01475 (15)0.01496 (15)0.01515 (15)0.00061 (12)0.00081 (11)0.00073 (11)
Geometric parameters (Å, º) top
N3—C11.487 (5)C19—O21.394 (5)
N3—Mn12.133 (6)C19—H19A0.99
N3—H1A0.91C19—H19B0.99
N3—H1B0.91O2—C201.331 (5)
C1—C21.518 (4)C20—C211.507 (6)
C1—H1C0.99C20—H20A0.99
C1—H1D0.99C20—H20B0.99
C2—C31.517 (8)C21—H21A0.98
C2—H2A0.99C21—H21B0.98
C2—H2B0.99C21—H21C0.98
C3—N21.529 (9)C22—C271.403 (3)
C3—H3A0.99C22—C231.404 (3)
C3—H3B0.99C22—B11.651 (3)
N3B—C1B1.502 (16)C23—C241.391 (3)
N3B—Mn11.96 (3)C23—H230.95
N3B—H1B10.91C24—C251.385 (4)
N3B—H1B20.91C24—H240.95
C1B—C2B1.500 (15)C25—C261.390 (4)
C1B—H1B30.99C25—H250.95
C1B—H1B40.99C26—C271.390 (3)
C2B—C3B1.516 (18)C26—H260.95
C2B—H2B10.99C27—H270.95
C2B—H2B20.99C28—C291.399 (3)
C3B—N21.40 (5)C28—C331.411 (3)
C3B—H3B10.99C28—B11.639 (3)
C3B—H3B20.99C29—C301.400 (3)
C4—N21.482 (3)C29—H290.95
C4—C51.506 (3)C30—C311.383 (3)
C4—H4A0.99C30—H300.95
C4—H4B0.99C31—C321.387 (3)
C5—N41.343 (3)C31—H310.95
C5—C61.385 (3)C32—C331.389 (3)
C6—C71.386 (3)C32—H320.95
C6—H60.95C33—H330.95
C7—C81.379 (3)C34—C351.401 (3)
C7—H70.95C34—C391.404 (3)
C8—C91.397 (3)C34—B11.651 (3)
C8—H80.95C35—C361.398 (3)
C9—N41.345 (3)C35—H350.95
C9—C101.499 (3)C36—C371.384 (3)
C10—H10A0.98C36—H360.95
C10—H10B0.98C37—C381.384 (3)
C10—H10C0.98C37—H370.95
C11—N21.489 (3)C38—C391.395 (3)
C11—C121.507 (3)C38—H380.95
C11—H11A0.99C39—H390.95
C11—H11B0.99C40—C451.400 (3)
C12—N11.347 (3)C40—C411.415 (3)
C12—C131.383 (3)C40—B11.653 (3)
C13—C141.387 (3)C41—C421.386 (3)
C13—H130.95C41—H410.95
C14—C151.377 (3)C42—C431.391 (3)
C14—H140.95C42—H420.95
C15—C161.397 (3)C43—C441.386 (3)
C15—H150.95C43—H430.95
C16—N11.351 (3)C44—C451.395 (3)
C16—C171.496 (3)C44—H440.95
C17—H17A0.98C45—H450.95
C17—H17B0.98N2—Mn12.1828 (18)
C17—H17C0.98N4—Mn12.3522 (18)
C18—C191.381 (6)N1—Mn12.3251 (18)
C18—H18A0.98O1—Mn11.8325 (15)
C18—H18B0.98O1—Mn1i1.8349 (15)
C18—H18C0.98Mn1—Mn1i2.6825 (7)
C1—N3—Mn1119.9 (3)C20—C21—H21C109.5
C1—N3—H1A107.3H21A—C21—H21C109.5
Mn1—N3—H1A107.3H21B—C21—H21C109.5
C1—N3—H1B107.3C27—C22—C23115.0 (2)
Mn1—N3—H1B107.3C27—C22—B1123.0 (2)
H1A—N3—H1B106.9C23—C22—B1121.9 (2)
N3—C1—C2112.4 (4)C24—C23—C22122.9 (2)
N3—C1—H1C109.1C24—C23—H23118.5
C2—C1—H1C109.1C22—C23—H23118.5
N3—C1—H1D109.1C25—C24—C23120.0 (2)
C2—C1—H1D109.1C25—C24—H24120
H1C—C1—H1D107.9C23—C24—H24120
C3—C2—C1114.2 (4)C24—C25—C26119.1 (2)
C3—C2—H2A108.7C24—C25—H25120.5
C1—C2—H2A108.7C26—C25—H25120.5
C3—C2—H2B108.7C25—C26—C27119.9 (2)
C1—C2—H2B108.7C25—C26—H26120
H2A—C2—H2B107.6C27—C26—H26120
C2—C3—N2116.7 (6)C26—C27—C22123.0 (2)
C2—C3—H3A108.1C26—C27—H27118.5
N2—C3—H3A108.1C22—C27—H27118.5
C2—C3—H3B108.1C29—C28—C33115.0 (2)
N2—C3—H3B108.1C29—C28—B1124.39 (19)
H3A—C3—H3B107.3C33—C28—B1120.48 (19)
C1B—N3B—Mn1126.7 (19)C28—C29—C30122.8 (2)
C1B—N3B—H1B1105.6C28—C29—H29118.6
Mn1—N3B—H1B1105.6C30—C29—H29118.6
C1B—N3B—H1B2105.6C31—C30—C29120.2 (2)
Mn1—N3B—H1B2105.6C31—C30—H30119.9
H1B1—N3B—H1B2106.1C29—C30—H30119.9
C2B—C1B—N3B109.8 (15)C30—C31—C32118.9 (2)
C2B—C1B—H1B3109.7C30—C31—H31120.6
N3B—C1B—H1B3109.7C32—C31—H31120.6
C2B—C1B—H1B4109.7C31—C32—C33120.2 (2)
N3B—C1B—H1B4109.7C31—C32—H32119.9
H1B3—C1B—H1B4108.2C33—C32—H32119.9
C1B—C2B—C3B113.8 (17)C32—C33—C28122.9 (2)
C1B—C2B—H2B1108.8C32—C33—H33118.6
C3B—C2B—H2B1108.8C28—C33—H33118.6
C1B—C2B—H2B2108.8C35—C34—C39115.2 (2)
C3B—C2B—H2B2108.8C35—C34—B1123.53 (19)
H2B1—C2B—H2B2107.7C39—C34—B1121.25 (19)
N2—C3B—C2B115 (3)C36—C35—C34122.9 (2)
N2—C3B—H3B1108.4C36—C35—H35118.6
C2B—C3B—H3B1108.4C34—C35—H35118.6
N2—C3B—H3B2108.4C37—C36—C35120.1 (2)
C2B—C3B—H3B2108.4C37—C36—H36120
H3B1—C3B—H3B2107.5C35—C36—H36120
N2—C4—C5112.64 (17)C38—C37—C36118.9 (2)
N2—C4—H4A109.1C38—C37—H37120.6
C5—C4—H4A109.1C36—C37—H37120.6
N2—C4—H4B109.1C37—C38—C39120.4 (2)
C5—C4—H4B109.1C37—C38—H38119.8
H4A—C4—H4B107.8C39—C38—H38119.8
N4—C5—C6122.8 (2)C38—C39—C34122.5 (2)
N4—C5—C4117.05 (18)C38—C39—H39118.7
C6—C5—C4119.99 (19)C34—C39—H39118.7
C5—C6—C7118.2 (2)C45—C40—C41114.69 (19)
C5—C6—H6120.9C45—C40—B1124.37 (18)
C7—C6—H6120.9C41—C40—B1120.93 (18)
C8—C7—C6119.6 (2)C42—C41—C40123.2 (2)
C8—C7—H7120.2C42—C41—H41118.4
C6—C7—H7120.2C40—C41—H41118.4
C7—C8—C9119.2 (2)C41—C42—C43120.1 (2)
C7—C8—H8120.4C41—C42—H42119.9
C9—C8—H8120.4C43—C42—H42119.9
N4—C9—C8121.3 (2)C44—C43—C42118.5 (2)
N4—C9—C10118.12 (19)C44—C43—H43120.7
C8—C9—C10120.59 (19)C42—C43—H43120.7
C9—C10—H10A109.5C43—C44—C45120.7 (2)
C9—C10—H10B109.5C43—C44—H44119.7
H10A—C10—H10B109.5C45—C44—H44119.7
C9—C10—H10C109.5C44—C45—C40122.8 (2)
H10A—C10—H10C109.5C44—C45—H45118.6
H10B—C10—H10C109.5C40—C45—H45118.6
N2—C11—C12110.51 (17)C3B—N2—C4103.8 (15)
N2—C11—H11A109.5C3B—N2—C11110.0 (17)
C12—C11—H11A109.5C4—N2—C11108.97 (16)
N2—C11—H11B109.5C4—N2—C3111.9 (4)
C12—C11—H11B109.5C11—N2—C3107.8 (4)
H11A—C11—H11B108.1C3B—N2—Mn1123.8 (11)
N1—C12—C13122.8 (2)C4—N2—Mn1104.85 (12)
N1—C12—C11115.39 (18)C11—N2—Mn1104.74 (12)
C13—C12—C11121.7 (2)C3—N2—Mn1118.1 (3)
C12—C13—C14118.1 (2)C5—N4—C9119.01 (18)
C12—C13—H13121C5—N4—Mn1109.15 (13)
C14—C13—H13121C9—N4—Mn1131.23 (14)
C15—C14—C13119.6 (2)C12—N1—C16119.17 (19)
C15—C14—H14120.2C12—N1—Mn1110.88 (14)
C13—C14—H14120.2C16—N1—Mn1129.95 (15)
C14—C15—C16119.8 (2)Mn1—O1—Mn1i94.02 (7)
C14—C15—H15120.1C28—B1—C22109.51 (17)
C16—C15—H15120.1C28—B1—C34112.06 (17)
N1—C16—C15120.5 (2)C22—B1—C34108.04 (17)
N1—C16—C17117.82 (19)C28—B1—C40108.53 (17)
C15—C16—C17121.7 (2)C22—B1—C40110.73 (17)
C16—C17—H17A109.5C34—B1—C40107.96 (17)
C16—C17—H17B109.5O1—Mn1—O1i85.98 (7)
H17A—C17—H17B109.5O1—Mn1—N3B94.3 (6)
C16—C17—H17C109.5O1i—Mn1—N3B177.0 (11)
H17A—C17—H17C109.5O1—Mn1—N389.11 (13)
H17B—C17—H17C109.5O1i—Mn1—N3175.08 (13)
C19—C18—H18A109.5O1—Mn1—N2174.90 (7)
C19—C18—H18B109.5O1i—Mn1—N289.04 (7)
H18A—C18—H18B109.5N3B—Mn1—N290.7 (6)
C19—C18—H18C109.5N3—Mn1—N295.86 (13)
H18A—C18—H18C109.5O1—Mn1—N1106.39 (7)
H18B—C18—H18C109.5O1i—Mn1—N194.30 (6)
C18—C19—O2108.7 (4)N3B—Mn1—N182.8 (10)
C18—C19—H19A109.9N3—Mn1—N187.4 (2)
O2—C19—H19A109.9N2—Mn1—N175.08 (6)
C18—C19—H19B109.9O1—Mn1—N4103.70 (6)
O2—C19—H19B109.9O1i—Mn1—N493.77 (6)
H19A—C19—H19B108.3N3B—Mn1—N489.1 (11)
C20—O2—C19112.4 (4)N3—Mn1—N487.0 (2)
O2—C20—C21106.6 (3)N2—Mn1—N475.49 (6)
O2—C20—H20A110.4N1—Mn1—N4149.29 (6)
C21—C20—H20A110.4O1—Mn1—Mn1i43.03 (5)
O2—C20—H20B110.4O1i—Mn1—Mn1i42.96 (5)
C21—C20—H20B110.4N3B—Mn1—Mn1i137.2 (6)
H20A—C20—H20B108.6N3—Mn1—Mn1i132.13 (12)
C20—C21—H21A109.5N2—Mn1—Mn1i131.99 (5)
C20—C21—H21B109.5N1—Mn1—Mn1i104.13 (5)
H21A—C21—H21B109.5N4—Mn1—Mn1i101.93 (5)
Symmetry code: (i) x+1, y+2, z+1.
Comparison of key bond lengths and angles (Å ,°) for complexes 1 and 2 top
Complex 1Complex 2
Mn1—O11.829 (3)1.8325 (15)
Mn1—O1'1.835 (2)1.8350 (15)
Mn1—N12.348 (3)2.3251 (18)
Mn1—N22.123 (3)2.1828 (18)
Mn1—N32.111 (4)2.133 (6)
Mn1—N42.368 (3)2.3522 (18)
Mn1—Mn1'2.6899 (15)2.6825 (7)
O1—Mn1—N193.76 (12)106.39 (7)
O1—Mn1—N292.13 (12)174.90 (7)
O1—Mn1—N3174.90 (12)89.11 (13)
O1—Mn1—N495.77 (12)103.70 (6)
O1—Mn1—O1'85.53 (3)85.98 (7)
Symmetry codes for primed atoms are -x, 1 - y, 1 - z for 1 and 1 - x, 2 - y, 1 - z for 2.
 

Footnotes

Staff crystallogapher.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1664682).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoggins, M. K., Brines, L. M. & Kovacs, J. A. (2013a). Inorg. Chem. 52, 12383–12393.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCoggins, M. K. & Kovacs, J. A. (2011). J. Am. Chem. Soc. 133, 12470–12473.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCoggins, M. K., Martin-Diaconescu, V., DeBeer, S. & Kovacs, J. A. (2013b). J. Am. Chem. Soc. 135, 4260–4272.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCoggins, M. K., Poon, P. C. Y. & Kovacs, J. A. (2020). Inorg. Chem. In preparation.  Google Scholar
First citationCoggins, M. K., Sun, X., Kwak, Y., Solomon, E. I., Rybak-Akimova, E. & Kovacs, J. A. (2013c). J. Am. Chem. Soc. 135, 5631–5640.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCoggins, M. K., Toledo, S., Shaffer, E., Kaminsky, W., Shearer, J. & Kovacs, J. A. (2012). Inorg. Chem. 51, 6633–6644.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatakeyama, M., Ogata, K., Fujii, K., Yachandra, V. K., Yano, J. & Nakamura, S. (2016). Chem. Phys. Lett. 651, 243–250.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKok, B., Forbush, B. & McGloin, M. (1970). Photochem. Photobiol. 11, 457–475.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKrewald, V., Lassalle-Kaiser, B., Boron, T. T., Pollock, C. J., Kern, J., Beckwith, M. A., Yachandra, V. K., Pecoraro, V. L., Yano, J., Neese, F. & DeBeer, S. (2013). Inorg. Chem. 52, 12904–12914.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLewis, N. S. (2016). Science, 351, 353–363.  Web of Science CrossRef CAS Google Scholar
First citationLohmiller, T., Krewald, V., Sedoud, A., Rutherford, A. W., Neese, F., Lubitz, W., Pantazis, D. A. & Cox, N. (2017). J. Am. Chem. Soc. 139, 14412–14424.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMullins, C. S. & Pecoraro, V. L. (2008). Coord. Chem. Rev. 252, 416–443.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPoon, P. C. Y., Dedushko, M., Sun, X., Yang, G., Toledo, S., Hayes, E. C., Johansen, A., Piquette, M. C., Rees, J. A., Stoll, S., Rybak-Akimova, E. & Kovacs, J. A. (2019). J. Am. Chem. Soc. 141, 15046–15057.  Web of Science PubMed Google Scholar
First citationQue, L. & Tolman, W. B. (2002). Angew. Chem. Int. Ed. 41, 1114–1137.  CAS Google Scholar
First citationRenger, G. (2011). J. Photochem. Photobiol. B, 104, 35–43.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRetegan, M., Krewald, V., Mamedov, F., Neese, F., Lubitz, W., Cox, N. & Pantazis, D. A. (2016). Chem. Sci. 7, 72–84.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTorayama, H., Nishide, T., Asada, H., Fujiwara, M. & Matsushita, T. (1998). Polyhedron, 17, 105–118.  CSD CrossRef CAS Web of Science Google Scholar
First citationUmena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. (2011). Nature, 473, 55–60.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWaasmaier, D. & Kirfel, A. (1995). Acta Cryst. A51, 416–431.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYano, J. & Yachandra, V. (2014). Chem. Rev. 114, 4175–4205  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds