research communications
The
Hirshfeld surface analysis and energy frameworks of 2-[2-(methoxycarbonyl)-3,6-bis(methoxymethoxy)phenyl]acetic acidaInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
In the title compound, C14H18O8, (I), the methoxycarbonyl [–C(=O)OCH3] and the acetic acid [–CH2C(=O)OH] groups are inclined to the benzene ring by 79.24 (11) and 76.71 (13)°, respectively, and are normal to each other with a dihedral angle of 90.00 (13)°. In the crystal, molecules are linked by a pair of O—H⋯O hydrogen bonds forming the familiar acetic acid inversion dimer. The dimers are linked by two C—H⋯O hydrogen bonds and an offset π–π interaction [intercentroid distance = 3.6405 (14) Å], forming layers lying parallel to the (10) plane. The layers are linked by a third C—H⋯O hydrogen bond and a C—H⋯π interaction to form a supramolecular framework.
Keywords: crystal structure; isocoumarin; hydrogen bonding; C—H⋯π interactions; offset π–π interactions; supramolecular framework; Hirshfeld surface analysis; energy frameworks.
CCDC reference: 2009890
1. Chemical context
Ceratocystis fimbriata species. The latter are pathogenic agents responsible for the infections of coffee and plane trees (Gremaud & Tabacchi, 1994; Bürki et al., 2003). The analysis of the culture medium of Ophiostoma ulmi, a pathogenic agent responsible for elm disease and classified in the family of Ceratocystis, enabled Michel (2001) to isolate sixteen metabolites including four without apparent toxicity and a new natural product, 3-methyl-3,5,8-trihydroxy-3,4-dihydroisocoumarin, found in the extract of diseased wood. Qualitatively, the latter is present in trace amounts; however, the toxicity of this metabolite is possible, since the activity is not necessarily proportional to the concentration.
are among the phytotoxins produced by theThe title compound (I), is a key intermediate for the proposed total synthesis of 3-methyl-3,5,8-trihydroxy-3,4-dihydroisocoumarin, and its synthesis is illustrated in Fig. 1 (Tiouabi, 2005). It was synthesized from hydroquinone (1), which was first brominated to give compound 2. The latter was then reacted with NaH and ClCH2OCH3 to give compound 3, so protecting the hydroxyl groups. Reacting 3 with tetramethylpiperidene with n-butyllithium and CH2(CO2CH3)2 resulted in the formation of compound 4. Finally 4 was reacted with various quantities of KOH in methanol/water (2:1) to give the title compound, I. The highest yield (81%) was obtained by reacting 20 equivalents of KOH in methanol/water (2:1) at 298 K under stirring for 16 h. Interestingly, the same reaction with reflux for 30 minutes yielded the diacid, 2-(carboxymethyl)-3,6-dihydroxybenzoic acid (5), with a yield of 82% (Fig. 1).
2. Structural commentary
The molecular structure of compound I is illustrated in Fig. 2. The methoxymethyl group (mean plane 1: C2/C7/O1/O2/C8; r.m.s. deviation = 0.009 Å) is inclined to the benzene ring by 79.24 (11)°. The plane of the acetic acid unit (mean plane 2: C13/C14/O7/O8; r.m.s. deviation = 0.014 Å) is inclined to the benzene ring by 76.71 (13) °. Planes 1 and 2 are normal to each other with a dihedral angle of 90.00 (13)°. The methoxymethoxy side chains (O3–C9–O4–C10 and O5–C11–O6–C12) are displaced to opposite sides of the benzene ring. They have twisted conformations as seen from the torsion angles given in Table 3.
3. Supramolecular features
In the crystal of I, molecules are linked by a pair of O—H⋯O hydrogen bonds (O8—H8⋯O7i) forming an inversion dimer with an R22(8) ring motif (Fig. 3 and Table 1). The dimers are linked by two C—H⋯O hydrogen bonds (C9—H9B⋯O6ii and C11—H11A⋯O1iii) and offset π–π interactions between inversion-related benzene rings, so forming layers lying parallel to (10). The layers are linked by a third C—H⋯O hydrogen bond (C13—H13B⋯O4iv) and a C—H⋯π interaction to form a supramolecular framework (Table 1 and Fig. 4). Details of the offset π–π interaction are as follows: Cg⋯Cgiii = 3.6405 (14) Å, where Cg is the centroid of the C1–C6 benzene ring; interplanar distance = 3.5911 (9) Å; offset = 0.597 Å; symmetry code: (iii) −x, −y + 1, −z.
|
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009), the associated two-dimensional fingerprint plots and the calculation of the energy frameworks (McKinnon et al., 2007) were performed with CrystalExplorer17.5 (Turner et al., 2017), following the protocol outlined in the recent article by Tiekink and collaborators (Tan et al., 2019). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The energy frameworks (Turner et al., 2015; Tan et al., 2019) are represented by cylinders joining the centroids of molecular pairs using red, green and blue colour codes for the electrostatic (Eele), dispersion (Edis) and total energy (Etot) components, respectively. The radius of the cylinder is proportional to the magnitude of the interaction energy.
A view of the Hirshfeld surface of I mapped over dnorm is shown in Fig. 5. The short interatomic O⋯H/H⋯O contacts are indicated by the large red spots. Other C—H⋯O contacts are indicated by faint red spots. A full list of short interatomic contacts in the crystal of I are given in Table 2. The majority of the significant contacts are O⋯H and C⋯H contacts, as confirmed by the two-dimensional fingerprint plots (Fig. 6). The principal intermolecular contacts for I are delineated into H⋯H (48.0%) (Fig. 6b), O⋯H/H⋯O (41.1%) (Fig. 6c), C⋯H/H⋯C (7.2%) (Fig. 6d) and C⋯C (2.7%) (Fig. 6e) contacts. The intermolecular contacts are therefore almost equally distributed between electrostatic and dispersion forces, as shown in Fig. 7a and 7b. The energy frameworks (Fig. 7) were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 5 Å about a central molecule, and were obtained using the wave function calculated at the HF/3-21G level of theory.
|
The calculation of the energy framework results in a colour-coded molecular cluster related to the specific interaction energy, see Fig. 8a. The individual energy components, electrostatic (Eele), polarization (Epol), dispersion (Edis) and repulsion (Erep) energies and the sum of these components (Etot) for the interactions relative to a reference molecule (*) are shown in Fig. 8b.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016) for the 3,6-bis(methoxymethoxy)phenyl gave only six hits. Three compounds are of particular interest, namely 1-[2-bromo-3,6-bis(methoxymethoxy)phenyl]-1-methoxyheptan-2-ol (CSD refcode GEZPUZ; Nakayama et al., 2018), 7-bromo-4-methoxy-5,8-bis(methoxymethoxy)-3-pentyl-3,4-dihydro-1H-2-benzopyran-1-one (GEZQAG; Nakayama et al., 2018) and 2,2′-{[2,5-bis(methoxymethoxy)-1,4-phenylene]dimethylylidene}dimalononitrile (IVIQIP; Zhang et al., 2017). The first two, GEZPUZ and GEZQAG [compounds 17 and 20 in the publication by Nakayama et al. (2018)], are key intermediates in the synthesis of the dihydroisocoumarin-type natural products, eurotiumide A and eurotiumide B. Compound IVIQIP [compound 1c in the publication by Zhang et al. (2017)] was synthesized in a study of organic solid fluorophores. The conformation of the –O–CH2–O–CH3 side chains are compared to that in compound I in Fig. 9 and Table 3. In GEZPUZ and GEZQAG these side chains are twisted and directed to the same side of the benzene ring. In IVIQIP they are also twisted but directed to opposite sides of the benzene ring as in compound I.
A search of the CSD for the
2-(2-(methoxycarbonyl)phenyl)acetic acid gave zero hits.6. Synthesis and crystallization
The synthesis of compound I is illustrated in Fig. 1. Full details of the syntheses and spectroscopic and analytical data for compounds 2–5 and I are available in the PhD thesis of Tiouabi (2005). It can be downloaded from the website https://doc.rero.ch/record, a digital library where many theses of Swiss universities are deposited. Colourless block-like crystals of I were obtained by slow evaporation of a solution in acetone-d6.
7. Refinement
Crystal data, data collection and structure . The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(OH and C-methyl) and 1.2Ueq(C) for other H-atoms.
details are summarized in Table 4
|
Intensity data were measured using a Stoe IPDS I, a one-circle diffractometer. For the triclinic system often only 93% of the θ/λ = 0.60.
is accessible, which explains why the alert diffrn_reflns_laue_measured_fraction_full value (0.942) below minimum (0.95) is given. This involves 155 random reflections out of the expected 2692 for the IUCr cutoff limit of sinSupporting information
CCDC reference: 2009890
https://doi.org/10.1107/S2056989020007987/ex2033sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007987/ex2033Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020007987/ex2033Isup3.cml
Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004); cell
CELL in IPDS-I (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C14H18O8 | Z = 2 |
Mr = 314.28 | F(000) = 332 |
Triclinic, P1 | Dx = 1.398 Mg m−3 |
a = 8.5628 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6623 (13) Å | Cell parameters from 3063 reflections |
c = 9.9767 (12) Å | θ = 2.2–25.8° |
α = 112.534 (14)° | µ = 0.12 mm−1 |
β = 94.744 (15)° | T = 173 K |
γ = 97.999 (16)° | Block, colourless |
V = 746.60 (19) Å3 | 0.30 × 0.30 × 0.20 mm |
Stoe IPDS 1 diffractometer | 2752 independent reflections |
Radiation source: fine-focus sealed tube | 1557 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.065 |
φ rotation scans | θmax = 26.0°, θmin = 2.3° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −10→10 |
Tmin = 0.827, Tmax = 1.000 | k = −11→11 |
6011 measured reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0527P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.83 | (Δ/σ)max < 0.001 |
2752 reflections | Δρmax = 0.25 e Å−3 |
204 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.019 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.25754 (19) | 0.8960 (2) | 0.1239 (2) | 0.0457 (5) | |
O2 | 0.30589 (19) | 0.94409 (18) | 0.3608 (2) | 0.0427 (5) | |
O3 | −0.08148 (17) | 0.86702 (16) | 0.21564 (19) | 0.0354 (4) | |
O4 | −0.36196 (18) | 0.82093 (18) | 0.1605 (2) | 0.0411 (5) | |
O5 | 0.12039 (17) | 0.34010 (16) | 0.18992 (18) | 0.0313 (4) | |
O6 | −0.07328 (18) | 0.23819 (17) | 0.29737 (19) | 0.0357 (4) | |
O7 | 0.35707 (18) | 0.58696 (18) | 0.45712 (19) | 0.0373 (4) | |
O8 | 0.52484 (19) | 0.4650 (2) | 0.3133 (2) | 0.0449 (5) | |
H8 | 0.548084 | 0.441888 | 0.384533 | 0.067* | |
C1 | 0.1715 (2) | 0.5912 (2) | 0.2067 (2) | 0.0255 (5) | |
C2 | 0.1204 (2) | 0.7231 (2) | 0.2130 (2) | 0.0255 (5) | |
C3 | −0.0431 (2) | 0.7295 (2) | 0.2044 (3) | 0.0266 (5) | |
C4 | −0.1531 (2) | 0.6025 (2) | 0.1876 (3) | 0.0290 (5) | |
H4 | −0.263625 | 0.606043 | 0.179939 | 0.035* | |
C5 | −0.1034 (2) | 0.4714 (2) | 0.1817 (3) | 0.0292 (5) | |
H5 | −0.179938 | 0.384882 | 0.170246 | 0.035* | |
C6 | 0.0580 (2) | 0.4643 (2) | 0.1925 (2) | 0.0262 (5) | |
C7 | 0.2333 (2) | 0.8614 (2) | 0.2243 (3) | 0.0284 (5) | |
C8 | 0.4160 (3) | 1.0825 (3) | 0.3806 (3) | 0.0494 (7) | |
H8A | 0.495875 | 1.056174 | 0.314572 | 0.074* | |
H8B | 0.469429 | 1.131775 | 0.482449 | 0.074* | |
H8C | 0.356664 | 1.152557 | 0.357997 | 0.074* | |
C9 | −0.2285 (3) | 0.8986 (3) | 0.2679 (3) | 0.0376 (6) | |
H9A | −0.238127 | 0.869474 | 0.352219 | 0.045* | |
H9B | −0.226769 | 1.009573 | 0.303253 | 0.045* | |
C10 | −0.3713 (3) | 0.8721 (3) | 0.0443 (3) | 0.0509 (7) | |
H10A | −0.362356 | 0.983164 | 0.085357 | 0.076* | |
H10B | −0.473812 | 0.824240 | −0.019781 | 0.076* | |
H10C | −0.284222 | 0.844062 | −0.012623 | 0.076* | |
C11 | 0.0113 (3) | 0.2090 (2) | 0.1794 (3) | 0.0314 (5) | |
H11A | −0.065027 | 0.172092 | 0.087538 | 0.038* | |
H11B | 0.071162 | 0.126917 | 0.174037 | 0.038* | |
C12 | 0.0227 (3) | 0.2754 (3) | 0.4335 (3) | 0.0487 (7) | |
H12A | 0.078802 | 0.191711 | 0.426820 | 0.073* | |
H12B | −0.044987 | 0.291178 | 0.510676 | 0.073* | |
H12C | 0.100661 | 0.368863 | 0.457137 | 0.073* | |
C13 | 0.3446 (2) | 0.5742 (3) | 0.2107 (3) | 0.0313 (6) | |
H13A | 0.356492 | 0.490502 | 0.118404 | 0.038* | |
H13B | 0.409856 | 0.669321 | 0.215295 | 0.038* | |
C14 | 0.4080 (2) | 0.5412 (2) | 0.3378 (3) | 0.0305 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0385 (9) | 0.0556 (11) | 0.0457 (13) | −0.0099 (8) | −0.0036 (8) | 0.0315 (9) |
O2 | 0.0435 (10) | 0.0378 (9) | 0.0348 (12) | −0.0124 (7) | −0.0001 (8) | 0.0095 (8) |
O3 | 0.0246 (8) | 0.0319 (8) | 0.0551 (13) | 0.0073 (7) | 0.0093 (7) | 0.0217 (8) |
O4 | 0.0259 (8) | 0.0473 (10) | 0.0627 (14) | 0.0081 (7) | 0.0063 (8) | 0.0351 (9) |
O5 | 0.0300 (8) | 0.0276 (8) | 0.0384 (11) | 0.0054 (6) | 0.0041 (7) | 0.0156 (7) |
O6 | 0.0350 (9) | 0.0405 (9) | 0.0339 (12) | 0.0031 (7) | 0.0048 (7) | 0.0189 (8) |
O7 | 0.0339 (9) | 0.0460 (9) | 0.0320 (12) | 0.0076 (7) | 0.0029 (8) | 0.0159 (8) |
O8 | 0.0354 (9) | 0.0633 (11) | 0.0482 (14) | 0.0216 (8) | 0.0067 (8) | 0.0311 (10) |
C1 | 0.0224 (10) | 0.0305 (11) | 0.0229 (14) | 0.0026 (9) | 0.0015 (9) | 0.0112 (9) |
C2 | 0.0245 (11) | 0.0282 (11) | 0.0243 (15) | 0.0007 (9) | 0.0016 (9) | 0.0127 (9) |
C3 | 0.0269 (11) | 0.0283 (11) | 0.0281 (15) | 0.0075 (9) | 0.0032 (9) | 0.0144 (10) |
C4 | 0.0219 (11) | 0.0340 (12) | 0.0320 (16) | 0.0036 (9) | 0.0019 (9) | 0.0151 (10) |
C5 | 0.0239 (11) | 0.0299 (12) | 0.0312 (15) | −0.0015 (9) | 0.0006 (9) | 0.0123 (10) |
C6 | 0.0266 (11) | 0.0283 (11) | 0.0248 (15) | 0.0060 (9) | 0.0022 (9) | 0.0118 (10) |
C7 | 0.0233 (11) | 0.0333 (12) | 0.0313 (16) | 0.0057 (9) | 0.0019 (10) | 0.0161 (11) |
C8 | 0.0392 (14) | 0.0377 (14) | 0.055 (2) | −0.0118 (11) | 0.0019 (13) | 0.0082 (12) |
C9 | 0.0320 (12) | 0.0371 (13) | 0.0486 (19) | 0.0120 (10) | 0.0119 (11) | 0.0191 (12) |
C10 | 0.0426 (15) | 0.0641 (17) | 0.060 (2) | 0.0190 (13) | 0.0137 (13) | 0.0355 (15) |
C11 | 0.0370 (13) | 0.0257 (11) | 0.0293 (16) | 0.0006 (9) | 0.0014 (10) | 0.0111 (10) |
C12 | 0.0506 (16) | 0.0578 (17) | 0.0354 (19) | 0.0046 (13) | 0.0034 (12) | 0.0187 (13) |
C13 | 0.0237 (11) | 0.0346 (12) | 0.0395 (17) | 0.0064 (9) | 0.0054 (10) | 0.0186 (11) |
C14 | 0.0206 (11) | 0.0317 (12) | 0.0389 (18) | 0.0009 (9) | 0.0013 (10) | 0.0158 (11) |
O1—C7 | 1.196 (3) | C4—C5 | 1.374 (3) |
O2—C7 | 1.329 (3) | C4—H4 | 0.9500 |
O2—C8 | 1.461 (3) | C5—C6 | 1.391 (3) |
O3—C3 | 1.379 (2) | C5—H5 | 0.9500 |
O3—C9 | 1.429 (3) | C8—H8A | 0.9800 |
O4—C9 | 1.400 (3) | C8—H8B | 0.9800 |
O4—C10 | 1.425 (3) | C8—H8C | 0.9800 |
O5—C6 | 1.372 (2) | C9—H9A | 0.9900 |
O5—C11 | 1.429 (2) | C9—H9B | 0.9900 |
O6—C11 | 1.390 (3) | C10—H10A | 0.9800 |
O6—C12 | 1.417 (3) | C10—H10B | 0.9800 |
O7—C14 | 1.240 (3) | C10—H10C | 0.9800 |
O8—C14 | 1.308 (3) | C11—H11A | 0.9900 |
O8—H8 | 0.8400 | C11—H11B | 0.9900 |
C1—C2 | 1.386 (3) | C12—H12A | 0.9800 |
C1—C6 | 1.408 (3) | C12—H12B | 0.9800 |
C1—C13 | 1.513 (3) | C12—H12C | 0.9800 |
C2—C3 | 1.406 (3) | C13—C14 | 1.499 (3) |
C2—C7 | 1.496 (3) | C13—H13A | 0.9900 |
C3—C4 | 1.383 (3) | C13—H13B | 0.9900 |
C7—O2—C8 | 115.27 (19) | O4—C9—O3 | 113.0 (2) |
C3—O3—C9 | 116.23 (16) | O4—C9—H9A | 109.0 |
C9—O4—C10 | 113.21 (19) | O3—C9—H9A | 109.0 |
C6—O5—C11 | 117.44 (16) | O4—C9—H9B | 109.0 |
C11—O6—C12 | 113.99 (18) | O3—C9—H9B | 109.0 |
C14—O8—H8 | 109.5 | H9A—C9—H9B | 107.8 |
C2—C1—C6 | 119.14 (18) | O4—C10—H10A | 109.5 |
C2—C1—C13 | 123.33 (18) | O4—C10—H10B | 109.5 |
C6—C1—C13 | 117.51 (18) | H10A—C10—H10B | 109.5 |
C1—C2—C3 | 120.27 (18) | O4—C10—H10C | 109.5 |
C1—C2—C7 | 122.31 (18) | H10A—C10—H10C | 109.5 |
C3—C2—C7 | 117.40 (18) | H10B—C10—H10C | 109.5 |
O3—C3—C4 | 124.46 (18) | O6—C11—O5 | 112.89 (17) |
O3—C3—C2 | 115.83 (17) | O6—C11—H11A | 109.0 |
C4—C3—C2 | 119.71 (18) | O5—C11—H11A | 109.0 |
C5—C4—C3 | 120.44 (19) | O6—C11—H11B | 109.0 |
C5—C4—H4 | 119.8 | O5—C11—H11B | 109.0 |
C3—C4—H4 | 119.8 | H11A—C11—H11B | 107.8 |
C4—C5—C6 | 120.48 (18) | O6—C12—H12A | 109.5 |
C4—C5—H5 | 119.8 | O6—C12—H12B | 109.5 |
C6—C5—H5 | 119.8 | H12A—C12—H12B | 109.5 |
O5—C6—C5 | 125.22 (17) | O6—C12—H12C | 109.5 |
O5—C6—C1 | 114.84 (17) | H12A—C12—H12C | 109.5 |
C5—C6—C1 | 119.94 (19) | H12B—C12—H12C | 109.5 |
O1—C7—O2 | 122.7 (2) | C14—C13—C1 | 113.74 (19) |
O1—C7—C2 | 125.0 (2) | C14—C13—H13A | 108.8 |
O2—C7—C2 | 112.25 (19) | C1—C13—H13A | 108.8 |
O2—C8—H8A | 109.5 | C14—C13—H13B | 108.8 |
O2—C8—H8B | 109.5 | C1—C13—H13B | 108.8 |
H8A—C8—H8B | 109.5 | H13A—C13—H13B | 107.7 |
O2—C8—H8C | 109.5 | O7—C14—O8 | 123.2 (2) |
H8A—C8—H8C | 109.5 | O7—C14—C13 | 122.6 (2) |
H8B—C8—H8C | 109.5 | O8—C14—C13 | 114.1 (2) |
C6—C1—C2—C3 | −0.3 (3) | C13—C1—C6—O5 | 2.6 (3) |
C13—C1—C2—C3 | 178.2 (2) | C2—C1—C6—C5 | 1.4 (3) |
C6—C1—C2—C7 | −178.5 (2) | C13—C1—C6—C5 | −177.2 (2) |
C13—C1—C2—C7 | 0.0 (3) | C8—O2—C7—O1 | 1.1 (3) |
C9—O3—C3—C4 | 24.5 (3) | C8—O2—C7—C2 | −178.97 (19) |
C9—O3—C3—C2 | −154.8 (2) | C1—C2—C7—O1 | 99.6 (3) |
C1—C2—C3—O3 | 178.31 (19) | C3—C2—C7—O1 | −78.6 (3) |
C7—C2—C3—O3 | −3.4 (3) | C1—C2—C7—O2 | −80.3 (3) |
C1—C2—C3—C4 | −1.0 (3) | C3—C2—C7—O2 | 101.5 (2) |
C7—C2—C3—C4 | 177.3 (2) | C10—O4—C9—O3 | −67.6 (2) |
O3—C3—C4—C5 | −178.0 (2) | C3—O3—C9—O4 | −77.8 (2) |
C2—C3—C4—C5 | 1.2 (3) | C12—O6—C11—O5 | −65.5 (2) |
C3—C4—C5—C6 | −0.1 (3) | C6—O5—C11—O6 | −61.3 (2) |
C11—O5—C6—C5 | −1.9 (3) | C2—C1—C13—C14 | 119.8 (2) |
C11—O5—C6—C1 | 178.44 (19) | C6—C1—C13—C14 | −61.7 (3) |
C4—C5—C6—O5 | 179.1 (2) | C1—C13—C14—O7 | −29.8 (3) |
C4—C5—C6—C1 | −1.2 (3) | C1—C13—C14—O8 | 152.52 (19) |
C2—C1—C6—O5 | −178.9 (2) |
Cg is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O4 | 0.95 | 2.41 | 3.022 (3) | 122 |
O8—H8···O7i | 0.84 | 1.85 | 2.676 (2) | 168 |
C9—H9B···O6ii | 0.99 | 2.43 | 3.256 (3) | 140 |
C11—H11A···O1iii | 0.99 | 2.38 | 3.366 (3) | 175 |
C13—H13B···O4iv | 0.99 | 2.50 | 3.421 (3) | 155 |
C12—H12B···Cgv | 0.98 | 2.66 | 3.451 (3) | 138 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) −x, −y+1, −z; (iv) x+1, y, z; (v) −x, −y+1, −z+1. |
Atom1 | Atom2 | Length | Length-VdW |
O7 | H8i | 1.850 | -0.870 |
O7 | O8i | 2.676 | -0.364 |
O1 | H11Aiii | 2.379 | -0.341 |
O6 | H9Bvi | 2.432 | -0.288 |
O4 | H13Bv | 2.501 | -0.219 |
H8 | C14i | 2.703 | -0.197 |
O5 | H10Ciii | 2.637 | -0.083 |
C12 | H9Bvi | 2.882 | -0.018 |
O4 | H8Av | 2.723 | 0.003 |
O7 | C8viii | 3.223 | 0.003 |
O7 | H8Bviii | 2.726 | 0.006 |
O2 | H8Bviii | 2.731 | 0.011 |
H8 | H8i | 2.416 | 0.016 |
C2 | H12Bvii | 2.932 | 0.032 |
O6 | C9vi | 3.256 | 0.036 |
H8B | C14viii | 2.954 | 0.054 |
C9 | H8Av | 2.957 | 0.057 |
C1 | H12Bvii | 2.968 | 0.068 |
C3 | H12Bvii | 2.968 | 0.068 |
H10C | C11iii | 2.969 | 0.069 |
H9B | H8Av | 2.482 | 0.082 |
(a) Calculated using Mercury (Macrae et al., 2020). Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (v) x - 1, y, z; (vi) x, y - 1, z; (vii) -x, -y + 1, -z + 1; (viii) -x + 1, -y + 2, -z + 1. |
I | |
C3—O3—C9—O4 | -77.8 (2) |
C10—O4—C9—O3 | -67.6 (2) |
C6—O5—C11—O6 | -61.3 (2) |
C12—O6—C11—O5 | -65.5 (2) |
GEZPUZa | |
C7—O4—C13—O1 | 67.1 (3) |
C16—O1—C13—O4 | 56.3 (3) |
C8—O5—C12—O6 | -80.1 (2) |
C17—O6—C12—O5 | -65.8 (3) |
GEZQAGa | |
C7—O2—C12—O7 | -71.2 (8) |
C16—O7—C12—O2 | -67.6 (9) |
C9—O3—C10—O6 | 86.1 (7) |
C17—O6—C10—O3 | 76.6 (8) |
IVIQIPb,c | |
C1—O1—C8—O2 | -68.9 (2) |
C9—O2—C8—O1 | -66.1 (2) |
(a) Nakayama et al. (2018); (b) Zhang et al. (2017); (c) compound IVIQIP possesses inversion symmetry. |
Acknowledgements
RT and HSE are grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel.
References
Bürki, N., Michel, A. & Tabacchi, R. (2003). Phytopathol. Mediterr. 42, 191–198. Google Scholar
Gremaud, G. & Tabacchi, R. (1994). Nat. Prod. Lett. 5, 95–103. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Michel, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland. Google Scholar
Nakayama, A., Sata, H., Karanjit, S., Hayashi, N., Oda, M. & Namba, K. (2018). Eur. J. Org. Chem. pp. 4013–4017. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland. Available from https://doc.rero.ch/record Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). Chem. Sci. 8, 577–582. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.