research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-{2,2-di­chloro-1-[(E)-2-(4-methyl­phen­yl)diazen-1-yl]ethen­yl}-N,N-di­methyl­aniline

CROSSMARK_Color_square_no_text.svg

aInstitute of Natural and Applied Science, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by H. Ishida, Okayama University, Japan (Received 18 May 2020; accepted 6 June 2020; online 19 June 2020)

In the tile compound, C17H17Cl2N3, the dihedral angle between the benzene rings is 62.73 (9)°. In the crystal, there are no classical hydrogen bonds. Mol­ecules are linked by a pair of C—Cl⋯π inter­actions, forming an inversion dimer. A short inter­molecular HL⋯HL contact [Cl⋯Cl = 3.2555 (9) Å] links the dimers, forming a ribbon along the c-axis direction. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from H⋯H (45.4%), Cl⋯H/H⋯Cl (21.0%) and C⋯H/H⋯C (19.0%) contacts.

1. Chemical context

Although non-covalent inter­actions are weaker than the covalent bonds, they are common and play critical roles in micellization, synthesis and catalysis as well as in forming supra­molecular structures as a result of their significant contribution to the self-assembly process (Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145-153.]; Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmudov et al., 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]). Similar to well-explored hydrogen bonds and π-inter­actions (Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Mahmoudi et al., 2018[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959-4971.]), all aspects of chemistry and physics of halogen bonding have been subject to rapidly growing inter­est over the past decade. Thus, the attachment of halogen-bond donor site(s) to organic mol­ecules can be used in the regulation of the solvatochromic, analytical, catalytic etc. properties of materials (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmudov et al., 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.]). In a continuation of our work in this area we have functionalized the title compound, a new azo dye, which provides weak inter­molecular inter­actions of the C—Cl⋯π and C—Cl⋯Cl types.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the dihedral angle between the C1–C6 and C8–C13 benzene rings is 62.73 (9)°. The amine N atom (N3) displaced slightly from the C8–C13 benzene ring plane, with a deviation of 0.014 (2) Å. The N1/N2/C7/C15/Cl1/Cl2 unit is approximately planar with a maximum deviation of 0.0225 (19) Å, and makes dihedral angles of 6.46 (7) and 63.06 (7)°, respectively, with the C1–C6 and C8–C11 rings.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, there are no classical hydrogen bonds observed. Mol­ecules are linked by a pair of C—Cl⋯π inter­actions (Table 1[link]), forming an inversion dimer. A short inter­molecular HL⋯HL contact [Cl2⋯Cl2 (1 − x, 2 − y, 2 − z) = 3.2555 (9) Å] links the dimers to form a ribbon along the c-axis direction (Figs. 2[link] and 3[link]). The mol­ecular packing is further stabilized by van der Waals inter­actions between these ribbons.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—Cl2⋯Cg1i 1.71 (1) 3.60 (1) 4.065 (2) 93 (1)
Symmetry code: (i) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
A view of the Cl⋯Cl short contacts and C—Cl⋯π inter­actions between the mol­ecules. All hydrogen atoms were omitted for clarity. [Symmetry codes: (a) x, y, 1 + z; (b) 1 − x, 2 − y, 1 − z; (c) 1 − x, 2 − y, 2 − z.]
[Figure 3]
Figure 3
A packing diagram of the title compound, viewed along the a-axis direction. All hydrogen atoms were omitted for clarity.

Hirshfeld surfaces (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and their associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) to visualize the inter­molecular inter­actions in the title compound. In the Hirshfeld surface mapped over dnorm (Fig. 4[link]), a bright-red spot near atom Cl2 indicates the short Cl⋯Cl contact. Other contacts are equal to or longer than the sum of van der Walls radii.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface for the title compound plotted over dnorm in the range −0.1388 to 1.4611 a.u.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]. The most important inter­action is H⋯H, contributing 45.4% to the overall crystal packing (Fig. 5[link]b), which is reflected as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.25 Å. The Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with de + di ≃ 2.80 Å and contribute 21.0% to the Hirshfeld surface (Fig. 5[link]c). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 5[link]d; 19.0% contribution) have the tips at de + di ≃ 2.80 Å. The remaining contributions are from N⋯H/H⋯N (5.9%), Cl⋯C/C⋯Cl (3.8%), Cl⋯Cl (1.5%), C⋯C (1.5%), N⋯C/C⋯N (1.1%), N⋯Cl/Cl⋯N (0.5%) and N⋯N (0.4%) contacts, which have a negligible effect on the packing.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

The title compound is similar to 4-{2,2-di­chloro-1-[(E)-(4-fluoro­phen­yl) diazen­yl]ethen­yl}-N,N-di­methyl­aniline (CSD refcode DULTAI; Özkaraca et al., 2020[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020). Acta Cryst. E76, 811-815.]), and closely resembles four other compounds, viz. 1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (HONBOE; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (HONBUK; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]diazene (HODQAV; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]) and 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (XIZREG; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]).

The crystal structure of DULTAI is stabilized by C—Cl⋯π and van der Waals inter­actions. In the crystals of HONBOE and HONBUK, mol­ecules are linked through weak X⋯Cl contacts (X = Br for HONBOE and Cl for HONBUK), C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. In HODQAV, mol­ecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In XIZREG, mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions.

5. Synthesis and crystallization

The title dye compound was synthesized according to the reported method (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]). A 20 mL screw neck vial was charged with DMSO (10 mL), (Z)-N,N-di­meth­yl-4-{[2-(p-tol­yl)hydrazineyl­idene]meth­yl}aniline (253 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (when TLC analysis showed complete consumption of corresponding Schiff base), the reaction mixture was poured into 100 mL of dilute HCl (∼0.01 M, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3:1–1:1). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Orange solid (79%); m.p. 386 K. Analysis calculated for C17H17Cl2N3 (M = 334.24): C 61.09, H 5.13, N 12.57; found: C 61.03, H 5.07, N 12.53%. 1H NMR (300 MHz, CDCl3) δ 2.34 (3H, ArMe), 3.06 (6H, NMe2), 6.80–7.79 (8H, Ar). 13C NMR (75MHz, CDCl3) δ 152.33, 151.30, 150.28, 142.01, 133.28, 131.15, 129.71, 123.30, 119.47, 111.42, 40.30, 21.62. ESI–MS: m/z: 335.22 [M + H]+.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.5 or 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C17H17Cl2N3
Mr 334.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.5967 (15), 9.6767 (15), 10.8043 (17)
α, β, γ (°) 114.162 (5), 109.930 (5), 90.917 (6)
V3) 846.3 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.34 × 0.31 × 0.25
 
Data collection
Diffractometer Bruker APEXII PHOTON 100 detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.875, 0.894
No. of measured, independent and observed [I > 2σ(I)] reflections 13168, 3286, 2808
Rint 0.036
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.05
No. of reflections 3286
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.30
Computer programs: APEX3 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

4-{2,2-Dichloro-1-[(E)-2-(4-methylphenyl)diazen-1-yl]ethenyl}-N,N-dimethylaniline top
Crystal data top
C17H17Cl2N3Z = 2
Mr = 334.23F(000) = 348
Triclinic, P1Dx = 1.312 Mg m3
a = 9.5967 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6767 (15) ÅCell parameters from 8175 reflections
c = 10.8043 (17) Åθ = 2.2–26.1°
α = 114.162 (5)°µ = 0.38 mm1
β = 109.930 (5)°T = 296 K
γ = 90.917 (6)°Block, orange
V = 846.3 (2) Å30.34 × 0.31 × 0.25 mm
Data collection top
Bruker APEXII PHOTON 100 detector
diffractometer
2808 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.1°, θmin = 2.4°
Tmin = 0.875, Tmax = 0.894h = 1111
13168 measured reflectionsk = 1111
3286 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.2744P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3286 reflectionsΔρmax = 0.19 e Å3
202 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62327 (18)0.77347 (17)0.27963 (16)0.0430 (3)
C20.55622 (19)0.69400 (19)0.12860 (18)0.0511 (4)
H2A0.4585990.6382890.0847810.061*
C30.6330 (2)0.6968 (2)0.04271 (18)0.0556 (4)
H3A0.5861960.6430880.0588100.067*
C40.7787 (2)0.77812 (19)0.1045 (2)0.0524 (4)
C50.8437 (2)0.8594 (2)0.2560 (2)0.0546 (4)
H5A0.9408030.9162110.2995370.065*
C60.76843 (19)0.85845 (19)0.34383 (18)0.0504 (4)
H6A0.8142740.9141470.4452390.060*
C70.50704 (19)0.81792 (18)0.56909 (17)0.0466 (4)
C80.36451 (18)0.70537 (18)0.49547 (17)0.0459 (4)
C90.3511 (2)0.58051 (19)0.52632 (19)0.0516 (4)
H9A0.4323630.5698630.5971440.062*
C100.2204 (2)0.4724 (2)0.4546 (2)0.0533 (4)
H10A0.2158480.3902400.4776570.064*
C110.09506 (19)0.48342 (19)0.34826 (19)0.0508 (4)
C120.1089 (2)0.6101 (2)0.3183 (2)0.0553 (4)
H12A0.0275510.6220510.2485190.066*
C130.2401 (2)0.7167 (2)0.39000 (19)0.0527 (4)
H13A0.2454510.7988340.3669530.063*
C140.8640 (3)0.7763 (3)0.0098 (3)0.0783 (6)
H14A0.8896250.8792250.0234890.118*
H14B0.8021180.7123840.0913470.118*
H14C0.9543960.7360560.0369360.118*
C150.5678 (2)0.9067 (2)0.71430 (18)0.0517 (4)
C160.0462 (3)0.2427 (2)0.3018 (3)0.0794 (6)
H16A0.0349130.1894980.2881740.119*
H16B0.1407590.1751080.2343940.119*
H16C0.0397130.2746460.4005060.119*
C170.1688 (2)0.3981 (3)0.1783 (3)0.0790 (6)
H17A0.1494090.4019360.0981460.118*
H17B0.1964970.4931050.2308650.118*
H17C0.2496230.3142190.1409450.118*
Cl10.73773 (6)1.03097 (6)0.80319 (5)0.07071 (18)
Cl20.48299 (7)0.90774 (6)0.82988 (5)0.07116 (18)
N10.53535 (15)0.75555 (15)0.35683 (14)0.0473 (3)
N20.59263 (16)0.83959 (15)0.49225 (14)0.0477 (3)
N30.03590 (19)0.37582 (19)0.2751 (2)0.0710 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0496 (8)0.0432 (8)0.0417 (7)0.0113 (6)0.0216 (6)0.0203 (6)
C20.0529 (9)0.0533 (9)0.0430 (8)0.0018 (7)0.0187 (7)0.0176 (7)
C30.0691 (11)0.0580 (10)0.0405 (8)0.0085 (8)0.0239 (8)0.0201 (7)
C40.0623 (10)0.0522 (9)0.0586 (10)0.0173 (8)0.0346 (8)0.0295 (8)
C50.0500 (9)0.0553 (9)0.0615 (10)0.0073 (7)0.0249 (8)0.0258 (8)
C60.0524 (9)0.0511 (9)0.0422 (8)0.0061 (7)0.0166 (7)0.0168 (7)
C70.0562 (9)0.0502 (8)0.0468 (8)0.0194 (7)0.0268 (7)0.0277 (7)
C80.0526 (9)0.0510 (8)0.0468 (8)0.0180 (7)0.0279 (7)0.0259 (7)
C90.0584 (10)0.0587 (10)0.0550 (9)0.0246 (8)0.0286 (8)0.0349 (8)
C100.0627 (10)0.0520 (9)0.0665 (10)0.0217 (8)0.0348 (9)0.0372 (8)
C110.0547 (9)0.0504 (9)0.0585 (9)0.0183 (7)0.0311 (8)0.0264 (8)
C120.0539 (10)0.0627 (10)0.0604 (10)0.0189 (8)0.0223 (8)0.0367 (9)
C130.0615 (10)0.0551 (9)0.0593 (10)0.0200 (8)0.0283 (8)0.0369 (8)
C140.0881 (15)0.0940 (15)0.0805 (14)0.0209 (12)0.0559 (13)0.0447 (12)
C150.0640 (10)0.0548 (9)0.0462 (8)0.0167 (8)0.0275 (8)0.0259 (7)
C160.0795 (14)0.0573 (11)0.1090 (18)0.0117 (10)0.0443 (13)0.0369 (12)
C170.0613 (12)0.0817 (14)0.0822 (14)0.0056 (10)0.0186 (11)0.0327 (12)
Cl10.0783 (3)0.0738 (3)0.0505 (3)0.0015 (2)0.0190 (2)0.0236 (2)
Cl20.0960 (4)0.0798 (3)0.0523 (3)0.0182 (3)0.0452 (3)0.0289 (2)
N10.0530 (8)0.0512 (7)0.0426 (7)0.0111 (6)0.0231 (6)0.0212 (6)
N20.0563 (8)0.0500 (7)0.0440 (7)0.0118 (6)0.0248 (6)0.0228 (6)
N30.0598 (9)0.0643 (10)0.0933 (12)0.0091 (7)0.0258 (9)0.0415 (9)
Geometric parameters (Å, º) top
C1—C21.382 (2)C10—H10A0.9300
C1—C61.391 (2)C11—N31.377 (2)
C1—N11.4251 (19)C11—C121.405 (2)
C2—C31.375 (2)C12—C131.375 (3)
C2—H2A0.9300C12—H12A0.9300
C3—C41.385 (3)C13—H13A0.9300
C3—H3A0.9300C14—H14A0.9600
C4—C51.386 (3)C14—H14B0.9600
C4—C141.507 (2)C14—H14C0.9600
C5—C61.377 (2)C15—Cl21.7046 (17)
C5—H5A0.9300C15—Cl11.7179 (19)
C6—H6A0.9300C16—N31.439 (3)
C7—C151.340 (2)C16—H16A0.9600
C7—N21.418 (2)C16—H16B0.9600
C7—C81.480 (2)C16—H16C0.9600
C8—C131.384 (2)C17—N31.432 (3)
C8—C91.393 (2)C17—H17A0.9600
C9—C101.378 (3)C17—H17B0.9600
C9—H9A0.9300C17—H17C0.9600
C10—C111.393 (2)N1—N21.2520 (18)
C2—C1—C6119.28 (14)C13—C12—C11121.43 (16)
C2—C1—N1115.14 (14)C13—C12—H12A119.3
C6—C1—N1125.54 (14)C11—C12—H12A119.3
C3—C2—C1120.38 (16)C12—C13—C8121.84 (15)
C3—C2—H2A119.8C12—C13—H13A119.1
C1—C2—H2A119.8C8—C13—H13A119.1
C2—C3—C4121.27 (16)C4—C14—H14A109.5
C2—C3—H3A119.4C4—C14—H14B109.5
C4—C3—H3A119.4H14A—C14—H14B109.5
C3—C4—C5117.74 (15)C4—C14—H14C109.5
C3—C4—C14120.93 (17)H14A—C14—H14C109.5
C5—C4—C14121.33 (18)H14B—C14—H14C109.5
C6—C5—C4121.83 (16)C7—C15—Cl2123.03 (14)
C6—C5—H5A119.1C7—C15—Cl1123.91 (13)
C4—C5—H5A119.1Cl2—C15—Cl1113.06 (10)
C5—C6—C1119.47 (15)N3—C16—H16A109.5
C5—C6—H6A120.3N3—C16—H16B109.5
C1—C6—H6A120.3H16A—C16—H16B109.5
C15—C7—N2114.01 (15)N3—C16—H16C109.5
C15—C7—C8123.11 (15)H16A—C16—H16C109.5
N2—C7—C8122.87 (14)H16B—C16—H16C109.5
C13—C8—C9116.98 (16)N3—C17—H17A109.5
C13—C8—C7121.61 (14)N3—C17—H17B109.5
C9—C8—C7121.38 (15)H17A—C17—H17B109.5
C10—C9—C8121.69 (16)N3—C17—H17C109.5
C10—C9—H9A119.2H17A—C17—H17C109.5
C8—C9—H9A119.2H17B—C17—H17C109.5
C9—C10—C11121.48 (15)N2—N1—C1113.76 (13)
C9—C10—H10A119.3N1—N2—C7113.53 (14)
C11—C10—H10A119.3C11—N3—C17121.17 (17)
N3—C11—C10122.12 (15)C11—N3—C16120.75 (18)
N3—C11—C12121.30 (16)C17—N3—C16117.94 (18)
C10—C11—C12116.58 (16)
C6—C1—C2—C31.0 (2)N3—C11—C12—C13179.23 (17)
N1—C1—C2—C3177.02 (15)C10—C11—C12—C130.4 (3)
C1—C2—C3—C40.3 (3)C11—C12—C13—C80.4 (3)
C2—C3—C4—C51.3 (3)C9—C8—C13—C120.1 (2)
C2—C3—C4—C14177.94 (17)C7—C8—C13—C12178.13 (15)
C3—C4—C5—C61.1 (3)N2—C7—C15—Cl2177.33 (11)
C14—C4—C5—C6178.15 (17)C8—C7—C15—Cl23.6 (2)
C4—C5—C6—C10.2 (3)N2—C7—C15—Cl12.5 (2)
C2—C1—C6—C51.3 (2)C8—C7—C15—Cl1176.56 (12)
N1—C1—C6—C5176.59 (15)C2—C1—N1—N2173.79 (14)
C15—C7—C8—C13119.31 (18)C6—C1—N1—N28.3 (2)
N2—C7—C8—C1361.7 (2)C1—N1—N2—C7178.18 (12)
C15—C7—C8—C962.6 (2)C15—C7—N2—N1179.64 (14)
N2—C7—C8—C9116.43 (17)C8—C7—N2—N10.6 (2)
C13—C8—C9—C100.4 (2)C10—C11—N3—C17172.96 (19)
C7—C8—C9—C10177.74 (15)C12—C11—N3—C177.4 (3)
C8—C9—C10—C110.4 (3)C10—C11—N3—C162.6 (3)
C9—C10—C11—N3179.61 (16)C12—C11—N3—C16177.03 (18)
C9—C10—C11—C120.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C15—Cl2···Cg1i1.71 (1)3.60 (1)4.065 (2)93 (1)
Symmetry code: (i) x+1, y+2, z+1.
 

Funding information

This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan grant No. EIF– BGM-4-RFTF-1/2017–21/13/4 and by RFBR grant No. 18–53-06006.

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020). Acta Cryst. E76, 811–815.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds