research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Disulfanedi­yl)di­benzoic acid N,N-di­methyl­formamide monosolvate: crystal structure, Hirshfeld surface analysis and computational study

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 June 2020; accepted 22 June 2020; online 26 June 2020)

The title 1:1 solvate, C14H10O4S2·C3H7NO, features a twisted mol­ecule of 2,2′-di­thiodi­benzoic acid (DTBA), with the central C—S—S—C torsion angle being −88.57 (6)°, and a mol­ecule of di­methyl­formamide (DMF). The carb­oxy­lic acid groups are, respectively, close to co-planar and twisted with respect to the benzene rings to which they are connected as seen in the CO2/C6 torsion angles of 1.03 (19) and 7.4 (2)°. Intra­molecular, hypervalent S←O inter­actions are noted [S⋯O = 2.6140 (9) and 2.6827 (9) Å]. In the crystal, four-mol­ecule aggregates are formed via DTBA-O—H⋯O(DMF) and DTBA-O—H⋯O(DTBA) hydrogen bonding, the latter via an eight-membered {⋯OHCO}2 homosynthon. These are linked into supra­molecular layers parallel to (011) via benzene-C—H⋯O(DTBA) and DTBA-C=O⋯π(benzene) inter­actions, with the connections between these, giving rise to a three-dimensional architecture, being of the type benzene-C—H⋯π(benzene). An analysis of the calculated Hirshfeld surfaces indicates, in addition to the aforementioned inter­molecular contacts, the presence of stabilizing inter­actions between a benzene ring and a quasi-π-system defined by O—H⋯O hydrogen bonds between a DTBA dimer, i.e. the eight-membered {⋯OCOH}2 ring system, and between a benzene ring and a quasi-π(OCOH⋯OCH) system arising from the DTBA-O—H⋯O(DMF) hydrogen bond. The inter-centroid separations are 3.65 and 3.49 Å, respectively.

1. Chemical context

Co-crystal formation with 2-mercapto­benzoic acid (2-MBA) is fraught as during crystallization, this is usually oxidized to 2,2′-di­thiodi­benzoic acid (DTBA) (Broker & Tiekink, 2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]; Broker et al., 2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]). Indeed, the only co-crystal of 2-MBA is that with DTBA (Rowland et al., 2011[Rowland, C. E., Cantos, P. M., Toby, B. H., Frisch, M., Deschamps, J. R. & Cahill, C. L. (2011). Cryst. Growth Des. 11, 1370-1374.]). With this chemistry in mind, in recent times it has proved possible to isolate co-crystals of DTBA with other carb­oxy­lic acids, such as with a variety of benzoic acid (BA) derivatives, but not always with control over the stoichiometry. Thus, under very much the same conditions, the 1:1 DTBA:BA co-crystal has been characterized (Tan & Tiekink, 2019a[Tan, S. L. & Tiekink, E. R. T. (2019a). Acta Cryst. E75, 1-7.]) along with 2:1 DTBA co-crystals with 3-chloro­benzoic acid (3-ClBA) (Tan & Tiekink, 2019b[Tan, S. L. & Tiekink, E. R. T. (2019b). Z. Kristallogr. New Cryst. Struct. 234, 433-436.]) and the bromo (3-BrBA) analogue (Tan & Tiekink, 2019c[Tan, S. L. & Tiekink, E. R. T. (2019c). Z. Kristallogr. New Cryst. Struct. 234, 1305-1308.]). The common supra­molecular feature of these crystals is the formation of eight-membered {⋯HOCO}2 synthons, occurring between like and/or unlike carb­oxy­lic acids. In a recent study, it was found the anti­cipated {⋯HOCO}2 synthon was not always formed but was usurped by a DTBA-O—H⋯O(DMF) hydrogen bond for one of the carb­oxy­lic acids, i.e. in the 1:1:1 co-crystal solvate DTBA:2-ClBA:DMF (Tan & Tiekink, 2019d[Tan, S. L. & Tiekink, E. R. T. (2019d). Acta Cryst. E75, 475-481.]); DMF is di­methyl­formamide. It turns out the same situation is noted in the structure of the DTBA:2DMF solvate (Cai et al., 2006[Cai, Y.-P., Sun, F., Zhu, L.-C., Yu, Q.-Y. & Liu, M.-S. (2006). Acta Cryst. E62, o841-o842.]; Ma et al., 2013[Ma, D., Gao, F. & Niu, D. (2013). Jiangsu Shifan Daxue Xuebao, Ziran Kexueban (In Chinese; J. Jiangsu Normal Univ.) 31, 47-51.]; Baruah, 2016[Baruah, J. B. (2016). Private Communication (refcode: AYIVAH). CCDC, Cambridge England.]) where the DMF mol­ecule effectively blocks off the capacity for {⋯HOCO}2 synthon formation by DTBA. In our hands, recrystallization of 2-MBA from a benzene/DMF (1 ml/7 ml v/v) solution also gave the DTBA:2DMF solvate (Tan & Tiekink, 2020[Tan, S. L. & Tiekink, E. R. T. (2020). CSD Communication (CCDC 2002479). CCDC, Cambridge, England. DOI: 10.5517/ccdc.csd.cc256r38]). However, an analogous experiment from a benzene/DMF (5 ml/1 ml v/v) solution yielded the mono-solvate, i.e. the title compound DTBA:DMF, (I)[link]. The crystal and mol­ecular structures of (I)[link] are described herein along with an analysis of the calculated Hirshfeld surfaces and a computational chemistry study.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises a mol­ecule of di­thiodi­benzoic acid (DTBA) and di­methyl­formaide (DMF), each in a general position, Fig. 1[link]. The crystals were obtained from the recrystallization of 2-mercapto­benzoic acid from a benzene/DMF (5 ml/1 ml v/v) solution indicating the acid oxidized to DTBA during crystallization. The observed disparity in the C—O bond lengths in the carb­oxy­lic acid residues [C1—O1,O2 = 1.3177 (15) & 1.2216 (15) Å and C14—O3,O4 = 1.3184 (14) & 1.2295 (14) Å] confirms the location of the acidic H atoms on the O1 and O3 atoms, respectively. A characteristic twisted conformation is evidenced in the C3—S1—S2—C8 torsion angle of −88.57 (6)°. The dihedral angle between the benzene rings is 87.71 (3)°, consistent with an orthogonal disposition. The C1-carb­oxy­lic acid group is almost co-planar with the (C2–C7) benzene ring to which it is connected with the dihedral angle between the least-squares planes being 1.03 (19)°. By contrast, a small twist is noted for the C14-carb­oxy­lic acid residue where the comparable dihedral angle is 7.4 (2)°. Intra­molecular hypervalent S←O inter­actions (Nakanishi et al., 2007[Nakanishi, W., Nakamoto, T., Hayashi, S., Sasamori, T. & Tokitoh, N. (2007). Chem. Eur. J. 13, 255-268.]) are indicated as the carbonyl-O2 and O4 atoms are orientated towards the di­sulfide-S1 and S2 atoms, respectively, with the S1⋯O2 and S2⋯O4 separations being 2.6140 (9) and 2.6827 (9) Å, respectively.

[Figure 1]
Figure 1
The mol­ecular structures of the constituents of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The dashed line indicates a hydrogen bond.

3. Supra­molecular features

The key feature of the supra­molecular aggregation in the crystal of (I)[link] is the formation of hydrogen bonds between the DTBA-hydroxyl-O1 and the DMF-O5 atoms, as indicated in Fig. 1[link] and detailed in Table 1[link], along with hydrogen bonds between centrosymmetrically related C14-carb­oxy­lic acid groups associating via an eight-membered {⋯OHCO}2 homosynthon. The result is the four-mol­ecule aggregate shown in Fig. 2[link](a). For the DTBA⋯DMF inter­action, further stabilization is realized through a DMF-C15—H⋯O2(carbon­yl) contact, Table 1[link], to close a seven-membered {⋯HOCO⋯HCO} heterosynthon. This cooperativity accounts for the near co-planar relationship between the C1-carb­oxy­lic acid group and the non-H atoms of the DMF mol­ecule (r.m.s. deviation = 0.0125 Å) as seen in the dihedral angle of 10.21 (19)° between the two residues. The four-mol­ecule aggregates are linked into supra­molecular chains via benzene-C7—H⋯O(hydrox­yl) inter­actions occurring between centrosymmetrically related mol­ecules. The chains are connected by parallel C=O⋯π(benzene) inter­actions as detailed in Fig. 2[link](b) and Table 1[link]. The resulting supra­molecular layer is parallel to (011), Fig. 2[link](c), with connections between them leading to a three-dimensional architecture being benzene-C11—H⋯π(benzene), Fig. 2[link](d).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the (C2–C7) and (C8–C13) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O5 0.85 (1) 1.75 (1) 2.5981 (13) 176 (2)
O3—H3O⋯O4i 0.84 (2) 1.78 (2) 2.6215 (13) 175 (2)
C15—H15⋯O2 0.95 2.38 3.1162 (15) 134
C7—H7⋯O1ii 0.95 2.53 3.2850 (16) 136
C1—O2⋯Cg1iii 1.22 (1) 3.42 (1) 3.4843 (12) 83 (1)
C14—O4⋯Cg2iv 1.23 (1) 3.33 (1) 3.6227 (12) 94 (1)
C11—H11⋯Cg1v 0.95 2.94 3.7962 (14) 150
Symmetry codes: (i) -x-1, -y+2, -z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z; (iv) x-1, y, z; (v) -x, -y+1, -z.
[Figure 2]
Figure 2
Mol­ecular packing in the crystal of (I)[link]: (a) the four-mol­ecule aggregate sustained by DTBA-O—H⋯O(DMF) and DTBA-O—H⋯O(DTBA) hydrogen bonding shown as orange dashed lines, (b) the supra­molecular chain sustained by carbonyl-O⋯π(benzene) inter­actions shown as red dashed lines, (c) the supra­molecular layer with benzene-C—H⋯O(DTBA) inter­actions shown as blue dashed lines and (d) a view of the unit-cell contents down the a axis with benzene-C—H⋯π(benzene) inter­actions shown as purple dashed lines. In (b) and (c) the non-participating H atoms have been omitted to aid clarity.

Crystal (I)[link] was also subjected to the calculation of solvent-accessible void space through Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) with a probing radius of 1.2 Å within an approximate grid spacing of 0.3 Å. It was found that the DMF solvent mol­ecules occupy about 25.4% or equivalent to 220.8 Å3 of the unit-cell volume, whereas the remaining 74.6% or equivalent to 649.2 Å3 is occupied by DTBA mol­ecules, as highlighted in Fig. 3[link].

[Figure 3]
Figure 3
A perspective view of the solvent-accessible voids in the crystal of (I)[link], calculated after removal of the DMF solvent mol­ecules within 2 × 2 × 1 unit-cells.

4. Hirshfeld surface analysis

To better comprehend the supra­molecular features of (I)[link], it was subjected to Hirshfeld surface analysis through Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) using the established methods (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Several close contacts with distances shorter than the sum of van der Waals radii (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) are manifested by red spots of varying intensities on the Hirshfeld surface calculated over dnorm in Fig. 4[link]. Specifically, the most intense red spots are noted for hy­droxy-O1—H1O⋯O5(carbon­yl) and hy­droxy-O3—H3O⋯O4(carbon­yl) hydrogen bonds with the corresponding dnorm contact distances being 1.62 and 1.64 Å, respectively, i.e. significantly shorter by almost 1 Å compared to the sum of the van der Waals radii of 2.61 Å (adjusted to neutron values), Table 2[link]. Red spots of moderate intensity are observed for DMF-C15—H15⋯O2(carbon­yl) contact with a distance of 2.29 Å, while spots with weak to diminutive intensities are observed for other close contacts which mainly involve the aromatic rings and carb­oxy­lic groups of DTBA as well as the carbonyl group of DMF.

Table 2
A summary dnorm contact distances (adjusted to neutron values) for inter­actions present in the crystal of (I)[link] as computed through a Hirshfeld surface analysis

Contact Distance ΣvdWa Δ|(dnormΣvdW)| Symmetry operation
H1O⋯O5b 1.62 2.61 0.99 x, y, z
H3O⋯O4b 1.64 2.61 0.97 −1 − x, 2 − y, −z
O2⋯H15 2.29 2.61 0.32 x, y, z
H7⋯O1 2.44 2.61 0.17 x, 1 − y, 1 − z
H5⋯C11 2.64 2.79 0.15 −1 − x, 1 − y, − z
H11⋯C6 2.66 2.79 0.13 x, 1 − y, −z
C1⋯C15 3.28 3.40 0.12 −1 + x, y, z
H6⋯O5 2.49 2.61 0.12 x, 1 − y, 1 − z
H11⋯C5 2.68 2.79 0.11 x, 1 − y, −z
O4⋯H16A 2.53 2.61 0.08 1 − x, 2 − y, 1 − z
O3⋯C14 3.17 3.22 0.05 x, 2 − y, −z
C14⋯C14 3.37 3.40 0.03 x, 2 − y, −z
Notes: (a) ΣvdW is the sum of the respective van der Waals radii; (b) these inter­actions correspond to conventional hydrogen bonds.
[Figure 4]
Figure 4
Two views of the dnorm map for the DTBA mol­ecule, showing the relevant short contacts indicated by the red spots on the Hirshfeld surface with varying intensities within the range of −0.0140 to 1.0154 arbitrary units for (a) H3O⋯O4, H1O⋯O5, H15⋯O2, C15⋯C1, C14⋯O3, C14⋯C14 and H16A⋯O4 and (b) H6⋯O5, H7⋯O1, H5⋯C11, H11⋯C5 and H11⋯C6. All H⋯O/O⋯H inter­actions are indicated in blue, H⋯C/C⋯H in light-blue, C⋯O/O⋯C in yellow and C⋯C in green. The close contacts present in the DMF mol­ecule mirror that of the DTBA and hence the relevant dnorm maps are not shown.

Of particular inter­est among all close contacts present in (I)[link] is a O3⋯C14 inter­action, which is included within an apparent ππ inter­action formed between the C8–C13 benzene ring and a quasi-π-system defined by O3—H3O⋯O4 hydrogen bonds between a DTBA dimer, i.e. the eight-membered {⋯O4–C14–O3–H3O}2 ring system. A similar observation is also noted for the C1⋯C15 contact which is encapsulated within an apparent π(C2–C7)⋯quasi-π(O2–C1–O1–H1O⋯O5–C15–H15) inter­action. The separation between the ring centroids of the aforementioned ππ contacts are 3.65 and 3.49 Å, respectively. The stacking arrangement between the relevant aromatic and quasi-aromatic rings is supported by shape complementarity as revealed by the concave (red) and convex (blue) regions in the shape index, Fig. 5[link](a)–(d), as well as curvedness mappings, Fig. 5[link](e) and (f), obtained through the Hirshfeld surface analysis.

[Figure 5]
Figure 5
The Hirshfeld surface mapped with shape index (property range: −1.0 to +1.0 arbitrary units) for (a) a DTBA dimer, (b) a benzoic acid fragment in the opposite view of the DTBA dimer shown in (a), (c) a DTBA⋯DMF dimer and (d) a benzoic acid fragment in the opposite view of the DTBA⋯DMF dimer shown in (c). The Hirshfeld surface mapped with curvedness (property range: −4.0 to +0.4 arbitrary units) for the (e) π(C8–C13)⋯quasi-(⋯O4–C14–O3–H3O)2 inter­action and (f) π(C2–C7)⋯quasi-(O2–C1–O1–H1O⋯O5–C15–H15) inter­action. Both shape index and curvedness studies reveal the shape complementarity (as circled for the concave and convex represented by the red and blue regions in shape index) for the stacking arrangements between the corresponding ring systems.

The electrostatic potential property was mapped onto the Hirshfeld surface using the DFT-B3LYP/6-31G(d,p) approach to verify the nature of the contacts present in (I)[link]. The electrostatic charges for the points of contacts between each H-atom donor and acceptor are collated in Table 3[link]. The results show that those inter­actions involving H-donors and O-acceptors are electrostatic in nature owing to the relatively great charge disparity between inter­acting atoms, with the greatest disparity being observed for the H1O⋯O5 followed by H3O⋯O4 inter­actions which is consistent with their corresponding short contact distances. By contrast, for the H⋯C and C⋯O inter­actions relatively smaller charge disparity is noted indicating weaker attractions between the participating atoms,. The exception is found for the C⋯C contacts which exhibit positive electrostatic charge for both donor and acceptor atoms signifying the dispersive nature of the contacts.

Table 3
Electrostatic potential charge (VESP) for each hydrogen-atom donor and acceptor in (I)[link] participating in a close contact identified through the Hirshfeld surface analysis

Contact Electrostatic potential, VESP (a.u.) Δ|VESP|
  H-donor H-acceptor  
H1O⋯O5 0.2757 −0.0854 0.3611
H3O⋯O4 0.2622 −0.0476 0.3098
H6⋯O5 0.0394 −0.0875 0.1269
H16A⋯O4 0.0366 −0.0669 0.1035
H15⋯O2 0.0362 −0.0605 0.0967
H7⋯O1 0.0373 −0.0249 0.0622
H11⋯C6 0.0465 −0.0080 0.0545
H11⋯C5 0.0431 −0.0068 0.0499
H5⋯C11 0.0446 −0.0016 0.0462
C14⋯O3 0.0192 −0.0080 0.0272
C1⋯C15 0.0238 0.0161 0.0077
C14⋯C14 0.0196 0.0191 0.0005

The qu­anti­fication of the corresponding close contacts on the Hirshfeld surface through fingerprint plot analysis for overall (I)[link] and its individual components, Fig. 6[link], show that the distributions mainly comprise H⋯H [(I): 38.8%; DTBA: 34.8%; DMF: 42.7%], H⋯O/O⋯H [(I): 20.9%; DTBA: 21.5%; DMF: 33.7%], H⋯C/C⋯H [(I): 16.3%; DTBA: 18.8%; DMF: 6.1%] and H⋯S/S⋯H [(I): 11.3%; DTBA: 9.7%; DMF: 13.7%]. The distinctive peaks of the minimum di + de values for H⋯O/O⋯H contacts correspond to O1—H1O⋯O5, O3—H3O⋯O4 and C15—H15⋯O2, and for the H⋯C/C⋯H contacts, to C5—H5⋯C11 and C11—H11⋯C6, while the peaks for H⋯S/ S⋯H exhibit a di + de contact distance of ∼2.92 Å, which is slightly shorter than the sum of the van der Waals radii (∑vdW radii) of 2.89 Å, Fig. 6[link](e). Further delineation of H⋯O/O⋯H, H⋯C/C⋯H and H⋯S/S⋯H shows that those heterogeneous contacts are more inclined towards (inter­nal)-X⋯H-(external) in DTBA, while the opposite is true for DMF indicating the complementary H-bond accepting and donating nature of DTBA and DMF, respectively. The inclination is more towards (inter­nal)-X⋯H-(external) for (I)[link] which reflects the relatively small exposed surface for the DMF mol­ecule and limited hydrogen-bond donating role in the overall mol­ecular packing.

[Figure 6]
Figure 6
(a) The overall two-dimensional fingerprint plots for (I)[link] (upper view), DTBA (middle) and DMF (lower) showing the corresponding overall fingerprint profiles as well as those delineated into (b) H⋯H, (c) H⋯O/ O⋯H, (d) H⋯C/ C⋯H and (e) H⋯S/ S⋯H contacts, with the percentage contributions being specified for each contact indicated therein.

5. Computational chemistry

The program NCIPLOT (Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]) was employed to verify the non-covalent contacts for the π(C8–C13)–quasi-π(⋯O4–C14–O3–H3O)2 and π(C2–C7)–quasi-π(O2–C1–O1–H1O⋯O5–C15–H15) inter­actions as detected in the Hirshfeld surface analysis by calculating the electron density derivatives through wavefunction approach. The visualization of the resulting gradient isosurface supported the existence of the π–quasi-π contacts based on the corresponding large green domain sandwiched between the aromatic and quasi-aromatic rings. The overall density is in the range of −0.05 < sign(λ2)ρ < 0.03 a.u. indicating a weak but attractive inter­action (Contreras-García et al., 2011[Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625-632.]), Fig. 7[link].

[Figure 7]
Figure 7
The non-covalent inter­action and corresponding RDG versus sign(λ2)ρ plots for the (a) π(C8–C13)⋯quasi-(⋯O4–C14–O3–H3O)2 inter­action and (b) π(C2–C7)⋯quasi-(O2–C1–O1–H1O⋯O5–C15–H15) inter­action. Both inter­actions are circled in black.

The strength of each close contact between all pairwise mol­ecules in (I)[link] was qu­anti­fied through the calculation of the inter­action energies using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). As expected, the conventional hy­droxy-O3—H3O⋯O4(carbon­yl) hydrogen bond, leading to the eight-membered homosynthon as well as the seven-membered heterosynthon formed between hy­droxy-O1—H1O⋯O5(carbon­yl) and DMF-C15—H15⋯O2(carbon­yl) exhibit the greatest inter­action energies (Eint) of −69.8 and −58.9 kJ mol−1, respectively. These are relatively stronger than the other supplementary contacts in (I)[link], in which the corresponding energy terms, viz. electrostatic (Eele), polarization (Epol), dispersion (Edis), exchange-repulsion (Erep) together with the total energy are collated in Table 4[link].

Table 4
A summary of inter­action energies (kJ mol−1) calculated for (I)

Contact Eele Epol Edis Erep Etot symmetry operation
{O3—H3O⋯O4}2 −135.2 −21.5 −12.1 99.1 −69.8 −1 − x, 2 − y, − z
O1—H1O⋯O5 +            
C15—H15⋯O2 −94.8 −15.8 −9.5 61.3 −58.9 x, y, z
{C11—H11⋯π(C2–C7)}2 −10.6 −0.8 −30.5 17.7 −24.2 x, 1 − y, −z
{C14⋯O3}2 +            
C14⋯C14 −7.0 −1.2 −20.3 7.1 −21.5 x, 2 − y, −z
C1⋯C15 −6.4 −2.1 −18.5 7.0 −19.9 −1 + x, y, z
C16—H16A⋯O4 −9.9 −1.6 −12.5 9.5 −14.6 1 − x, 2 − y, 1 − z
{C5—H5⋯π(C8–C13)}2 −6.0 −0.6 −22.6 12.1 −14.2 −1 − x, 1 − y, −z
C6—H6⋯O5 −7.0 −2.0 −19.7 3.0 −9.5 x, 1 − y, 1 − z
C7—H7⋯O1 −3.8 −0.8 −12.6 10.1 −7.2 x, 1 − y, 1 − z

Complementing the calculations with Crystal Explorer 17, the Eint for the pairs of π⋯quasi-π inter­actions were modelled in Gaussian16 (Frisch et al., 2016[Frisch, M. J., et al. (2016). Gaussian16, Revision A. 03. Gaussian, Inc., Wallingford, CT, USA.]) by subjecting the respective three-mol­ecule aggregates as well as the hydrogen-bonded dimers, as shown in Fig. 7[link], for gas-phase energy calculation through a long-range corrected ωB97XD functional combining the D2 version of Grimme's dispersion model (Chai & Head-Gordon, 2008[Chai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615-6620.]) and coupled with Ahlrichs's valence triple-zeta polarization basis sets (ωB97XD/def2-TZVP) (Weigend & Ahlrichs, 2005[Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297-3305.]). Counterpoise methods (Boys & Bernardi, 1970[Boys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553-566.]; Simon et al., 1996[Simon, S., Duran, M. & Dannenberg, J. J. (1996). J. Chem. Phys. 105, 11024-11031.]) were applied to correct for basis set superposition error (BSSE) in the obtained energies. The corresponding three-mol­ecule aggregates exhibit the greatest stabilization energy with the E being −132.5 and −119.7 kJ mol−1, respectively, which is consistent with the large localized green domains as detected through NCIPLOT. Upon the subtraction of the E contributed by the hydrogen bonded dimers, i.e. −73.2 kJ mol−1 for {⋯OCOH}2 and −60.5 kJ mol−1 for {⋯OCOH⋯OCH}, the remaining energies are ascribed to the π(C8–C13)⋯quasi-π(⋯O4–C14–O3–H3O)2 or π(C2–C7)⋯quasi-π(O2–C1–O1–H1O⋯O5–C15–H15) inter­actions, i.e. −59.3 and −59.2 kJ mol−1, respectively.

The crystal of (I)[link] is predominantly governed by electrostatic force attributed to the strong O—H⋯O hydrogen-bonding contacts that lead to a maze-like Eele topological framework as shown in Fig. 8[link](a). On the other hand, the dispersion force sustained by the specified ππ inter­actions results in a boat-shape topology, Fig. 8[link](b). The combination of the electrostatic and dispersion forces supersedes the strong inter­action energy from O—H⋯O contacts and lead to a refined overall energy framework with razor-blade-like topology, Fig. 8[link](c).

[Figure 8]
Figure 8
The energy frameworks for (I)[link] viewed along the a axis, showing the (a) electrostatic force, (b) dispersion force and (c) total energy diagram. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 100 with a cut-off value of 8 kJ mol−1 within a 2 × 2 × 2 unit cells.

6. Comparison of (I) with the di-DMF solvate

The crystal structure of DTBA·2DMF (II) is also known, being reported four times (XEBDEO: Cai et al., 2006[Cai, Y.-P., Sun, F., Zhu, L.-C., Yu, Q.-Y. & Liu, M.-S. (2006). Acta Cryst. E62, o841-o842.]; XEBDEO01: Ma et al., 2013[Ma, D., Gao, F. & Niu, D. (2013). Jiangsu Shifan Daxue Xuebao, Ziran Kexueban (In Chinese; J. Jiangsu Normal Univ.) 31, 47-51.]; AYIVAH: Baruah, 2016[Baruah, J. B. (2016). Private Communication (refcode: AYIVAH). CCDC, Cambridge England.]; CUNJUT: Tan & Tiekink, 2020[Tan, S. L. & Tiekink, E. R. T. (2020). CSD Communication (CCDC 2002479). CCDC, Cambridge, England. DOI: 10.5517/ccdc.csd.cc256r38]). The key feature of the mol­ecular packing of (II) is that each carb­oxy­lic acid residue of the DTBA acid mol­ecule, which lacks crystallographic symmetry, is hydrogen bonded to a DMF mol­ecule to form a three-mol­ecule aggregate. For comparison purposes, (II) (CUNJUT: Tan & Tiekink, 2020[Tan, S. L. & Tiekink, E. R. T. (2020). CSD Communication (CCDC 2002479). CCDC, Cambridge, England. DOI: 10.5517/ccdc.csd.cc256r38]), which was evaluated under similar experimental conditions as (I)[link], was also subjected to mol­ecular packing and contact distribution studies. The calculation of the solvent accessible void space using the parameters as mentioned previously shows that the inclusion of additional DMF mol­ecules in the unit-cell is almost directly proportional to the occupied volume by the solvent mol­ecule, i.e. occupied unit-cell volume = 220.8 Å3 = 25.4% for (I)[link] and 526.4 Å3 and 47.5% for (II).

An analysis of the molecular packing similarity between (I)[link] and (II) demonstrates that although the crystal solvates contain DTBA mol­ecule in common, the inclusion of additional DMF results results in a significant deviation in the mol­ecular packing as evidenced in Fig. 9[link]. Here, only two out of 15 mol­ecules in the cluster of mol­ecules being studied are overlapped (within 20% geometric tolerance), with the r.m.s. deviation of the mol­ecular packing being 0.337 Å.

[Figure 9]
Figure 9
A comparison of crystal packing similarity within a 20% geometric tolerance between (I)[link] (red trace) and (II) (blue) with the overlapped mol­ecules represented in ball-and-stick mode.

In term of contact distribution on the Hirshfeld surface for the corresponding individual DTBA mol­ecules and overall (I)[link] and (II), it is noted there are no great disparities in the percentage contributions to the calculated surfaces, Fig. 10[link].

[Figure 10]
Figure 10
A comparison of the percentage contributions of various contacts to the Hirshfeld surfaces for (a) DTBA in (I)[link], (b) DTBA in (II), (c) (I)[link] and (d) (II).

7. Database survey

As mentioned in the Chemical Context, DTBA is usually generated during co-crystallization experiments with 2-mercapto­benzoic acid (2-MBA), implying oxidation of the latter. In addition to oxidation of 2-MBA, other crystallization outcomes have been observed during recent experiments suggesting chemical reactions are occurring. A less common outcome of crystallization experiments with 2-MBA was the sulfur extrusion product, 2,2′-thiodi­benzoic acid (Gorobet et al., 2018[Gorobet, A., Vitiu, A., Petuhov, O. & Croitor, L. (2018). Polyhedron, 151, 51-57.]), obtained during attempts to react 2-MBA with copper(I) chloride in the presence of two equivalents of tri­phenyl­phosphane (Tan & Tiekink, 2018[Tan, S. L. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 1764-1771.]). In a series of experiments with the isomeric Schiff bases, N,N-bis­[(pyridine-n-yl)methyl­ene]cyclo­hexane-1,4-di­amine, for n = 2, 3 and 4 (Lai et al., 2006[Lai, C. S., Mohr, F. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 909-915.]), very different products have been characterized from comparable reaction conditions. Referring to Fig. 11[link], (III) is the n = 4 isomer. Thus, when (III) was co-crystallized with 2-MBA, a salt of composition [1,4-H3N(+)C6H10N(+)H3][DTBA_2H]·DMF·H2O was isolated (KOZSOK; Tan & Tiekink, 2019f[Tan, S. L. & Tiekink, E. R. T. (2019f). Z. Kristallogr. New Cryst. Struct. 234, 903-905.]). A more dramatic outcome was the cation, (IV), in the salt hydrate formulated as (IV)[DTBA_2H]·2H2O, where (IV) is 2-(4-ammonio­cyclo­hex­yl)-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium di-cation, isolated from the co-crystallization of 2-MBA with the n = 2 isomer of (III) (TOLLEO; Tan & Tiekink, 2019e[Tan, S. L. & Tiekink, E. R. T. (2019e). Z. Kristallogr. New Cryst. Struct. 234, 797-799.]). When 4-MBA was employed with the n = 2 isomer, [1,4-H3N(+)C6H10N(+)H3][4-DTBA_2H]·DMSO·H2O was the crystallization product (WOVHOH; Tan & Tiekink, 2019g[Tan, S. L. & Tiekink, E. R. T. (2019g). Z. Kristallogr. New Cryst. Struct. 234, 1301-1304.]). Simple co-crystallization of 4-MBA with the 4-isomer gave the anti­cipated co-crystal [4-DTBA](II) (GOQREM; Tan & Tiekink, 2019h[Tan, S. L. & Tiekink, E. R. T. (2019h). Z. Kristallogr. New Cryst. Struct. 234, 1121-1123.]). The aforementioned crystallization outcomes vindicate continued systematic investigations in this field.

[Figure 11]
Figure 11
Chemical diagrams for (III) and (IV).

8. Synthesis and crystallization

The DMF monosolvate of DTBA, (I)[link], was obtained by the addition of a small amount of DMF to the benzene solution of 2-mercapto­benzoic acid (1 ml DMF: 5 ml benzene), followed by slow evaporation of the solvent. M.p. 462.5–463.7 K. IR (cm−1): 3072 ν(C—H), 1680 ν(C=O), 1464 ν(C=C), 1410 δ(C—H), 722 ν(C—S).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The oxygen-bound H atoms were located from a difference-Fourier map and refined with O—H = 0.84±0.01 Å, and with Uiso(H) set to 1.5Ueq(O).

Table 5
Experimental details

Crystal data
Chemical formula C14H10O4S2·C3H7NO
Mr 379.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.05866 (4), 12.2617 (1), 15.1009 (1)
α, β, γ (°) 106.149 (1), 96.446 (1), 100.884 (1)
V3) 869.94 (1)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.03
Crystal size (mm) 0.24 × 0.16 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.])
Tmin, Tmax 0.316, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19670, 3543, 3410
Rint 0.025
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.07
No. of reflections 3543
No. of parameters 234
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2,2'-(Disulfanediyl)dibenzoic acid N,N-dimethylformamide monosolvate top
Crystal data top
C14H10O4S2·C3H7NOZ = 2
Mr = 379.43F(000) = 396
Triclinic, P1Dx = 1.449 Mg m3
a = 5.05866 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.2617 (1) ÅCell parameters from 13143 reflections
c = 15.1009 (1) Åθ = 3.1–76.0°
α = 106.149 (1)°µ = 3.03 mm1
β = 96.446 (1)°T = 100 K
γ = 100.884 (1)°Prism, colourless
V = 869.94 (1) Å30.24 × 0.16 × 0.06 mm
Data collection top
XtaLAB Synergy, Dualflex, AtlasS2
diffractometer
3410 reflections with I > 2σ(I)
Detector resolution: 5.2558 pixels mm-1Rint = 0.025
ω scansθmax = 76.3°, θmin = 3.1°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2018)
h = 66
Tmin = 0.316, Tmax = 1.000k = 1513
19670 measured reflectionsl = 1818
3543 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3204P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3543 reflectionsΔρmax = 0.23 e Å3
234 parametersΔρmin = 0.34 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13127 (6)0.80270 (2)0.28401 (2)0.01841 (9)
S20.10332 (6)0.84945 (2)0.18710 (2)0.01848 (9)
O10.32810 (18)0.61831 (8)0.48410 (6)0.02255 (19)
H1O0.480 (2)0.6544 (14)0.5192 (11)0.034*
O20.42509 (17)0.76207 (8)0.41991 (6)0.02129 (19)
O30.30085 (18)0.92323 (8)0.07873 (6)0.02025 (19)
H3O0.403 (3)0.9709 (12)0.0714 (12)0.030*
O40.37132 (17)0.93328 (7)0.06697 (6)0.01850 (18)
O50.78590 (18)0.72556 (8)0.59804 (6)0.0248 (2)
N11.1659 (2)0.87050 (9)0.62312 (7)0.0212 (2)
C10.2742 (2)0.67339 (10)0.42316 (8)0.0176 (2)
C20.0090 (2)0.61916 (10)0.35774 (8)0.0170 (2)
C30.0765 (2)0.67004 (10)0.28992 (8)0.0166 (2)
C40.3247 (2)0.61624 (11)0.22897 (9)0.0193 (2)
H40.3807320.6477470.1811230.023*
C50.4903 (2)0.51701 (11)0.23773 (9)0.0213 (3)
H50.6607170.4823860.1967490.026*
C60.4093 (3)0.46787 (11)0.30573 (9)0.0219 (3)
H60.5242000.4004780.3118670.026*
C70.1591 (3)0.51829 (11)0.36451 (8)0.0204 (2)
H70.1008990.4838430.4101050.024*
C80.0191 (2)0.77686 (10)0.07734 (8)0.0165 (2)
C90.0966 (2)0.80827 (10)0.00313 (8)0.0156 (2)
C100.0139 (2)0.75656 (11)0.08709 (9)0.0192 (2)
H100.0629820.7791790.1408050.023*
C110.1383 (3)0.67300 (11)0.09306 (9)0.0222 (3)
H110.1960050.6392010.1501000.027*
C120.2057 (3)0.63912 (11)0.01461 (9)0.0225 (3)
H120.3060440.5802900.0186260.027*
C130.1282 (2)0.69023 (11)0.06944 (9)0.0200 (2)
H130.1759460.6659500.1223880.024*
C140.2676 (2)0.89386 (10)0.00130 (8)0.0152 (2)
C150.9281 (2)0.80364 (11)0.57469 (9)0.0207 (2)
H150.8612750.8162640.5178950.025*
C161.2863 (3)0.85536 (13)0.70996 (9)0.0282 (3)
H16A1.2689740.9193080.7632210.042*
H16B1.4800620.8557710.7095630.042*
H16C1.1907930.7808200.7154800.042*
C171.3127 (3)0.96362 (12)0.59254 (10)0.0281 (3)
H17A1.2201390.9593430.5306640.042*
H17B1.5002470.9549340.5889620.042*
H17C1.3167211.0392870.6374040.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01995 (15)0.01712 (15)0.01807 (15)0.00257 (11)0.00087 (11)0.00800 (11)
S20.02349 (16)0.01848 (15)0.01612 (15)0.00924 (11)0.00252 (11)0.00694 (11)
O10.0220 (4)0.0274 (5)0.0201 (4)0.0019 (4)0.0003 (3)0.0142 (4)
O20.0223 (4)0.0213 (4)0.0196 (4)0.0009 (3)0.0004 (3)0.0097 (3)
O30.0250 (4)0.0239 (5)0.0179 (4)0.0124 (4)0.0059 (3)0.0106 (3)
O40.0215 (4)0.0206 (4)0.0170 (4)0.0096 (3)0.0043 (3)0.0078 (3)
O50.0235 (4)0.0279 (5)0.0236 (5)0.0015 (4)0.0021 (4)0.0127 (4)
N10.0222 (5)0.0218 (5)0.0182 (5)0.0039 (4)0.0032 (4)0.0049 (4)
C10.0207 (6)0.0198 (6)0.0141 (5)0.0069 (5)0.0049 (4)0.0061 (4)
C20.0181 (6)0.0195 (6)0.0143 (5)0.0054 (4)0.0049 (4)0.0050 (4)
C30.0166 (5)0.0167 (5)0.0175 (6)0.0056 (4)0.0051 (4)0.0049 (4)
C40.0181 (6)0.0206 (6)0.0195 (6)0.0071 (5)0.0025 (5)0.0054 (5)
C50.0167 (5)0.0216 (6)0.0224 (6)0.0036 (5)0.0029 (5)0.0024 (5)
C60.0224 (6)0.0194 (6)0.0227 (6)0.0012 (5)0.0082 (5)0.0052 (5)
C70.0250 (6)0.0208 (6)0.0173 (6)0.0053 (5)0.0066 (5)0.0078 (5)
C80.0148 (5)0.0156 (5)0.0184 (6)0.0026 (4)0.0018 (4)0.0052 (4)
C90.0130 (5)0.0142 (5)0.0187 (6)0.0018 (4)0.0013 (4)0.0053 (4)
C100.0184 (6)0.0195 (6)0.0191 (6)0.0034 (4)0.0026 (4)0.0057 (5)
C110.0214 (6)0.0214 (6)0.0225 (6)0.0067 (5)0.0061 (5)0.0026 (5)
C120.0195 (6)0.0184 (6)0.0297 (7)0.0082 (5)0.0038 (5)0.0052 (5)
C130.0188 (6)0.0187 (6)0.0235 (6)0.0056 (5)0.0013 (5)0.0083 (5)
C140.0146 (5)0.0142 (5)0.0156 (5)0.0010 (4)0.0002 (4)0.0053 (4)
C150.0215 (6)0.0235 (6)0.0174 (6)0.0059 (5)0.0031 (5)0.0062 (5)
C160.0279 (7)0.0346 (7)0.0199 (6)0.0089 (6)0.0014 (5)0.0058 (5)
C170.0282 (7)0.0219 (6)0.0312 (7)0.0004 (5)0.0071 (6)0.0060 (5)
Geometric parameters (Å, º) top
S1—C31.7929 (12)C6—C71.3853 (18)
S1—S22.0524 (4)C6—H60.9500
S2—C81.7894 (12)C7—H70.9500
O1—C11.3177 (15)C8—C131.3951 (16)
O1—H1O0.845 (9)C8—C91.4103 (16)
O2—C11.2216 (15)C9—C101.3988 (16)
O3—C141.3184 (14)C9—C141.4772 (15)
O3—H3O0.845 (9)C10—C111.3831 (17)
O4—C141.2295 (14)C10—H100.9500
O5—C151.2423 (16)C11—C121.3887 (18)
N1—C151.3228 (17)C11—H110.9500
N1—C171.4557 (17)C12—C131.3855 (18)
N1—C161.4573 (17)C12—H120.9500
C1—C21.4893 (16)C13—H130.9500
C2—C71.3985 (17)C15—H150.9500
C2—C31.4082 (17)C16—H16A0.9800
C3—C41.3958 (17)C16—H16B0.9800
C4—C51.3889 (18)C16—H16C0.9800
C4—H40.9500C17—H17A0.9800
C5—C61.3885 (18)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C3—S1—S2104.21 (4)C10—C9—C14118.89 (10)
C8—S2—S1104.44 (4)C8—C9—C14121.39 (10)
C1—O1—H1O109.1 (12)C11—C10—C9120.98 (11)
C14—O3—H3O107.5 (11)C11—C10—H10119.5
C15—N1—C17121.01 (11)C9—C10—H10119.5
C15—N1—C16121.21 (11)C10—C11—C12119.16 (11)
C17—N1—C16117.77 (11)C10—C11—H11120.4
O2—C1—O1123.78 (11)C12—C11—H11120.4
O2—C1—C2121.86 (11)C11—C12—C13120.69 (11)
O1—C1—C2114.35 (10)C11—C12—H12119.7
C7—C2—C3119.58 (11)C13—C12—H12119.7
C7—C2—C1120.03 (11)C12—C13—C8120.87 (12)
C3—C2—C1120.37 (11)C12—C13—H13119.6
C4—C3—C2118.92 (11)C8—C13—H13119.6
C4—C3—S1121.24 (9)O4—C14—O3123.20 (10)
C2—C3—S1119.84 (9)O4—C14—C9122.27 (10)
C5—C4—C3120.53 (11)O3—C14—C9114.53 (10)
C5—C4—H4119.7O5—C15—N1124.80 (12)
C3—C4—H4119.7O5—C15—H15117.6
C4—C5—C6120.71 (11)N1—C15—H15117.6
C4—C5—H5119.6N1—C16—H16A109.5
C6—C5—H5119.6N1—C16—H16B109.5
C7—C6—C5119.22 (11)H16A—C16—H16B109.5
C7—C6—H6120.4N1—C16—H16C109.5
C5—C6—H6120.4H16A—C16—H16C109.5
C6—C7—C2120.98 (12)H16B—C16—H16C109.5
C6—C7—H7119.5N1—C17—H17A109.5
C2—C7—H7119.5N1—C17—H17B109.5
C13—C8—C9118.50 (11)H17A—C17—H17B109.5
C13—C8—S2121.28 (9)N1—C17—H17C109.5
C9—C8—S2120.20 (9)H17A—C17—H17C109.5
C10—C9—C8119.71 (11)H17B—C17—H17C109.5
O2—C1—C2—C7179.30 (11)S1—S2—C8—C9166.35 (8)
O1—C1—C2—C70.13 (16)C13—C8—C9—C103.03 (17)
O2—C1—C2—C30.45 (17)S2—C8—C9—C10175.70 (9)
O1—C1—C2—C3178.99 (10)C13—C8—C9—C14176.08 (10)
C7—C2—C3—C41.89 (17)S2—C8—C9—C145.18 (15)
C1—C2—C3—C4179.25 (10)C8—C9—C10—C111.39 (18)
C7—C2—C3—S1177.41 (9)C14—C9—C10—C11177.74 (11)
C1—C2—C3—S11.45 (15)C9—C10—C11—C120.97 (18)
S2—S1—C3—C46.15 (10)C10—C11—C12—C131.66 (19)
S2—S1—C3—C2173.13 (8)C11—C12—C13—C80.04 (19)
C2—C3—C4—C52.79 (17)C9—C8—C13—C122.38 (18)
S1—C3—C4—C5176.49 (9)S2—C8—C13—C12176.34 (9)
C3—C4—C5—C61.54 (18)C10—C9—C14—O4172.13 (11)
C4—C5—C6—C70.67 (18)C8—C9—C14—O46.99 (17)
C5—C6—C7—C21.57 (18)C10—C9—C14—O37.31 (15)
C3—C2—C7—C60.29 (18)C8—C9—C14—O3173.56 (10)
C1—C2—C7—C6178.58 (11)C17—N1—C15—O5177.13 (12)
S1—S2—C8—C1312.35 (11)C16—N1—C15—O51.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C2–C7) and (C8–C13) rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O50.85 (1)1.75 (1)2.5981 (13)176 (2)
O3—H3O···O4i0.84 (2)1.78 (2)2.6215 (13)175 (2)
C15—H15···O20.952.383.1162 (15)134
C7—H7···O1ii0.952.533.2850 (16)136
C1—O2···Cg1iii1.22 (1)3.42 (1)3.4843 (12)83 (1)
C14—O4···Cg2iv1.23 (1)3.33 (1)3.6227 (12)94 (1)
C11—H11···Cg1v0.952.943.7962 (14)150
Symmetry codes: (i) x1, y+2, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y+1, z.
A summary dnorm contact distances (adjusted to neutron values) for interactions present in the crystal of (I) as computed through a Hirshfeld surface analysis top
ContactDistanceΣvdWaΔ|(dnorm - ΣvdW)|Symmetry operation
H1O···O5b1.622.610.99x, y, z
H3O···O4b1.642.610.97-1 - x, 2 - y, -z
O2···H152.292.610.32x, y, z
H7···O12.442.610.17-x, 1 - y, 1 - z
H5···C112.642.790.15-1 - x, 1 - y, - z
H11···C62.662.790.13-x, 1 - y, -z
C1···C153.283.400.12-1 + x, y, z
H6···O52.492.610.12-x, 1 - y, 1 - z
H11···C52.682.790.11-x, 1 - y, -z
O4···H16A2.532.610.081 - x, 2 - y, 1 - z
O3···C143.173.220.05-x, 2 - y, -z
C14···C143.373.400.03-x, 2 - y, -z
Notes: (a) ΣvdW is the sum of the respective van der Waals radii; (b) these interactions correspond to conventional hydrogen bonds.
Electrostatic potential charge (VESP) for each hydrogen-atom donor and acceptor in (I) participating in a close contact identified through the Hirshfeld surface analysis top
ContactElectrostatic potential, VESP (a.u.)Δ|VESP|
H-donorH-acceptor
H1O···O50.2757-0.08540.3611
H3O···O40.2622-0.04760.3098
H6···O50.0394-0.08750.1269
H16A···O40.0366-0.06690.1035
H15···O20.0362-0.06050.0967
H7···O10.0373-0.02490.0622
H11···C60.0465-0.00800.0545
H11···C50.0431-0.00680.0499
H5···C110.0446-0.00160.0462
C14···O30.0192-0.00800.0272
C1···C150.02380.01610.0077
C14···C140.01960.01910.0005
A summary of interaction energies (kJ mol-1) calculated for (I) top
ContactEeleEpolEdisErepEtotsymmetry operation
{O3—H3O···O4}2-135.2-21.5-12.199.1-69.8-1 - x, 2 - y, - z
O1—H1O···O5 +
C15—H15···O2-94.8-15.8-9.561.3-58.9x, y, z
{C11—H11···π(C2–C7)}2-10.6-0.8-30.517.7-24.2-x, 1 - y, -z
{C14···O3}2 +
C14···C14-7.0-1.2-20.37.1-21.5-x, 2 - y, -z
C1···C15-6.4-2.1-18.57.0-19.9-1 + x, y, z
C16—H16A···O4-9.9-1.6-12.59.5-14.61 - x, 2 - y, 1 - z
{C5—H5···π(C8–C13)}2-6.0-0.6-22.612.1-14.2-1 - x, 1 - y, -z
C6—H6···O5-7.0-2.0-19.73.0-9.5-x, 1 - y, 1 - z
C7—H7···O1-3.8-0.8-12.610.1-7.2-x, 1 - y, 1 - z
 

Footnotes

Additional correspondence author, e-mail: alant@sunway.edu.my.

Funding information

Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. STR-RCTR-RCCM-001-2019).

References

First citationBaruah, J. B. (2016). Private Communication (refcode: AYIVAH). CCDC, Cambridge England.  Google Scholar
First citationBoys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553–566.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationCai, Y.-P., Sun, F., Zhu, L.-C., Yu, Q.-Y. & Liu, M.-S. (2006). Acta Cryst. E62, o841–o842.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615–6620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationContreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2016). Gaussian16, Revision A. 03. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationGorobet, A., Vitiu, A., Petuhov, O. & Croitor, L. (2018). Polyhedron, 151, 51–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLai, C. S., Mohr, F. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 909–915.  CSD CrossRef CAS Google Scholar
First citationMa, D., Gao, F. & Niu, D. (2013). Jiangsu Shifan Daxue Xuebao, Ziran Kexueban (In Chinese; J. Jiangsu Normal Univ.) 31, 47–51.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNakanishi, W., Nakamoto, T., Hayashi, S., Sasamori, T. & Tokitoh, N. (2007). Chem. Eur. J. 13, 255–268.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.  Google Scholar
First citationRowland, C. E., Cantos, P. M., Toby, B. H., Frisch, M., Deschamps, J. R. & Cahill, C. L. (2011). Cryst. Growth Des. 11, 1370–1374.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimon, S., Duran, M. & Dannenberg, J. J. (1996). J. Chem. Phys. 105, 11024–11031.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 1764–1771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2019a). Acta Cryst. E75, 1–7.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2019b). Z. Kristallogr. New Cryst. Struct. 234, 433–436.  CSD CrossRef CAS Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2019c). Z. Kristallogr. New Cryst. Struct. 234, 1305–1308.  CSD CrossRef CAS Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2019d). Acta Cryst. E75, 475–481.  CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2019e). Z. Kristallogr. New Cryst. Struct. 234, 797–799.  CSD CrossRef CAS Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2019f). Z. Kristallogr. New Cryst. Struct. 234, 903–905.  CSD CrossRef CAS Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2019g). Z. Kristallogr. New Cryst. Struct. 234, 1301–1304.  CSD CrossRef CAS Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2019h). Z. Kristallogr. New Cryst. Struct. 234, 1121–1123.  CSD CrossRef CAS Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2020). CSD Communication (CCDC 2002479). CCDC, Cambridge, England. DOI: 10.5517/ccdc.csd.cc256r38  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWeigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds