research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of [Zn6Br4(C9H18NO)4(OH)4]·2C3H6O2

CROSSMARK_Color_square_no_text.svg

aInorganic Chemistry, TU Dortmund University, Otto-Hahn Str.6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 May 2020; accepted 26 May 2020; online 2 June 2020)

The complete mol­ecule of the hexa­metallic title complex, namely, tetra­bromido­tetra-μ-hydroxido-hexa­kis­[μ-2-methyl-3-(pyrrolidin-1-yl)propan-2-olato]hexa­zinc(II) acetone disolvate, [Zn6Br4(C9H18NO)4(OH)4]·2C3H6O2, is generated by a crystallographic centre of symmetry. Two of the unique zinc atoms adopt distorted ZnO2NBr tetra­hedral coordination geometries and the other adopts a ZnO3N tetra­hedral arrangement. Both unique alkoxide ligands are N,O-chelating and both hydroxide ions are μ2 bridging. The crystal structure displays an O—H⋯O hydrogen bond between a μ2-OH group and an acetone solvent mol­ecule. The Hirshfeld surface has been calculated and is described.

1. Chemical context

Zinc complexes have a wide range of applications. For example they can be found as catalysts in organic chemistry or in the human body in enzymes, such as oxidoreductases, transferases, hydro­lases, lyases, isomerases and ligases (Lipscomb & Sträter, 1996[Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375-2434.]). As a result of the filled d10 shell of the Zn2+ cation, zinc complexes can exhibit different coordination geometries, including tetra­hedral, trigonal–bipyramidal and octa­hedral (Kimura et al., 1997[Kimura, E., Koike, T. & Shionoya, M. (1997). Struct. Bond. 89, 1-28.]). The tetra­hedral coordination sphere is the most common because the ligands have the largest separation from each other (Holm et al., 1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]).

Zinc alkoxides find applications in many fields. They are used in organic catalysis, for example in the amplification of an enanti­omer through an autocatalytic cycle by building a tetra­meric zinc alkoxide as an inter­mediate (Shibata et al., 1997[Shibata, T., Hayase, T., Yamamoto, J. & Soai, K. (1997). Tetrahedron Asymmetry, 8, 1717-1719.]; Soai et al., 1995[Soai, K., Shibata, T., Morioka, H. & Choji, K. (1995). Nature, 378, 767-768.]). In addition, they are also used as catalysts in polymerization reactions, for example for the ring-opening polymerization of lactides (Chen et al., 2006[Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745-3752.], 2011[Chen, H.-Y., Peng, Y.-L., Huang, T.-H., Sutar, A. K., Miller, S. A. & Lin, C.-C. (2011). J. Mol. Catal. A Chem. 339, 61-71.]). Moreover, zinc alkoxides are electronically favoured in comparison to the incorporation of hydroxide or water mol­ecules (Bergquist & Parkin, 1999[Bergquist, C. & Parkin, G. (1999). Inorg. Chem. 38, 422-423.]). Hence, zinc alkoxides are an important species in the human body for example for the liver alcohol de­hydrogenase or the CO2 transport through the circulatory system by carbonate anhydrase (Clegg et al., 1988[Clegg, W., Little, I. R. & Straughan, B. P. (1988). Inorg. Chem. 27, 1916-1923.]; Siek et al., 2016[Siek, S., Dixon, N. A., Kumar, M., Kraus, J. S., Wells, K. R., Rowe, B. W., Kelley, S. P., Zeller, M., Yap, G. P. A. & Papish, E. T. (2016). Eur. J. Inorg. Chem. 2016, 2495-2507.]). Liver alcohol de­hydrogenase is an enzyme that catalyses the biological oxidation of alcohols to aldehydes and ketones (Bergquist et al., 2000[Bergquist, C., Storrie, H., Koutcher, L., Bridgewater, B. M., Friesner, R. A. & Parkin, G. (2000). J. Am. Chem. Soc. 122, 12651-12658.]). As part of this reaction, a tetra­hedral zinc alkoxide complex is formed and after that, a formal hydride transfer occurs from the alkoxide to the oxidized form of NAD+ (see Fig. 1[link]). The entire process depicted in Fig. 1[link] involves the removal of a ketone from the zinc atom.

[Figure 1]
Figure 1
Reaction scheme of the liver alcohol de­hydrogenase cycle by the formation of a zinc alkoxide (Bergquist et al., 2000[Bergquist, C., Storrie, H., Koutcher, L., Bridgewater, B. M., Friesner, R. A. & Parkin, G. (2000). J. Am. Chem. Soc. 122, 12651-12658.]).

In the title compound, (I)[link], an acetone mol­ecule inter­acts with the complex through hydrogen bonding. It can therefore be understood as an inter­mediate of the ketone removal during the de­hydrogenation process shown in Fig. 1[link]. The remaining inter­action of the ketone with the zinc complex is inter­esting for a deeper understanding of the liver alcohol de­hydrogenase cycle.

[Scheme 1]

2. Structural commentary

Compound (I)[link] was crystallized from a mixture of zinc bromide and an amino­alkoxide in an acetone/water/tri­ethyl­amine mixture at 278 K. It crystallizes in the monoclinic crystal system in space group P21/n together with one solvent mol­ecule of acetone and the complete hexa-metallic mol­ecule is generated by crystallographic inversion symmetry. The structure of (I)[link] is shown in Fig. 2[link] and selected bond lengths and angles are given in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.9593 (9) Zn2—O4 1.9401 (9)
Zn1—O2 1.9165 (10) Zn2—N2 2.1358 (11)
Zn1—N1 2.1058 (11) Zn3—O1i 1.9646 (9)
Zn1—Br1 2.3816 (2) Zn3—O3i 1.9681 (9)
Zn2—O2 1.9310 (10) Zn3—O4 1.9512 (9)
Zn2—O3 1.9147 (9) Zn3—Br2 2.3722 (2)
       
O1—Zn1—Br1 114.12 (3) O4—Zn2—N2 86.91 (4)
O1—Zn1—N1 88.54 (4) O1i—Zn3—Br2 118.00 (3)
O2—Zn1—Br1 110.82 (3) O1i—Zn3—O3i 106.38 (4)
O2—Zn1—O1 111.19 (4) O3i—Zn3—Br2 111.70 (3)
O2—Zn1—N1 116.18 (4) O4—Zn3—Br2 117.11 (3)
N1—Zn1—Br1 114.35 (3) O4—Zn3—O1i 105.41 (4)
O2—Zn2—O4 116.23 (4) O4—Zn3—O3i 95.52 (4)
O2—Zn2—N2 110.18 (4) Zn1—O1—Zn3i 118.87 (5)
O3—Zn2—O2 108.79 (4) Zn1—O2—Zn2 123.95 (5)
O3—Zn2—O4 120.54 (4) Zn2—O3—Zn3i 133.08 (5)
O3—Zn2—N2 112.11 (4) Zn2—O4—Zn3 120.17 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The mol­ecular structure of (I)[link] with atom labelling and 50% displacement ellipsoids. Atoms with superscript a are generated by the symmetry operation 1 − x, 1 − y, 1 − z.

The bond lengths between the zinc atom and the oxygen atom of the alkoxide ligand are 1.9593 (9) Å for Zn1—O1 and 1.9401 (9) Å for Zn2—O4. The bond length for Zn2 may be shorter because of the direct bonding of a bromide ion to Zn1. Bond lengths between a zinc atom and an alkoxide oxygen atom have been observed to be 1.936 (3) Å (Chen et al., 2014[Chen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486-8492.]) and 1.971 (2) Å (Siek et al., 2016[Siek, S., Dixon, N. A., Kumar, M., Kraus, J. S., Wells, K. R., Rowe, B. W., Kelley, S. P., Zeller, M., Yap, G. P. A. & Papish, E. T. (2016). Eur. J. Inorg. Chem. 2016, 2495-2507.]), thus the corresponding bonds in (I)[link] lie between these limits. The bond lengths between the zinc atom and the bridging hydroxide O atom, Zn1—O2 and Zn2—O3, are 1.9165 (10) Å and 1.9147 (9) Å, respectively, which are elongated in comparison to a similar zinc–hydroxide bond in the literature, where the distance is 1.900 (2) Å (Siek et al., 2016[Siek, S., Dixon, N. A., Kumar, M., Kraus, J. S., Wells, K. R., Rowe, B. W., Kelley, S. P., Zeller, M., Yap, G. P. A. & Papish, E. T. (2016). Eur. J. Inorg. Chem. 2016, 2495-2507.]). However, the Zn1—Br1 [2.3816 (2) Å] and the Zn3—Br2 bonds [2.3722 (2) Å] are similar to other zinc—bromine bonds in related complexes [e.g. 2.358 (1) and 2.401 (1) Å; Chen et al., 2014[Chen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486-8492.]]. Finally, (I)[link] exhibits zinc–nitro­gen bond lengths of 2.1058 (11) Å for Zn1—N1 and 2.1358 (11) Å for Zn2—N2. A similar Schiff-base complex containing zinc and hydroxide ions exhibits an zinc–imine bond length of 2.022 (4) Å (Chen et al., 2014[Chen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486-8492.]), thus the bonds in (I)[link] are slightly elongated in comparison, especially the Zn2—N2 bond.

In general, the bond angles in (I)[link] are as expected (Table 1[link]), apart from the O—Zn—N angles: these are significantly compressed from the ideal tetra­hedral values with O1—Zn1—N1 = 88.54 (4)° and O4—Zn2—N2 = 86.91 (4)°, presumably because of the rigid structure of the amino­alkoxide and the higher steric demand of the tetra­hedral nitro­gen atom. This is supported by a similar compound in the literature with an O—Zn—N angle of 94.1 (1)° (Chen et al., 2014[Chen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486-8492.]). The N2—Zn2—O3 bond angle [112.11 (4)°] is slightly wider than the ideal tetra­hedral angle, as is O2—Zn2—O4 [116.23 (4)°] but O2—Zn2—O3 is slightly compressed to 108.79 (4)°. The angle of the O2 hydroxyl oxygen atom, Zn1 and the O1 atom of the alkoxide is 111.19 (4)°, which is slightly expanded from the ideal tetra­hedral angle. Finally, the N1—Zn1—Br1 bond angle is widened to 114.35 (3)°, which is similar to a compound in literature, where the corresponding angle is 113.1 (1)° (Chen et al., 2014[Chen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486-8492.]).

The central structural features of (I)[link] are two six-membered rings, which consist of zinc–oxygen bonds (Fig. 2[link]). In the six-membered rings two zinc atoms are bridged by one oxygen atom of the alkoxide and the other zinc centres are bridged by a hydroxide ion. Then, both six-membered rings are connected by two oxygen atoms of the alkoxide species, so the two parts are inter­connected to each other and a central eight-membered ring is formed by the connection of the two six-membered rings. The four nitro­gen atoms of the piperidine rings coordinate to the zinc atoms of the six-membered ring. The coordination spheres of the other zinc atoms are completed by bromide ions. The chelating 2-methyl-1-(piperidine-1-yl)propan-2-olate anions lie at the edges of the complex, so they do not inter­act with the other anions.

One of the methyl groups of the acetone solvent mol­ecule is disordered over two sets of sites with occupancies of 0.519 (6) and 0.481 (6). The disorder of just one methyl group of an acetone mol­ecule has already been reported in the literature (Arias et al., 2013[Arias, A., Forniés, J., Fortuño, C., Ibáñez, S., Martín, A., Mastrorilli, P., Gallo, V. & Todisco, S. (2013). Inorg. Chem. 52, 11398-11408.]; Balogh-Hergovich et al., 1998[Balogh-Hergovich, E., Párkányi, L. & Speier, G. (1998). Z. Kristallogr. 213, 265-266.]).

3. Supra­molecular features

In the extended structure of (I)[link], the mol­ecules are stacked along the a axis, as shown in Fig. 3[link]. As noted already, an O—H⋯O hydrogen bond links the O2—H2 hydroxide ion with the acetone solvent mol­ecule (Table 2[link]). The graph-set motif of the O—H⋯O hydrogen bonding is described by a discrete finite pattern [D(2)] and, because of the inversion symmetry of the complex, a second [D22(11)] pattern appears.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.69 (2) 2.23 (2) 2.9036 (15) 166 (3)
[Figure 3]
Figure 3
View along the a-axis direction of the crystal packing of (I)[link].

The Hirshfeld surface analysis of (I)[link] (CrystalExplorer17; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.]) highlights the hydrogen bonding between the main mol­ecule and the acetone solvent mol­ecule. The main mol­ecule is shown (Fig. 4[link]) with dnorm in the range −0.5240 to +1.5598: the characteristic red spot adjacent to H2 indicates the hydrogen bond to O5. As a result of steric shielding, no inter­molecular hydrogen bonding through the bridging O3 hydroxide group occurs.

[Figure 4]
Figure 4
Hirshfeld surface of (I)[link]: the O—H⋯O hydrogen bond between H2 and O5 is labelled.

4. Database survey

Other examples of crystallographically characterized zinc complexes containing coordinated bromide ions or amino­alkoxides include Zn2Br2OH2(C27H33N3O2)·C2H3N [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]]) refcode COCQOC; Chen et al., 2014[Chen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486-8492.]] and ZnBr2(C25H31Cl2N3O2) (COCQAO; Chen et al., 2014[Chen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486-8492.]), ZnOH(C21H37BN9) (RUWSOT; Siek et al., 2016[Siek, S., Dixon, N. A., Kumar, M., Kraus, J. S., Wells, K. R., Rowe, B. W., Kelley, S. P., Zeller, M., Yap, G. P. A. & Papish, E. T. (2016). Eur. J. Inorg. Chem. 2016, 2495-2507.]), ZnBr(C16H18N4O)ZnH2OBr3·2H2O (SEQROY; Purkait et al., 2018[Purkait, S., Chakraborty, P., Frontera, A., Bauzá, A., Zangrando, E. & Das, D. (2018). New J. Chem. 42, 12998-13009.]), ZnBr(C21H22N6)·ZnOCH4Br3 (MATFEV; Herber et al., 2017[Herber, U., Hegner, K., Wolters, D., Siris, R., Wrobel, K., Hoffmann, A., Lochenie, C., Weber, B., Kuckling, D. & Herres-Pawlis, S. (2017). Eur. J. Inorg. Chem. pp. 1341-1354.]), ZnBr(C8H20N4O)·ClO4 (BAMZAR; Reichenbach-Klinke et al., 2003[Reichenbach-Klinke, R., Zabel, M. & König, B. (2003). Dalton Trans. pp. 141-145.]), ZnI2(C14H21BrN2O)·CH4O (DUHJIA; Zhu et al., 2009[Zhu, X.-W., Yin, Z.-G., Yang, X.-Z., Li, G.-S. & Zhang, C.-X. (2009). Acta Cryst. E65, m1293-m1294.]), ZnCl(C16H13BrN3O·CH4O (GAVSOM; Qiu & Tong, 2005[Qiu, X.-H. & Tong, X.-L. (2005). Acta Cryst. E61, m2302-m2304.]), Zn(C2H5)(C21H29BrN3O (FEKMIU; Stasiw et al., 2017[Stasiw, D. E., Luke, A. M., Rosen, T., League, A. B., Mandal, M., Neisen, B. D., Cramer, C. J., Kol, M. & Tolman, W. B. (2017). Inorg. Chem. 56, 14366-14372.]), ZnBr(C26H19N5O)·Br (LIMBAM; Bachmann et al., 2013[Bachmann, C., Guttentag, M., Spingler, B. & Alberto, R. (2013). Inorg. Chem. 52, 6055-6061.]), ZnBr(C15H18N3O) (POGJAW; Ondráček et al.,1994[Ondráček, J., Kratochvíl, B. & Haber, V. (1994). Collect. Czech. Chem. Commun. 59, 1809-1814.]), ZnBr2(C10H24N2) (DAGMUV01; Eckert et al., 2013[Eckert, P. K., Vieira, I. dos S., Gessner, V. H., Börner, J., Strohmann, C. & Herres-Pawlis, S. (2013). Polyhedron, 49, 151-157.]), ZnBr2(C23H34N2Si) (DASCIL; Gessner & Strohmann, 2012[Gessner, V. H. & Strohmann, C. (2012). Dalton Trans. 41, 3452-3460.]), Zn2Br4(C8H19NOSi)2 (VUPFES; Däschlein et al., 2009[Däschlein, C., Bauer, J. O. & Strohmann, C. (2009). Angew. Chem. Int. Ed. 48, 8074-8077.]), Zn2Br2(C11H23NO)2 (OMAHAM; Gessner et al., 2010[Gessner, V. H., Fröhlich, B. & Strohmann, C. (2010). Eur. J. Inorg. Chem. pp. 5640-5649.]), Zn2Br2(C15H22FeNOSi)2·C3H6O (FAWPOL; Golz et al., 2017[Golz, C., Steffen, P. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 8295-8298.]) and Zn2Br4(C18H23NOSi)2 (VUPFAO; Däschlein & Strohmann, 2009[Däschlein, C. & Strohmann, C. (2009). Z. Naturforsch. Teil B, 64, 1558-s1579.]).

5. Synthesis and crystallization

Zinc bromide (432 mg, 1.92 mmol, 3.00 eq.) was dissolved in 2.00 ml of acetone/water (v:v = 4:1). Then, 2-methyl-1-(piperidine-1-yl)propan-2-ol (200 mg, 1.28 mmol, 2.00 eq.) and tri­ethyl­amine (0.10 ml, 0.64 mmol, 1.0 eq.) were added. The reaction solution turned dull and was stored at 278 K for seven days during which time (I)[link] crystallized as colourless blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The O-bound hydrogen atoms were located in difference-Fourier maps and refined independently. All C-bound hydrogen atoms were placed in geometrically calculated positions (C—H = 0.98–0.99 Å) and refined as riding atoms with the constraint Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Zn6Br4(C9H18NO)4(OH)4]·2C3H6O2
Mr 1521.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.1464 (7), 21.0777 (12), 12.5842 (7)
β (°) 115.277 (2)
V3) 2913.3 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.22
Crystal size (mm) 0.22 × 0.17 × 0.13
 
Data collection
Diffractometer Bruker D8 VENTURE area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 87000, 10668, 9283
Rint 0.044
(sin θ/λ)max−1) 0.760
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.03
No. of reflections 10668
No. of parameters 323
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.00, −1.02
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Tetrabromidotetra-µ-hydroxido-hexakis[µ-2-methyl-3-(pyrrolidin-1-yl)propan-2-olato]hexazinc(II) acetone disolvate top
Crystal data top
[Zn6Br4(C9H18NO)4(OH)4]·2C3H6O2F(000) = 1536
Mr = 1521.02Dx = 1.734 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.1464 (7) ÅCell parameters from 9842 reflections
b = 21.0777 (12) Åθ = 2.6–32.7°
c = 12.5842 (7) ŵ = 5.22 mm1
β = 115.277 (2)°T = 100 K
V = 2913.3 (3) Å3Block, colourless
Z = 20.22 × 0.17 × 0.13 mm
Data collection top
Bruker D8 VENTURE area detector
diffractometer
10668 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs9283 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.044
Detector resolution: 10.4167 pixels mm-1θmax = 32.7°, θmin = 2.6°
ω and φ scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 3131
Tmin = 0.638, Tmax = 0.746l = 1919
87000 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0215P)2 + 1.5066P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
10668 reflectionsΔρmax = 1.00 e Å3
323 parametersΔρmin = 1.02 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.62156 (2)0.63111 (2)0.41114 (2)0.01274 (3)
Zn20.45211 (2)0.49658 (2)0.32741 (2)0.01142 (3)
Zn30.61346 (2)0.38070 (2)0.51363 (2)0.01140 (3)
Br10.79563 (2)0.61003 (2)0.59007 (2)0.02105 (3)
Br20.80568 (2)0.34023 (2)0.54000 (2)0.02140 (3)
O10.48677 (8)0.67133 (4)0.43216 (9)0.01519 (17)
O20.56873 (9)0.55579 (5)0.31759 (9)0.01716 (18)
H20.616 (2)0.5432 (11)0.309 (2)0.037 (6)*
O30.37153 (9)0.53555 (5)0.41228 (9)0.01578 (17)
H30.3282 (18)0.5134 (10)0.4186 (17)0.022 (5)*
O40.50357 (8)0.40863 (4)0.35585 (8)0.01269 (16)
N10.63568 (10)0.71351 (5)0.32313 (10)0.0155 (2)
N20.32698 (10)0.46745 (5)0.15543 (9)0.01465 (19)
C10.45082 (12)0.72981 (6)0.36876 (13)0.0174 (2)
C20.41477 (15)0.77873 (7)0.43809 (15)0.0255 (3)
H2A0.34340.76350.44780.038*
H2B0.39520.81910.39540.038*
H2C0.48260.78490.51560.038*
C30.34282 (13)0.71765 (7)0.25016 (14)0.0236 (3)
H3A0.36210.68230.21030.035*
H3B0.32640.75590.20140.035*
H3C0.27080.70700.26280.035*
C40.56436 (13)0.75801 (6)0.36102 (13)0.0190 (2)
H4A0.53810.79410.30540.023*
H4B0.61890.77510.43920.023*
C50.58516 (13)0.71191 (7)0.19220 (13)0.0220 (3)
H5A0.58390.75550.16260.026*
H5B0.50020.69630.15980.026*
C60.65865 (15)0.66969 (8)0.14903 (14)0.0261 (3)
H6A0.62310.67110.06210.031*
H6B0.65480.62530.17310.031*
C70.79068 (15)0.69111 (8)0.19897 (16)0.0293 (3)
H7A0.79590.73330.16690.035*
H7B0.83890.66070.17600.035*
C80.84214 (13)0.69466 (8)0.33251 (15)0.0250 (3)
H8A0.84590.65150.36480.030*
H8B0.92600.71180.36450.030*
C90.76406 (12)0.73670 (7)0.37067 (14)0.0207 (3)
H9A0.79900.73760.45760.025*
H9B0.76490.78050.34280.025*
C100.46559 (11)0.37274 (6)0.25037 (11)0.0139 (2)
C110.45016 (13)0.30319 (6)0.27504 (13)0.0202 (3)
H11A0.52950.28530.32690.030*
H11B0.41620.27950.20090.030*
H11C0.39490.30010.31310.030*
C120.56244 (13)0.37841 (7)0.20344 (13)0.0208 (3)
H12A0.57820.42330.19520.031*
H12B0.53340.35760.12670.031*
H12C0.63780.35800.25840.031*
C130.33860 (12)0.39724 (6)0.16641 (11)0.0162 (2)
H13A0.31710.37910.08740.019*
H13B0.27860.38120.19390.019*
C140.19942 (12)0.48510 (7)0.13000 (13)0.0202 (3)
H14A0.18020.46960.19440.024*
H14B0.14310.46410.05650.024*
C150.17948 (14)0.55629 (8)0.11732 (14)0.0251 (3)
H15A0.23090.57720.19280.030*
H15B0.09330.56590.09840.030*
C160.21093 (16)0.58260 (9)0.02080 (15)0.0313 (3)
H16A0.15200.56650.05660.038*
H16B0.20560.62950.01970.038*
C170.33921 (16)0.56243 (8)0.04279 (14)0.0286 (3)
H17A0.35600.57600.02420.034*
H17B0.39870.58370.11440.034*
C180.35499 (15)0.49096 (8)0.05796 (13)0.0237 (3)
H18A0.30040.46980.01620.028*
H18B0.43990.47960.07450.028*
O50.76193 (12)0.52276 (7)0.24976 (13)0.0363 (3)
C190.86250 (16)0.50349 (10)0.29097 (18)0.0379 (4)
C200.9050 (6)0.4770 (4)0.4156 (5)0.082 (3)0.519 (6)
H20A0.95380.50900.47270.122*0.519 (6)
H20B0.95460.43890.42410.122*0.519 (6)
H20C0.83400.46600.42970.122*0.519 (6)
C20A0.8773 (4)0.4280 (2)0.3187 (5)0.0537 (18)0.481 (6)
H20D0.83940.41710.37120.081*0.481 (6)
H20E0.96400.41700.35660.081*0.481 (6)
H20F0.83750.40420.24510.081*0.481 (6)
C210.96197 (15)0.52689 (8)0.26145 (16)0.0292 (3)
H21A0.92650.54610.18300.044*
H21B1.01430.49130.26250.044*
H21C1.01040.55860.31950.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01269 (6)0.00878 (6)0.01867 (7)0.00006 (5)0.00852 (6)0.00090 (5)
Zn20.01198 (6)0.00917 (6)0.01388 (6)0.00076 (5)0.00627 (5)0.00150 (5)
Zn30.01127 (6)0.01025 (6)0.01389 (6)0.00137 (5)0.00653 (5)0.00032 (5)
Br10.01778 (6)0.02193 (7)0.02107 (7)0.00233 (5)0.00602 (5)0.00430 (5)
Br20.01385 (6)0.02248 (7)0.03002 (7)0.00588 (5)0.01142 (5)0.00404 (5)
O10.0159 (4)0.0097 (4)0.0236 (5)0.0029 (3)0.0119 (4)0.0046 (3)
O20.0166 (4)0.0126 (4)0.0272 (5)0.0020 (3)0.0140 (4)0.0030 (4)
O30.0182 (4)0.0130 (4)0.0204 (5)0.0034 (3)0.0122 (4)0.0041 (3)
O40.0150 (4)0.0107 (4)0.0117 (4)0.0001 (3)0.0050 (3)0.0031 (3)
N10.0167 (5)0.0123 (5)0.0203 (5)0.0016 (4)0.0105 (4)0.0011 (4)
N20.0145 (5)0.0171 (5)0.0122 (4)0.0003 (4)0.0056 (4)0.0006 (4)
C10.0197 (6)0.0105 (5)0.0262 (7)0.0036 (4)0.0137 (5)0.0054 (5)
C20.0320 (8)0.0126 (6)0.0411 (9)0.0065 (5)0.0244 (7)0.0036 (6)
C30.0189 (6)0.0239 (7)0.0286 (7)0.0046 (5)0.0106 (6)0.0094 (6)
C40.0231 (6)0.0094 (5)0.0288 (7)0.0001 (5)0.0154 (6)0.0020 (5)
C50.0225 (6)0.0232 (7)0.0217 (6)0.0010 (5)0.0108 (5)0.0055 (5)
C60.0314 (8)0.0281 (7)0.0243 (7)0.0003 (6)0.0171 (6)0.0008 (6)
C70.0311 (8)0.0314 (8)0.0367 (9)0.0013 (6)0.0252 (7)0.0057 (7)
C80.0192 (6)0.0257 (7)0.0347 (8)0.0005 (5)0.0160 (6)0.0048 (6)
C90.0185 (6)0.0173 (6)0.0287 (7)0.0058 (5)0.0122 (6)0.0005 (5)
C100.0155 (5)0.0123 (5)0.0149 (5)0.0023 (4)0.0075 (5)0.0055 (4)
C110.0227 (6)0.0120 (5)0.0261 (7)0.0023 (5)0.0106 (6)0.0059 (5)
C120.0209 (6)0.0251 (7)0.0212 (6)0.0004 (5)0.0135 (5)0.0043 (5)
C130.0163 (5)0.0161 (6)0.0147 (5)0.0034 (4)0.0052 (5)0.0048 (4)
C140.0137 (5)0.0239 (7)0.0194 (6)0.0007 (5)0.0036 (5)0.0019 (5)
C150.0217 (6)0.0246 (7)0.0259 (7)0.0072 (6)0.0071 (6)0.0063 (6)
C160.0347 (8)0.0290 (8)0.0239 (7)0.0058 (7)0.0066 (7)0.0116 (6)
C170.0346 (8)0.0301 (8)0.0234 (7)0.0021 (7)0.0146 (7)0.0112 (6)
C180.0291 (7)0.0294 (7)0.0159 (6)0.0018 (6)0.0127 (6)0.0040 (5)
O50.0309 (6)0.0365 (7)0.0516 (8)0.0045 (5)0.0273 (6)0.0029 (6)
C190.0260 (8)0.0477 (11)0.0405 (10)0.0031 (7)0.0146 (7)0.0224 (8)
C200.074 (4)0.127 (6)0.061 (3)0.050 (4)0.045 (3)0.063 (4)
C20A0.0223 (17)0.052 (3)0.084 (4)0.0048 (17)0.020 (2)0.041 (3)
C210.0239 (7)0.0305 (8)0.0350 (8)0.0013 (6)0.0143 (7)0.0054 (7)
Geometric parameters (Å, º) top
Zn1—O11.9593 (9)C8—H8A0.9900
Zn1—O21.9165 (10)C8—H8B0.9900
Zn1—N12.1058 (11)C8—C91.518 (2)
Zn1—Br12.3816 (2)C9—H9A0.9900
Zn2—O21.9310 (10)C9—H9B0.9900
Zn2—O31.9147 (9)C10—C111.5265 (19)
Zn2—O41.9401 (9)C10—C121.5297 (18)
Zn2—N22.1358 (11)C10—C131.5396 (18)
Zn3—O1i1.9646 (9)C11—H11A0.9800
Zn3—O3i1.9681 (9)C11—H11B0.9800
Zn3—O41.9512 (9)C11—H11C0.9800
Zn3—Br22.3722 (2)C12—H12A0.9800
O1—Zn3i1.9646 (9)C12—H12B0.9800
O1—C11.4314 (15)C12—H12C0.9800
O2—H20.69 (2)C13—H13A0.9900
O3—Zn3i1.9682 (9)C13—H13B0.9900
O3—H30.73 (2)C14—H14A0.9900
O4—C101.4227 (15)C14—H14B0.9900
N1—C41.4867 (17)C14—C151.517 (2)
N1—C51.4930 (19)C15—H15A0.9900
N1—C91.4940 (17)C15—H15B0.9900
N2—C131.4876 (17)C15—C161.525 (2)
N2—C141.4892 (17)C16—H16A0.9900
N2—C181.4907 (17)C16—H16B0.9900
C1—C21.531 (2)C16—C171.522 (2)
C1—C31.530 (2)C17—H17A0.9900
C1—C41.5425 (19)C17—H17B0.9900
C2—H2A0.9800C17—C181.520 (2)
C2—H2B0.9800C18—H18A0.9900
C2—H2C0.9800C18—H18B0.9900
C3—H3A0.9800O5—C191.177 (2)
C3—H3B0.9800C19—C201.532 (5)
C3—H3C0.9800C19—C20A1.623 (5)
C4—H4A0.9900C19—C211.491 (2)
C4—H4B0.9900C20—H20A0.9800
C5—H5A0.9900C20—H20B0.9800
C5—H5B0.9900C20—H20C0.9800
C5—C61.516 (2)C20A—H20D0.9800
C6—H6A0.9900C20A—H20E0.9800
C6—H6B0.9900C20A—H20F0.9800
C6—C71.520 (2)C21—H21A0.9800
C7—H7A0.9900C21—H21B0.9800
C7—H7B0.9900C21—H21C0.9800
C7—C81.524 (2)
O1—Zn1—Br1114.12 (3)C9—C8—C7111.10 (13)
O1—Zn1—N188.54 (4)C9—C8—H8A109.4
O2—Zn1—Br1110.82 (3)C9—C8—H8B109.4
O2—Zn1—O1111.19 (4)N1—C9—C8111.64 (12)
O2—Zn1—N1116.18 (4)N1—C9—H9A109.3
N1—Zn1—Br1114.35 (3)N1—C9—H9B109.3
O2—Zn2—O4116.23 (4)C8—C9—H9A109.3
O2—Zn2—N2110.18 (4)C8—C9—H9B109.3
O3—Zn2—O2108.79 (4)H9A—C9—H9B108.0
O3—Zn2—O4120.54 (4)O4—C10—C11109.87 (11)
O3—Zn2—N2112.11 (4)O4—C10—C12108.80 (10)
O4—Zn2—N286.91 (4)O4—C10—C13107.02 (10)
O1i—Zn3—Br2118.00 (3)C11—C10—C12109.57 (11)
O1i—Zn3—O3i106.38 (4)C11—C10—C13106.71 (10)
O3i—Zn3—Br2111.70 (3)C12—C10—C13114.78 (11)
O4—Zn3—Br2117.11 (3)C10—C11—H11A109.5
O4—Zn3—O1i105.41 (4)C10—C11—H11B109.5
O4—Zn3—O3i95.52 (4)C10—C11—H11C109.5
Zn1—O1—Zn3i118.87 (5)H11A—C11—H11B109.5
Zn1—O2—Zn2123.95 (5)H11A—C11—H11C109.5
Zn2—O3—Zn3i133.08 (5)H11B—C11—H11C109.5
Zn2—O4—Zn3120.17 (4)C10—C12—H12A109.5
C1—O1—Zn1111.77 (7)C10—C12—H12B109.5
C1—O1—Zn3i125.97 (8)C10—C12—H12C109.5
Zn1—O2—H2109 (2)H12A—C12—H12B109.5
Zn2—O2—H2117 (2)H12A—C12—H12C109.5
Zn2—O3—H3110.4 (15)H12B—C12—H12C109.5
Zn3i—O3—H3116.5 (15)N2—C13—C10115.14 (10)
C10—O4—Zn2112.67 (7)N2—C13—H13A108.5
C10—O4—Zn3126.68 (8)N2—C13—H13B108.5
C4—N1—Zn199.33 (7)C10—C13—H13A108.5
C4—N1—C5110.31 (11)C10—C13—H13B108.5
C4—N1—C9108.46 (11)H13A—C13—H13B107.5
C5—N1—Zn1118.32 (9)N2—C14—H14A109.2
C5—N1—C9108.44 (11)N2—C14—H14B109.2
C9—N1—Zn1111.39 (8)N2—C14—C15111.98 (12)
C13—N2—Zn2101.16 (8)H14A—C14—H14B107.9
C13—N2—C14108.49 (10)C15—C14—H14A109.2
C13—N2—C18111.17 (11)C15—C14—H14B109.2
C14—N2—Zn2111.77 (8)C14—C15—H15A109.4
C14—N2—C18108.80 (11)C14—C15—H15B109.4
C18—N2—Zn2115.13 (9)C14—C15—C16111.13 (13)
O1—C1—C2110.84 (11)H15A—C15—H15B108.0
O1—C1—C3109.26 (11)C16—C15—H15A109.4
O1—C1—C4107.39 (10)C16—C15—H15B109.4
C2—C1—C4104.92 (11)C15—C16—H16A109.7
C3—C1—C2109.51 (12)C15—C16—H16B109.7
C3—C1—C4114.85 (12)H16A—C16—H16B108.2
C1—C2—H2A109.5C17—C16—C15109.80 (13)
C1—C2—H2B109.5C17—C16—H16A109.7
C1—C2—H2C109.5C17—C16—H16B109.7
H2A—C2—H2B109.5C16—C17—H17A109.4
H2A—C2—H2C109.5C16—C17—H17B109.4
H2B—C2—H2C109.5H17A—C17—H17B108.0
C1—C3—H3A109.5C18—C17—C16111.34 (14)
C1—C3—H3B109.5C18—C17—H17A109.4
C1—C3—H3C109.5C18—C17—H17B109.4
H3A—C3—H3B109.5N2—C18—C17111.83 (12)
H3A—C3—H3C109.5N2—C18—H18A109.3
H3B—C3—H3C109.5N2—C18—H18B109.3
N1—C4—C1115.86 (11)C17—C18—H18A109.3
N1—C4—H4A108.3C17—C18—H18B109.3
N1—C4—H4B108.3H18A—C18—H18B107.9
C1—C4—H4A108.3O5—C19—C20114.2 (2)
C1—C4—H4B108.3O5—C19—C20A115.6 (2)
H4A—C4—H4B107.4O5—C19—C21125.10 (17)
N1—C5—H5A109.1C21—C19—C20114.9 (3)
N1—C5—H5B109.1C21—C19—C20A110.5 (2)
N1—C5—C6112.41 (12)C19—C20—H20A109.5
H5A—C5—H5B107.9C19—C20—H20B109.5
C6—C5—H5A109.1C19—C20—H20C109.5
C6—C5—H5B109.1H20A—C20—H20B109.5
C5—C6—H6A109.5H20A—C20—H20C109.5
C5—C6—H6B109.5H20B—C20—H20C109.5
C5—C6—C7110.88 (14)C19—C20A—H20D109.5
H6A—C6—H6B108.1C19—C20A—H20E109.5
C7—C6—H6A109.5C19—C20A—H20F109.5
C7—C6—H6B109.5H20D—C20A—H20E109.5
C6—C7—H7A109.8H20D—C20A—H20F109.5
C6—C7—H7B109.8H20E—C20A—H20F109.5
C6—C7—C8109.51 (12)C19—C21—H21A109.5
H7A—C7—H7B108.2C19—C21—H21B109.5
C8—C7—H7A109.8C19—C21—H21C109.5
C8—C7—H7B109.8H21A—C21—H21B109.5
C7—C8—H8A109.4H21A—C21—H21C109.5
C7—C8—H8B109.4H21B—C21—H21C109.5
H8A—C8—H8B108.0
Zn1—O1—C1—C2143.25 (10)C2—C1—C4—N1165.89 (12)
Zn1—O1—C1—C395.97 (10)C3—C1—C4—N173.82 (15)
Zn1—O1—C1—C429.18 (13)C4—N1—C5—C6177.10 (12)
Zn1—N1—C4—C138.23 (13)C4—N1—C9—C8178.28 (12)
Zn1—N1—C5—C669.58 (14)C5—N1—C4—C186.76 (14)
Zn1—N1—C9—C873.40 (13)C5—N1—C9—C858.48 (15)
Zn2—O4—C10—C11152.00 (8)C5—C6—C7—C854.13 (18)
Zn2—O4—C10—C1288.05 (11)C6—C7—C8—C954.74 (17)
Zn2—O4—C10—C1336.51 (11)C7—C8—C9—N158.21 (16)
Zn2—N2—C13—C1032.11 (11)C9—N1—C4—C1154.62 (12)
Zn2—N2—C14—C1569.34 (13)C9—N1—C5—C658.46 (15)
Zn2—N2—C18—C1767.74 (14)C11—C10—C13—N2164.92 (11)
Zn3i—O1—C1—C257.94 (15)C12—C10—C13—N273.49 (14)
Zn3i—O1—C1—C362.83 (13)C13—N2—C14—C15179.96 (11)
Zn3i—O1—C1—C4172.01 (8)C13—N2—C18—C17178.00 (12)
Zn3—O4—C10—C1136.06 (13)C14—N2—C13—C10149.80 (11)
Zn3—O4—C10—C1283.89 (12)C14—N2—C18—C1758.59 (16)
Zn3—O4—C10—C13151.55 (8)C14—C15—C16—C1753.46 (18)
O1—C1—C4—N147.91 (16)C15—C16—C17—C1853.38 (19)
O4—C10—C13—N247.33 (14)C16—C17—C18—N257.19 (17)
N1—C5—C6—C757.60 (16)C18—N2—C13—C1090.61 (13)
N2—C14—C15—C1657.53 (16)C18—N2—C14—C1558.90 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.69 (2)2.23 (2)2.9036 (15)166 (3)
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support and LB thanks the Fonds der Chemischen Industrie (FCI) for a doctoral fellowship.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft ; Verband der Chemischen Industrie .

References

First citationArias, A., Forniés, J., Fortuño, C., Ibáñez, S., Martín, A., Mastrorilli, P., Gallo, V. & Todisco, S. (2013). Inorg. Chem. 52, 11398–11408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBachmann, C., Guttentag, M., Spingler, B. & Alberto, R. (2013). Inorg. Chem. 52, 6055–6061.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBalogh-Hergovich, E., Párkányi, L. & Speier, G. (1998). Z. Kristallogr. 213, 265–266.  CAS Google Scholar
First citationBergquist, C. & Parkin, G. (1999). Inorg. Chem. 38, 422–423.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBergquist, C., Storrie, H., Koutcher, L., Bridgewater, B. M., Friesner, R. A. & Parkin, G. (2000). J. Am. Chem. Soc. 122, 12651–12658.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486–8492.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, H.-Y., Peng, Y.-L., Huang, T.-H., Sutar, A. K., Miller, S. A. & Lin, C.-C. (2011). J. Mol. Catal. A Chem. 339, 61–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1988). Inorg. Chem. 27, 1916–1923.  CSD CrossRef CAS Web of Science Google Scholar
First citationDäschlein, C., Bauer, J. O. & Strohmann, C. (2009). Angew. Chem. Int. Ed. 48, 8074–8077.  Google Scholar
First citationDäschlein, C. & Strohmann, C. (2009). Z. Naturforsch. Teil B, 64, 1558–s1579.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEckert, P. K., Vieira, I. dos S., Gessner, V. H., Börner, J., Strohmann, C. & Herres-Pawlis, S. (2013). Polyhedron, 49, 151–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationGessner, V. H., Fröhlich, B. & Strohmann, C. (2010). Eur. J. Inorg. Chem. pp. 5640–5649.  Web of Science CSD CrossRef Google Scholar
First citationGessner, V. H. & Strohmann, C. (2012). Dalton Trans. 41, 3452–3460.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGolz, C., Steffen, P. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 8295–8298.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerber, U., Hegner, K., Wolters, D., Siris, R., Wrobel, K., Hoffmann, A., Lochenie, C., Weber, B., Kuckling, D. & Herres-Pawlis, S. (2017). Eur. J. Inorg. Chem. pp. 1341–1354.  Web of Science CSD CrossRef Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKimura, E., Koike, T. & Shionoya, M. (1997). Struct. Bond. 89, 1–28.  CrossRef CAS Google Scholar
First citationLipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOndráček, J., Kratochvíl, B. & Haber, V. (1994). Collect. Czech. Chem. Commun. 59, 1809–1814.  Google Scholar
First citationPurkait, S., Chakraborty, P., Frontera, A., Bauzá, A., Zangrando, E. & Das, D. (2018). New J. Chem. 42, 12998–13009.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, X.-H. & Tong, X.-L. (2005). Acta Cryst. E61, m2302–m2304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReichenbach-Klinke, R., Zabel, M. & König, B. (2003). Dalton Trans. pp. 141–145.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShibata, T., Hayase, T., Yamamoto, J. & Soai, K. (1997). Tetrahedron Asymmetry, 8, 1717–1719.  CrossRef CAS Web of Science Google Scholar
First citationSiek, S., Dixon, N. A., Kumar, M., Kraus, J. S., Wells, K. R., Rowe, B. W., Kelley, S. P., Zeller, M., Yap, G. P. A. & Papish, E. T. (2016). Eur. J. Inorg. Chem. 2016, 2495–2507.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoai, K., Shibata, T., Morioka, H. & Choji, K. (1995). Nature, 378, 767–768.  CrossRef CAS Web of Science Google Scholar
First citationStasiw, D. E., Luke, A. M., Rosen, T., League, A. B., Mandal, M., Neisen, B. D., Cramer, C. J., Kol, M. & Tolman, W. B. (2017). Inorg. Chem. 56, 14366–14372.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, X.-W., Yin, Z.-G., Yang, X.-Z., Li, G.-S. & Zhang, C.-X. (2009). Acta Cryst. E65, m1293–m1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds