research communications
of bis(1,3-benzothiazol-2-yl) trithiocarbonate
aGeorg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, D-37077 Göttingen, Germany
*Correspondence e-mail: cgolz@gwdg.de
The 15H8N2S5, is reported, in which the (syn,syn) and (syn,anti) conformers simultaneously crystallized from a chloroform solution. The complete molecule of the (syn,syn) form is generated by a crystallographic twofold axis. The geometries of both conformers are compared in detail, revealing no significant differences in bond lengths, despite different bond angles because of the conformational changes. Analysis of the intermolecular interactions, aided by Hirshfeld surfaces, shows distinctive S⋯S and S⋯N contacts only for the (syn,anti) conformer. Aromatic π–π-stacking interactions are found for both conformers, which occur for the (syn,anti) conformer between pairs of molecules, but are continuous stacks in the (syn,syn) conformer. Non was found for the crystal of the (syn,anti) conformer used for data collection.
of the title compound, C1. Chemical context
Acyclic trithiocarbonates are important functional groups in several areas ranging from materials science and synthetic chemistry to pharmaceutics (Kazemi et al., 2018). Notably, their use as reagents in reversible addition–fragmentation chain-transfer (RAFT) polymerization appears relevant since the relative stability of the conformers might have an influence on the stereochemistry of the obtained polymer (Huang et al., 2018). Earlier studies on the conformational properties of perfluorodimethyl trithiocarbonate based on gas electron diffraction and Raman spectroscopy (Hermann et al., 2000) show clear dependency of the solvent and aggregate state: The (syn,syn) conformer is predominant (84%) in the gas phase, as a liquid the distribution is almost equal [60% (syn,syn)], while in solution and with increasing polarity of the solvent, the ratio of the (syn,anti) conformer increases. The herein reported conformational allows further structural comparison between trithiocarbonate conformers by X-ray diffraction analysis.
2. Structural commentary
The (syn,syn) conformer crystallizes from chloroform solution in Pbcn. The contains half of the molecule, with a crystallographic twofold axis passing through S3—C8 generating the complete molecule. The molecule is slightly twisted in a propeller-like shape, the twist introduced by the C7—S2—C8—S3 torsion angle of 24.46 (12)°, thus deviating from the idealized syn geometry of 0° (Fig. 1).
The (syn,anti) conformer also crystallizes from chloroform solution, but in P. The syn and anti conformations of each half of the molecule are closer to the idealized geometry with torsion angles C7—S2—C8—S3 of 2.17 (13) and C9—S4—C8—S3 of −174.93 (9)°.
Interestingly, the thiocarbonyl and thiazol moieties in the (syn,anti) conformer are oriented almost perpendicular to each other, with S1—C7—S2—C8 and S5—C9—S4—C8 torsion angles close to 90° [–87.25 (10) and 104.26 (10)°, respectively]. In the (syn,syn) conformer, the thiocarbonyl and thiazol groups are almost in plane, apart from the propeller-like twist: the respective torsion angle S1—C7—S2—C8 is −2.4 (2)°, resulting in relative close proximity for the thiocarbonyl S1 and thiazol S3 atoms. This S1⋯S3 distance of 3.106 (1) Å, which is considerably shorter than the sum of van der Waals radii (3.78 Å; Alvarez, 2013), indicates possible attractive chalcogenic interactions. Comparable T-shaped geometries around sulfur were observed by our group for dihalosulfuranes (Talavera et al., 2015; Peña et al., 2017; Averesch et al., 2019), where the interaction is even more pronounced because of the electronically depleted sulfur atoms.
The bond lengths in both conformers show no significant differences that would correspond to the changed bond angles in respect of hyperconjugative effects.
3. Supramolecular features
To investigate the supramolecular features, the Hirshfeld surface (Spackman & Jayatilaka, 2009) was calculated for both conformers using CrystalExplorer17 (Turner et al., 2017). The resulting Hirshfeld surfaces mapped over dnorm heatmaps for the (syn,syn) and (syn,anti) conformers are depicted in Fig. 2 and the corresponding fingerprint plots are shown in Fig. 3. Observation of the heatmap and the features of the fingerprint plots yields one apparent conclusion: the (syn,syn) conformer has no distinctive contacts while the surface for the (syn,anti) conformer features in total five hot spots, which reappear as sharp features in the fingerprint plot (Fig. 3). Those contacts are identified as two C—H⋯N hydrogen bonds (Table 1) between N1 and C6 and N2 and C15 with lengths of 3.467 (2) and 3.552 (2) Å, respectively. This is in the range of other C—H⋯N hydrogen bonds reported previously (Mambanda et al. 2007; Pingali et al., 2014). The fifth contact is a symmetric S⋯S interaction between S3 and its adjacent symmetry-equivalent clone, with a distance of 3.509 (1) Å. The relative contributions of various contacts to the Hirshfeld surface are given in Table 2.
|
|
The Hirshfeld surface mapped over curvedness (Fig. 4) indicates π–π interactions by wide flat areas on one side of each benzothiazol unit. Packing diagrams of the (syn,syn) (Fig. 5) and (syn,anti) (Fig. 6) conformers show the parallel arrangement of adjacent benzothiazol groups, which come in pairs (syn,anti) or in a continuous herringbone motif (syn,syn). The separation between the benzothiazol planes (defined by C1–C7/N1/S1 or C9–C15/N2/S5) are similar with distances of 3.54 Å in the (syn,syn) conformer and 3.43 and 3.58 Å in the (syn,anti) conformer.
4. Database survey
A search in the CSD (version 5.41, update of November 2019; Groom et al., 2016) for non-cyclic and non-oxidized trithiocarbonates produced 20 results, of which only one (refcode XUBNAJ; Sotofte & Senning, 2001) adopts a (syn,anti) conformation. There is one outlier neither close to a (syn,syn) nor a (syn,anti) conformation, which is chemically a thioanhydride (XISSAU; Weber et al., 2008). All other results are trithiocarbonates with a (syn,syn) conformation, which appears to be the predominant form. A search for benzothiazoles and thiazoles yielded large numbers of hits (1500 and 2200, respectively). A comparable with thiazolothiazols (Schneider et al., 2015) was reported with interplane separations around 3.45 Å, as well as arrangements in pairs of π–π interactions for one polymorph and a herringbone motif in the other, closely matching our observations.
5. Synthesis and crystallization
The title compound was initially isolated in small amounts as a side product and crystallized from chloroform solution in an NMR tube, where two crystalline species could be identified visually: (syn,syn) in the form of orange needles and (syn,anti) as orange blocks.
The synthesis of the title compound is based on a literature procedure (Runge et al., 1962). Benzothiazole-2-thiol (500 mg, 2.99 mmol, 1.0 eq.) and sodium hydroxide (179 mg, 4.48 mmol, 1.5 eq.) were dissolved in water (30 ml). Thiophosgene (165 mg, 1.44 mmol, 0.48 eq.) was added dropwise at room temperature. After complete addition, the solution was stirred for 15 minutes. Brine solution was added, the reaction mixture extracted with ethyl acetate and the combined organic phases dried over sodium sulfate. The solvent was removed in vacuo to yield the crude product as an orange solid (518 mg). After recrystallization from boiling benzene solution the pure product was obtained as orange crystals (432 mg, 1.15 mmol, 77%).
The melting range is 420–423 K, as measured on a Büchi M-560.
NMR spectra recorded on a Bruker Avance III HD 300 and chemical shifts are given in parts per million. 1H NMR (300 MHz, CDCl3): 8.20–8.17 (m, 1H), 7.99–7.96 (m, 1H), 7.62–7.51 (m, 2H). 13C-NMR (300 MHz, CDCl3): 212.5 (C), 156.5 (C), 152.8 (C), 138.0 (C), 126.94 (CH), 126.85 (CH), 124.4 (CH), 121.7 (CH).
High-resolution 15H8S5N2+H+: 376.9364, found: 376.9364; calculated for C15H8S5N2+Na+: 398.9183, found: 398.9185.
was carried out on a Bruker maXis ESI–QTOF–MS. Calculated for C6. Refinement
Crystal data, data collection and structure . All aromatic hydrogen atoms were placed geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Uiso(C).
details are summarized in Table 3Non syn,anti) conformer used for data collection. The twin domain transformation matrix was found to be (0.996, −0.141, −0.031/0.331, 0977, −0.106/0.235, 0.130, 0.958). Data integration was carried out using both domains with a final twin batch scale factor of 0.1211 (17).
was found for the crystal of the (Supporting information
https://doi.org/10.1107/S2056989020008105/hb7924sup1.cif
contains datablocks global, sa, ss. DOI:Structure factors: contains datablock ss. DOI: https://doi.org/10.1107/S2056989020008105/hb7924sssup3.hkl
Structure factors: contains datablock sa. DOI: https://doi.org/10.1107/S2056989020008105/hb7924sasup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020008105/hb7924sssup4.cml
For both structures, data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C15H8N2S5 | Dx = 1.661 Mg m−3 |
Mr = 376.53 | Melting point: 420 K |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9458 (15) Å | Cell parameters from 744 reflections |
b = 11.434 (3) Å | θ = 2.4–23.7° |
c = 33.366 (11) Å | µ = 0.76 mm−1 |
V = 1505.4 (9) Å3 | T = 299 K |
Z = 4 | Needle, orange |
F(000) = 768 | 0.24 × 0.07 × 0.02 mm |
Bruker D8 Venture Dual Source diffractometer | 1708 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.048 |
φ and ω scans | θmax = 29.8°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −5→5 |
Tmin = 0.248, Tmax = 0.336 | k = −15→15 |
17286 measured reflections | l = −46→46 |
2147 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0292P)2 + 2.5718P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
2147 reflections | Δρmax = 0.32 e Å−3 |
101 parameters | Δρmin = −0.34 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.3107 (2) | 0.53882 (6) | 0.33530 (2) | 0.03516 (19) | |
S2 | −0.0018 (2) | 0.75692 (6) | 0.29112 (2) | 0.0406 (2) | |
S3 | 0.000000 | 0.52046 (9) | 0.250000 | 0.0464 (3) | |
N1 | 0.2014 (7) | 0.7473 (2) | 0.36435 (6) | 0.0339 (5) | |
C1 | 0.4357 (7) | 0.5675 (2) | 0.38429 (7) | 0.0303 (5) | |
C2 | 0.3531 (7) | 0.6823 (2) | 0.39456 (7) | 0.0303 (5) | |
C3 | 0.4219 (8) | 0.7232 (3) | 0.43318 (7) | 0.0380 (7) | |
H3 | 0.364207 | 0.798967 | 0.440712 | 0.046* | |
C4 | 0.5772 (8) | 0.6486 (3) | 0.45974 (8) | 0.0417 (7) | |
H4 | 0.626489 | 0.674805 | 0.485467 | 0.050* | |
C5 | 0.6622 (8) | 0.5349 (3) | 0.44906 (8) | 0.0419 (7) | |
H5 | 0.766095 | 0.486440 | 0.467776 | 0.050* | |
C6 | 0.5954 (8) | 0.4927 (3) | 0.41122 (8) | 0.0365 (6) | |
H6 | 0.654756 | 0.416888 | 0.403921 | 0.044* | |
C7 | 0.1712 (7) | 0.6830 (2) | 0.33240 (7) | 0.0308 (5) | |
C8 | 0.000000 | 0.6615 (3) | 0.250000 | 0.0302 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0508 (4) | 0.0307 (3) | 0.0240 (3) | 0.0060 (3) | −0.0060 (3) | −0.0048 (2) |
S2 | 0.0647 (5) | 0.0311 (3) | 0.0261 (3) | 0.0092 (4) | −0.0079 (3) | −0.0031 (2) |
S3 | 0.0809 (9) | 0.0299 (5) | 0.0284 (4) | 0.000 | −0.0129 (5) | 0.000 |
N1 | 0.0472 (14) | 0.0301 (11) | 0.0244 (9) | 0.0004 (11) | −0.0001 (10) | −0.0024 (8) |
C1 | 0.0335 (14) | 0.0346 (13) | 0.0228 (10) | −0.0035 (11) | 0.0007 (10) | −0.0013 (9) |
C2 | 0.0366 (15) | 0.0326 (13) | 0.0216 (10) | −0.0048 (12) | 0.0010 (10) | −0.0016 (9) |
C3 | 0.0514 (18) | 0.0395 (15) | 0.0231 (11) | −0.0053 (13) | 0.0025 (11) | −0.0053 (10) |
C4 | 0.0486 (18) | 0.0530 (18) | 0.0235 (11) | −0.0101 (15) | −0.0047 (12) | −0.0022 (11) |
C5 | 0.0489 (18) | 0.0495 (17) | 0.0275 (12) | −0.0040 (15) | −0.0064 (12) | 0.0057 (12) |
C6 | 0.0428 (16) | 0.0357 (14) | 0.0310 (12) | 0.0030 (13) | −0.0057 (11) | 0.0010 (10) |
C7 | 0.0388 (15) | 0.0318 (12) | 0.0218 (10) | −0.0001 (12) | −0.0002 (10) | −0.0009 (9) |
C8 | 0.035 (2) | 0.0332 (18) | 0.0227 (14) | 0.000 | −0.0008 (14) | 0.000 |
S1—C1 | 1.739 (2) | C2—C3 | 1.397 (3) |
S1—C7 | 1.741 (3) | C3—H3 | 0.9300 |
S2—C7 | 1.755 (3) | C3—C4 | 1.375 (4) |
S2—C8 | 1.753 (2) | C4—H4 | 0.9300 |
S3—C8 | 1.612 (4) | C4—C5 | 1.389 (4) |
N1—C2 | 1.388 (3) | C5—H5 | 0.9300 |
N1—C7 | 1.300 (3) | C5—C6 | 1.377 (4) |
C1—C2 | 1.395 (4) | C6—H6 | 0.9300 |
C1—C6 | 1.392 (4) | ||
C1—S1—C7 | 87.88 (12) | C5—C4—H4 | 119.2 |
C8—S2—C7 | 108.23 (13) | C4—C5—H5 | 119.4 |
C7—N1—C2 | 109.4 (2) | C6—C5—C4 | 121.1 (3) |
C2—C1—S1 | 110.02 (19) | C6—C5—H5 | 119.4 |
C6—C1—S1 | 128.3 (2) | C1—C6—H6 | 121.2 |
C6—C1—C2 | 121.7 (2) | C5—C6—C1 | 117.6 (3) |
N1—C2—C1 | 115.2 (2) | C5—C6—H6 | 121.2 |
N1—C2—C3 | 125.1 (2) | S1—C7—S2 | 128.53 (14) |
C1—C2—C3 | 119.7 (2) | N1—C7—S1 | 117.46 (19) |
C2—C3—H3 | 120.9 | N1—C7—S2 | 114.0 (2) |
C4—C3—C2 | 118.3 (3) | S2—C8—S2i | 103.00 (19) |
C4—C3—H3 | 120.9 | S3—C8—S2 | 128.50 (10) |
C3—C4—H4 | 119.2 | S3—C8—S2i | 128.50 (10) |
C3—C4—C5 | 121.6 (2) | ||
S1—C1—C2—N1 | −1.3 (3) | C4—C5—C6—C1 | −0.8 (5) |
S1—C1—C2—C3 | 178.1 (2) | C6—C1—C2—N1 | 178.7 (3) |
S1—C1—C6—C5 | −178.4 (2) | C6—C1—C2—C3 | −1.9 (4) |
N1—C2—C3—C4 | −179.3 (3) | C7—S1—C1—C2 | 1.6 (2) |
C1—S1—C7—S2 | 176.9 (2) | C7—S1—C1—C6 | −178.3 (3) |
C1—S1—C7—N1 | −1.8 (2) | C7—S2—C8—S2i | −155.54 (12) |
C1—C2—C3—C4 | 1.4 (4) | C7—S2—C8—S3 | 24.46 (12) |
C2—N1—C7—S1 | 1.3 (3) | C7—N1—C2—C1 | 0.0 (4) |
C2—N1—C7—S2 | −177.49 (19) | C7—N1—C2—C3 | −179.3 (3) |
C2—C1—C6—C5 | 1.6 (4) | C8—S2—C7—S1 | −2.4 (2) |
C2—C3—C4—C5 | −0.6 (5) | C8—S2—C7—N1 | 176.3 (2) |
C3—C4—C5—C6 | 0.3 (5) |
Symmetry code: (i) −x, y, −z+1/2. |
C15H8N2S5 | Z = 2 |
Mr = 376.53 | F(000) = 384 |
Triclinic, P1 | Dx = 1.562 Mg m−3 |
a = 6.4976 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.5593 (12) Å | Cell parameters from 1193 reflections |
c = 13.1962 (11) Å | θ = 3.2–27.5° |
α = 80.576 (5)° | µ = 0.72 mm−1 |
β = 82.312 (3)° | T = 299 K |
γ = 86.288 (5)° | Block, yellow |
V = 800.55 (14) Å3 | 0.44 × 0.35 × 0.28 mm |
Bruker D8 Venture Dual Source diffractometer | 4846 independent reflections |
Detector resolution: 8.33 pixels mm-1 | 4296 reflections with I > 2σ(I) |
φ and ω scans | θmax = 30.5°, θmin = 2.9° |
Absorption correction: multi-scan (TWINABS; Bruker, 2012) | h = −9→9 |
Tmin = 0.256, Tmax = 0.372 | k = −13→13 |
4846 measured reflections | l = 0→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2258P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4846 reflections | Δρmax = 0.45 e Å−3 |
200 parameters | Δρmin = −0.43 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.28033 (7) | 0.51733 (5) | 0.34242 (3) | 0.05338 (11) | |
S2 | 0.69953 (8) | 0.63001 (5) | 0.25025 (3) | 0.05403 (12) | |
S3 | 0.61181 (7) | 0.42429 (4) | 0.11132 (3) | 0.05159 (11) | |
S4 | 0.85868 (7) | 0.66560 (5) | 0.02663 (3) | 0.05264 (11) | |
S5 | 1.22828 (7) | 0.78128 (5) | 0.09888 (4) | 0.05328 (11) | |
N1 | 0.6295 (2) | 0.39444 (15) | 0.39055 (10) | 0.0471 (3) | |
N2 | 0.8599 (2) | 0.90383 (14) | 0.11309 (11) | 0.0448 (3) | |
C1 | 0.2690 (2) | 0.36628 (18) | 0.43444 (11) | 0.0437 (3) | |
C2 | 0.4716 (2) | 0.31514 (17) | 0.45002 (11) | 0.0433 (3) | |
C3 | 0.5015 (3) | 0.1931 (2) | 0.52121 (15) | 0.0561 (4) | |
H3 | 0.634842 | 0.158220 | 0.532571 | 0.067* | |
C4 | 0.3300 (3) | 0.1255 (2) | 0.57426 (15) | 0.0611 (4) | |
H4 | 0.348063 | 0.043560 | 0.621611 | 0.073* | |
C5 | 0.1300 (3) | 0.1771 (2) | 0.55856 (14) | 0.0617 (5) | |
H5 | 0.016856 | 0.129419 | 0.596057 | 0.074* | |
C6 | 0.0959 (3) | 0.2970 (2) | 0.48879 (14) | 0.0560 (4) | |
H6 | −0.038178 | 0.330852 | 0.478180 | 0.067* | |
C7 | 0.5497 (2) | 0.49964 (18) | 0.33205 (12) | 0.0453 (3) | |
C8 | 0.7176 (2) | 0.56406 (15) | 0.13211 (11) | 0.0400 (3) | |
C9 | 0.9663 (2) | 0.79599 (16) | 0.08213 (12) | 0.0441 (3) | |
C10 | 1.1930 (2) | 0.93342 (17) | 0.15548 (12) | 0.0452 (3) | |
C11 | 0.9856 (2) | 0.98336 (15) | 0.15608 (11) | 0.0400 (3) | |
C12 | 0.9199 (3) | 1.10581 (17) | 0.19921 (13) | 0.0492 (3) | |
H12 | 0.782958 | 1.140853 | 0.199684 | 0.059* | |
C13 | 1.0611 (3) | 1.17301 (19) | 0.24069 (15) | 0.0579 (4) | |
H13 | 1.018665 | 1.253812 | 0.270076 | 0.070* | |
C14 | 1.2667 (3) | 1.1223 (2) | 0.23954 (17) | 0.0642 (5) | |
H14 | 1.359240 | 1.169973 | 0.268185 | 0.077* | |
C15 | 1.3362 (3) | 1.0030 (2) | 0.19685 (17) | 0.0623 (5) | |
H15 | 1.474206 | 0.969922 | 0.195698 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0471 (2) | 0.0600 (3) | 0.0492 (2) | 0.00577 (17) | −0.00451 (16) | −0.00160 (17) |
S2 | 0.0664 (3) | 0.0563 (2) | 0.04205 (19) | −0.02084 (19) | −0.00072 (17) | −0.01342 (17) |
S3 | 0.0573 (2) | 0.0457 (2) | 0.0549 (2) | −0.00929 (17) | −0.00458 (17) | −0.01626 (17) |
S4 | 0.0636 (3) | 0.0529 (2) | 0.04214 (19) | −0.01454 (18) | 0.00143 (17) | −0.01137 (16) |
S5 | 0.0464 (2) | 0.0507 (2) | 0.0647 (3) | 0.00660 (16) | −0.00631 (18) | −0.01861 (19) |
N1 | 0.0411 (6) | 0.0555 (8) | 0.0454 (7) | −0.0049 (5) | −0.0061 (5) | −0.0085 (6) |
N2 | 0.0414 (6) | 0.0412 (6) | 0.0500 (7) | −0.0037 (5) | −0.0032 (5) | −0.0031 (5) |
C1 | 0.0414 (7) | 0.0533 (8) | 0.0368 (6) | −0.0001 (6) | −0.0034 (5) | −0.0104 (6) |
C2 | 0.0403 (7) | 0.0512 (8) | 0.0398 (7) | −0.0029 (6) | −0.0050 (5) | −0.0107 (6) |
C3 | 0.0498 (9) | 0.0597 (10) | 0.0568 (9) | 0.0001 (7) | −0.0107 (7) | −0.0010 (8) |
C4 | 0.0674 (11) | 0.0609 (11) | 0.0515 (9) | −0.0092 (9) | −0.0069 (8) | 0.0035 (8) |
C5 | 0.0565 (10) | 0.0774 (13) | 0.0486 (9) | −0.0169 (9) | 0.0034 (7) | −0.0048 (8) |
C6 | 0.0412 (8) | 0.0773 (12) | 0.0479 (8) | −0.0053 (7) | −0.0005 (6) | −0.0082 (8) |
C7 | 0.0459 (7) | 0.0518 (8) | 0.0396 (7) | −0.0065 (6) | −0.0033 (6) | −0.0116 (6) |
C8 | 0.0399 (6) | 0.0392 (7) | 0.0414 (7) | 0.0004 (5) | −0.0050 (5) | −0.0086 (5) |
C9 | 0.0461 (7) | 0.0412 (7) | 0.0433 (7) | −0.0057 (6) | −0.0019 (6) | −0.0031 (6) |
C10 | 0.0419 (7) | 0.0450 (8) | 0.0484 (8) | −0.0005 (6) | −0.0028 (6) | −0.0089 (6) |
C11 | 0.0408 (7) | 0.0359 (6) | 0.0400 (6) | −0.0027 (5) | 0.0003 (5) | −0.0003 (5) |
C12 | 0.0485 (8) | 0.0396 (7) | 0.0558 (9) | 0.0005 (6) | 0.0021 (7) | −0.0052 (6) |
C13 | 0.0664 (11) | 0.0457 (8) | 0.0616 (10) | −0.0068 (8) | 0.0019 (8) | −0.0141 (7) |
C14 | 0.0614 (11) | 0.0643 (11) | 0.0728 (12) | −0.0137 (9) | −0.0090 (9) | −0.0236 (9) |
C15 | 0.0449 (9) | 0.0680 (12) | 0.0792 (13) | −0.0016 (8) | −0.0109 (8) | −0.0242 (10) |
S1—C1 | 1.7264 (17) | C3—C4 | 1.374 (3) |
S1—C7 | 1.7368 (16) | C4—H4 | 0.9300 |
S2—C7 | 1.7610 (16) | C4—C5 | 1.389 (3) |
S2—C8 | 1.7620 (15) | C5—H5 | 0.9300 |
S3—C8 | 1.6194 (15) | C5—C6 | 1.374 (3) |
S4—C8 | 1.7468 (15) | C6—H6 | 0.9300 |
S4—C9 | 1.7685 (16) | C10—C11 | 1.400 (2) |
S5—C9 | 1.7395 (16) | C10—C15 | 1.393 (2) |
S5—C10 | 1.7299 (16) | C11—C12 | 1.402 (2) |
N1—C2 | 1.391 (2) | C12—H12 | 0.9300 |
N1—C7 | 1.289 (2) | C12—C13 | 1.371 (3) |
N2—C9 | 1.295 (2) | C13—H13 | 0.9300 |
N2—C11 | 1.383 (2) | C13—C14 | 1.390 (3) |
C1—C2 | 1.404 (2) | C14—H14 | 0.9300 |
C1—C6 | 1.394 (2) | C14—C15 | 1.378 (3) |
C2—C3 | 1.393 (2) | C15—H15 | 0.9300 |
C3—H3 | 0.9300 | ||
C1—S1—C7 | 88.65 (8) | N1—C7—S2 | 123.20 (12) |
C7—S2—C8 | 100.30 (7) | S3—C8—S2 | 126.96 (9) |
C8—S4—C9 | 103.88 (7) | S3—C8—S4 | 117.64 (9) |
C10—S5—C9 | 88.70 (7) | S4—C8—S2 | 115.36 (8) |
C7—N1—C2 | 109.59 (13) | S5—C9—S4 | 119.69 (9) |
C9—N2—C11 | 109.89 (13) | N2—C9—S4 | 123.63 (12) |
C2—C1—S1 | 109.38 (12) | N2—C9—S5 | 116.68 (12) |
C6—C1—S1 | 129.40 (13) | C11—C10—S5 | 109.30 (11) |
C6—C1—C2 | 121.22 (16) | C15—C10—S5 | 129.31 (13) |
N1—C2—C1 | 115.14 (14) | C15—C10—C11 | 121.39 (15) |
N1—C2—C3 | 125.11 (15) | N2—C11—C10 | 115.42 (13) |
C3—C2—C1 | 119.75 (15) | N2—C11—C12 | 125.09 (14) |
C2—C3—H3 | 120.7 | C10—C11—C12 | 119.49 (15) |
C4—C3—C2 | 118.58 (17) | C11—C12—H12 | 120.6 |
C4—C3—H3 | 120.7 | C13—C12—C11 | 118.85 (16) |
C3—C4—H4 | 119.4 | C13—C12—H12 | 120.6 |
C3—C4—C5 | 121.28 (18) | C12—C13—H13 | 119.5 |
C5—C4—H4 | 119.4 | C12—C13—C14 | 121.06 (17) |
C4—C5—H5 | 119.3 | C14—C13—H13 | 119.5 |
C6—C5—C4 | 121.36 (17) | C13—C14—H14 | 119.3 |
C6—C5—H5 | 119.3 | C15—C14—C13 | 121.41 (18) |
C1—C6—H6 | 121.1 | C15—C14—H14 | 119.3 |
C5—C6—C1 | 117.80 (16) | C10—C15—H15 | 121.1 |
C5—C6—H6 | 121.1 | C14—C15—C10 | 117.79 (17) |
S1—C7—S2 | 119.43 (10) | C14—C15—H15 | 121.1 |
N1—C7—S1 | 117.24 (12) | ||
S1—C1—C2—N1 | 0.14 (17) | C7—N1—C2—C1 | −0.64 (19) |
S1—C1—C2—C3 | −179.90 (13) | C7—N1—C2—C3 | 179.42 (16) |
S1—C1—C6—C5 | 179.91 (14) | C8—S2—C7—S1 | −87.25 (10) |
S5—C10—C11—N2 | −0.09 (16) | C8—S2—C7—N1 | 97.19 (14) |
S5—C10—C11—C12 | 179.50 (12) | C8—S4—C9—S5 | 104.26 (10) |
S5—C10—C15—C14 | −178.84 (16) | C8—S4—C9—N2 | −74.91 (15) |
N1—C2—C3—C4 | −179.78 (17) | C9—S4—C8—S2 | 7.06 (11) |
N2—C11—C12—C13 | 178.98 (15) | C9—S4—C8—S3 | −174.93 (9) |
C1—S1—C7—S2 | −176.51 (10) | C9—S5—C10—C11 | −0.52 (12) |
C1—S1—C7—N1 | −0.69 (13) | C9—S5—C10—C15 | 178.99 (19) |
C1—C2—C3—C4 | 0.3 (3) | C9—N2—C11—C10 | 0.89 (18) |
C2—N1—C7—S1 | 0.87 (17) | C9—N2—C11—C12 | −178.67 (15) |
C2—N1—C7—S2 | 176.52 (11) | C10—S5—C9—S4 | −178.11 (10) |
C2—C1—C6—C5 | 0.2 (3) | C10—S5—C9—N2 | 1.12 (13) |
C2—C3—C4—C5 | −0.5 (3) | C10—C11—C12—C13 | −0.6 (2) |
C3—C4—C5—C6 | 0.5 (3) | C11—N2—C9—S4 | 177.86 (11) |
C4—C5—C6—C1 | −0.4 (3) | C11—N2—C9—S5 | −1.34 (17) |
C6—C1—C2—N1 | 179.88 (15) | C11—C10—C15—C14 | 0.6 (3) |
C6—C1—C2—C3 | −0.2 (2) | C11—C12—C13—C14 | 0.6 (3) |
C7—S1—C1—C2 | 0.26 (12) | C12—C13—C14—C15 | 0.0 (3) |
C7—S1—C1—C6 | −179.44 (17) | C13—C14—C15—C10 | −0.6 (3) |
C7—S2—C8—S3 | 2.17 (13) | C15—C10—C11—N2 | −179.64 (16) |
C7—S2—C8—S4 | 179.97 (9) | C15—C10—C11—C12 | 0.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···N1i | 0.93 | 2.58 | 3.467 (2) | 161 |
C15—H15···N2ii | 0.93 | 2.68 | 3.552 (2) | 157 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Contact | (syn,syn) | (syn,anti) |
S···S | 22.9 | 16.1 |
S···N | 4.6 | 0.9 |
S···C | 6.2 | 11.5 |
S···H | 2.7 | 17.4 |
N···N | 0.4 | 0.2 |
N···C | 2.6 | 3.3 |
N···H | 8.4 | 9.7 |
C···C | 11.6 | 3.0 |
C···H | 9.6 | 16.5 |
H···H | 31.0 | 21.4 |
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. INST 186/1237-1).
References
Alvarez, S. (2013). Dalton Trans. 42, 8617–8636. Web of Science CrossRef CAS PubMed Google Scholar
Averesch, K. F. G., Pesch, H., Golz, C. & Alcarazo, M. (2019). Chem. Eur. J. 25, 10472–10477. CSD CrossRef CAS PubMed Google Scholar
Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hermann, A., Ulic, S. E., Della Védova, C. O., Lieb, M., Mack, H.-G. & Oberhammer, H. (2000). J. Mol. Struct. 556, 217–224. CrossRef CAS Google Scholar
Huang, Z., Noble, B. B., Corrigan, N., Chu, Y., Satoh, K., Thomas, D. S., Hawker, C. J., Moad, G., Kamigaito, M., Coote, M. L., Boyer, C. & Xu, J. (2018). J. Am. Chem. Soc. 140, 13392–13406. CSD CrossRef CAS PubMed Google Scholar
Kazemi, M., Sajjadifar, S., Aydi, A. & Heydari, M. M. (2018). J. Med. Chem. Sci. 1, 1–4. CAS Google Scholar
Mambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676–o680. Web of Science CSD CrossRef IUCr Journals Google Scholar
Peña, J., Talavera, G., Waldecker, B. & Alcarazo, M. (2017). Chem. Eur. J. 23, 75–78. PubMed Google Scholar
Pingali, S., Donahue, J. P. & Payton-Stewart, F. (2014). Acta Cryst. C70, 388–391. Web of Science CSD CrossRef IUCr Journals Google Scholar
Runge, F., El-Hewehi, Z. & Taeger, E. (1962). J. Prakt. Chem. 18, 262–268. CrossRef CAS Google Scholar
Schneider, J. A., Black, H., Lin, H.-P. & Perepichka, D. F. (2015). ChemPhysChem, 16, 1173–1178. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sotofte, I. & Senning, A. (2001). Sulfur Lett. 24, 209. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Talavera, G., Peña, J. & Alcarazo, M. (2015). J. Am. Chem. Soc. 137, 8704–8707. CSD CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Weber, W. G., McLeary, J. B., Gertenbach, J.-A. & Loots, L. (2008). Acta Cryst. E64, o250. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.