research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Polymorphism of bis­­(1,3-benzo­thia­zol-2-yl) tri­thio­carbonate

CROSSMARK_Color_square_no_text.svg

aGeorg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, D-37077 Göttingen, Germany
*Correspondence e-mail: cgolz@gwdg.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 June 2020; accepted 17 June 2020; online 23 June 2020)

The polymorphism of the title compound, C15H8N2S5, is reported, in which the (syn,syn) and (syn,anti) conformers simultaneously crystallized from a chloro­form solution. The complete mol­ecule of the (syn,syn) form is generated by a crystallographic twofold axis. The geometries of both conformers are compared in detail, revealing no significant differences in bond lengths, despite different bond angles because of the conformational changes. Analysis of the inter­molecular inter­actions, aided by Hirshfeld surfaces, shows distinctive S⋯S and S⋯N contacts only for the (syn,anti) conformer. Aromatic ππ-stacking inter­actions are found for both conformers, which occur for the (syn,anti) conformer between pairs of mol­ecules, but are continuous stacks in the (syn,syn) conformer. Non merohedral twinning was found for the crystal of the (syn,anti) conformer used for data collection.

1. Chemical context

Acyclic tri­thio­carbonates are important functional groups in several areas ranging from materials science and synthetic chemistry to pharmaceutics (Kazemi et al., 2018[Kazemi, M., Sajjadifar, S., Aydi, A. & Heydari, M. M. (2018). J. Med. Chem. Sci. 1, 1-4.]). Notably, their use as reagents in reversible addition–fragmentation chain-transfer (RAFT) free radical polymerization appears relevant since the relative stability of the conformers might have an influence on the stereochemistry of the obtained polymer (Huang et al., 2018[Huang, Z., Noble, B. B., Corrigan, N., Chu, Y., Satoh, K., Thomas, D. S., Hawker, C. J., Moad, G., Kamigaito, M., Coote, M. L., Boyer, C. & Xu, J. (2018). J. Am. Chem. Soc. 140, 13392-13406.]). Earlier studies on the conformational properties of perfluoro­dimethyl tri­thio­carbonate based on gas electron diffraction and Raman spectroscopy (Hermann et al., 2000[Hermann, A., Ulic, S. E., Della Védova, C. O., Lieb, M., Mack, H.-G. & Oberhammer, H. (2000). J. Mol. Struct. 556, 217-224.]) show clear dependency of the solvent and aggregate state: The (syn,syn) conformer is predominant (84%) in the gas phase, as a liquid the distribution is almost equal [60% (syn,syn)], while in solution and with increasing polarity of the solvent, the ratio of the (syn,anti) conformer increases. The herein reported conformational polymorphism allows further structural comparison between tri­thio­carbonate conformers by X-ray diffraction analysis.

[Scheme 1]

2. Structural commentary

The (syn,syn) conformer crystallizes from chloro­form solution in space group Pbcn. The asymmetric unit contains half of the mol­ecule, with a crystallographic twofold axis passing through S3—C8 generating the complete mol­ecule. The mol­ecule is slightly twisted in a propeller-like shape, the twist introduced by the C7—S2—C8—S3 torsion angle of 24.46 (12)°, thus deviating from the idealized syn geometry of 0° (Fig. 1[link]).

[Figure 1]
Figure 1
Mol­ecular structures and labelling schemes for the (syn,syn) (top) and (syn,anti) (bottom) polymorphs with displacement ellipsoids at the 50% probability level. Symmetry code: (i) −x, +y, [{1\over 2}] − z.

The (syn,anti) conformer also crystallizes from chloro­form solution, but in space group P[\overline{1}]. The syn and anti conformations of each half of the mol­ecule are closer to the idealized geometry with torsion angles C7—S2—C8—S3 of 2.17 (13) and C9—S4—C8—S3 of −174.93 (9)°.

Inter­estingly, the thio­carbonyl and thia­zol moieties in the (syn,anti) conformer are oriented almost perpendicular to each other, with S1—C7—S2—C8 and S5—C9—S4—C8 torsion angles close to 90° [–87.25 (10) and 104.26 (10)°, respectively]. In the (syn,syn) conformer, the thio­carbonyl and thia­zol groups are almost in plane, apart from the propeller-like twist: the respective torsion angle S1—C7—S2—C8 is −2.4 (2)°, resulting in relative close proximity for the thio­carbonyl S1 and thia­zol S3 atoms. This S1⋯S3 distance of 3.106 (1) Å, which is considerably shorter than the sum of van der Waals radii (3.78 Å; Alvarez, 2013[Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.]), indicates possible attractive chalcogenic inter­actions. Comparable T-shaped geometries around sulfur were observed by our group for dihalosulfuranes (Talavera et al., 2015[Talavera, G., Peña, J. & Alcarazo, M. (2015). J. Am. Chem. Soc. 137, 8704-8707.]; Peña et al., 2017[Peña, J., Talavera, G., Waldecker, B. & Alcarazo, M. (2017). Chem. Eur. J. 23, 75-78.]; Averesch et al., 2019[Averesch, K. F. G., Pesch, H., Golz, C. & Alcarazo, M. (2019). Chem. Eur. J. 25, 10472-10477.]), where the inter­action is even more pronounced because of the electronically depleted sulfur atoms.

The bond lengths in both conformers show no significant differences that would correspond to the changed bond angles in respect of hyperconjugative effects.

3. Supra­molecular features

To investigate the supra­molecular features, the Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was calculated for both conformers using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The resulting Hirshfeld surfaces mapped over dnorm heatmaps for the (syn,syn) and (syn,anti) conformers are depicted in Fig. 2[link] and the corresponding fingerprint plots are shown in Fig. 3[link]. Observation of the heatmap and the features of the fingerprint plots yields one apparent conclusion: the (syn,syn) conformer has no distinctive contacts while the surface for the (syn,anti) conformer features in total five hot spots, which reappear as sharp features in the fingerprint plot (Fig. 3[link]). Those contacts are identified as two C—H⋯N hydrogen bonds (Table 1[link]) between N1 and C6 and N2 and C15 with lengths of 3.467 (2) and 3.552 (2) Å, respectively. This is in the range of other C—H⋯N hydrogen bonds reported previously (Mambanda et al. 2007[Mambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676-o680.]; Pingali et al., 2014[Pingali, S., Donahue, J. P. & Payton-Stewart, F. (2014). Acta Cryst. C70, 388-391.]). The fifth contact is a symmetric S⋯S inter­action between S3 and its adjacent symmetry-equivalent clone, with a distance of 3.509 (1) Å. The relative contributions of various contacts to the Hirshfeld surface are given in Table 2[link].

Table 1
Hydrogen-bond geometry (Å, °) for the (syn,anti) conformer[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.93 2.58 3.467 (2) 161
C15—H15⋯N2ii 0.93 2.68 3.552 (2) 157
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Table 2
Relative element–element contributions to the Hirshfeld surface (in %). Asymmetric contacts include reciprocal contributions

Contact (syn,syn) (syn,anti)
S⋯S 22.9 16.1
S⋯N 4.6 0.9
S⋯C 6.2 11.5
S⋯H 2.7 17.4
N⋯N 0.4 0.2
N⋯C 2.6 3.3
N⋯H 8.4 9.7
C⋯C 11.6 3.0
C⋯H 9.6 16.5
H⋯H 31.0 21.4
[Figure 2]
Figure 2
Hirshfeld surfaces mapped over dnorm for the (syn,syn) (top) and (syn,anti) (bottom) conformers in opposite views. Mapped ranges of 0.0097 to 1.0175 and −0.1520 to 1.2170 for (syn,syn) and (syn,anti), respectively.
[Figure 3]
Figure 3
Full fingerprint plot (top) and decomposed plots (bottom) showing exclusive element element contacts.

The Hirshfeld surface mapped over curvedness (Fig. 4[link]) indicates ππ inter­actions by wide flat areas on one side of each benzo­thia­zol unit. Packing diagrams of the (syn,syn) (Fig. 5[link]) and (syn,anti) (Fig. 6[link]) conformers show the parallel arrangement of adjacent benzo­thia­zol groups, which come in pairs (syn,anti) or in a continuous herringbone motif (syn,syn). The separation between the benzo­thia­zol planes (defined by C1–C7/N1/S1 or C9–C15/N2/S5) are similar with distances of 3.54 Å in the (syn,syn) conformer and 3.43 and 3.58 Å in the (syn,anti) conformer.

[Figure 4]
Figure 4
Hirshfeld surface mapped over curvedness for the (syn,syn) (top) and (syn,anti) (bottom) conformers in opposite views.
[Figure 5]
Figure 5
Packing diagram for (syn,syn) displaying the herringbone motif.
[Figure 6]
Figure 6
Packing diagram displaying all S⋯S contacts (yellow stippled bonds) and C—H⋯N hydrogen bonds (blue balled bonds) and separate packing diagram displaying ππ inter­actions (grey stippled bonds). Only hydrogen atoms participating in hydrogen bonds are shown. Symmetry codes: (i) 1 + x, +y, +z; (ii) −1 + x, +y, +z; (iii) 2 − x, 1 − y, −z; (iv) 1 − x, 1 − y, −z.

4. Database survey

A search in the CSD (version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for non-cyclic and non-oxidized tri­thio­carbonates produced 20 results, of which only one (refcode XUBNAJ; Sotofte & Senning, 2001[Sotofte, I. & Senning, A. (2001). Sulfur Lett. 24, 209.]) adopts a (syn,anti) conformation. There is one outlier neither close to a (syn,syn) nor a (syn,anti) conformation, which is chemically a thio­anhydride (XISSAU; Weber et al., 2008[Weber, W. G., McLeary, J. B., Gertenbach, J.-A. & Loots, L. (2008). Acta Cryst. E64, o250.]). All other results are tri­thio­carbonates with a (syn,syn) conformation, which appears to be the predominant form. A substructure search for benzo­thia­zoles and thia­zoles yielded large numbers of hits (1500 and 2200, respectively). A comparable polymorphism with thia­zolo­thia­zols (Schneider et al., 2015[Schneider, J. A., Black, H., Lin, H.-P. & Perepichka, D. F. (2015). ChemPhysChem, 16, 1173-1178.]) was reported with inter­plane separations around 3.45 Å, as well as arrangements in pairs of ππ inter­actions for one polymorph and a herringbone motif in the other, closely matching our observations.

5. Synthesis and crystallization

The title compound was initially isolated in small amounts as a side product and crystallized from chloro­form solution in an NMR tube, where two crystalline species could be identified visually: (syn,syn) in the form of orange needles and (syn,anti) as orange blocks.

The synthesis of the title compound is based on a literature procedure (Runge et al., 1962[Runge, F., El-Hewehi, Z. & Taeger, E. (1962). J. Prakt. Chem. 18, 262-268.]). Benzo­thia­zole-2-thiol (500 mg, 2.99 mmol, 1.0 eq.) and sodium hydroxide (179 mg, 4.48 mmol, 1.5 eq.) were dissolved in water (30 ml). Thio­phosgene (165 mg, 1.44 mmol, 0.48 eq.) was added dropwise at room temperature. After complete addition, the solution was stirred for 15 minutes. Brine solution was added, the reaction mixture extracted with ethyl acetate and the combined organic phases dried over sodium sulfate. The solvent was removed in vacuo to yield the crude product as an orange solid (518 mg). After recrystallization from boiling benzene solution the pure product was obtained as orange crystals (432 mg, 1.15 mmol, 77%).

The melting range is 420–423 K, as measured on a Büchi M-560.

NMR spectra recorded on a Bruker Avance III HD 300 and chemical shifts are given in parts per million. 1H NMR (300 MHz, CDCl3): 8.20–8.17 (m, 1H), 7.99–7.96 (m, 1H), 7.62–7.51 (m, 2H). 13C-NMR (300 MHz, CDCl3): 212.5 (C), 156.5 (C), 152.8 (C), 138.0 (C), 126.94 (CH), 126.85 (CH), 124.4 (CH), 121.7 (CH).

High-resolution mass spectrometry was carried out on a Bruker maXis ESI–QTOF–MS. Calculated for C15H8S5N2+H+: 376.9364, found: 376.9364; calculated for C15H8S5N2+Na+: 398.9183, found: 398.9185.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All aromatic hydrogen atoms were placed geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Uiso(C).

Table 3
Experimental details

  (syn,syn) (syn,anti)
Crystal data
Chemical formula C15H8N2S5 C15H8N2S5
Mr 376.53 376.53
Crystal system, space group Orthorhombic, Pbcn Triclinic, P[\overline{1}]
Temperature (K) 299 299
a, b, c (Å) 3.9458 (15), 11.434 (3), 33.366 (11) 6.4976 (5), 9.5593 (12), 13.1962 (11)
α, β, γ (°) 90, 90, 90 80.576 (5), 82.312 (3), 86.288 (5)
V3) 1505.4 (9) 800.55 (14)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.76 0.72
Crystal size (mm) 0.24 × 0.07 × 0.02 0.44 × 0.35 × 0.28
 
Data collection
Diffractometer Bruker D8 Venture Dual Source Bruker D8 Venture Dual Source
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.248, 0.336 0.256, 0.372
No. of measured, independent and observed [I > 2σ(I)] reflections 17286, 2147, 1708 4846, 4846, 4296
Rint 0.048
(sin θ/λ)max−1) 0.699 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.110, 1.10 0.036, 0.099, 1.03
No. of reflections 2147 4846
No. of parameters 101 200
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.34 0.45, −0.43
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Non merohedral twinning was found for the crystal of the (syn,anti) conformer used for data collection. The twin domain transformation matrix was found to be (0.996, −0.141, −0.031/0.331, 0977, −0.106/0.235, 0.130, 0.958). Data integration was carried out using both domains with a final twin batch scale factor of 0.1211 (17).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(1,3-benzothiazol-2-yl) trithiocarbonate (ss) top
Crystal data top
C15H8N2S5Dx = 1.661 Mg m3
Mr = 376.53Melting point: 420 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
a = 3.9458 (15) ÅCell parameters from 744 reflections
b = 11.434 (3) Åθ = 2.4–23.7°
c = 33.366 (11) ŵ = 0.76 mm1
V = 1505.4 (9) Å3T = 299 K
Z = 4Needle, orange
F(000) = 7680.24 × 0.07 × 0.02 mm
Data collection top
Bruker D8 Venture Dual Source
diffractometer
1708 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.048
φ and ω scansθmax = 29.8°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 55
Tmin = 0.248, Tmax = 0.336k = 1515
17286 measured reflectionsl = 4646
2147 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0292P)2 + 2.5718P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2147 reflectionsΔρmax = 0.32 e Å3
101 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3107 (2)0.53882 (6)0.33530 (2)0.03516 (19)
S20.0018 (2)0.75692 (6)0.29112 (2)0.0406 (2)
S30.0000000.52046 (9)0.2500000.0464 (3)
N10.2014 (7)0.7473 (2)0.36435 (6)0.0339 (5)
C10.4357 (7)0.5675 (2)0.38429 (7)0.0303 (5)
C20.3531 (7)0.6823 (2)0.39456 (7)0.0303 (5)
C30.4219 (8)0.7232 (3)0.43318 (7)0.0380 (7)
H30.3642070.7989670.4407120.046*
C40.5772 (8)0.6486 (3)0.45974 (8)0.0417 (7)
H40.6264890.6748050.4854670.050*
C50.6622 (8)0.5349 (3)0.44906 (8)0.0419 (7)
H50.7660950.4864400.4677760.050*
C60.5954 (8)0.4927 (3)0.41122 (8)0.0365 (6)
H60.6547560.4168880.4039210.044*
C70.1712 (7)0.6830 (2)0.33240 (7)0.0308 (5)
C80.0000000.6615 (3)0.2500000.0302 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0508 (4)0.0307 (3)0.0240 (3)0.0060 (3)0.0060 (3)0.0048 (2)
S20.0647 (5)0.0311 (3)0.0261 (3)0.0092 (4)0.0079 (3)0.0031 (2)
S30.0809 (9)0.0299 (5)0.0284 (4)0.0000.0129 (5)0.000
N10.0472 (14)0.0301 (11)0.0244 (9)0.0004 (11)0.0001 (10)0.0024 (8)
C10.0335 (14)0.0346 (13)0.0228 (10)0.0035 (11)0.0007 (10)0.0013 (9)
C20.0366 (15)0.0326 (13)0.0216 (10)0.0048 (12)0.0010 (10)0.0016 (9)
C30.0514 (18)0.0395 (15)0.0231 (11)0.0053 (13)0.0025 (11)0.0053 (10)
C40.0486 (18)0.0530 (18)0.0235 (11)0.0101 (15)0.0047 (12)0.0022 (11)
C50.0489 (18)0.0495 (17)0.0275 (12)0.0040 (15)0.0064 (12)0.0057 (12)
C60.0428 (16)0.0357 (14)0.0310 (12)0.0030 (13)0.0057 (11)0.0010 (10)
C70.0388 (15)0.0318 (12)0.0218 (10)0.0001 (12)0.0002 (10)0.0009 (9)
C80.035 (2)0.0332 (18)0.0227 (14)0.0000.0008 (14)0.000
Geometric parameters (Å, º) top
S1—C11.739 (2)C2—C31.397 (3)
S1—C71.741 (3)C3—H30.9300
S2—C71.755 (3)C3—C41.375 (4)
S2—C81.753 (2)C4—H40.9300
S3—C81.612 (4)C4—C51.389 (4)
N1—C21.388 (3)C5—H50.9300
N1—C71.300 (3)C5—C61.377 (4)
C1—C21.395 (4)C6—H60.9300
C1—C61.392 (4)
C1—S1—C787.88 (12)C5—C4—H4119.2
C8—S2—C7108.23 (13)C4—C5—H5119.4
C7—N1—C2109.4 (2)C6—C5—C4121.1 (3)
C2—C1—S1110.02 (19)C6—C5—H5119.4
C6—C1—S1128.3 (2)C1—C6—H6121.2
C6—C1—C2121.7 (2)C5—C6—C1117.6 (3)
N1—C2—C1115.2 (2)C5—C6—H6121.2
N1—C2—C3125.1 (2)S1—C7—S2128.53 (14)
C1—C2—C3119.7 (2)N1—C7—S1117.46 (19)
C2—C3—H3120.9N1—C7—S2114.0 (2)
C4—C3—C2118.3 (3)S2—C8—S2i103.00 (19)
C4—C3—H3120.9S3—C8—S2128.50 (10)
C3—C4—H4119.2S3—C8—S2i128.50 (10)
C3—C4—C5121.6 (2)
S1—C1—C2—N11.3 (3)C4—C5—C6—C10.8 (5)
S1—C1—C2—C3178.1 (2)C6—C1—C2—N1178.7 (3)
S1—C1—C6—C5178.4 (2)C6—C1—C2—C31.9 (4)
N1—C2—C3—C4179.3 (3)C7—S1—C1—C21.6 (2)
C1—S1—C7—S2176.9 (2)C7—S1—C1—C6178.3 (3)
C1—S1—C7—N11.8 (2)C7—S2—C8—S2i155.54 (12)
C1—C2—C3—C41.4 (4)C7—S2—C8—S324.46 (12)
C2—N1—C7—S11.3 (3)C7—N1—C2—C10.0 (4)
C2—N1—C7—S2177.49 (19)C7—N1—C2—C3179.3 (3)
C2—C1—C6—C51.6 (4)C8—S2—C7—S12.4 (2)
C2—C3—C4—C50.6 (5)C8—S2—C7—N1176.3 (2)
C3—C4—C5—C60.3 (5)
Symmetry code: (i) x, y, z+1/2.
(sa) top
Crystal data top
C15H8N2S5Z = 2
Mr = 376.53F(000) = 384
Triclinic, P1Dx = 1.562 Mg m3
a = 6.4976 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5593 (12) ÅCell parameters from 1193 reflections
c = 13.1962 (11) Åθ = 3.2–27.5°
α = 80.576 (5)°µ = 0.72 mm1
β = 82.312 (3)°T = 299 K
γ = 86.288 (5)°Block, yellow
V = 800.55 (14) Å30.44 × 0.35 × 0.28 mm
Data collection top
Bruker D8 Venture Dual Source
diffractometer
4846 independent reflections
Detector resolution: 8.33 pixels mm-14296 reflections with I > 2σ(I)
φ and ω scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
h = 99
Tmin = 0.256, Tmax = 0.372k = 1313
4846 measured reflectionsl = 018
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2258P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4846 reflectionsΔρmax = 0.45 e Å3
200 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28033 (7)0.51733 (5)0.34242 (3)0.05338 (11)
S20.69953 (8)0.63001 (5)0.25025 (3)0.05403 (12)
S30.61181 (7)0.42429 (4)0.11132 (3)0.05159 (11)
S40.85868 (7)0.66560 (5)0.02663 (3)0.05264 (11)
S51.22828 (7)0.78128 (5)0.09888 (4)0.05328 (11)
N10.6295 (2)0.39444 (15)0.39055 (10)0.0471 (3)
N20.8599 (2)0.90383 (14)0.11309 (11)0.0448 (3)
C10.2690 (2)0.36628 (18)0.43444 (11)0.0437 (3)
C20.4716 (2)0.31514 (17)0.45002 (11)0.0433 (3)
C30.5015 (3)0.1931 (2)0.52121 (15)0.0561 (4)
H30.6348420.1582200.5325710.067*
C40.3300 (3)0.1255 (2)0.57426 (15)0.0611 (4)
H40.3480630.0435600.6216110.073*
C50.1300 (3)0.1771 (2)0.55856 (14)0.0617 (5)
H50.0168560.1294190.5960570.074*
C60.0959 (3)0.2970 (2)0.48879 (14)0.0560 (4)
H60.0381780.3308520.4781800.067*
C70.5497 (2)0.49964 (18)0.33205 (12)0.0453 (3)
C80.7176 (2)0.56406 (15)0.13211 (11)0.0400 (3)
C90.9663 (2)0.79599 (16)0.08213 (12)0.0441 (3)
C101.1930 (2)0.93342 (17)0.15548 (12)0.0452 (3)
C110.9856 (2)0.98336 (15)0.15608 (11)0.0400 (3)
C120.9199 (3)1.10581 (17)0.19921 (13)0.0492 (3)
H120.7829581.1408530.1996840.059*
C131.0611 (3)1.17301 (19)0.24069 (15)0.0579 (4)
H131.0186651.2538120.2700760.070*
C141.2667 (3)1.1223 (2)0.23954 (17)0.0642 (5)
H141.3592401.1699730.2681850.077*
C151.3362 (3)1.0030 (2)0.19685 (17)0.0623 (5)
H151.4742060.9699220.1956980.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0471 (2)0.0600 (3)0.0492 (2)0.00577 (17)0.00451 (16)0.00160 (17)
S20.0664 (3)0.0563 (2)0.04205 (19)0.02084 (19)0.00072 (17)0.01342 (17)
S30.0573 (2)0.0457 (2)0.0549 (2)0.00929 (17)0.00458 (17)0.01626 (17)
S40.0636 (3)0.0529 (2)0.04214 (19)0.01454 (18)0.00143 (17)0.01137 (16)
S50.0464 (2)0.0507 (2)0.0647 (3)0.00660 (16)0.00631 (18)0.01861 (19)
N10.0411 (6)0.0555 (8)0.0454 (7)0.0049 (5)0.0061 (5)0.0085 (6)
N20.0414 (6)0.0412 (6)0.0500 (7)0.0037 (5)0.0032 (5)0.0031 (5)
C10.0414 (7)0.0533 (8)0.0368 (6)0.0001 (6)0.0034 (5)0.0104 (6)
C20.0403 (7)0.0512 (8)0.0398 (7)0.0029 (6)0.0050 (5)0.0107 (6)
C30.0498 (9)0.0597 (10)0.0568 (9)0.0001 (7)0.0107 (7)0.0010 (8)
C40.0674 (11)0.0609 (11)0.0515 (9)0.0092 (9)0.0069 (8)0.0035 (8)
C50.0565 (10)0.0774 (13)0.0486 (9)0.0169 (9)0.0034 (7)0.0048 (8)
C60.0412 (8)0.0773 (12)0.0479 (8)0.0053 (7)0.0005 (6)0.0082 (8)
C70.0459 (7)0.0518 (8)0.0396 (7)0.0065 (6)0.0033 (6)0.0116 (6)
C80.0399 (6)0.0392 (7)0.0414 (7)0.0004 (5)0.0050 (5)0.0086 (5)
C90.0461 (7)0.0412 (7)0.0433 (7)0.0057 (6)0.0019 (6)0.0031 (6)
C100.0419 (7)0.0450 (8)0.0484 (8)0.0005 (6)0.0028 (6)0.0089 (6)
C110.0408 (7)0.0359 (6)0.0400 (6)0.0027 (5)0.0003 (5)0.0003 (5)
C120.0485 (8)0.0396 (7)0.0558 (9)0.0005 (6)0.0021 (7)0.0052 (6)
C130.0664 (11)0.0457 (8)0.0616 (10)0.0068 (8)0.0019 (8)0.0141 (7)
C140.0614 (11)0.0643 (11)0.0728 (12)0.0137 (9)0.0090 (9)0.0236 (9)
C150.0449 (9)0.0680 (12)0.0792 (13)0.0016 (8)0.0109 (8)0.0242 (10)
Geometric parameters (Å, º) top
S1—C11.7264 (17)C3—C41.374 (3)
S1—C71.7368 (16)C4—H40.9300
S2—C71.7610 (16)C4—C51.389 (3)
S2—C81.7620 (15)C5—H50.9300
S3—C81.6194 (15)C5—C61.374 (3)
S4—C81.7468 (15)C6—H60.9300
S4—C91.7685 (16)C10—C111.400 (2)
S5—C91.7395 (16)C10—C151.393 (2)
S5—C101.7299 (16)C11—C121.402 (2)
N1—C21.391 (2)C12—H120.9300
N1—C71.289 (2)C12—C131.371 (3)
N2—C91.295 (2)C13—H130.9300
N2—C111.383 (2)C13—C141.390 (3)
C1—C21.404 (2)C14—H140.9300
C1—C61.394 (2)C14—C151.378 (3)
C2—C31.393 (2)C15—H150.9300
C3—H30.9300
C1—S1—C788.65 (8)N1—C7—S2123.20 (12)
C7—S2—C8100.30 (7)S3—C8—S2126.96 (9)
C8—S4—C9103.88 (7)S3—C8—S4117.64 (9)
C10—S5—C988.70 (7)S4—C8—S2115.36 (8)
C7—N1—C2109.59 (13)S5—C9—S4119.69 (9)
C9—N2—C11109.89 (13)N2—C9—S4123.63 (12)
C2—C1—S1109.38 (12)N2—C9—S5116.68 (12)
C6—C1—S1129.40 (13)C11—C10—S5109.30 (11)
C6—C1—C2121.22 (16)C15—C10—S5129.31 (13)
N1—C2—C1115.14 (14)C15—C10—C11121.39 (15)
N1—C2—C3125.11 (15)N2—C11—C10115.42 (13)
C3—C2—C1119.75 (15)N2—C11—C12125.09 (14)
C2—C3—H3120.7C10—C11—C12119.49 (15)
C4—C3—C2118.58 (17)C11—C12—H12120.6
C4—C3—H3120.7C13—C12—C11118.85 (16)
C3—C4—H4119.4C13—C12—H12120.6
C3—C4—C5121.28 (18)C12—C13—H13119.5
C5—C4—H4119.4C12—C13—C14121.06 (17)
C4—C5—H5119.3C14—C13—H13119.5
C6—C5—C4121.36 (17)C13—C14—H14119.3
C6—C5—H5119.3C15—C14—C13121.41 (18)
C1—C6—H6121.1C15—C14—H14119.3
C5—C6—C1117.80 (16)C10—C15—H15121.1
C5—C6—H6121.1C14—C15—C10117.79 (17)
S1—C7—S2119.43 (10)C14—C15—H15121.1
N1—C7—S1117.24 (12)
S1—C1—C2—N10.14 (17)C7—N1—C2—C10.64 (19)
S1—C1—C2—C3179.90 (13)C7—N1—C2—C3179.42 (16)
S1—C1—C6—C5179.91 (14)C8—S2—C7—S187.25 (10)
S5—C10—C11—N20.09 (16)C8—S2—C7—N197.19 (14)
S5—C10—C11—C12179.50 (12)C8—S4—C9—S5104.26 (10)
S5—C10—C15—C14178.84 (16)C8—S4—C9—N274.91 (15)
N1—C2—C3—C4179.78 (17)C9—S4—C8—S27.06 (11)
N2—C11—C12—C13178.98 (15)C9—S4—C8—S3174.93 (9)
C1—S1—C7—S2176.51 (10)C9—S5—C10—C110.52 (12)
C1—S1—C7—N10.69 (13)C9—S5—C10—C15178.99 (19)
C1—C2—C3—C40.3 (3)C9—N2—C11—C100.89 (18)
C2—N1—C7—S10.87 (17)C9—N2—C11—C12178.67 (15)
C2—N1—C7—S2176.52 (11)C10—S5—C9—S4178.11 (10)
C2—C1—C6—C50.2 (3)C10—S5—C9—N21.12 (13)
C2—C3—C4—C50.5 (3)C10—C11—C12—C130.6 (2)
C3—C4—C5—C60.5 (3)C11—N2—C9—S4177.86 (11)
C4—C5—C6—C10.4 (3)C11—N2—C9—S51.34 (17)
C6—C1—C2—N1179.88 (15)C11—C10—C15—C140.6 (3)
C6—C1—C2—C30.2 (2)C11—C12—C13—C140.6 (3)
C7—S1—C1—C20.26 (12)C12—C13—C14—C150.0 (3)
C7—S1—C1—C6179.44 (17)C13—C14—C15—C100.6 (3)
C7—S2—C8—S32.17 (13)C15—C10—C11—N2179.64 (16)
C7—S2—C8—S4179.97 (9)C15—C10—C11—C120.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.932.583.467 (2)161
C15—H15···N2ii0.932.683.552 (2)157
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Relative element–element contributions to the Hirshfeld surface (in %). Asymmetric contacts include reciprocal contributions top
Contact(syn,syn)(syn,anti)
S···S22.916.1
S···N4.60.9
S···C6.211.5
S···H2.717.4
N···N0.40.2
N···C2.63.3
N···H8.49.7
C···C11.63.0
C···H9.616.5
H···H31.021.4
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. INST 186/1237-1).

References

First citationAlvarez, S. (2013). Dalton Trans. 42, 8617–8636.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAveresch, K. F. G., Pesch, H., Golz, C. & Alcarazo, M. (2019). Chem. Eur. J. 25, 10472–10477.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHermann, A., Ulic, S. E., Della Védova, C. O., Lieb, M., Mack, H.-G. & Oberhammer, H. (2000). J. Mol. Struct. 556, 217–224.  CrossRef CAS Google Scholar
First citationHuang, Z., Noble, B. B., Corrigan, N., Chu, Y., Satoh, K., Thomas, D. S., Hawker, C. J., Moad, G., Kamigaito, M., Coote, M. L., Boyer, C. & Xu, J. (2018). J. Am. Chem. Soc. 140, 13392–13406.  CSD CrossRef CAS PubMed Google Scholar
First citationKazemi, M., Sajjadifar, S., Aydi, A. & Heydari, M. M. (2018). J. Med. Chem. Sci. 1, 1–4.  CAS Google Scholar
First citationMambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676–o680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeña, J., Talavera, G., Waldecker, B. & Alcarazo, M. (2017). Chem. Eur. J. 23, 75–78.  PubMed Google Scholar
First citationPingali, S., Donahue, J. P. & Payton-Stewart, F. (2014). Acta Cryst. C70, 388–391.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRunge, F., El-Hewehi, Z. & Taeger, E. (1962). J. Prakt. Chem. 18, 262–268.  CrossRef CAS Google Scholar
First citationSchneider, J. A., Black, H., Lin, H.-P. & Perepichka, D. F. (2015). ChemPhysChem, 16, 1173–1178.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSotofte, I. & Senning, A. (2001). Sulfur Lett. 24, 209.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTalavera, G., Peña, J. & Alcarazo, M. (2015). J. Am. Chem. Soc. 137, 8704–8707.  CSD CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWeber, W. G., McLeary, J. B., Gertenbach, J.-A. & Loots, L. (2008). Acta Cryst. E64, o250.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds