research communications
E)-2-(4-methylphenyl)diazen-1-yl]ethenyl}-N,N-dimethylaniline
and Hirshfeld surface analysis of 4-{2,2-dichloro-1-[(aInstitute of Natural and Applied Science, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
In the tile compound, C17H17Cl2N3, the dihedral angle between the benzene rings is 62.73 (9)°. In the crystal, there are no classical hydrogen bonds. Molecules are linked by a pair of C—Cl⋯π interactions, forming an inversion dimer. A short intermolecular HL⋯HL contact [Cl⋯Cl = 3.2555 (9) Å] links the dimers, forming a ribbon along the c-axis direction. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from H⋯H (45.4%), Cl⋯H/H⋯Cl (21.0%) and C⋯H/H⋯C (19.0%) contacts.
Keywords: crystal structure; Hirshfeld surface analysis; non-covalent interactions; halogen and H-atom contacts.
CCDC reference: 2008423
1. Chemical context
Although non-covalent interactions are weaker than the covalent bonds, they are common and play critical roles in micellization, synthesis and catalysis as well as in forming supramolecular structures as a result of their significant contribution to the self-assembly process (Asadov et al., 2016; Maharramov et al., 2010; Mahmudov et al., 2019). Similar to well-explored hydrogen bonds and π-interactions (Gurbanov et al., 2018; Mahmoudi et al., 2018), all aspects of chemistry and physics of halogen bonding have been subject to rapidly growing interest over the past decade. Thus, the attachment of halogen-bond donor site(s) to organic molecules can be used in the regulation of the solvatochromic, analytical, catalytic etc. properties of materials (Maharramov et al., 2018; Mahmudov et al., 2016). In a continuation of our work in this area we have functionalized the title compound, a new azo dye, which provides weak intermolecular interactions of the C—Cl⋯π and C—Cl⋯Cl types.
2. Structural commentary
In the title compound (Fig. 1), the dihedral angle between the C1–C6 and C8–C13 benzene rings is 62.73 (9)°. The amine N atom (N3) displaced slightly from the C8–C13 benzene ring plane, with a deviation of 0.014 (2) Å. The N1/N2/C7/C15/Cl1/Cl2 unit is approximately planar with a maximum deviation of 0.0225 (19) Å, and makes dihedral angles of 6.46 (7) and 63.06 (7)°, respectively, with the C1–C6 and C8–C11 rings.
3. Supramolecular features
In the crystal, there are no classical hydrogen bonds observed. Molecules are linked by a pair of C—Cl⋯π interactions (Table 1), forming an inversion dimer. A short intermolecular HL⋯HL contact [Cl2⋯Cl2 (1 − x, 2 − y, 2 − z) = 3.2555 (9) Å] links the dimers to form a ribbon along the c-axis direction (Figs. 2 and 3). The molecular packing is further stabilized by van der Waals interactions between these ribbons.
|
Hirshfeld surfaces (McKinnon et al., 2007) and their associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002) were calculated using CrystalExplorer17 (Turner et al., 2017) to visualize the intermolecular interactions in the title compound. In the Hirshfeld surface mapped over dnorm (Fig. 4), a bright-red spot near atom Cl2 indicates the short Cl⋯Cl contact. Other contacts are equal to or longer than the sum of van der Walls radii.
The overall two-dimensional fingerprint plot and those delineated into H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 5. The most important interaction is H⋯H, contributing 45.4% to the overall crystal packing (Fig. 5b), which is reflected as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.25 Å. The Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with de + di ≃ 2.80 Å and contribute 21.0% to the Hirshfeld surface (Fig. 5c). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 5d; 19.0% contribution) have the tips at de + di ≃ 2.80 Å. The remaining contributions are from N⋯H/H⋯N (5.9%), Cl⋯C/C⋯Cl (3.8%), Cl⋯Cl (1.5%), C⋯C (1.5%), N⋯C/C⋯N (1.1%), N⋯Cl/Cl⋯N (0.5%) and N⋯N (0.4%) contacts, which have a negligible effect on the packing.
4. Database survey
The title compound is similar to 4-{2,2-dichloro-1-[(E)-(4-fluorophenyl) diazenyl]ethenyl}-N,N-dimethylaniline (CSD refcode DULTAI; Özkaraca et al., 2020), and closely resembles four other compounds, viz. 1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (HONBOE; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (HONBUK; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene (HODQAV; Shikhaliyev et al., 2019) and 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (XIZREG; Atioğlu et al., 2019).
The π and van der Waals interactions. In the crystals of HONBOE and HONBUK, molecules are linked through weak X⋯Cl contacts (X = Br for HONBOE and Cl for HONBUK), C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. In HODQAV, molecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In XIZREG, molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π interactions.
of DULTAI is stabilized by C—Cl⋯5. Synthesis and crystallization
The title dye compound was synthesized according to the reported method (Atioğlu et al., 2019). A 20 mL screw neck vial was charged with DMSO (10 mL), (Z)-N,N-dimethyl-4-{[2-(p-tolyl)hydrazineylidene]methyl}aniline (253 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (when TLC analysis showed complete consumption of corresponding Schiff base), the reaction mixture was poured into 100 mL of dilute HCl (∼0.01 M, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3:1–1:1). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Orange solid (79%); m.p. 386 K. Analysis calculated for C17H17Cl2N3 (M = 334.24): C 61.09, H 5.13, N 12.57; found: C 61.03, H 5.07, N 12.53%. 1H NMR (300 MHz, CDCl3) δ 2.34 (3H, ArMe), 3.06 (6H, NMe2), 6.80–7.79 (8H, Ar). 13C NMR (75MHz, CDCl3) δ 152.33, 151.30, 150.28, 142.01, 133.28, 131.15, 129.71, 123.30, 119.47, 111.42, 40.30, 21.62. ESI–MS: m/z: 335.22 [M + H]+.
6. details
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.5 or 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 2008423
https://doi.org/10.1107/S2056989020007744/is5539sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007744/is5539Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020007744/is5539Isup3.cml
Data collection: APEX3 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C17H17Cl2N3 | Z = 2 |
Mr = 334.23 | F(000) = 348 |
Triclinic, P1 | Dx = 1.312 Mg m−3 |
a = 9.5967 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6767 (15) Å | Cell parameters from 8175 reflections |
c = 10.8043 (17) Å | θ = 2.2–26.1° |
α = 114.162 (5)° | µ = 0.38 mm−1 |
β = 109.930 (5)° | T = 296 K |
γ = 90.917 (6)° | Block, orange |
V = 846.3 (2) Å3 | 0.34 × 0.31 × 0.25 mm |
Bruker APEXII PHOTON 100 detector diffractometer | 2808 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.1°, θmin = 2.4° |
Tmin = 0.875, Tmax = 0.894 | h = −11→11 |
13168 measured reflections | k = −11→11 |
3286 independent reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0413P)2 + 0.2744P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3286 reflections | Δρmax = 0.19 e Å−3 |
202 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.62327 (18) | 0.77347 (17) | 0.27963 (16) | 0.0430 (3) | |
C2 | 0.55622 (19) | 0.69400 (19) | 0.12860 (18) | 0.0511 (4) | |
H2A | 0.458599 | 0.638289 | 0.084781 | 0.061* | |
C3 | 0.6330 (2) | 0.6968 (2) | 0.04271 (18) | 0.0556 (4) | |
H3A | 0.586196 | 0.643088 | −0.058810 | 0.067* | |
C4 | 0.7787 (2) | 0.77812 (19) | 0.1045 (2) | 0.0524 (4) | |
C5 | 0.8437 (2) | 0.8594 (2) | 0.2560 (2) | 0.0546 (4) | |
H5A | 0.940803 | 0.916211 | 0.299537 | 0.065* | |
C6 | 0.76843 (19) | 0.85845 (19) | 0.34383 (18) | 0.0504 (4) | |
H6A | 0.814274 | 0.914147 | 0.445239 | 0.060* | |
C7 | 0.50704 (19) | 0.81792 (18) | 0.56909 (17) | 0.0466 (4) | |
C8 | 0.36451 (18) | 0.70537 (18) | 0.49547 (17) | 0.0459 (4) | |
C9 | 0.3511 (2) | 0.58051 (19) | 0.52632 (19) | 0.0516 (4) | |
H9A | 0.432363 | 0.569863 | 0.597144 | 0.062* | |
C10 | 0.2204 (2) | 0.4724 (2) | 0.4546 (2) | 0.0533 (4) | |
H10A | 0.215848 | 0.390240 | 0.477657 | 0.064* | |
C11 | 0.09506 (19) | 0.48342 (19) | 0.34826 (19) | 0.0508 (4) | |
C12 | 0.1089 (2) | 0.6101 (2) | 0.3183 (2) | 0.0553 (4) | |
H12A | 0.027551 | 0.622051 | 0.248519 | 0.066* | |
C13 | 0.2401 (2) | 0.7167 (2) | 0.39000 (19) | 0.0527 (4) | |
H13A | 0.245451 | 0.798834 | 0.366953 | 0.063* | |
C14 | 0.8640 (3) | 0.7763 (3) | 0.0098 (3) | 0.0783 (6) | |
H14A | 0.889625 | 0.879225 | 0.023489 | 0.118* | |
H14B | 0.802118 | 0.712384 | −0.091347 | 0.118* | |
H14C | 0.954396 | 0.736056 | 0.036936 | 0.118* | |
C15 | 0.5678 (2) | 0.9067 (2) | 0.71430 (18) | 0.0517 (4) | |
C16 | −0.0462 (3) | 0.2427 (2) | 0.3018 (3) | 0.0794 (6) | |
H16A | 0.034913 | 0.189498 | 0.288174 | 0.119* | |
H16B | −0.140759 | 0.175108 | 0.234394 | 0.119* | |
H16C | −0.039713 | 0.274646 | 0.400506 | 0.119* | |
C17 | −0.1688 (2) | 0.3981 (3) | 0.1783 (3) | 0.0790 (6) | |
H17A | −0.149409 | 0.401936 | 0.098146 | 0.118* | |
H17B | −0.196497 | 0.493105 | 0.230865 | 0.118* | |
H17C | −0.249623 | 0.314219 | 0.140945 | 0.118* | |
Cl1 | 0.73773 (6) | 1.03097 (6) | 0.80319 (5) | 0.07071 (18) | |
Cl2 | 0.48299 (7) | 0.90774 (6) | 0.82988 (5) | 0.07116 (18) | |
N1 | 0.53535 (15) | 0.75555 (15) | 0.35683 (14) | 0.0473 (3) | |
N2 | 0.59263 (16) | 0.83959 (15) | 0.49225 (14) | 0.0477 (3) | |
N3 | −0.03590 (19) | 0.37582 (19) | 0.2751 (2) | 0.0710 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0496 (8) | 0.0432 (8) | 0.0417 (7) | 0.0113 (6) | 0.0216 (6) | 0.0203 (6) |
C2 | 0.0529 (9) | 0.0533 (9) | 0.0430 (8) | 0.0018 (7) | 0.0187 (7) | 0.0176 (7) |
C3 | 0.0691 (11) | 0.0580 (10) | 0.0405 (8) | 0.0085 (8) | 0.0239 (8) | 0.0201 (7) |
C4 | 0.0623 (10) | 0.0522 (9) | 0.0586 (10) | 0.0173 (8) | 0.0346 (8) | 0.0295 (8) |
C5 | 0.0500 (9) | 0.0553 (9) | 0.0615 (10) | 0.0073 (7) | 0.0249 (8) | 0.0258 (8) |
C6 | 0.0524 (9) | 0.0511 (9) | 0.0422 (8) | 0.0061 (7) | 0.0166 (7) | 0.0168 (7) |
C7 | 0.0562 (9) | 0.0502 (8) | 0.0468 (8) | 0.0194 (7) | 0.0268 (7) | 0.0277 (7) |
C8 | 0.0526 (9) | 0.0510 (8) | 0.0468 (8) | 0.0180 (7) | 0.0279 (7) | 0.0259 (7) |
C9 | 0.0584 (10) | 0.0587 (10) | 0.0550 (9) | 0.0246 (8) | 0.0286 (8) | 0.0349 (8) |
C10 | 0.0627 (10) | 0.0520 (9) | 0.0665 (10) | 0.0217 (8) | 0.0348 (9) | 0.0372 (8) |
C11 | 0.0547 (9) | 0.0504 (9) | 0.0585 (9) | 0.0183 (7) | 0.0311 (8) | 0.0264 (8) |
C12 | 0.0539 (10) | 0.0627 (10) | 0.0604 (10) | 0.0189 (8) | 0.0223 (8) | 0.0367 (9) |
C13 | 0.0615 (10) | 0.0551 (9) | 0.0593 (10) | 0.0200 (8) | 0.0283 (8) | 0.0369 (8) |
C14 | 0.0881 (15) | 0.0940 (15) | 0.0805 (14) | 0.0209 (12) | 0.0559 (13) | 0.0447 (12) |
C15 | 0.0640 (10) | 0.0548 (9) | 0.0462 (8) | 0.0167 (8) | 0.0275 (8) | 0.0259 (7) |
C16 | 0.0795 (14) | 0.0573 (11) | 0.1090 (18) | 0.0117 (10) | 0.0443 (13) | 0.0369 (12) |
C17 | 0.0613 (12) | 0.0817 (14) | 0.0822 (14) | 0.0056 (10) | 0.0186 (11) | 0.0327 (12) |
Cl1 | 0.0783 (3) | 0.0738 (3) | 0.0505 (3) | −0.0015 (2) | 0.0190 (2) | 0.0236 (2) |
Cl2 | 0.0960 (4) | 0.0798 (3) | 0.0523 (3) | 0.0182 (3) | 0.0452 (3) | 0.0289 (2) |
N1 | 0.0530 (8) | 0.0512 (7) | 0.0426 (7) | 0.0111 (6) | 0.0231 (6) | 0.0212 (6) |
N2 | 0.0563 (8) | 0.0500 (7) | 0.0440 (7) | 0.0118 (6) | 0.0248 (6) | 0.0228 (6) |
N3 | 0.0598 (9) | 0.0643 (10) | 0.0933 (12) | 0.0091 (7) | 0.0258 (9) | 0.0415 (9) |
C1—C2 | 1.382 (2) | C10—H10A | 0.9300 |
C1—C6 | 1.391 (2) | C11—N3 | 1.377 (2) |
C1—N1 | 1.4251 (19) | C11—C12 | 1.405 (2) |
C2—C3 | 1.375 (2) | C12—C13 | 1.375 (3) |
C2—H2A | 0.9300 | C12—H12A | 0.9300 |
C3—C4 | 1.385 (3) | C13—H13A | 0.9300 |
C3—H3A | 0.9300 | C14—H14A | 0.9600 |
C4—C5 | 1.386 (3) | C14—H14B | 0.9600 |
C4—C14 | 1.507 (2) | C14—H14C | 0.9600 |
C5—C6 | 1.377 (2) | C15—Cl2 | 1.7046 (17) |
C5—H5A | 0.9300 | C15—Cl1 | 1.7179 (19) |
C6—H6A | 0.9300 | C16—N3 | 1.439 (3) |
C7—C15 | 1.340 (2) | C16—H16A | 0.9600 |
C7—N2 | 1.418 (2) | C16—H16B | 0.9600 |
C7—C8 | 1.480 (2) | C16—H16C | 0.9600 |
C8—C13 | 1.384 (2) | C17—N3 | 1.432 (3) |
C8—C9 | 1.393 (2) | C17—H17A | 0.9600 |
C9—C10 | 1.378 (3) | C17—H17B | 0.9600 |
C9—H9A | 0.9300 | C17—H17C | 0.9600 |
C10—C11 | 1.393 (2) | N1—N2 | 1.2520 (18) |
C2—C1—C6 | 119.28 (14) | C13—C12—C11 | 121.43 (16) |
C2—C1—N1 | 115.14 (14) | C13—C12—H12A | 119.3 |
C6—C1—N1 | 125.54 (14) | C11—C12—H12A | 119.3 |
C3—C2—C1 | 120.38 (16) | C12—C13—C8 | 121.84 (15) |
C3—C2—H2A | 119.8 | C12—C13—H13A | 119.1 |
C1—C2—H2A | 119.8 | C8—C13—H13A | 119.1 |
C2—C3—C4 | 121.27 (16) | C4—C14—H14A | 109.5 |
C2—C3—H3A | 119.4 | C4—C14—H14B | 109.5 |
C4—C3—H3A | 119.4 | H14A—C14—H14B | 109.5 |
C3—C4—C5 | 117.74 (15) | C4—C14—H14C | 109.5 |
C3—C4—C14 | 120.93 (17) | H14A—C14—H14C | 109.5 |
C5—C4—C14 | 121.33 (18) | H14B—C14—H14C | 109.5 |
C6—C5—C4 | 121.83 (16) | C7—C15—Cl2 | 123.03 (14) |
C6—C5—H5A | 119.1 | C7—C15—Cl1 | 123.91 (13) |
C4—C5—H5A | 119.1 | Cl2—C15—Cl1 | 113.06 (10) |
C5—C6—C1 | 119.47 (15) | N3—C16—H16A | 109.5 |
C5—C6—H6A | 120.3 | N3—C16—H16B | 109.5 |
C1—C6—H6A | 120.3 | H16A—C16—H16B | 109.5 |
C15—C7—N2 | 114.01 (15) | N3—C16—H16C | 109.5 |
C15—C7—C8 | 123.11 (15) | H16A—C16—H16C | 109.5 |
N2—C7—C8 | 122.87 (14) | H16B—C16—H16C | 109.5 |
C13—C8—C9 | 116.98 (16) | N3—C17—H17A | 109.5 |
C13—C8—C7 | 121.61 (14) | N3—C17—H17B | 109.5 |
C9—C8—C7 | 121.38 (15) | H17A—C17—H17B | 109.5 |
C10—C9—C8 | 121.69 (16) | N3—C17—H17C | 109.5 |
C10—C9—H9A | 119.2 | H17A—C17—H17C | 109.5 |
C8—C9—H9A | 119.2 | H17B—C17—H17C | 109.5 |
C9—C10—C11 | 121.48 (15) | N2—N1—C1 | 113.76 (13) |
C9—C10—H10A | 119.3 | N1—N2—C7 | 113.53 (14) |
C11—C10—H10A | 119.3 | C11—N3—C17 | 121.17 (17) |
N3—C11—C10 | 122.12 (15) | C11—N3—C16 | 120.75 (18) |
N3—C11—C12 | 121.30 (16) | C17—N3—C16 | 117.94 (18) |
C10—C11—C12 | 116.58 (16) | ||
C6—C1—C2—C3 | 1.0 (2) | N3—C11—C12—C13 | −179.23 (17) |
N1—C1—C2—C3 | −177.02 (15) | C10—C11—C12—C13 | 0.4 (3) |
C1—C2—C3—C4 | 0.3 (3) | C11—C12—C13—C8 | −0.4 (3) |
C2—C3—C4—C5 | −1.3 (3) | C9—C8—C13—C12 | −0.1 (2) |
C2—C3—C4—C14 | 177.94 (17) | C7—C8—C13—C12 | 178.13 (15) |
C3—C4—C5—C6 | 1.1 (3) | N2—C7—C15—Cl2 | 177.33 (11) |
C14—C4—C5—C6 | −178.15 (17) | C8—C7—C15—Cl2 | −3.6 (2) |
C4—C5—C6—C1 | 0.2 (3) | N2—C7—C15—Cl1 | −2.5 (2) |
C2—C1—C6—C5 | −1.3 (2) | C8—C7—C15—Cl1 | 176.56 (12) |
N1—C1—C6—C5 | 176.59 (15) | C2—C1—N1—N2 | −173.79 (14) |
C15—C7—C8—C13 | 119.31 (18) | C6—C1—N1—N2 | 8.3 (2) |
N2—C7—C8—C13 | −61.7 (2) | C1—N1—N2—C7 | −178.18 (12) |
C15—C7—C8—C9 | −62.6 (2) | C15—C7—N2—N1 | 179.64 (14) |
N2—C7—C8—C9 | 116.43 (17) | C8—C7—N2—N1 | 0.6 (2) |
C13—C8—C9—C10 | 0.4 (2) | C10—C11—N3—C17 | 172.96 (19) |
C7—C8—C9—C10 | −177.74 (15) | C12—C11—N3—C17 | −7.4 (3) |
C8—C9—C10—C11 | −0.4 (3) | C10—C11—N3—C16 | −2.6 (3) |
C9—C10—C11—N3 | 179.61 (16) | C12—C11—N3—C16 | 177.03 (18) |
C9—C10—C11—C12 | 0.0 (2) |
Cg1 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—Cl2···Cg1i | 1.71 (1) | 3.60 (1) | 4.065 (2) | 93 (1) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Funding information
This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan grant No. EIF– BGM-4-RFTF-1/2017–21/13/4 and by RFBR grant No. 18–53-06006.
References
Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020). Acta Cryst. E76, 811–815. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.