research communications
Synthesis and 6Br4(C9H18NO)4(OH)4]·2C3H6O2
of [ZnaInorganic Chemistry, TU Dortmund University, Otto-Hahn Str.6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
The complete molecule of the hexametallic title complex, namely, tetrabromidotetra-μ-hydroxido-hexakis[μ-2-methyl-3-(pyrrolidin-1-yl)propan-2-olato]hexazinc(II) acetone disolvate, [Zn6Br4(C9H18NO)4(OH)4]·2C3H6O2, is generated by a crystallographic centre of symmetry. Two of the unique zinc atoms adopt distorted ZnO2NBr tetrahedral coordination geometries and the other adopts a ZnO3N tetrahedral arrangement. Both unique alkoxide ligands are N,O-chelating and both hydroxide ions are μ2 bridging. The displays an O—H⋯O hydrogen bond between a μ2-OH group and an acetone solvent molecule. The Hirshfeld surface has been calculated and is described.
Keywords: crystal structure; zinc; aminoalkoxide; zinc alkoxide; hydroxide; hydrogen bonding.
CCDC reference: 2005919
1. Chemical context
Zinc complexes have a wide range of applications. For example they can be found as catalysts in organic chemistry or in the human body in enzymes, such as ). As a result of the filled d10 shell of the Zn2+ cation, zinc complexes can exhibit different coordination geometries, including tetrahedral, trigonal–bipyramidal and octahedral (Kimura et al., 1997). The tetrahedral coordination sphere is the most common because the ligands have the largest separation from each other (Holm et al., 1996).
hydrolases, lyases, isomerases and ligases (Lipscomb & Sträter, 1996Zinc et al., 1997; Soai et al., 1995). In addition, they are also used as catalysts in polymerization reactions, for example for the of (Chen et al., 2006, 2011). Moreover, zinc are electronically favoured in comparison to the incorporation of hydroxide or water molecules (Bergquist & Parkin, 1999). Hence, zinc are an important species in the human body for example for the liver alcohol dehydrogenase or the CO2 transport through the circulatory system by carbonate anhydrase (Clegg et al., 1988; Siek et al., 2016). Liver alcohol dehydrogenase is an enzyme that catalyses the biological oxidation of to and (Bergquist et al., 2000). As part of this reaction, a tetrahedral zinc alkoxide complex is formed and after that, a formal hydride transfer occurs from the alkoxide to the oxidized form of NAD+ (see Fig. 1). The entire process depicted in Fig. 1 involves the removal of a ketone from the zinc atom.
find applications in many fields. They are used in organic catalysis, for example in the amplification of an enantiomer through an autocatalytic cycle by building a tetrameric zinc alkoxide as an intermediate (ShibataIn the title compound, (I), an acetone molecule interacts with the complex through hydrogen bonding. It can therefore be understood as an intermediate of the ketone removal during the dehydrogenation process shown in Fig. 1. The remaining interaction of the ketone with the zinc complex is interesting for a deeper understanding of the liver alcohol dehydrogenase cycle.
2. Structural commentary
Compound (I) was crystallized from a mixture of zinc bromide and an aminoalkoxide in an acetone/water/triethylamine mixture at 278 K. It crystallizes in the monoclinic in P21/n together with one solvent molecule of acetone and the complete hexa-metallic molecule is generated by crystallographic inversion symmetry. The structure of (I) is shown in Fig. 2 and selected bond lengths and angles are given in Table 1.
The bond lengths between the zinc atom and the oxygen atom of the alkoxide ligand are 1.9593 (9) Å for Zn1—O1 and 1.9401 (9) Å for Zn2—O4. The bond length for Zn2 may be shorter because of the direct bonding of a bromide ion to Zn1. Bond lengths between a zinc atom and an alkoxide oxygen atom have been observed to be 1.936 (3) Å (Chen et al., 2014) and 1.971 (2) Å (Siek et al., 2016), thus the corresponding bonds in (I) lie between these limits. The bond lengths between the zinc atom and the bridging hydroxide O atom, Zn1—O2 and Zn2—O3, are 1.9165 (10) Å and 1.9147 (9) Å, respectively, which are elongated in comparison to a similar zinc–hydroxide bond in the literature, where the distance is 1.900 (2) Å (Siek et al., 2016). However, the Zn1—Br1 [2.3816 (2) Å] and the Zn3—Br2 bonds [2.3722 (2) Å] are similar to other zinc—bromine bonds in related complexes [e.g. 2.358 (1) and 2.401 (1) Å; Chen et al., 2014]. Finally, (I) exhibits zinc–nitrogen bond lengths of 2.1058 (11) Å for Zn1—N1 and 2.1358 (11) Å for Zn2—N2. A similar Schiff-base complex containing zinc and hydroxide ions exhibits an zinc–imine bond length of 2.022 (4) Å (Chen et al., 2014), thus the bonds in (I) are slightly elongated in comparison, especially the Zn2—N2 bond.
In general, the bond angles in (I) are as expected (Table 1), apart from the O—Zn—N angles: these are significantly compressed from the ideal tetrahedral values with O1—Zn1—N1 = 88.54 (4)° and O4—Zn2—N2 = 86.91 (4)°, presumably because of the rigid structure of the aminoalkoxide and the higher steric demand of the tetrahedral nitrogen atom. This is supported by a similar compound in the literature with an O—Zn—N angle of 94.1 (1)° (Chen et al., 2014). The N2—Zn2—O3 bond angle [112.11 (4)°] is slightly wider than the ideal tetrahedral angle, as is O2—Zn2—O4 [116.23 (4)°] but O2—Zn2—O3 is slightly compressed to 108.79 (4)°. The angle of the O2 hydroxyl oxygen atom, Zn1 and the O1 atom of the alkoxide is 111.19 (4)°, which is slightly expanded from the ideal tetrahedral angle. Finally, the N1—Zn1—Br1 bond angle is widened to 114.35 (3)°, which is similar to a compound in literature, where the corresponding angle is 113.1 (1)° (Chen et al., 2014).
The central structural features of (I) are two six-membered rings, which consist of zinc–oxygen bonds (Fig. 2). In the six-membered rings two zinc atoms are bridged by one oxygen atom of the alkoxide and the other zinc centres are bridged by a hydroxide ion. Then, both six-membered rings are connected by two oxygen atoms of the alkoxide species, so the two parts are interconnected to each other and a central eight-membered ring is formed by the connection of the two six-membered rings. The four nitrogen atoms of the piperidine rings coordinate to the zinc atoms of the six-membered ring. The coordination spheres of the other zinc atoms are completed by bromide ions. The chelating 2-methyl-1-(piperidine-1-yl)propan-2-olate anions lie at the edges of the complex, so they do not interact with the other anions.
One of the methyl groups of the acetone solvent molecule is disordered over two sets of sites with occupancies of 0.519 (6) and 0.481 (6). The disorder of just one methyl group of an acetone molecule has already been reported in the literature (Arias et al., 2013; Balogh-Hergovich et al., 1998).
3. Supramolecular features
In the extended structure of (I), the molecules are stacked along the a axis, as shown in Fig. 3. As noted already, an O—H⋯O hydrogen bond links the O2—H2 hydroxide ion with the acetone solvent molecule (Table 2). The graph-set motif of the O—H⋯O hydrogen bonding is described by a discrete finite pattern [D(2)] and, because of the inversion symmetry of the complex, a second [D22(11)] pattern appears.
|
The Hirshfeld surface analysis of (I) (CrystalExplorer17; Turner et al., 2017) highlights the hydrogen bonding between the main molecule and the acetone solvent molecule. The main molecule is shown (Fig. 4) with dnorm in the range −0.5240 to +1.5598: the characteristic red spot adjacent to H2 indicates the hydrogen bond to O5. As a result of steric shielding, no intermolecular hydrogen bonding through the bridging O3 hydroxide group occurs.
4. Database survey
Other examples of crystallographically characterized zinc complexes containing coordinated bromide ions or aminoalkoxides include Zn2Br2OH2(C27H33N3O2)·C2H3N [CSD (Groom et al., 2016]) refcode COCQOC; Chen et al., 2014] and ZnBr2(C25H31Cl2N3O2) (COCQAO; Chen et al., 2014), ZnOH(C21H37BN9) (RUWSOT; Siek et al., 2016), ZnBr(C16H18N4O)ZnH2OBr3·2H2O (SEQROY; Purkait et al., 2018), ZnBr(C21H22N6)·ZnOCH4Br3 (MATFEV; Herber et al., 2017), ZnBr(C8H20N4O)·ClO4 (BAMZAR; Reichenbach-Klinke et al., 2003), ZnI2(C14H21BrN2O)·CH4O (DUHJIA; Zhu et al., 2009), ZnCl(C16H13BrN3O·CH4O (GAVSOM; Qiu & Tong, 2005), Zn(C2H5)(C21H29BrN3O (FEKMIU; Stasiw et al., 2017), ZnBr(C26H19N5O)·Br (LIMBAM; Bachmann et al., 2013), ZnBr(C15H18N3O) (POGJAW; Ondráček et al.,1994), ZnBr2(C10H24N2) (DAGMUV01; Eckert et al., 2013), ZnBr2(C23H34N2Si) (DASCIL; Gessner & Strohmann, 2012), Zn2Br4(C8H19NOSi)2 (VUPFES; Däschlein et al., 2009), Zn2Br2(C11H23NO)2 (OMAHAM; Gessner et al., 2010), Zn2Br2(C15H22FeNOSi)2·C3H6O (FAWPOL; Golz et al., 2017) and Zn2Br4(C18H23NOSi)2 (VUPFAO; Däschlein & Strohmann, 2009).
5. Synthesis and crystallization
Zinc bromide (432 mg, 1.92 mmol, 3.00 eq.) was dissolved in 2.00 ml of acetone/water (v:v = 4:1). Then, 2-methyl-1-(piperidine-1-yl)propan-2-ol (200 mg, 1.28 mmol, 2.00 eq.) and triethylamine (0.10 ml, 0.64 mmol, 1.0 eq.) were added. The reaction solution turned dull and was stored at 278 K for seven days during which time (I) crystallized as colourless blocks.
6. Refinement
Crystal data, data collection and structure . The O-bound hydrogen atoms were located in difference-Fourier maps and refined independently. All C-bound hydrogen atoms were placed in geometrically calculated positions (C—H = 0.98–0.99 Å) and refined as riding atoms with the constraint Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2005919
https://doi.org/10.1107/S2056989020007100/hb7910sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007100/hb7910Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).[Zn6Br4(C9H18NO)4(OH)4]·2C3H6O2 | F(000) = 1536 |
Mr = 1521.02 | Dx = 1.734 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1464 (7) Å | Cell parameters from 9842 reflections |
b = 21.0777 (12) Å | θ = 2.6–32.7° |
c = 12.5842 (7) Å | µ = 5.22 mm−1 |
β = 115.277 (2)° | T = 100 K |
V = 2913.3 (3) Å3 | Block, colourless |
Z = 2 | 0.22 × 0.17 × 0.13 mm |
Bruker D8 VENTURE area detector diffractometer | 10668 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 9283 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.044 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 32.7°, θmin = 2.6° |
ω and φ scans | h = −18→18 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −31→31 |
Tmin = 0.638, Tmax = 0.746 | l = −19→19 |
87000 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.021 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0215P)2 + 1.5066P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.003 |
10668 reflections | Δρmax = 1.00 e Å−3 |
323 parameters | Δρmin = −1.02 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.62156 (2) | 0.63111 (2) | 0.41114 (2) | 0.01274 (3) | |
Zn2 | 0.45211 (2) | 0.49658 (2) | 0.32741 (2) | 0.01142 (3) | |
Zn3 | 0.61346 (2) | 0.38070 (2) | 0.51363 (2) | 0.01140 (3) | |
Br1 | 0.79563 (2) | 0.61003 (2) | 0.59007 (2) | 0.02105 (3) | |
Br2 | 0.80568 (2) | 0.34023 (2) | 0.54000 (2) | 0.02140 (3) | |
O1 | 0.48677 (8) | 0.67133 (4) | 0.43216 (9) | 0.01519 (17) | |
O2 | 0.56873 (9) | 0.55579 (5) | 0.31759 (9) | 0.01716 (18) | |
H2 | 0.616 (2) | 0.5432 (11) | 0.309 (2) | 0.037 (6)* | |
O3 | 0.37153 (9) | 0.53555 (5) | 0.41228 (9) | 0.01578 (17) | |
H3 | 0.3282 (18) | 0.5134 (10) | 0.4186 (17) | 0.022 (5)* | |
O4 | 0.50357 (8) | 0.40863 (4) | 0.35585 (8) | 0.01269 (16) | |
N1 | 0.63568 (10) | 0.71351 (5) | 0.32313 (10) | 0.0155 (2) | |
N2 | 0.32698 (10) | 0.46745 (5) | 0.15543 (9) | 0.01465 (19) | |
C1 | 0.45082 (12) | 0.72981 (6) | 0.36876 (13) | 0.0174 (2) | |
C2 | 0.41477 (15) | 0.77873 (7) | 0.43809 (15) | 0.0255 (3) | |
H2A | 0.3434 | 0.7635 | 0.4478 | 0.038* | |
H2B | 0.3952 | 0.8191 | 0.3954 | 0.038* | |
H2C | 0.4826 | 0.7849 | 0.5156 | 0.038* | |
C3 | 0.34282 (13) | 0.71765 (7) | 0.25016 (14) | 0.0236 (3) | |
H3A | 0.3621 | 0.6823 | 0.2103 | 0.035* | |
H3B | 0.3264 | 0.7559 | 0.2014 | 0.035* | |
H3C | 0.2708 | 0.7070 | 0.2628 | 0.035* | |
C4 | 0.56436 (13) | 0.75801 (6) | 0.36102 (13) | 0.0190 (2) | |
H4A | 0.5381 | 0.7941 | 0.3054 | 0.023* | |
H4B | 0.6189 | 0.7751 | 0.4392 | 0.023* | |
C5 | 0.58516 (13) | 0.71191 (7) | 0.19220 (13) | 0.0220 (3) | |
H5A | 0.5839 | 0.7555 | 0.1626 | 0.026* | |
H5B | 0.5002 | 0.6963 | 0.1598 | 0.026* | |
C6 | 0.65865 (15) | 0.66969 (8) | 0.14903 (14) | 0.0261 (3) | |
H6A | 0.6231 | 0.6711 | 0.0621 | 0.031* | |
H6B | 0.6548 | 0.6253 | 0.1731 | 0.031* | |
C7 | 0.79068 (15) | 0.69111 (8) | 0.19897 (16) | 0.0293 (3) | |
H7A | 0.7959 | 0.7333 | 0.1669 | 0.035* | |
H7B | 0.8389 | 0.6607 | 0.1760 | 0.035* | |
C8 | 0.84214 (13) | 0.69466 (8) | 0.33251 (15) | 0.0250 (3) | |
H8A | 0.8459 | 0.6515 | 0.3648 | 0.030* | |
H8B | 0.9260 | 0.7118 | 0.3645 | 0.030* | |
C9 | 0.76406 (12) | 0.73670 (7) | 0.37067 (14) | 0.0207 (3) | |
H9A | 0.7990 | 0.7376 | 0.4576 | 0.025* | |
H9B | 0.7649 | 0.7805 | 0.3428 | 0.025* | |
C10 | 0.46559 (11) | 0.37274 (6) | 0.25037 (11) | 0.0139 (2) | |
C11 | 0.45016 (13) | 0.30319 (6) | 0.27504 (13) | 0.0202 (3) | |
H11A | 0.5295 | 0.2853 | 0.3269 | 0.030* | |
H11B | 0.4162 | 0.2795 | 0.2009 | 0.030* | |
H11C | 0.3949 | 0.3001 | 0.3131 | 0.030* | |
C12 | 0.56244 (13) | 0.37841 (7) | 0.20344 (13) | 0.0208 (3) | |
H12A | 0.5782 | 0.4233 | 0.1952 | 0.031* | |
H12B | 0.5334 | 0.3576 | 0.1267 | 0.031* | |
H12C | 0.6378 | 0.3580 | 0.2584 | 0.031* | |
C13 | 0.33860 (12) | 0.39724 (6) | 0.16641 (11) | 0.0162 (2) | |
H13A | 0.3171 | 0.3791 | 0.0874 | 0.019* | |
H13B | 0.2786 | 0.3812 | 0.1939 | 0.019* | |
C14 | 0.19942 (12) | 0.48510 (7) | 0.13000 (13) | 0.0202 (3) | |
H14A | 0.1802 | 0.4696 | 0.1944 | 0.024* | |
H14B | 0.1431 | 0.4641 | 0.0565 | 0.024* | |
C15 | 0.17948 (14) | 0.55629 (8) | 0.11732 (14) | 0.0251 (3) | |
H15A | 0.2309 | 0.5772 | 0.1928 | 0.030* | |
H15B | 0.0933 | 0.5659 | 0.0984 | 0.030* | |
C16 | 0.21093 (16) | 0.58260 (9) | 0.02080 (15) | 0.0313 (3) | |
H16A | 0.1520 | 0.5665 | −0.0566 | 0.038* | |
H16B | 0.2056 | 0.6295 | 0.0197 | 0.038* | |
C17 | 0.33921 (16) | 0.56243 (8) | 0.04279 (14) | 0.0286 (3) | |
H17A | 0.3560 | 0.5760 | −0.0242 | 0.034* | |
H17B | 0.3987 | 0.5837 | 0.1144 | 0.034* | |
C18 | 0.35499 (15) | 0.49096 (8) | 0.05796 (13) | 0.0237 (3) | |
H18A | 0.3004 | 0.4698 | −0.0162 | 0.028* | |
H18B | 0.4399 | 0.4796 | 0.0745 | 0.028* | |
O5 | 0.76193 (12) | 0.52276 (7) | 0.24976 (13) | 0.0363 (3) | |
C19 | 0.86250 (16) | 0.50349 (10) | 0.29097 (18) | 0.0379 (4) | |
C20 | 0.9050 (6) | 0.4770 (4) | 0.4156 (5) | 0.082 (3) | 0.519 (6) |
H20A | 0.9538 | 0.5090 | 0.4727 | 0.122* | 0.519 (6) |
H20B | 0.9546 | 0.4389 | 0.4241 | 0.122* | 0.519 (6) |
H20C | 0.8340 | 0.4660 | 0.4297 | 0.122* | 0.519 (6) |
C20A | 0.8773 (4) | 0.4280 (2) | 0.3187 (5) | 0.0537 (18) | 0.481 (6) |
H20D | 0.8394 | 0.4171 | 0.3712 | 0.081* | 0.481 (6) |
H20E | 0.9640 | 0.4170 | 0.3566 | 0.081* | 0.481 (6) |
H20F | 0.8375 | 0.4042 | 0.2451 | 0.081* | 0.481 (6) |
C21 | 0.96197 (15) | 0.52689 (8) | 0.26145 (16) | 0.0292 (3) | |
H21A | 0.9265 | 0.5461 | 0.1830 | 0.044* | |
H21B | 1.0143 | 0.4913 | 0.2625 | 0.044* | |
H21C | 1.0104 | 0.5586 | 0.3195 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01269 (6) | 0.00878 (6) | 0.01867 (7) | −0.00006 (5) | 0.00852 (6) | 0.00090 (5) |
Zn2 | 0.01198 (6) | 0.00917 (6) | 0.01388 (6) | −0.00076 (5) | 0.00627 (5) | −0.00150 (5) |
Zn3 | 0.01127 (6) | 0.01025 (6) | 0.01389 (6) | 0.00137 (5) | 0.00653 (5) | 0.00032 (5) |
Br1 | 0.01778 (6) | 0.02193 (7) | 0.02107 (7) | 0.00233 (5) | 0.00602 (5) | 0.00430 (5) |
Br2 | 0.01385 (6) | 0.02248 (7) | 0.03002 (7) | 0.00588 (5) | 0.01142 (5) | 0.00404 (5) |
O1 | 0.0159 (4) | 0.0097 (4) | 0.0236 (5) | 0.0029 (3) | 0.0119 (4) | 0.0046 (3) |
O2 | 0.0166 (4) | 0.0126 (4) | 0.0272 (5) | −0.0020 (3) | 0.0140 (4) | −0.0030 (4) |
O3 | 0.0182 (4) | 0.0130 (4) | 0.0204 (5) | −0.0034 (3) | 0.0122 (4) | −0.0041 (3) |
O4 | 0.0150 (4) | 0.0107 (4) | 0.0117 (4) | −0.0001 (3) | 0.0050 (3) | −0.0031 (3) |
N1 | 0.0167 (5) | 0.0123 (5) | 0.0203 (5) | −0.0016 (4) | 0.0105 (4) | 0.0011 (4) |
N2 | 0.0145 (5) | 0.0171 (5) | 0.0122 (4) | −0.0003 (4) | 0.0056 (4) | 0.0006 (4) |
C1 | 0.0197 (6) | 0.0105 (5) | 0.0262 (7) | 0.0036 (4) | 0.0137 (5) | 0.0054 (5) |
C2 | 0.0320 (8) | 0.0126 (6) | 0.0411 (9) | 0.0065 (5) | 0.0244 (7) | 0.0036 (6) |
C3 | 0.0189 (6) | 0.0239 (7) | 0.0286 (7) | 0.0046 (5) | 0.0106 (6) | 0.0094 (6) |
C4 | 0.0231 (6) | 0.0094 (5) | 0.0288 (7) | 0.0001 (5) | 0.0154 (6) | 0.0020 (5) |
C5 | 0.0225 (6) | 0.0232 (7) | 0.0217 (6) | 0.0010 (5) | 0.0108 (5) | 0.0055 (5) |
C6 | 0.0314 (8) | 0.0281 (7) | 0.0243 (7) | 0.0003 (6) | 0.0171 (6) | 0.0008 (6) |
C7 | 0.0311 (8) | 0.0314 (8) | 0.0367 (9) | 0.0013 (6) | 0.0252 (7) | 0.0057 (7) |
C8 | 0.0192 (6) | 0.0257 (7) | 0.0347 (8) | −0.0005 (5) | 0.0160 (6) | 0.0048 (6) |
C9 | 0.0185 (6) | 0.0173 (6) | 0.0287 (7) | −0.0058 (5) | 0.0122 (6) | 0.0005 (5) |
C10 | 0.0155 (5) | 0.0123 (5) | 0.0149 (5) | −0.0023 (4) | 0.0075 (5) | −0.0055 (4) |
C11 | 0.0227 (6) | 0.0120 (5) | 0.0261 (7) | −0.0023 (5) | 0.0106 (6) | −0.0059 (5) |
C12 | 0.0209 (6) | 0.0251 (7) | 0.0212 (6) | −0.0004 (5) | 0.0135 (5) | −0.0043 (5) |
C13 | 0.0163 (5) | 0.0161 (6) | 0.0147 (5) | −0.0034 (4) | 0.0052 (5) | −0.0048 (4) |
C14 | 0.0137 (5) | 0.0239 (7) | 0.0194 (6) | 0.0007 (5) | 0.0036 (5) | 0.0019 (5) |
C15 | 0.0217 (6) | 0.0246 (7) | 0.0259 (7) | 0.0072 (6) | 0.0071 (6) | 0.0063 (6) |
C16 | 0.0347 (8) | 0.0290 (8) | 0.0239 (7) | 0.0058 (7) | 0.0066 (7) | 0.0116 (6) |
C17 | 0.0346 (8) | 0.0301 (8) | 0.0234 (7) | 0.0021 (7) | 0.0146 (7) | 0.0112 (6) |
C18 | 0.0291 (7) | 0.0294 (7) | 0.0159 (6) | 0.0018 (6) | 0.0127 (6) | 0.0040 (5) |
O5 | 0.0309 (6) | 0.0365 (7) | 0.0516 (8) | 0.0045 (5) | 0.0273 (6) | 0.0029 (6) |
C19 | 0.0260 (8) | 0.0477 (11) | 0.0405 (10) | 0.0031 (7) | 0.0146 (7) | 0.0224 (8) |
C20 | 0.074 (4) | 0.127 (6) | 0.061 (3) | 0.050 (4) | 0.045 (3) | 0.063 (4) |
C20A | 0.0223 (17) | 0.052 (3) | 0.084 (4) | 0.0048 (17) | 0.020 (2) | 0.041 (3) |
C21 | 0.0239 (7) | 0.0305 (8) | 0.0350 (8) | −0.0013 (6) | 0.0143 (7) | 0.0054 (7) |
Zn1—O1 | 1.9593 (9) | C8—H8A | 0.9900 |
Zn1—O2 | 1.9165 (10) | C8—H8B | 0.9900 |
Zn1—N1 | 2.1058 (11) | C8—C9 | 1.518 (2) |
Zn1—Br1 | 2.3816 (2) | C9—H9A | 0.9900 |
Zn2—O2 | 1.9310 (10) | C9—H9B | 0.9900 |
Zn2—O3 | 1.9147 (9) | C10—C11 | 1.5265 (19) |
Zn2—O4 | 1.9401 (9) | C10—C12 | 1.5297 (18) |
Zn2—N2 | 2.1358 (11) | C10—C13 | 1.5396 (18) |
Zn3—O1i | 1.9646 (9) | C11—H11A | 0.9800 |
Zn3—O3i | 1.9681 (9) | C11—H11B | 0.9800 |
Zn3—O4 | 1.9512 (9) | C11—H11C | 0.9800 |
Zn3—Br2 | 2.3722 (2) | C12—H12A | 0.9800 |
O1—Zn3i | 1.9646 (9) | C12—H12B | 0.9800 |
O1—C1 | 1.4314 (15) | C12—H12C | 0.9800 |
O2—H2 | 0.69 (2) | C13—H13A | 0.9900 |
O3—Zn3i | 1.9682 (9) | C13—H13B | 0.9900 |
O3—H3 | 0.73 (2) | C14—H14A | 0.9900 |
O4—C10 | 1.4227 (15) | C14—H14B | 0.9900 |
N1—C4 | 1.4867 (17) | C14—C15 | 1.517 (2) |
N1—C5 | 1.4930 (19) | C15—H15A | 0.9900 |
N1—C9 | 1.4940 (17) | C15—H15B | 0.9900 |
N2—C13 | 1.4876 (17) | C15—C16 | 1.525 (2) |
N2—C14 | 1.4892 (17) | C16—H16A | 0.9900 |
N2—C18 | 1.4907 (17) | C16—H16B | 0.9900 |
C1—C2 | 1.531 (2) | C16—C17 | 1.522 (2) |
C1—C3 | 1.530 (2) | C17—H17A | 0.9900 |
C1—C4 | 1.5425 (19) | C17—H17B | 0.9900 |
C2—H2A | 0.9800 | C17—C18 | 1.520 (2) |
C2—H2B | 0.9800 | C18—H18A | 0.9900 |
C2—H2C | 0.9800 | C18—H18B | 0.9900 |
C3—H3A | 0.9800 | O5—C19 | 1.177 (2) |
C3—H3B | 0.9800 | C19—C20 | 1.532 (5) |
C3—H3C | 0.9800 | C19—C20A | 1.623 (5) |
C4—H4A | 0.9900 | C19—C21 | 1.491 (2) |
C4—H4B | 0.9900 | C20—H20A | 0.9800 |
C5—H5A | 0.9900 | C20—H20B | 0.9800 |
C5—H5B | 0.9900 | C20—H20C | 0.9800 |
C5—C6 | 1.516 (2) | C20A—H20D | 0.9800 |
C6—H6A | 0.9900 | C20A—H20E | 0.9800 |
C6—H6B | 0.9900 | C20A—H20F | 0.9800 |
C6—C7 | 1.520 (2) | C21—H21A | 0.9800 |
C7—H7A | 0.9900 | C21—H21B | 0.9800 |
C7—H7B | 0.9900 | C21—H21C | 0.9800 |
C7—C8 | 1.524 (2) | ||
O1—Zn1—Br1 | 114.12 (3) | C9—C8—C7 | 111.10 (13) |
O1—Zn1—N1 | 88.54 (4) | C9—C8—H8A | 109.4 |
O2—Zn1—Br1 | 110.82 (3) | C9—C8—H8B | 109.4 |
O2—Zn1—O1 | 111.19 (4) | N1—C9—C8 | 111.64 (12) |
O2—Zn1—N1 | 116.18 (4) | N1—C9—H9A | 109.3 |
N1—Zn1—Br1 | 114.35 (3) | N1—C9—H9B | 109.3 |
O2—Zn2—O4 | 116.23 (4) | C8—C9—H9A | 109.3 |
O2—Zn2—N2 | 110.18 (4) | C8—C9—H9B | 109.3 |
O3—Zn2—O2 | 108.79 (4) | H9A—C9—H9B | 108.0 |
O3—Zn2—O4 | 120.54 (4) | O4—C10—C11 | 109.87 (11) |
O3—Zn2—N2 | 112.11 (4) | O4—C10—C12 | 108.80 (10) |
O4—Zn2—N2 | 86.91 (4) | O4—C10—C13 | 107.02 (10) |
O1i—Zn3—Br2 | 118.00 (3) | C11—C10—C12 | 109.57 (11) |
O1i—Zn3—O3i | 106.38 (4) | C11—C10—C13 | 106.71 (10) |
O3i—Zn3—Br2 | 111.70 (3) | C12—C10—C13 | 114.78 (11) |
O4—Zn3—Br2 | 117.11 (3) | C10—C11—H11A | 109.5 |
O4—Zn3—O1i | 105.41 (4) | C10—C11—H11B | 109.5 |
O4—Zn3—O3i | 95.52 (4) | C10—C11—H11C | 109.5 |
Zn1—O1—Zn3i | 118.87 (5) | H11A—C11—H11B | 109.5 |
Zn1—O2—Zn2 | 123.95 (5) | H11A—C11—H11C | 109.5 |
Zn2—O3—Zn3i | 133.08 (5) | H11B—C11—H11C | 109.5 |
Zn2—O4—Zn3 | 120.17 (4) | C10—C12—H12A | 109.5 |
C1—O1—Zn1 | 111.77 (7) | C10—C12—H12B | 109.5 |
C1—O1—Zn3i | 125.97 (8) | C10—C12—H12C | 109.5 |
Zn1—O2—H2 | 109 (2) | H12A—C12—H12B | 109.5 |
Zn2—O2—H2 | 117 (2) | H12A—C12—H12C | 109.5 |
Zn2—O3—H3 | 110.4 (15) | H12B—C12—H12C | 109.5 |
Zn3i—O3—H3 | 116.5 (15) | N2—C13—C10 | 115.14 (10) |
C10—O4—Zn2 | 112.67 (7) | N2—C13—H13A | 108.5 |
C10—O4—Zn3 | 126.68 (8) | N2—C13—H13B | 108.5 |
C4—N1—Zn1 | 99.33 (7) | C10—C13—H13A | 108.5 |
C4—N1—C5 | 110.31 (11) | C10—C13—H13B | 108.5 |
C4—N1—C9 | 108.46 (11) | H13A—C13—H13B | 107.5 |
C5—N1—Zn1 | 118.32 (9) | N2—C14—H14A | 109.2 |
C5—N1—C9 | 108.44 (11) | N2—C14—H14B | 109.2 |
C9—N1—Zn1 | 111.39 (8) | N2—C14—C15 | 111.98 (12) |
C13—N2—Zn2 | 101.16 (8) | H14A—C14—H14B | 107.9 |
C13—N2—C14 | 108.49 (10) | C15—C14—H14A | 109.2 |
C13—N2—C18 | 111.17 (11) | C15—C14—H14B | 109.2 |
C14—N2—Zn2 | 111.77 (8) | C14—C15—H15A | 109.4 |
C14—N2—C18 | 108.80 (11) | C14—C15—H15B | 109.4 |
C18—N2—Zn2 | 115.13 (9) | C14—C15—C16 | 111.13 (13) |
O1—C1—C2 | 110.84 (11) | H15A—C15—H15B | 108.0 |
O1—C1—C3 | 109.26 (11) | C16—C15—H15A | 109.4 |
O1—C1—C4 | 107.39 (10) | C16—C15—H15B | 109.4 |
C2—C1—C4 | 104.92 (11) | C15—C16—H16A | 109.7 |
C3—C1—C2 | 109.51 (12) | C15—C16—H16B | 109.7 |
C3—C1—C4 | 114.85 (12) | H16A—C16—H16B | 108.2 |
C1—C2—H2A | 109.5 | C17—C16—C15 | 109.80 (13) |
C1—C2—H2B | 109.5 | C17—C16—H16A | 109.7 |
C1—C2—H2C | 109.5 | C17—C16—H16B | 109.7 |
H2A—C2—H2B | 109.5 | C16—C17—H17A | 109.4 |
H2A—C2—H2C | 109.5 | C16—C17—H17B | 109.4 |
H2B—C2—H2C | 109.5 | H17A—C17—H17B | 108.0 |
C1—C3—H3A | 109.5 | C18—C17—C16 | 111.34 (14) |
C1—C3—H3B | 109.5 | C18—C17—H17A | 109.4 |
C1—C3—H3C | 109.5 | C18—C17—H17B | 109.4 |
H3A—C3—H3B | 109.5 | N2—C18—C17 | 111.83 (12) |
H3A—C3—H3C | 109.5 | N2—C18—H18A | 109.3 |
H3B—C3—H3C | 109.5 | N2—C18—H18B | 109.3 |
N1—C4—C1 | 115.86 (11) | C17—C18—H18A | 109.3 |
N1—C4—H4A | 108.3 | C17—C18—H18B | 109.3 |
N1—C4—H4B | 108.3 | H18A—C18—H18B | 107.9 |
C1—C4—H4A | 108.3 | O5—C19—C20 | 114.2 (2) |
C1—C4—H4B | 108.3 | O5—C19—C20A | 115.6 (2) |
H4A—C4—H4B | 107.4 | O5—C19—C21 | 125.10 (17) |
N1—C5—H5A | 109.1 | C21—C19—C20 | 114.9 (3) |
N1—C5—H5B | 109.1 | C21—C19—C20A | 110.5 (2) |
N1—C5—C6 | 112.41 (12) | C19—C20—H20A | 109.5 |
H5A—C5—H5B | 107.9 | C19—C20—H20B | 109.5 |
C6—C5—H5A | 109.1 | C19—C20—H20C | 109.5 |
C6—C5—H5B | 109.1 | H20A—C20—H20B | 109.5 |
C5—C6—H6A | 109.5 | H20A—C20—H20C | 109.5 |
C5—C6—H6B | 109.5 | H20B—C20—H20C | 109.5 |
C5—C6—C7 | 110.88 (14) | C19—C20A—H20D | 109.5 |
H6A—C6—H6B | 108.1 | C19—C20A—H20E | 109.5 |
C7—C6—H6A | 109.5 | C19—C20A—H20F | 109.5 |
C7—C6—H6B | 109.5 | H20D—C20A—H20E | 109.5 |
C6—C7—H7A | 109.8 | H20D—C20A—H20F | 109.5 |
C6—C7—H7B | 109.8 | H20E—C20A—H20F | 109.5 |
C6—C7—C8 | 109.51 (12) | C19—C21—H21A | 109.5 |
H7A—C7—H7B | 108.2 | C19—C21—H21B | 109.5 |
C8—C7—H7A | 109.8 | C19—C21—H21C | 109.5 |
C8—C7—H7B | 109.8 | H21A—C21—H21B | 109.5 |
C7—C8—H8A | 109.4 | H21A—C21—H21C | 109.5 |
C7—C8—H8B | 109.4 | H21B—C21—H21C | 109.5 |
H8A—C8—H8B | 108.0 | ||
Zn1—O1—C1—C2 | −143.25 (10) | C2—C1—C4—N1 | 165.89 (12) |
Zn1—O1—C1—C3 | 95.97 (10) | C3—C1—C4—N1 | −73.82 (15) |
Zn1—O1—C1—C4 | −29.18 (13) | C4—N1—C5—C6 | 177.10 (12) |
Zn1—N1—C4—C1 | −38.23 (13) | C4—N1—C9—C8 | −178.28 (12) |
Zn1—N1—C5—C6 | −69.58 (14) | C5—N1—C4—C1 | 86.76 (14) |
Zn1—N1—C9—C8 | 73.40 (13) | C5—N1—C9—C8 | −58.48 (15) |
Zn2—O4—C10—C11 | −152.00 (8) | C5—C6—C7—C8 | 54.13 (18) |
Zn2—O4—C10—C12 | 88.05 (11) | C6—C7—C8—C9 | −54.74 (17) |
Zn2—O4—C10—C13 | −36.51 (11) | C7—C8—C9—N1 | 58.21 (16) |
Zn2—N2—C13—C10 | −32.11 (11) | C9—N1—C4—C1 | −154.62 (12) |
Zn2—N2—C14—C15 | 69.34 (13) | C9—N1—C5—C6 | 58.46 (15) |
Zn2—N2—C18—C17 | −67.74 (14) | C11—C10—C13—N2 | 164.92 (11) |
Zn3i—O1—C1—C2 | 57.94 (15) | C12—C10—C13—N2 | −73.49 (14) |
Zn3i—O1—C1—C3 | −62.83 (13) | C13—N2—C14—C15 | −179.96 (11) |
Zn3i—O1—C1—C4 | 172.01 (8) | C13—N2—C18—C17 | 178.00 (12) |
Zn3—O4—C10—C11 | 36.06 (13) | C14—N2—C13—C10 | −149.80 (11) |
Zn3—O4—C10—C12 | −83.89 (12) | C14—N2—C18—C17 | 58.59 (16) |
Zn3—O4—C10—C13 | 151.55 (8) | C14—C15—C16—C17 | −53.46 (18) |
O1—C1—C4—N1 | 47.91 (16) | C15—C16—C17—C18 | 53.38 (19) |
O4—C10—C13—N2 | 47.33 (14) | C16—C17—C18—N2 | −57.19 (17) |
N1—C5—C6—C7 | −57.60 (16) | C18—N2—C13—C10 | 90.61 (13) |
N2—C14—C15—C16 | 57.53 (16) | C18—N2—C14—C15 | −58.90 (15) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O5 | 0.69 (2) | 2.23 (2) | 2.9036 (15) | 166 (3) |
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support and LB thanks the Fonds der Chemischen Industrie (FCI) for a doctoral fellowship.
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft ; Verband der Chemischen Industrie .
References
Arias, A., Forniés, J., Fortuño, C., Ibáñez, S., Martín, A., Mastrorilli, P., Gallo, V. & Todisco, S. (2013). Inorg. Chem. 52, 11398–11408. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bachmann, C., Guttentag, M., Spingler, B. & Alberto, R. (2013). Inorg. Chem. 52, 6055–6061. Web of Science CSD CrossRef CAS PubMed Google Scholar
Balogh-Hergovich, E., Párkányi, L. & Speier, G. (1998). Z. Kristallogr. 213, 265–266. CAS Google Scholar
Bergquist, C. & Parkin, G. (1999). Inorg. Chem. 38, 422–423. Web of Science CrossRef PubMed CAS Google Scholar
Bergquist, C., Storrie, H., Koutcher, L., Bridgewater, B. M., Friesner, R. A. & Parkin, G. (2000). J. Am. Chem. Soc. 122, 12651–12658. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486–8492. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, H.-Y., Peng, Y.-L., Huang, T.-H., Sutar, A. K., Miller, S. A. & Lin, C.-C. (2011). J. Mol. Catal. A Chem. 339, 61–71. Web of Science CSD CrossRef CAS Google Scholar
Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745–3752. Web of Science CSD CrossRef CAS Google Scholar
Clegg, W., Little, I. R. & Straughan, B. P. (1988). Inorg. Chem. 27, 1916–1923. CSD CrossRef CAS Web of Science Google Scholar
Däschlein, C., Bauer, J. O. & Strohmann, C. (2009). Angew. Chem. Int. Ed. 48, 8074–8077. Google Scholar
Däschlein, C. & Strohmann, C. (2009). Z. Naturforsch. Teil B, 64, 1558–s1579. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eckert, P. K., Vieira, I. dos S., Gessner, V. H., Börner, J., Strohmann, C. & Herres-Pawlis, S. (2013). Polyhedron, 49, 151–157. Web of Science CSD CrossRef CAS Google Scholar
Gessner, V. H., Fröhlich, B. & Strohmann, C. (2010). Eur. J. Inorg. Chem. pp. 5640–5649. Web of Science CSD CrossRef Google Scholar
Gessner, V. H. & Strohmann, C. (2012). Dalton Trans. 41, 3452–3460. Web of Science CSD CrossRef CAS PubMed Google Scholar
Golz, C., Steffen, P. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 8295–8298. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Herber, U., Hegner, K., Wolters, D., Siris, R., Wrobel, K., Hoffmann, A., Lochenie, C., Weber, B., Kuckling, D. & Herres-Pawlis, S. (2017). Eur. J. Inorg. Chem. pp. 1341–1354. Web of Science CSD CrossRef Google Scholar
Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314. CrossRef PubMed CAS Web of Science Google Scholar
Kimura, E., Koike, T. & Shionoya, M. (1997). Struct. Bond. 89, 1–28. CrossRef CAS Google Scholar
Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434. CrossRef PubMed CAS Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ondráček, J., Kratochvíl, B. & Haber, V. (1994). Collect. Czech. Chem. Commun. 59, 1809–1814. Google Scholar
Purkait, S., Chakraborty, P., Frontera, A., Bauzá, A., Zangrando, E. & Das, D. (2018). New J. Chem. 42, 12998–13009. Web of Science CSD CrossRef CAS Google Scholar
Qiu, X.-H. & Tong, X.-L. (2005). Acta Cryst. E61, m2302–m2304. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reichenbach-Klinke, R., Zabel, M. & König, B. (2003). Dalton Trans. pp. 141–145. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shibata, T., Hayase, T., Yamamoto, J. & Soai, K. (1997). Tetrahedron Asymmetry, 8, 1717–1719. CrossRef CAS Web of Science Google Scholar
Siek, S., Dixon, N. A., Kumar, M., Kraus, J. S., Wells, K. R., Rowe, B. W., Kelley, S. P., Zeller, M., Yap, G. P. A. & Papish, E. T. (2016). Eur. J. Inorg. Chem. 2016, 2495–2507. Web of Science CSD CrossRef CAS Google Scholar
Soai, K., Shibata, T., Morioka, H. & Choji, K. (1995). Nature, 378, 767–768. CrossRef CAS Web of Science Google Scholar
Stasiw, D. E., Luke, A. M., Rosen, T., League, A. B., Mandal, M., Neisen, B. D., Cramer, C. J., Kol, M. & Tolman, W. B. (2017). Inorg. Chem. 56, 14366–14372. Web of Science CSD CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, X.-W., Yin, Z.-G., Yang, X.-Z., Li, G.-S. & Zhang, C.-X. (2009). Acta Cryst. E65, m1293–m1294. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.