research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[(1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)formamido]­propano­ate: crystal structure, Hirshfeld surface analysis and computational chemistry

CROSSMARK_Color_square_no_text.svg

aDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bLaboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: ignez@df.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 May 2020; accepted 3 June 2020; online 9 June 2020)

The title compound, C20H20N4O3, is constructed about a tri-substituted 1,2,3-triazole ring, with the substituent at one C atom flanked by the C and N atoms being a substituted amide group, and with the adjacent C and N atoms bearing phenyl and benzyl groups, respectively; the dihedral angle between the pendant phenyl rings is 81.17 (12)°, indicative of an almost orthogonal disposition. In the crystal, pairwise amide-N—H⋯O(carbon­yl) hydrogen bonds lead to a centrosymmetric dimer incorporating methyl­ene-C—H⋯π(benzene) inter­actions. The dimers are linked into a supra­molecular layer in the ab plane via methyl­ene-C—H⋯N(azo) and benzene-C—H⋯O(amide) inter­actions; the layers stack along the c-axis direction without directional inter­actions between them. The above-mentioned inter­molecular contacts are apparent in the analysis of the calculated Hirshfeld surface, which also provides evidence for short inter-layer H⋯C contacts with a significant dispersion energy contribution.

1. Chemical context

The title 1,2,3-triazole-5-carboxamide derivative, (I)[link], was recently prepared and characterized from a palladium-catal­ysed amino­carbonyl­ation reaction with the use of dimethyl carbonate as a sustainable solvent (de Albuquerque et al., 2019[Albuquerque, D. Y. de, de Moraes, J. R. & Schwab, R. S. (2019). Eur. J. Org. Chem. pp. 6673-6681.]). The motivation for preparing such mol­ecules rests with the known pharmacological activity of these and related 1,2,3-triazole derivatives (Bonandi et al., 2017[Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G. & Passarella, D. (2017). Drug Discovery Today, 22, 1572-1581.]). Unambiguous structure determination of (I)[link] is reported herein, via X-ray crystallography, as is a detailed analysis of the supra­molecular association by Hirshfeld surface analysis and computational chemistry.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], features a tri-substituted 1,2,3-triazole ring. The five-membered ring is strictly planar with the r.m.s. deviation of the fitted atoms being 0.0021 Å. Within the ring, the lengthening of the formal azo-N2—N3 [1.306 (4) Å] and C1—C2 [1.388 (4) Å] double bonds coupled with the shortening of the N1—N2 [1.341 (4) Å], C1—N3 [1.368 (4) Å] and C2—N1 [1.347 (4) Å] bonds from their standard double/single bond values, are indicative of significant delocalization of π-electron density over the ring atoms. While the N1-bound C3-atom lies 0.131 (6) Å out of the plane of the ring, the C1- and C2-bound C10 [0.012 (6) Å] and C16 [0.008 (6) Å] atoms are effectively co-planar with the ring. The terminal residues are twisted out of the plane of the central ring as seen in the (C1,C2,N1–N3)/(C4–C9) [74.46 (13)°], (C1,C2,N1–N3)/(C10–C15) [28.10 (17)°] and (C1,C2,N1–N3)/(C16,N4,O1) [47.1 (2)°] dihedral angles. The dihedral angle between the terminal phenyl rings is 81.17 (12)° indicating a close to orthogonal disposition. There is a twist in the amide residue as seen in the value of the N4—C17—C18—C19 torsion angle of 73.6 (4)°, indicating a (+)syn-clinal relationship. This results in a dihedral angle close to orthogonal for the amide (C16,N4,O1) and carboxyl­ate (C19,O2,O3) residues, i.e. 73.6 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

3. Supra­molecular features

The mol­ecular packing in (I)[link] features several identifiable points of contact, Table 1[link]. The most evident of these are amide-N4—H⋯O2(carbon­yl) hydrogen bonds occurring between centrosymmetrically related mol­ecules to give the dimer shown in Fig. 2[link](a). The mol­ecules in the dimer are linked via a 12-membered {⋯OC3NH}2 synthon and additional stability to the assembly is provided by methyl­ene-C17—H⋯π(benzene) inter­actions. The dimeric aggregates are connected into a supra­molecular layer propagating in the ab plane via methyl­ene-C3—H⋯N2(azo) and benzene-C15—H⋯O1(amide) inter­actions, Fig. 2[link](b). The layers stack in an …ABAB… pattern along the c axis and inter-digitate to potentially form ππ inter­actions. However, these are not apparent, Fig. 2[link](c). A more detailed analysis of the inter­actions occurring in the inter-layer region is provided by an analysis of the calculated Hirshfeld surfaces.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the (C10–C15) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O2i 0.86 (3) 2.04 (3) 2.884 (4) 167 (3)
C3—H3B⋯N2ii 0.97 2.55 3.495 (5) 165
C15—H15⋯O1iii 0.93 2.51 3.335 (5) 148
C17—H17BCg1i 0.97 2.71 3.640 (4) 161
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) supra­molecular dimer sustained by amide-N4—H⋯O2(carbon­yl) hydrogen bonds (H atoms omitted for clarity), (b) layer where the dimers of (a) are connected by methyl­ene-C3—H⋯N(azo) and benzene-C15—H⋯O1(amide) inter­actions [the methyl­ene-C17—H⋯π(benzene) inter­actions occur within the dimers] and (c) a view of the unit-cell contents shown in projection down the a axis. The N—H⋯O, C—H⋯O and C—H⋯π inter­actions are shown as blue, orange and purple dashed lines, respectively.

4. Hirshfeld surface analysis

In order to probe the inter­action between mol­ecules of (I)[link] in the crystal, Hirshfeld surfaces mapped with the normalized contact distance dnorm (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]), electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) and two-dimensional fingerprint plots were calculated using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) by established procedures (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The electrostatic potentials were calculated using the wavefunction at the HF/STO-3 G level of theory. The bright-red spots on the Hirshfeld surface mapped over dnorm in Fig. 3[link](a), i.e. near the amide-H4N and carbonyl-O2 atoms, correspond to the amide-N—H4N⋯O2(carbon­yl) hydrogen bond (Table 1[link]). This hydrogen bond is also reflected in Hirshfeld surface mapped over the electrostatic potential Fig. 3[link](b), where the blue (positive electrostatic potential) and red (negative electrostatic potential) regions are apparent around the amide-H4N and carbonyl-O2 atoms, respectively.

[Figure 3]
Figure 3
Views of the Hirshfeld surface for (I)[link] mapped over (a) dnorm in the range −0.249 to +1.397 arbitrary units and (b) the electrostatic potential map in the range −0.097 to 0.134 atomic units, highlighting N—H⋯O hydrogen bonding.

The methyl­ene-C3—H⋯N2(azo) and benzene-C15—H15⋯O1(amide) inter­actions are observed as faint-red spots on the dnorm-mapped Hirshfeld surface in Fig. 4[link](a), with a distance of ∼0.3 Å shorter than the sum of their van der Waals radii, Table 2[link]. The other faint red spots near the benzyl (C5, C12, C15, H7 and H12) and methyl­ene (H17A) atoms in Fig. 4[link](b) correspond to the inter-layer H7⋯C5, H17A⋯C12 and H12⋯C15 short contacts listed in Table 2[link]. Even though the C—H⋯π inter­action, Table 1[link], was not manifested on the dnorm-mapped Hirshfeld surface, this inter­action shows up as a distinctive orange `pothole' on the shape-index-mapped Hirshfeld surface, Fig. 5[link].

Table 2
Summary of short inter­atomic contacts (Å) in (I)a

Contact Distance Symmetry operation
H4N⋯O2b 1.90 x + 1, −y, −z + 1
H3B⋯N2b 2.44 x + 1, −y + 1, −z + 1
H15⋯O1b 2.38 x, −y + 1, −z + 1
H7⋯C5 2.63 x, y − [{1\over 2}], −z + [{1\over 2}]
H17A⋯C12 2.72 x, −y + [{1\over 2}], z − [{1\over 2}]
H12⋯C15 2.73 x + 1, y − [{1\over 2}], −z + [{3\over 2}]
Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) whereby the X—H bond lengths are adjusted to their neutron values. (b) These inter­actions correspond to those reported in Table 1[link].
[Figure 4]
Figure 4
Views of the Hirshfeld surface mapped over dnorm for (I)[link] in the range −0.249 to +1.397 arbitrary units, highlighting (a) weak C—H⋯N and C—H⋯O inter­actions and (b) short H⋯C contacts, highlighted within red circles.
[Figure 5]
Figure 5
A view of the Hirshfeld surface for (I)[link] mapped with the shape-index property, highlighting the inter­molecular C—H⋯π inter­action.

The overall two-dimensional fingerprint plot for the Hirshfeld surface of (I)[link] is shown with characteristic pseudo-symmetric wings in the upper left and lower right sides of the de and di diagonal axes, respectively, in Fig. 6[link](a). The delin­eated H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts from the overall two-dimensional fingerprint plot are illustrated in Fig. 6[link](b)–(e), respectively. The percentage contributions from different inter­atomic contacts to the Hirshfeld surface of (I)[link] are summarized in Table 3[link]. The greatest contribution to the overall Hirshfeld surface are due to H⋯H contacts, which contribute 46.7%. However, the H⋯H contacts appear as a square-like distribution with a small beak at de = di ∼2.6 Å in Fig. 6[link](b), corresponding to H8⋯H11 ≃2.67 Å (symmetry operation: −x, −y, −z + 1) indicating that all H⋯H contacts have long-range characteristics. The H⋯C/C⋯H contacts on the Hirshfeld surface, which contribute 24.9% to the overall surface, Fig. 6[link](c), reflect the C—H⋯π inter­action and C⋯H short contacts as discussed above. Consistent with the C—H⋯O and C—H⋯N inter­actions occurring in the crystal, H⋯O/O⋯H and H⋯N/N⋯H contacts contribute 14.4 and 12.6%, respectively, to the overall Hirshfeld surface. These appear as two sharp symmetric spikes in the fingerprint plots at de + di ≃ 1.9 and 2.4 Å in Fig. 6[link](d) and (e), respectively. The contribution from the other inter­atomic contacts summarized in Table 2[link] has a negligible influence on the calculated Hirshfeld surface of (I)[link].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 46.7
H⋯C/C⋯H 24.9
H⋯O/O⋯H 14.4
H⋯N/N⋯H 12.6
O⋯C/C⋯O 1.0
O⋯O 0.4
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for (II) and (b)–(e) those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts, respectively.

5. Energy frameworks

The pairwise inter­action energies between the mol­ecules in the crystal of (I)[link] were calculated using the 6-31G(d,p) basis set at the B3LYP level of theory. The total energy comprises four terms, i.e. the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energy terms and were calculated with Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). The benchmarked energies were scaled according to Mackenzie et al. (2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]) while Eele, Epol, Edis, and Erep were scaled as 1.057, 0.740, 0.871 and 0.618, respectively (Edwards et al., 2017[Edwards, A. J., Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Faraday Discuss. 203, 93-112.]). The energies for the identified inter­molecular inter­actions are tabulated in Table 4[link]. As anti­cipated, the greatest stabilization energy, with approximately equal contributions from Eele and Edis, arises from the conventional amide-N—H4N⋯O2(carbon­yl) hydrogen bond. The next most significant energies of stabilization arise from the methyl­ene-C3—H⋯N2(azo) (dominated by Edis) and benzene-C15—H15⋯O1(amide) (approximately equal contributions from Eele and Edis) inter­actions. In terms of energy, the next most significant contributions comes from an inter­action in the inter-layer region, namely the H17A⋯C12 contact, Table 4[link]. As for the other identified inter-layer contacts, Edis is the dominant contributor. Views of the energy framework diagrams down a axis are shown in Fig. 7[link] and confirm the crystal to be mainly stabilized by electrostatic and dispersive forces with a clear dominance from the latter. The total Eele of all pairwise inter­actions sum to −142.9 kJ mol−1, while the total Edis computes to −251.1 kJ mol−1.

Table 4
Summary of inter­action energies (kJ mol−1) calculated for (I)

Contact R (Å) Eele Epol Edis Erep Etot
Intra-later            
N4—H4N⋯O2i 5.21 −73.7 −14.9 −84.6 94.6 −104.2
C15—H15⋯O1iii 5.57 −21.8 −5.7 −56.7 34.0 −55.0
C3—H3B⋯N2ii 9.97 −21.4 −6.2 −20.5 25.1 −29.6
H20B⋯N3iv +            
H9⋯O3v +            
H8⋯H18Av 11.43 −5.1 −1.6 −14.8 6.9 −15.2
H8⋯H14vi 12.81 −1.4 −0.5 −9.8 2.2 −9.0
H8⋯H11vii 9.77 −1.2 −0.4 −8.6 1.6 −8.0
H20C⋯H20Cviii 14.84 1.3 −0.2 −3.1 0.6 −1.1
Inter-layer            
H17A⋯C12ix 9.37 −11.3 −3.4 −22.7 14.8 −25.1
H12⋯C15x 10.15 −5.1 −1.2 −16.3 10.0 −14.3
H7⋯C5xi 12.03 −3.2 −0.4 −14.0 11.5 −8.7
Notes: Symmetry operations: (i) −x + 1, −y, −z + 1; (ii) −x + 1, −y + 1, −z + 1; (iii) −x, −y + 1, −z + 1; (iv) x + 1, y, z; (v) x − 1, y, z; (vi) x − 1, −y + [{1\over 2}], z − [{1\over 2}]; (vii) −x, −y, −z + 1; (viii) −x + 2, −y, −z + 1; (ix) x, −y + [{1\over 2}], −z − [{1\over 2}]; (x) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (xi) −x, y − [{1\over 2}], −z + [{1\over 2}].
[Figure 7]
Figure 7
Perspective views of the energy frameworks calculated for (I)[link] showing (a) electrostatic potential force, (b) dispersion force and (c) total energy, each plotted down the a axis. The radii of the cylinders are proportional to the relative magnitudes of the corresponding energies and were adjusted to the same scale factor of 50 with a cut-off value of 5 kJ mol−1 within 1 × 1 × 1 unit cells.

6. Database survey

There is a sole literature precedent for (I)[link], namely the analogue with ethyl carboxyl­ate and N-phenyl­amide substituents at the C1- and C2-atoms, respectively (WAGROM; Katritzky et al., 2003[Katritzky, A. R., Zhang, Y., Singh, S. K. & Steel, P. J. (2003). Arkivoc, pp. 47-64.]), hereafter (II). An overlay diagram of (I)[link] and (II) is given in Fig. 8[link]. As anti­cipated, the five-membered rings and the α-atoms of the three substituents exhibit close concordance but, beyond this, the mol­ecular conformations of the terminal residues differ significantly.

[Figure 8]
Figure 8
Overlay diagram for (I)[link], red image, and (II), blue image. The mol­ecules have been overlapped so the five-membered rings are superimposed.

7. Synthesis and crystallization

Compound (I)[link] was prepared as described in the literature (de Albuquerque et al., 2019[Albuquerque, D. Y. de, de Moraes, J. R. & Schwab, R. S. (2019). Eur. J. Org. Chem. pp. 6673-6681.]). The crystals were obtained by the slow evaporation from an ethanol solution of (I)[link].

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The nitro­gen-bound H atom was located in a difference Fourier map and refined with N—H = 0.86±0.01 Å, and with Uiso(H) set to 1.2Ueq(N).

Table 5
Experimental details

Crystal data
Chemical formula C20H20N4O3
Mr 364.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.4312 (14), 9.3013 (10), 18.737 (3)
β (°) 104.695 (4)
V3) 1927.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.46 × 0.31 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA])
Tmin, Tmax 0.544, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 24191, 3975, 2965
Rint 0.066
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.204, 1.08
No. of reflections 3975
No. of parameters 249
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Methyl 3-[(1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)formamido]propanoate top
Crystal data top
C20H20N4O3F(000) = 768
Mr = 364.40Dx = 1.256 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4312 (14) ÅCell parameters from 6479 reflections
b = 9.3013 (10) Åθ = 2.5–23.9°
c = 18.737 (3) ŵ = 0.09 mm1
β = 104.695 (4)°T = 293 K
V = 1927.1 (4) Å3Irregular, colourless
Z = 40.46 × 0.31 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
2965 reflections with I > 2σ(I)
φ and ω scansRint = 0.066
Absorption correction: multi-scan
(SADABS; Bruker 2009)
θmax = 26.5°, θmin = 1.8°
Tmin = 0.544, Tmax = 0.745h = 1414
24191 measured reflectionsk = 1111
3975 independent reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.077H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.0396P)2 + 3.4742P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3975 reflectionsΔρmax = 0.23 e Å3
249 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0267 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3969 (2)0.4513 (3)0.43041 (14)0.0558 (7)
O20.6787 (3)0.0379 (3)0.5049 (2)0.0836 (10)
O30.8198 (3)0.2035 (3)0.5160 (2)0.0829 (10)
N10.1976 (2)0.4009 (3)0.49963 (14)0.0450 (7)
N20.1426 (3)0.3888 (4)0.55460 (17)0.0635 (9)
N30.2173 (3)0.3227 (4)0.60901 (16)0.0598 (9)
N40.4356 (2)0.2164 (3)0.45617 (14)0.0409 (6)
H4N0.409 (3)0.143 (2)0.4749 (18)0.049*
C10.3218 (3)0.2907 (3)0.58938 (16)0.0399 (7)
C20.3086 (3)0.3412 (3)0.51805 (16)0.0370 (7)
C30.1285 (3)0.4596 (4)0.42786 (19)0.0527 (9)
H3A0.1809060.5204920.4075020.063*
H3B0.0624680.5183350.4353280.063*
C40.0785 (3)0.3410 (4)0.37406 (18)0.0482 (8)
C50.1396 (4)0.2962 (5)0.3228 (2)0.0691 (12)
H50.2128800.3386840.3218720.083*
C60.0922 (6)0.1895 (7)0.2736 (2)0.0986 (19)
H60.1333340.1589920.2394450.118*
C70.0168 (7)0.1276 (7)0.2749 (3)0.111 (2)
H70.0490670.0547640.2416630.133*
C80.0772 (6)0.1728 (6)0.3245 (3)0.1071 (19)
H80.1511970.1314280.3246460.128*
C90.0299 (4)0.2792 (5)0.3747 (2)0.0707 (12)
H90.0714640.3089480.4087790.085*
C100.4213 (3)0.2167 (3)0.64097 (16)0.0410 (7)
C110.3958 (4)0.1262 (4)0.69416 (19)0.0598 (10)
H110.3160460.1123500.6959710.072*
C120.4876 (6)0.0571 (5)0.7442 (2)0.0812 (15)
H120.4695420.0031110.7795130.097*
C130.6056 (5)0.0765 (5)0.7421 (2)0.0787 (15)
H130.6672770.0289380.7757490.094*
C140.6325 (4)0.1658 (5)0.6906 (2)0.0679 (12)
H140.7126900.1792900.6896020.081*
C150.5411 (3)0.2367 (4)0.63968 (18)0.0489 (8)
H150.5601390.2973210.6048050.059*
C160.3854 (3)0.3416 (3)0.46468 (16)0.0357 (7)
C170.5073 (3)0.1985 (4)0.40222 (19)0.0560 (10)
H17A0.4696970.2519310.3578790.067*
H17B0.5080590.0977340.3890170.067*
C180.6360 (3)0.2500 (4)0.4315 (2)0.0601 (10)
H18A0.6732820.2600020.3907430.072*
H18B0.6349700.3440920.4536920.072*
C190.7104 (3)0.1507 (4)0.4873 (2)0.0525 (9)
C200.9011 (5)0.1147 (7)0.5700 (4)0.116 (2)
H20A0.8645830.0928230.6095580.173*
H20B0.9756090.1654100.5892040.173*
H20C0.9170470.0270610.5471370.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0565 (15)0.0461 (14)0.0659 (16)0.0003 (11)0.0177 (12)0.0213 (12)
O20.079 (2)0.0530 (17)0.114 (3)0.0147 (15)0.0151 (18)0.0224 (17)
O30.0569 (17)0.071 (2)0.116 (3)0.0102 (15)0.0128 (17)0.0251 (18)
N10.0430 (15)0.0491 (16)0.0420 (14)0.0096 (13)0.0092 (12)0.0051 (12)
N20.0502 (18)0.092 (3)0.0525 (18)0.0146 (18)0.0204 (15)0.0114 (18)
N30.0558 (18)0.082 (2)0.0465 (17)0.0083 (17)0.0218 (14)0.0051 (16)
N40.0478 (15)0.0374 (14)0.0422 (14)0.0016 (12)0.0203 (12)0.0002 (12)
C10.0442 (17)0.0411 (17)0.0365 (15)0.0006 (14)0.0140 (13)0.0057 (13)
C20.0396 (16)0.0311 (15)0.0399 (16)0.0042 (13)0.0094 (12)0.0019 (13)
C30.050 (2)0.048 (2)0.055 (2)0.0155 (16)0.0042 (16)0.0014 (16)
C40.0507 (19)0.0495 (19)0.0407 (17)0.0144 (16)0.0048 (14)0.0016 (15)
C50.076 (3)0.084 (3)0.049 (2)0.021 (2)0.018 (2)0.001 (2)
C60.128 (5)0.113 (5)0.048 (2)0.037 (4)0.009 (3)0.024 (3)
C70.133 (5)0.096 (4)0.079 (4)0.006 (4)0.019 (4)0.041 (3)
C80.108 (4)0.094 (4)0.104 (4)0.032 (3)0.001 (4)0.024 (4)
C90.062 (3)0.082 (3)0.064 (2)0.007 (2)0.009 (2)0.014 (2)
C100.059 (2)0.0350 (16)0.0297 (14)0.0017 (14)0.0129 (13)0.0044 (12)
C110.093 (3)0.052 (2)0.0417 (19)0.000 (2)0.0307 (19)0.0006 (16)
C120.148 (5)0.060 (3)0.042 (2)0.021 (3)0.035 (3)0.0155 (19)
C130.119 (4)0.070 (3)0.038 (2)0.037 (3)0.002 (2)0.0025 (19)
C140.064 (2)0.078 (3)0.052 (2)0.019 (2)0.0025 (18)0.005 (2)
C150.057 (2)0.048 (2)0.0388 (17)0.0015 (16)0.0058 (15)0.0003 (15)
C160.0341 (15)0.0349 (16)0.0360 (15)0.0021 (13)0.0053 (12)0.0029 (13)
C170.059 (2)0.069 (2)0.0475 (19)0.0052 (19)0.0267 (17)0.0019 (17)
C180.058 (2)0.059 (2)0.072 (2)0.0023 (19)0.034 (2)0.015 (2)
C190.055 (2)0.044 (2)0.066 (2)0.0056 (17)0.0293 (18)0.0014 (17)
C200.068 (3)0.119 (5)0.145 (5)0.011 (3)0.000 (3)0.036 (4)
Geometric parameters (Å, º) top
O1—C161.231 (4)C7—H70.9300
O2—C191.184 (4)C8—C91.378 (7)
O3—C191.324 (5)C8—H80.9300
O3—C201.446 (6)C9—H90.9300
N1—N21.341 (4)C10—C151.388 (5)
N1—C21.347 (4)C10—C111.391 (5)
N1—C31.480 (4)C11—C121.376 (6)
N2—N31.306 (4)C11—H110.9300
N3—C11.368 (4)C12—C131.371 (7)
N4—C161.326 (4)C12—H120.9300
N4—C171.464 (4)C13—C141.366 (6)
N4—H4N0.860 (10)C13—H130.9300
C1—C21.388 (4)C14—C151.389 (5)
C1—C101.464 (4)C14—H140.9300
C2—C161.489 (4)C15—H150.9300
C3—C41.506 (5)C17—C181.511 (5)
C3—H3A0.9700C17—H17A0.9700
C3—H3B0.9700C17—H17B0.9700
C4—C91.368 (5)C18—C191.489 (5)
C4—C51.387 (5)C18—H18A0.9700
C5—C61.370 (7)C18—H18B0.9700
C5—H50.9300C20—H20A0.9600
C6—C71.378 (8)C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C7—C81.358 (8)
C19—O3—C20116.5 (4)C11—C10—C1119.2 (3)
N2—N1—C2111.3 (3)C12—C11—C10120.5 (4)
N2—N1—C3118.9 (3)C12—C11—H11119.7
C2—N1—C3129.5 (3)C10—C11—H11119.7
N3—N2—N1107.3 (3)C13—C12—C11120.3 (4)
N2—N3—C1109.6 (3)C13—C12—H12119.8
C16—N4—C17121.3 (3)C11—C12—H12119.8
C16—N4—H4N116 (2)C14—C13—C12120.0 (4)
C17—N4—H4N121 (2)C14—C13—H13120.0
N3—C1—C2107.2 (3)C12—C13—H13120.0
N3—C1—C10120.6 (3)C13—C14—C15120.6 (4)
C2—C1—C10132.1 (3)C13—C14—H14119.7
N1—C2—C1104.6 (3)C15—C14—H14119.7
N1—C2—C16120.3 (3)C10—C15—C14119.9 (4)
C1—C2—C16135.2 (3)C10—C15—H15120.1
N1—C3—C4111.3 (3)C14—C15—H15120.1
N1—C3—H3A109.4O1—C16—N4123.9 (3)
C4—C3—H3A109.4O1—C16—C2120.8 (3)
N1—C3—H3B109.4N4—C16—C2115.2 (3)
C4—C3—H3B109.4N4—C17—C18112.1 (3)
H3A—C3—H3B108.0N4—C17—H17A109.2
C9—C4—C5119.7 (4)C18—C17—H17A109.2
C9—C4—C3119.5 (3)N4—C17—H17B109.2
C5—C4—C3120.7 (4)C18—C17—H17B109.2
C6—C5—C4120.0 (5)H17A—C17—H17B107.9
C6—C5—H5120.0C19—C18—C17112.9 (3)
C4—C5—H5120.0C19—C18—H18A109.0
C5—C6—C7119.8 (5)C17—C18—H18A109.0
C5—C6—H6120.1C19—C18—H18B109.0
C7—C6—H6120.1C17—C18—H18B109.0
C8—C7—C6120.0 (5)H18A—C18—H18B107.8
C8—C7—H7120.0O2—C19—O3122.7 (4)
C6—C7—H7120.0O2—C19—C18125.7 (4)
C7—C8—C9120.7 (6)O3—C19—C18111.6 (3)
C7—C8—H8119.7O3—C20—H20A109.5
C9—C8—H8119.7O3—C20—H20B109.5
C4—C9—C8119.7 (5)H20A—C20—H20B109.5
C4—C9—H9120.1O3—C20—H20C109.5
C8—C9—H9120.1H20A—C20—H20C109.5
C15—C10—C11118.7 (3)H20B—C20—H20C109.5
C15—C10—C1122.0 (3)
C2—N1—N2—N30.5 (4)N3—C1—C10—C15150.9 (3)
C3—N1—N2—N3174.1 (3)C2—C1—C10—C1528.8 (5)
N1—N2—N3—C10.3 (4)N3—C1—C10—C1127.5 (5)
N2—N3—C1—C20.1 (4)C2—C1—C10—C11152.8 (4)
N2—N3—C1—C10179.6 (3)C15—C10—C11—C120.5 (5)
N2—N1—C2—C10.6 (4)C1—C10—C11—C12178.9 (3)
C3—N1—C2—C1173.3 (3)C10—C11—C12—C130.0 (6)
N2—N1—C2—C16179.6 (3)C11—C12—C13—C140.5 (7)
C3—N1—C2—C166.8 (5)C12—C13—C14—C150.5 (6)
N3—C1—C2—N10.4 (4)C11—C10—C15—C140.5 (5)
C10—C1—C2—N1179.3 (3)C1—C10—C15—C14178.9 (3)
N3—C1—C2—C16179.8 (3)C13—C14—C15—C100.0 (6)
C10—C1—C2—C160.6 (6)C17—N4—C16—O12.0 (5)
N2—N1—C3—C497.4 (4)C17—N4—C16—C2176.2 (3)
C2—N1—C3—C474.8 (5)N1—C2—C16—O146.0 (4)
N1—C3—C4—C985.4 (4)C1—C2—C16—O1133.9 (4)
N1—C3—C4—C596.2 (4)N1—C2—C16—N4132.3 (3)
C9—C4—C5—C60.7 (6)C1—C2—C16—N447.9 (5)
C3—C4—C5—C6179.1 (4)C16—N4—C17—C1882.3 (4)
C4—C5—C6—C70.4 (8)N4—C17—C18—C1973.6 (4)
C5—C6—C7—C80.3 (9)C20—O3—C19—O20.8 (7)
C6—C7—C8—C90.8 (10)C20—O3—C19—C18178.9 (4)
C5—C4—C9—C80.2 (7)C17—C18—C19—O25.0 (6)
C3—C4—C9—C8178.6 (4)C17—C18—C19—O3175.4 (3)
C7—C8—C9—C40.6 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (C10–C15) ring.
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2i0.86 (3)2.04 (3)2.884 (4)167 (3)
C3—H3B···N2ii0.972.553.495 (5)165
C15—H15···O1iii0.932.513.335 (5)148
C17—H17B···Cg1i0.972.713.640 (4)161
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
Summary of short interatomic contacts (Å) in (I)a top
ContactDistanceSymmetry operation
H4N···O2b1.90-x + 1, -y, -z + 1
H3B···N2b2.44-x + 1, -y + 1, -z + 1
H15···O1b2.38-x, -y + 1, -z + 1
H7···C52.63-x, y - 1/2, -z + 1/2
H17A···C122.72x, -y + 1/2, z - 1/2
H12···C152.73-x + 1, y - 1/2, -z + 3/2
Notes: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values. (b) These interactions correspond to those reported in Table 1.
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H46.7
H···C/C···H24.9
H···O/O···H14.4
H···N/N···H12.6
O···C/C···O1.0
O···O0.4
Summary of interaction energies (kJ mol-1) calculated for (I) top
ContactR (Å)EeleEpolEdisErepEtot
Intra-later
N4—H4N···O2i5.21-73.7-14.9-84.694.6-104.2
C15—H15···O1iii5.57-21.8-5.7-56.734.0-55.0
C3—H3B···N2ii9.97-21.4-6.2-20.525.1-29.6
H20B···N3iv +
H9···O3v +
H8···H18Av11.43-5.1-1.6-14.86.9-15.2
H8···H14vi12.81-1.4-0.5-9.82.2-9.0
H8···H11vii9.77-1.2-0.4-8.61.6-8.0
H20C···H20Cviii14.841.3-0.2-3.10.6-1.1
Inter-layer
H17A···C12ix9.37-11.3-3.4-22.714.8-25.1
H12···C15x10.15-5.1-1.2-16.310.0-14.3
H7···C5xi12.03-3.2-0.4-14.011.5-8.7
Notes: Symmetry operations: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x + 1, y, z; (v) x - 1, y, z; (vi) x - 1, -y + 1/2, z - 1/2; (vii) -x, -y, -z + 1; (viii) -x + 2, -y, -z + 1; (ix) x, -y + 1/2, -z - 1/2; (x) -x + 1, y - 1/2, -z + 3/2; (xi) -x, y - 1/2, -z + 1/2.
 

Footnotes

Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Acknowledgements

Regina H. A. Santos from IQSC-USP is thanked for the X-ray data collection. Ricardo S. Schwab from DQ-UFSCar is thanked for the generous gift of the sample.

Funding information

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES, Finance Code 001 and the National Council for Scientific and Technological Development (CNPq) are acknowledged for grants 312210/2019–1, 433957/2018–2 and 406273/2015–4 to IC, for a fellowship 303207/2017–5 to JZS. Sunway University Sdn Bhd is also thanked for funding (grant No. STR-RCTR-RCCM-001–2019).

References

First citationAlbuquerque, D. Y. de, de Moraes, J. R. & Schwab, R. S. (2019). Eur. J. Org. Chem. pp. 6673–6681.  Google Scholar
First citationBonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G. & Passarella, D. (2017). Drug Discovery Today, 22, 1572–1581.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationEdwards, A. J., Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Faraday Discuss. 203, 93–112.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Zhang, Y., Singh, S. K. & Steel, P. J. (2003). Arkivoc, pp. 47–64.  Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds