research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of 3-hy­dr­oxy-2,4-di­methyl-2H-thio­phen-5-one and 3-hy­dr­oxy-4-methyl-2H-thio­phen-5-one

CROSSMARK_Color_square_no_text.svg

aStrathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, bDepartment of Pharmaceutical Chemistry, King Abdul Aziz University, Jeddah, 21589, Saudi Arabia, cDepartment of Chemistry, Al-Azhar University, Cairo, 11884, Egypt, dEPSRC Future Manufacturing Research Hub for Continuous Manufacture and Advanced Crystallisation (CMAC), Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, Scotland, and eWestchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: geoff.coxon@strath.ac.uk

Edited by A. J. Lough, University of Toronto, Canada (Received 27 March 2020; accepted 22 June 2020; online 30 June 2020)

The structures of two hy­droxy-thio­phenone derivatives related to the anti­biotic thiol­actomycin are presented. These are the racemic 3-hy­droxy-2,4-dimethyl-2H-thio­phen-5-one, C6H8O2S, and 3-hy­droxy-4-methyl-2H-thio­phen-5-one, C5H6O2S. The main structural feature of both compounds is C(6) hydrogen-bonded chains formed between the OH and C=O groups. In achiral C5H6O2S, these chains propagate only by translation, corresponding to x + 1, y, z + 1. However, in contrast, for racemic C6H8O2S the hydrogen-bonded chains propagate through a −x + [{3\over 2}], y + [{1\over 2}], z operation, giving chains lying parallel to the crystallographic b-axis direction that are composed of alternate R and S enanti­omers. The crystals of 3-hydroxy-4-methyl-2H-thiophen-5-one were found to be twinned by a 180° rotation about the reciprocal 001 direction. In the final refinement the twin ratio refined to 0.568 (2):0.432 (2).

1. Chemical context

Thiol­actomycin (TLM) 1, (5R)-4-hy­droxy-3,5-dimethyl-5-[(1E)-2-methyl­buta-1,3-dienyl]­thio­phen-2-one, is a naturally occurring anti­biotic isolated from Norcardia spp (Sasaki et al., 1982[Sasaki, H., Oishi, H., Hayashi, T., Matsuura, I., Ando, K. & Sawada, M. (1982). J. Antibiot. 35, 396-400.]). Over the last three decades, synthetic efforts towards the synthesis of the single enanti­omer and analogues have provided relatively complex solutions. These have exploited asymmetric synthesis, diasteromeric recrystallization or enzymatic resolution requiring between seven and eleven steps and thus have significantly restricted the development of this scaffold towards clinical application. For examples see Chambers & Thomas (1997[Chambers, M. S. & Thomas, E. J. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 417-432.]), McFadden et al. (2002[McFadden, J. M., Frehywot, G. L. & Townsend, C. A. (2002). Org. Lett. 4, 3859-3862.]), Ohata & Terashima (2009[Ohata, K. & Terashima, S. (2009). Tetrahedron, 65, 2244-2253.]), Kamal et al. (2008[Kamal, A., Azeeza, S., Malik, M. S., Shaik, A. A. & Rao, M. V. (2008). J. Pharm. Pharm. Sci. 11, 56S-80S.]), Toyama et al. (2006[Toyama, K., Tauchi, T., Mase, N., Yoda, H. & Takabe, K. (2006). Tetrahedron Lett. 47, 7163-7166.]) and Bommineni et al. (2016[Bommineni, G. R., Kapilashrami, K., Cummings, J. E., Lu, Y., Knudson, S. E., Gu, C. D., Walker, S. G., Slayden, R. A. & Tonge, P. J. (2016). J. Med. Chem. 59, 5377-5390.]). Herein we present findings from our initial studies focused on the single-crystal determination of thiol­actone analogues.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds 4 and 5 are shown in Figs. 1[link] and 2[link], respectively. As can be seen from Tables 1[link] and 2[link], equivalent geometric parameters in the two structures are similar, with the largest difference in bond length being found for the S1—C4 values [1.816 (3) and 1.799 (3) Å]. A notable structural difference is the orientation of the hy­droxy groups containing the O2 atoms. In both structures, this O atom is coplanar with the SC4 ring, but in structure 4 the H atom points towards C5 and is eclipsed by the C2=C3 double bond whilst in structure 5 the H atom points towards the CH2 group and is eclipsed by the C3—C4 single bond. This change in orientation is associated with a change in the bond angles involving O2 [compare C4—C3—O2 angles of 113.4 (2) and 119.7 (3)°]. A search of the Cambridge Structural Database (version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found only three other structures with similar 4-hy­droxy-thio­phen-2-one cores. These are TLM itself (BIHKIM, Nawata et al., 1989[Nawata, Y., Sasaki, H., Oishi, H., Suzuki, K., Sawada, M., Ando, K. & Iitaka, Y. (1989). Acta Cryst. C45, 978-979.]) and two other derivatives (FIVKEA, Chambers et al., 1987[Chambers, M. S., Thomas, E. J. & Williams, D. J. (1987). J. Chem. Soc. Chem. Commun. pp. 1228-1230.]; POXZOS, Kikionis et al., 2009[Kikionis, S., McKee, V., Markopoulos, J. & Igglessi-Markopoulou, O. (2009). Tetrahedron, 65, 3711-3716.]). These have generally similar geometric parameters to those of 4 and 5. Two of the database structures have the same hy­droxy group orientation as 5. Only POXZOS has the same hy­droxy orientation as 4, and here this orientation is predetermined by the OH group participating in an intra­molecular six-membered hydrogen-bonded ring. As with structures 4 and 5, in the database structures the orientation of the OH group is associated with systematic changes to the C—C—O bond angles involving OH.

Table 1
Selected geometric parameters (Å, °) for 4[link]

S1—C1 1.778 (3) C3—C2 1.351 (4)
S1—C4 1.816 (3) C3—C4 1.507 (4)
O1—C1 1.238 (3) C2—C1 1.434 (4)
O2—C3 1.326 (3)    
       
C1—S1—C4 92.62 (12) C3—C2—C1 112.3 (2)
O2—C3—C4 113.4 (2) C2—C1—S1 112.1 (2)
C2—C3—C4 117.8 (2) C3—C4—S1 105.16 (18)

Table 2
Selected geometric parameters (Å, °) for 5[link]

S1—C1 1.775 (3) C1—C2 1.440 (4)
S1—C4 1.799 (3) C2—C3 1.347 (4)
O1—C1 1.231 (4) C2—C5 1.502 (4)
O2—C3 1.332 (4) C3—C4 1.499 (4)
       
C1—S1—C4 92.33 (15) O2—C3—C4 119.7 (3)
C2—C1—S1 112.0 (2) C2—C3—C4 117.2 (3)
C3—C2—C1 112.2 (3) C3—C4—S1 106.2 (2)
[Figure 1]
Figure 1
The mol­ecular structure of 4 with non-H atoms shown as 50% probability ellipsoids. H atoms are drawn as small spheres of arbitrary size.
[Figure 2]
Figure 2
The mol­ecular structure of 5 with non-H atoms shown as 50% probability ellipsoids. H atoms are drawn as small spheres of arbitrary size.

3. Supra­molecular features

The main supra­molecular feature of both structures 4 and 5 is a one-dimensional C(6) hydrogen-bonded chain utilizing OH as the donor group and O1 as the acceptor group, see Tables 3[link] and 4[link]. Behind these basic similarities there lies a great deal of difference in detail. In 5 the chains propagate by translations corresponding to x + 1, y, z + 1. This propagation by translation alone gives the repeating pattern shown in Fig. 3[link] where all of the SC4 rings of the hydrogen-bonded unit are coplanar and all of the S atoms lie on the same side of the chain. When travelling along the b-axis direction, neighbouring chains bear their S atoms on different sides, giving the layered structure shown in Fig. 4[link]. In contrast, for structure 4 the chain propagates through a −x + [{3\over 2}], y + [{1\over 2}], z operation giving a chain lying parallel to the crystallographic b-axis direction. As shown in Fig. 5[link], this results in the neighbouring R and S enanti­omers of the racemic chain having perpendicular relationships between the planes of their SC4 rings. This different chain geometry gives a very different packing arrangement from that of structure 5, see Fig. 6[link]. The only inter­chain contact significantly shorter than the sum of van der Waals radii in either structure occurs in structure 5. This is a C—H⋯O contact between the CH2 group and the ketone O atom. Of the 4-hy­droxy-thio­phen-2-one structures described in the literature, both those of FIVKEA and BIHKIM (TLM) display the same C(6) hydrogen-bonded chain motif as 4 and 5. In both cases, the geometrical detail of the chain is similar to that found in 4, with the difference that both literature examples are enanti­opure. The final structure, POXZOS, contains additional carb­oxy­lic acid and carbonyl groups and these strong hydrogen-bonding groups dominate the inter­molecular contacts formed and so stop the formation of the otherwise common C(6) motif.

Table 3
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1H⋯O1i 0.88 (4) 1.77 (4) 2.621 (3) 164 (4)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Table 4
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1H⋯O1i 0.84 (5) 1.80 (5) 2.629 (3) 168 (5)
C4—H4B⋯O1ii 0.99 2.58 3.552 (4) 169
Symmetry codes: (i) x-1, y, z-1; (ii) x, y, z-1.
[Figure 3]
Figure 3
Part of the hydrogen-bonded chain motif present in the structure of 5. The chain extends parallel to the [101] direction.
[Figure 4]
Figure 4
Packing diagram for compound 5 in a view down the a axis. Note the alternating Me⋯Me and S⋯S layers.
[Figure 5]
Figure 5
Part of the hydrogen-bonded chain motif present in the structure of 4. The chain extends parallel to the cystallographic b axis.
[Figure 6]
Figure 6
Packing diagram for compound 4 with a view down the a axis.

4. Synthesis and crystallization

General synthesis of thiol­actone analogues 4 and 5:

[Scheme 2]

Bromine (1.1 eq) was added to a stirring solution of the corresponding oxoester (1 eq.) dissolved in chloro­form (50 ml) at 273 K. The mixtures were allowed to warm to ambient temperature and stirred for 20 h before removing the solvent under vacuum. The resulting crude mixtures were dissolved in THF (50 ml) before adding tri­methyl­amine (1.1 eq.) and thio­acetic acid (1.1 eq.) and stirring at ambient temperature for a further 18 h. The resulting mixtures were reduced under vacuum to give dark-orange oils that were vacuum filtered over silica using petrol (40/60) and diethyl ether (5:2) as eluent before removing the solvent. The mixtures were dissolved in ethanol (50 ml) before adding a solution of sodium hydroxide (2 eq.) dissolved in water (20 ml) and stirring for 24 h at 333 K. After cooling, HCl (0.1M) was added until the solutions reached pH 5 before washing with ethyl acetate (3 × 50 ml) and drying over anhydrous magnesium sulfate. The mixtures were reduced under vacuum and precipitated using petrol (40/60) and diethyl ether to give the products as a solid. For 4, crystals suitable for crystallographic analysis were grown from a THF solution. For 5, crystals were grown from a toluene solution.

3-Hy­droxy-2,4-dimethyl-2H-thio­phen-5-one (4) Off-white solid (1.1 g, 22%): m.p. 408–409 K. 1H NMR (CDCl3) δ 4.12 (dd, J = 7.1, 1.3 Hz, 1H), 1.57 (d, J = 7.1 Hz, 4H). 13C NMR (CDCl3) δ 197.16, 177.63, 111.32, 77.26, 77.21, 77.00, 76.75, 42.99, 18.80, 7.62.

3-Hy­droxy-4-methyl-2H-thio­phen-5-one (5)

Off-white solid (1.6 g, 18%): m.p. 397–398 K. 1H NMR (CDCl3) δ 3.94 (s, 2H), 1.68 (s, 3H). 13C NMR (CDCl3) δ 195.1, 175.2, 111.2, 32.1, 7.2.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For both structures, C-bound H atoms were placed in the expected geometric positions and treated in riding modes with C—H = 0.98, 0.99 and 1.00 Å for methyl, CH2 and CH groups, respectively. Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for the other CH groups. The H atoms of the hy­droxy groups were refined isotropically. Data collection on 5 was carried out by the National Crystallography Service (Cole & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]). The crystals of 5 were found to be twinned by a 180° rotation about the recip­rocal 001 direction. This feature was accounted for by producing a hklf 5 formatted datafile during data processing. In the final refinement the twin ratio refined to 0.568 (2):0.432 (2).

Table 5
Experimental details

  4 5
Crystal data
Chemical formula C6H8O2S C5H6O2S
Mr 144.18 130.16
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/c
Temperature (K) 123 100
a, b, c (Å) 9.286 (1), 11.4809 (8), 12.6469 (10) 4.1054 (3), 22.9727 (13), 6.1928 (5)
α, β, γ (°) 90, 90, 90 90, 103.728 (7), 90
V3) 1348.3 (2) 567.37 (7)
Z 8 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 3.63 0.46
Crystal size (mm) 0.55 × 0.08 × 0.04 0.12 × 0.02 × 0.01
 
Data collection
Diffractometer Oxford Diffraction Gemini S Rigaku XtaLAB AFC12
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.323, 0.847 0.766, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4293, 1323, 1115 2121, 2121, 1955
Rint 0.049 0.026
(sin θ/λ)max−1) 0.620 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.148, 1.07 0.050, 0.113, 1.19
No. of reflections 1323 2121
No. of parameters 88 79
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.29 0.43, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

3-Hydroxy-2,4-dimethyl-2H-thiophen-5-one (4) top
Crystal data top
C6H8O2SDx = 1.421 Mg m3
Mr = 144.18Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 1393 reflections
a = 9.286 (1) Åθ = 7.0–72.8°
b = 11.4809 (8) ŵ = 3.63 mm1
c = 12.6469 (10) ÅT = 123 K
V = 1348.3 (2) Å3Rod, colourless
Z = 80.55 × 0.08 × 0.04 mm
F(000) = 608
Data collection top
Oxford Diffraction Gemini S
diffractometer
1115 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.049
ω scansθmax = 73.0°, θmin = 7.0°
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2019)
h = 1111
Tmin = 0.323, Tmax = 0.847k = 1310
4293 measured reflectionsl = 1512
1323 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.081P)2 + 0.8472P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1323 reflectionsΔρmax = 0.67 e Å3
88 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84281 (8)0.16688 (5)0.67914 (5)0.0327 (3)
O10.6506 (2)0.17209 (14)0.52486 (16)0.0311 (5)
O20.9490 (2)0.48890 (16)0.62458 (16)0.0329 (5)
C30.8868 (3)0.3850 (2)0.6199 (2)0.0283 (6)
C60.9207 (4)0.3465 (3)0.8144 (2)0.0374 (7)
H6A0.97330.41990.82310.056*
H6B0.95710.28900.86510.056*
H6C0.81790.35970.82710.056*
C20.7822 (3)0.3476 (2)0.5539 (2)0.0272 (6)
C10.7427 (3)0.2288 (2)0.57332 (19)0.0281 (6)
C50.7097 (3)0.4157 (2)0.4680 (2)0.0330 (6)
H5A0.63670.46700.49900.049*
H5B0.66360.36190.41820.049*
H5C0.78150.46270.43040.049*
C40.9423 (3)0.3008 (2)0.7017 (2)0.0302 (6)
H41.04720.28640.68920.036*
H1H0.914 (5)0.542 (3)0.581 (3)0.053 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0477 (5)0.0172 (4)0.0332 (4)0.0017 (2)0.0059 (3)0.0025 (2)
O10.0410 (11)0.0178 (9)0.0344 (10)0.0013 (7)0.0046 (7)0.0024 (7)
O20.0438 (11)0.0188 (9)0.0360 (10)0.0026 (8)0.0046 (8)0.0005 (7)
C30.0383 (13)0.0172 (11)0.0294 (12)0.0014 (10)0.0030 (10)0.0021 (9)
C60.0475 (17)0.0328 (14)0.0318 (14)0.0009 (12)0.0047 (12)0.0014 (11)
C20.0377 (14)0.0178 (12)0.0262 (11)0.0024 (10)0.0017 (10)0.0022 (9)
C10.0389 (14)0.0187 (12)0.0266 (11)0.0046 (10)0.0025 (10)0.0012 (9)
C50.0473 (15)0.0183 (13)0.0334 (13)0.0006 (11)0.0048 (11)0.0004 (9)
C40.0352 (13)0.0208 (12)0.0346 (13)0.0014 (10)0.0035 (10)0.0018 (10)
Geometric parameters (Å, º) top
S1—C11.778 (3)C6—H6B0.9800
S1—C41.816 (3)C6—H6C0.9800
O1—C11.238 (3)C2—C11.434 (4)
O2—C31.326 (3)C2—C51.498 (4)
O2—H1H0.88 (4)C5—H5A0.9800
C3—C21.351 (4)C5—H5B0.9800
C3—C41.507 (4)C5—H5C0.9800
C6—C41.532 (4)C4—H41.0000
C6—H6A0.9800
C1—S1—C492.62 (12)O1—C1—S1121.6 (2)
C3—O2—H1H116 (3)C2—C1—S1112.1 (2)
O2—C3—C2128.8 (2)C2—C5—H5A109.5
O2—C3—C4113.4 (2)C2—C5—H5B109.5
C2—C3—C4117.8 (2)H5A—C5—H5B109.5
C4—C6—H6A109.5C2—C5—H5C109.5
C4—C6—H6B109.5H5A—C5—H5C109.5
H6A—C6—H6B109.5H5B—C5—H5C109.5
C4—C6—H6C109.5C3—C4—C6112.0 (2)
H6A—C6—H6C109.5C3—C4—S1105.16 (18)
H6B—C6—H6C109.5C6—C4—S1111.7 (2)
C3—C2—C1112.3 (2)C3—C4—H4109.3
C3—C2—C5127.3 (2)C6—C4—H4109.3
C1—C2—C5120.4 (2)S1—C4—H4109.3
O1—C1—C2126.3 (2)
O2—C3—C2—C1180.0 (2)C4—S1—C1—O1179.6 (2)
C4—C3—C2—C10.9 (3)C4—S1—C1—C20.2 (2)
O2—C3—C2—C50.2 (5)O2—C3—C4—C658.8 (3)
C4—C3—C2—C5179.2 (2)C2—C3—C4—C6120.4 (3)
C3—C2—C1—O1179.8 (3)O2—C3—C4—S1179.77 (18)
C5—C2—C1—O10.0 (4)C2—C3—C4—S11.0 (3)
C3—C2—C1—S10.4 (3)C1—S1—C4—C30.64 (19)
C5—C2—C1—S1179.8 (2)C1—S1—C4—C6121.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1H···O1i0.88 (4)1.77 (4)2.621 (3)164 (4)
Symmetry code: (i) x+3/2, y+1/2, z.
3-Hydroxy-4-methyl-2H-thiophen-5-one (5) top
Crystal data top
C5H6O2SF(000) = 272
Mr = 130.16Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.1054 (3) ÅCell parameters from 1968 reflections
b = 22.9727 (13) Åθ = 5.2–31.4°
c = 6.1928 (5) ŵ = 0.46 mm1
β = 103.728 (7)°T = 100 K
V = 567.37 (7) Å3Needle, colourless
Z = 40.12 × 0.02 × 0.01 mm
Data collection top
Rigaku XtaLAB AFC12
diffractometer
1955 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.026
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 55
Tmin = 0.766, Tmax = 1.000k = 2929
2121 measured reflectionsl = 88
2121 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0078P)2 + 1.3568P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
2121 reflectionsΔρmax = 0.43 e Å3
79 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin against a hklf 5 formatted datafile.

This datafile was created by CrysalisPro for twinning by a 180 degree rotation about rec 001.

Matrix used -0.9970 -0.0004 0.0038 0.0195 -0.9997 0.0133 0.7232 0.0009 0.9991

BASF refined to 0.432 (2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.6910 (2)0.70598 (3)0.55558 (14)0.0183 (2)
O10.8610 (6)0.64486 (10)0.9223 (4)0.0231 (6)
O20.0808 (6)0.58103 (10)0.2795 (4)0.0203 (5)
C10.6862 (8)0.64503 (13)0.7309 (5)0.0164 (7)
C20.4606 (8)0.60031 (13)0.6216 (5)0.0164 (7)
C30.3060 (8)0.61502 (12)0.4117 (5)0.0155 (6)
C40.3963 (8)0.67257 (13)0.3276 (5)0.0160 (6)
H4A0.19430.69720.27980.019*
H4B0.49870.66690.19960.019*
C50.4138 (10)0.54539 (13)0.7423 (6)0.0213 (7)
H5A0.22930.52270.65130.032*
H5B0.36110.55530.88420.032*
H5C0.62060.52240.77010.032*
H1H0.003 (12)0.597 (2)0.156 (8)0.045 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0204 (4)0.0149 (3)0.0183 (4)0.0017 (3)0.0021 (3)0.0002 (3)
O10.0287 (15)0.0240 (11)0.0138 (11)0.0028 (10)0.0005 (10)0.0007 (9)
O20.0211 (13)0.0178 (10)0.0187 (12)0.0034 (10)0.0017 (10)0.0002 (9)
C10.0161 (17)0.0162 (14)0.0172 (15)0.0052 (13)0.0043 (12)0.0002 (12)
C20.0182 (17)0.0133 (13)0.0189 (15)0.0015 (12)0.0067 (13)0.0016 (12)
C30.0126 (14)0.0138 (13)0.0202 (16)0.0013 (12)0.0041 (13)0.0011 (12)
C40.0177 (16)0.0146 (13)0.0146 (14)0.0001 (13)0.0020 (12)0.0012 (11)
C50.0261 (19)0.0157 (14)0.0226 (16)0.0006 (14)0.0070 (15)0.0044 (13)
Geometric parameters (Å, º) top
S1—C11.775 (3)C2—C51.502 (4)
S1—C41.799 (3)C3—C41.499 (4)
O1—C11.231 (4)C4—H4A0.9900
O2—C31.332 (4)C4—H4B0.9900
O2—H1H0.84 (5)C5—H5A0.9800
C1—C21.440 (4)C5—H5B0.9800
C2—C31.347 (4)C5—H5C0.9800
C1—S1—C492.33 (15)C3—C4—H4A110.5
C3—O2—H1H111 (3)S1—C4—H4A110.5
O1—C1—C2127.8 (3)C3—C4—H4B110.5
O1—C1—S1120.2 (3)S1—C4—H4B110.5
C2—C1—S1112.0 (2)H4A—C4—H4B108.7
C3—C2—C1112.2 (3)C2—C5—H5A109.5
C3—C2—C5127.2 (3)C2—C5—H5B109.5
C1—C2—C5120.6 (3)H5A—C5—H5B109.5
O2—C3—C2123.0 (3)C2—C5—H5C109.5
O2—C3—C4119.7 (3)H5A—C5—H5C109.5
C2—C3—C4117.2 (3)H5B—C5—H5C109.5
C3—C4—S1106.2 (2)
C4—S1—C1—O1179.5 (3)C5—C2—C3—O20.3 (5)
C4—S1—C1—C21.2 (3)C1—C2—C3—C41.4 (4)
O1—C1—C2—C3179.4 (3)C5—C2—C3—C4179.8 (3)
S1—C1—C2—C30.1 (4)O2—C3—C4—S1177.8 (3)
O1—C1—C2—C50.5 (5)C2—C3—C4—S12.1 (4)
S1—C1—C2—C5178.8 (3)C1—S1—C4—C31.7 (2)
C1—C2—C3—O2178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1H···O1i0.84 (5)1.80 (5)2.629 (3)168 (5)
C4—H4B···O1ii0.992.583.552 (4)169
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1.
 

Acknowledgements

The authors wish to thank the National Crystallographic Service at the University of Southampton for data collection on 5.

Funding information

The Saudi Arabia Universities External Joint Supervision Programme is thanked for funding a studentship (AN).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBommineni, G. R., Kapilashrami, K., Cummings, J. E., Lu, Y., Knudson, S. E., Gu, C. D., Walker, S. G., Slayden, R. A. & Tonge, P. J. (2016). J. Med. Chem. 59, 5377–5390.  CrossRef CAS PubMed Google Scholar
First citationChambers, M. S. & Thomas, E. J. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 417–432.  CrossRef Google Scholar
First citationChambers, M. S., Thomas, E. J. & Williams, D. J. (1987). J. Chem. Soc. Chem. Commun. pp. 1228–1230.  CrossRef Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKamal, A., Azeeza, S., Malik, M. S., Shaik, A. A. & Rao, M. V. (2008). J. Pharm. Pharm. Sci. 11, 56S–80S.  CrossRef PubMed CAS Google Scholar
First citationKikionis, S., McKee, V., Markopoulos, J. & Igglessi-Markopoulou, O. (2009). Tetrahedron, 65, 3711–3716.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcFadden, J. M., Frehywot, G. L. & Townsend, C. A. (2002). Org. Lett. 4, 3859–3862.  CrossRef PubMed CAS Google Scholar
First citationNawata, Y., Sasaki, H., Oishi, H., Suzuki, K., Sawada, M., Ando, K. & Iitaka, Y. (1989). Acta Cryst. C45, 978–979.  CrossRef CAS IUCr Journals Google Scholar
First citationOhata, K. & Terashima, S. (2009). Tetrahedron, 65, 2244–2253.  CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationSasaki, H., Oishi, H., Hayashi, T., Matsuura, I., Ando, K. & Sawada, M. (1982). J. Antibiot. 35, 396–400.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToyama, K., Tauchi, T., Mase, N., Yoda, H. & Takabe, K. (2006). Tetrahedron Lett. 47, 7163–7166.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds