research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three platinacyclic complexes bearing iso­propyl eugenoxyacetate and pyridine derivatives

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: Luc.VanMeervelt@kuleuven.be

Edited by J. T. Mague, Tulane University, USA (Received 22 April 2020; accepted 22 May 2020; online 5 June 2020)

Three new platinum(II) complexes bearing a eugenol and a pyridine derivative, namely (η2-2-allyl-4-meth­oxy-5-{[(propan-2-yl­oxy)carbon­yl]meth­oxy}phenyl-κC1)chlorido­(pyridine-κN)platinum(II), [Pt(C15H19O4)Cl(C5H5N)], (I), (η2-2-allyl-4-meth­oxy-5-{[(propan-2-yl­oxy)carbon­yl]meth­oxy}phenyl-κC1)chlorido­(4-methyl­pyridine-κN)platinum(II), [Pt(C15H19O4)Cl(C6H7N)], (II), and (η2-2-allyl-4-meth­oxy-5-{[(propan-2-yl­oxy)carbon­yl]meth­oxy}phenyl-κC1)chlorido(pyridine-4-carb­oxy­lic acid-κN)platinum(II), [Pt(C15H19O4)Cl(C6H5NO2)], (III), have been synthesized and further characterized by single-crystal X-ray diffraction. The PtII atoms exhibit the usual distorted square-planar coordination and are surrounded by one Cl atom, one N atom, and a C atom and C=C double bond of the eugenol ligand. The donor N atom of the pyridine ligand occupies a cis position with respect to the double bond. Complexes (I) and (II) crystallize isomorphously in space group P[\overline{1}] and display a similar crystal packing characterized by C—H⋯O hydrogen bonding, C—H⋯π and ππ inter­actions. However, the presence of the additional methyl group in the 4-methyl­pyridine ligand in (II) disturbs the ππ inter­actions. The crystal packing of (III) is characterized by O—H⋯O hydrogen bonding, resulting in the formation of chains of mol­ecules connected in a head-to-tail fashion and running in the [101] direction. The IC50 values for the HepG2 and KB cell lines are 150.9, 122.3 µM for (I) and 138.9, 93.2 µM for (II), respectively.

1. Chemical context

Although platinum-based drugs have dominated the treatment of various cancers by chemical agents, the research on new platinum(ll) complexes for the purpose of medical application is still attractive for the worldwide scientific society (Johnstone et al., 2016[Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. (2016). Chem. Rev. 116, 3436-3486.]). Recently, numerous platinum(ll) complexes bearing alkene and pyridine derivatives have been synthesized and tested for their anti-cancer activities (Bigioni et al., 2000[Bigioni, M., Ganis, P., Panunzi, A., Ruffo, F., Salvatore, C. & Vito, A. (2000). Eur. J. Inorg. Chem. pp. 1717-1721.]; Da et al., 2012[Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131-142.], 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Kimpende, P. M. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]; Chi et al., 2017[Chi, N. T. T., Da, T. T., Ha, N. V. & Dinh, N. H. (2017). J. Coord. Chem. 70, 1008-1019.], 2018[Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330-337.]; Cucciolito et al., 2018[Cucciolito, M. E., D'Amora, A., De Feo, G., Ferraro, G., Giorgio, A., Petruk, G., Monti, D. M., Merlino, A. & Ruffo, F. (2018). Inorg. Chem. 57, 3133-3143.]; Dodoff et al., 2012[Dodoff, N. I., Lalia-Kantouri, M., Gdaniec, M., Czapik, A., Vassilev, N. G., Markova, L. S. & Apostolova, M. D. (2012). J. Coord. Chem. 65, 688-704.]). Nevertheless, crystal data for these complexes are limited, some examples being the crystal structures of [PtCl(eugenol-1H)(pyridine)], [PtCl(eugenol-1H)(4-methyl­pyridine)] (Chi et al., 2018[Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330-337.]) and trans-[PtCl2(C2H4)(N-3-pyridinyl­methane­sulfonamide)] (Do­doff et al., 2012[Dodoff, N. I., Lalia-Kantouri, M., Gdaniec, M., Czapik, A., Vassilev, N. G., Markova, L. S. & Apostolova, M. D. (2012). J. Coord. Chem. 65, 688-704.]).

In this paper, the crystal structures of three mononuclear platinacyclic complexes namely, (η2-2-allyl-4-meth­oxy-5-{[(propan-2-yl­oxy)carbon­yl]meth­oxy}phenyl-κC1)chlorido(pyridine-κN)platinum(II), [Pt(C15H19O4)Cl(C5H5N)], (I), (η2-2-allyl-4-meth­oxy-5-{[(propan-2-yl­oxy)carbon­yl]methoxy}phenyl-κC1)chlorido­(4-methyl­pyridine-κN)platinum(II), [Pt(C15H19O4)Cl(C6H7N)], (II), and (η2-2-allyl-4-meth­oxy-5-{[(propan-2-yl­oxy)carbon­yl]meth­oxy}phenyl-κC1)chlorido(pyridine-4-carb­oxy­lic acid-κN)platinum(II), [Pt(C15H19O4)Cl(C6H5NO2)], (III), are reported. Complexes (I), (II), (III) are obtained from the reactions of the dinuclear chelate ring complex [Pt(μ-Cl)(iPrEug)]2 (1, iPrEug: deprotonated isopropyl eugenoxyacetate) with pyridine (Py), 4-methyl­pyridine (MePy) and pyridine-4-carb­oxy­lic acid (PyCOOH), respectively. The synthesis of the three complexes is summarized in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of mixed iPrEug-pyridine derivative platinum(II) complexes (I), (II) and (III).

The Py, MePy and PyCOOH cleave the Pt1—Cl2 (or Pt2—Cl1) bond in complex 1 to form complexes (I), (II), (III). This is due to the weaker Pt1—Cl2 or Pt2—Cl1 bond (2.4773 Å) as compared to the Pt1—Cl1 or Pt2—Cl2 bond (2.3527 Å) (Nguyen Thi Thanh et al., 2016[Nguyen Thi Thanh, C., Pham Van, T., Le Thi Hong, H. & Van Meervelt, L. (2016). Acta Cryst. C72, 758-764.]) and results in a cis but not trans position of the pyridine ligands with respect to the allyl group of iPrEug. Similar results have been observed when the complexes [Pt(μ-Cl)(aryl­olefin-1H)]2 (aryl­olefin: safrole or eugenol derivatives) analogous to 1 react with different amines (Da et al., 2012[Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131-142.], 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Kimpende, P. M. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]; Chi et al., 2018[Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330-337.]).

2. Structural commentary

Complexes (I) and (II) crystallize isomorphously in the triclinic space group P[\overline{1}]. The central PtII atom displays a distorted square-planar coordination with the Cl atom, the N atom of the pyridine or 4-methyl­pyridine ligand, and completed with a C atom and C=C double bond of the eugenol ligand (Fig. 2[link]a and 2b). The C=C group and N atom are in a cis position with respect to each other. The dihedral angle between the best planes through the pyridine and phenyl rings is 74.90 (15)° for complex (I) and 75.00 (11)° for complex (II). The dihedral angle between the planes through the allyl atoms (C8, C9, C10) and the pyridine ring is 16.0 (2)° for complex (I) and 20.08 (12)° for complex (II). The almost identical conformation is further evidenced by a fit of both structures, excluding H atoms and the methyl substituent in (II), which gives an r.m.s. deviation of 0.1867 Å (Fig. 3[link]).

[Figure 2]
Figure 2
The mol­ecular structure of complexes (I), (II) and (III) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3]
Figure 3
Overlay of the three complexes, showing the different conformation of the pyridine ring for (III). Complex (I) is in black, complex (II) in red and complex (III) in green.

Complex (III) also crystallizes in space group P[\overline{1}], but due to the presence of the carb­oxy­lic acid function the crystal structure is no longer isomorphous with (I) and (II) (Fig. 2[link]c). Although the square-planar coordination of the central PtII atom is identical, the dihedral angle of 21.6 (2)° illustrates that the mutual orientation of the eugenol and pyridine parts is different. The plane through the allyl group makes an angle of 40.9 (3)° with the pyridine plane. An overlay of the identical parts in (I) and (III) gives an r.m.s. deviation of 0.5782 Å, while 0.5507 Å for (II) and (III) (Fig. 3[link]).

Comparing the bond distances in the coordination sphere of the central PtII atom of the three complexes shows that the largest differences occur for the Pt—N distance: 2.139 (2) Å for (I) within experimental error the same as 2.1418 (18) Å for (II), and 2.164 (3) Å for (III).

3. Supra­molecular features

The crystal packing of complex (I) is characterized by C—H⋯O hydrogen bonding, C—H⋯π and ππ inter­actions (Fig. 4[link], Table 1[link]). The bifurcated hydrogen bond between C14—H14A and O11/O13 gives rise to the formation of inversion dimers. The eugenol parts are further linked into chains running in the a-axis direction by C12—H12B⋯O16 hydrogen-bond inter­actions. Further dimer formation is obtained through ππ stacking between the pyridine rings [Cg4⋯Cg4v = 3.560 (2) Å; Cg4 is the centroid of ring N22/C23–C27; symmetry code: (v) 2 − x, 2 − y, 1 − z]. The phenyl ring C2–C7 participates in two C—H⋯π inter­actions.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg5 is the centroid of the C2–C7 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O16i 0.98 2.42 3.354 (3) 160
C14—H14A⋯O11ii 0.99 2.31 3.266 (3) 161
C14—H14A⋯O13ii 0.99 2.56 3.330 (4) 134
C20—H20BCg5iii 0.98 2.93 3.586 (3) 125
C26—H26⋯Cg5iv 0.95 2.88 3.736 (3) 150
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+2; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+1.
[Figure 4]
Figure 4
Partial crystal packing of complex (I), showing C—H⋯O hydrogen bonding (red dashed lines), C—H⋯π and ππ inter­actions (grey dashed lines). Hydrogen atoms not involved in inter­actions have been omitted for clarity (see Table 1[link] for symmetry codes).

Complex (II) displays a very similar crystal packing (Fig. 5[link], Table 2[link]). But, due to the presence of a 4-methyl­pyridine ring in (II), the ππ stacking is absent [Cg4⋯Cg4v = 4.312 (1) Å, slippage 2.703 Å; Cg4 is the centroid of ring N22/C23–C27; symmetry code: (v) 2 − x, 2 − y, 1 − z] and is in fact replaced by two C—H⋯π inter­actions between the methyl group and the pyridine ring. This slippage of the pyridine ring also results in an additional C8—H8B⋯Cl21 inter­action between the allyl CH2 group and a neighboring Cl atom.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg5 is the centroid of the C2–C7 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O16i 0.98 2.45 3.397 (3) 162
C14—H14A⋯O11ii 0.99 2.39 3.341 (3) 161
C14—H14A⋯O13ii 0.99 2.57 3.351 (3) 136
C8—H8B⋯Cl21i 0.99 2.76 3.713 (3) 162
C20—H20BCg5iii 0.98 2.87 3.562 (3) 128
C26—H26⋯Cg5iv 0.95 2.93 3.873 (3) 171
C28—H28BCg4v 0.98 2.87 3.425 (3) 117
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+2; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y+2, -z+1.
[Figure 5]
Figure 5
Partial crystal packing of complex (II), showing C—H⋯O hydrogen bonding (red dashed lines), C—H⋯Cl (green dashed lines), C—H⋯π and ππ inter­actions (grey dashed lines). Hydrogen atoms not involved in inter­actions have been omitted for clarity (see Table 2[link] for symmetry codes).

The carb­oxy­lic acid function present in complex (III) is involved in head-to-tail fashion O—H⋯O inter­actions resulting in the formation of chains running in the [101] direction (Fig. 6[link], Table 3[link]). Parallel chains inter­act through ππ inter­actions [Cg4⋯Cg5vi = 3.947 (2) Å; Cg4 and Cg5 are the centroids of rings N22/C23–C27 and C2–C7, respectively; symmetry code: (vi) −x, 1 − y, −z] and C—H⋯O hydrogen-bonding inter­actions (Fig. 6[link], Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O30—H30⋯O13i 0.84 2.10 2.932 (4) 170
C10—H10A⋯O16ii 0.95 2.41 3.317 (5) 159
C12—H12A⋯O16iii 0.98 2.51 3.415 (5) 154
C14—H14A⋯O29iv 0.99 2.46 3.268 (5) 139
C14—H14B⋯O29v 0.99 2.46 3.178 (5) 129
C26—H26⋯O16vi 0.95 2.43 3.336 (5) 159
Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z+1; (v) -x, -y+2, -z; (vi) -x, -y+1, -z.
[Figure 6]
Figure 6
Partial crystal packing of complex (III), showing the chain formation in the [101] direction. O—H⋯O and C—H⋯O hydrogen bonding are shown as red dashed lines, ππ inter­actions as grey dashed lines. Hydrogen atoms not involved in inter­actions have been omitted for clarity (see Table 3[link] for symmetry codes).

No voids are observed in the crystal packing of complexes (I) and (II), but for complex (III) a small void of 37 Å3 is present around (½, 0, 0).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for Pt complexes with the Pt atom coordinated to a Cl atom, N atom and allylaryl ligand (similar to the title complexes) gave eight hits. The C=C group and N atom are always in a cis position with respect to each other. All complexes also possess a distorted square-planar coordination for the Pt atom with a deviation of the Pt atom from the best plane through the coordinating Cl, N, Car­yl and centroid (Cg) of the C=C group between 0.018 Å [chloro-(4,5-dimeth­oxy-2-prop-2-en-1-yl)phenyl-(2-methyl­aniline)platinum(II), refcode GOY­JEL; Da et al., 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Kimpende, P. M. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]] and 0.048 Å [(η2-5-hy­droxy-4-meth­oxy-2-(prop-2-en-1-yl)phen­yl)-chloro-(4-methyl­pyridine)­platin­um(II), CSD refcode VEZJIW; Chi et al., 2018[Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330-337.]]. Table 4[link] gives an overview of the four Pt bond distances for each compound. The average Pt—Cl, Pt—N, Pt—Car­yl and Pt—Cg distances are 2.324 (8), 2.158 (29), 1.996 (64) and 2.014 (16) Å, respectively. The largest spread is observed for the Pt—Car­yl bond (1.843 to 2.109 Å in the two mol­ecules present in the asymmetric unit of chloro-(η2-6-ethenyl-1,3-benzodioxole-5-yl)piperidine­platinum(II) (CSD refcode OFUREN; Da et al., 2008[Da, T. T., Kim, Y. M., Chi, N. T. T., Chien, L. X., Minh, N. V. & Dinh, N. H. (2008). Organometallics, 27, 3611-3613.]). The averages correspond to the observed distances for complexes (I)–(III). It is worthwhile to note that upon binding to Pt, the C=C bond distance [1.29 (4) Å for allylaryl fragments in the CSD] increased significantly. The average C=C bond distance for the complexes in Table 4[link] is 1.39 (3) Å, comparable to the C=C bond distances in the title complexes [1.389 (4), 1.401 (3) and 1.376 (6) Å for (I)–(III), respectively].

Table 4
Pt bond distances (Å) for Pt complexes with the Pt atom coordinated to a Cl atom, N atom and allylaryl ligand found in the Cambridge Structural Database

Car­yl is the aryl C atom and Cg the centroid of the C=C group of the coordinating allylaryl ligand.

CSD refcode Pt—Cl Pt—N Pt—Car­yl Pt—Cg Reference
EWAVOP 2.323 2.107 1.995 2.011 Nguyen Thi Thanh et al. (2016[Nguyen Thi Thanh, C., Pham Van, T., Le Thi Hong, H. & Van Meervelt, L. (2016). Acta Cryst. C72, 758-764.])
GOYJEL 2.324 2.177 2.001 2.011 Da et al. (2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Kimpende, P. M. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.])
OFUREN 2.319 2.160 2.109 2.057 Da et al. (2008[Da, T. T., Kim, Y. M., Chi, N. T. T., Chien, L. X., Minh, N. V. & Dinh, N. H. (2008). Organometallics, 27, 3611-3613.])
OFUREN 2.340 2.187 1.843 1.995 Da et al. (2008[Da, T. T., Kim, Y. M., Chi, N. T. T., Chien, L. X., Minh, N. V. & Dinh, N. H. (2008). Organometallics, 27, 3611-3613.])
SOMNUF 2.329 2.188 2.015 2.009 Mangwala Kimpende et al. (2014[Mangwala Kimpende, P., Thi Da, T., Nguyen Huu, D. & Van Meervelt, L. (2014). Acta Cryst. E70, 435-437.])
TALTIM 2.321 2.143 2.002 2.009 Le Thi Hong et al. (2017[Le Thi Hong, H., Nguyen Thu, T., Nguyen, H. & Van Meervelt, L. (2017). Acta Cryst. E73, 573-578.])
VEZHOA 2.332 2.140 2.006 2.010 Chi et al. (2018[Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330-337.])
VEZJIW 2.314 2.142 1.991 2.007 Chi et al. (2018[Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330-337.])
VEZJIW 2.318 2.138 1.999 2.017 Chi et al. (2018[Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330-337.])
VEZJOC 2.317 2.199 2.002 2.015 Chi et al. (2018[Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330-337.])

5. In vitro cytotoxicity of complexes (I) and (II)

The in vitro cytotoxicity of complexes (I) and (II) was tested according to the method described in Skehan et al. (1990[Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). J. Natl Cancer Inst. 82, 1107-1112.]) and Likhitwitayawuid et al. (1993[Likhitwitayawuid, K., Angerhofer, C. K., Cordell, G. A., Pezzuto, J. M. & Ruangrungsi, N. (1993). J. Nat. Prod. 56, 30-38.]) on two human cancer cell lines of HepG2 (hepatocellular carcinoma) and KB (human epidermal carcinoma). The IC50 values for the HepG2 and KB cell lines calculated based on OD values taken on an Elisa instrument at 515–540 nm are 150.9, 122.3 µM for (I) and 138.9, 93.2 µM for (II), respectively. This result shows that the presence of the extra methyl group on the pyridine ring in the para position in (II) does not have a notable effect on its anti-cancer activities as compared to those of (I). However, a comparison of complexes that differ solely in the olefin ligand reveals a significant influence. Specifically, complex (I) exhibits much better cytotoxicity against HepG2 and KB cell lines than [PtCl(eugenol-1H)(Py)] (>270.7, 211.8 µM, respectively; Chi et al., 2018[Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330-337.]) but worse than [Pt(methyl­eugenol-1H)(Py)] (7.07 µM for KB cell line; Da et al., 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Kimpende, P. M. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]).

6. Synthesis and crystallization

The synthetic protocol for the three complexes is shown in Fig. 1[link]. The starting complex [Pt(μ-Cl)(iPrEug)]2 (1) was synthesized according to the synthetic protocol of Thong & Chi (2014[Thong, P. V. & Chi, N. T. T. (2014). J. Chem (Vietnam) 52, 381-386.]).

[PtCl(iPrEug)(pyridine)] (I). A solution of pyridine (80 µL, 1.0 mmol) in 10 mL ethanol was slowly added with stirring to a suspension of [Pt(μ-Cl)(iPrEug)]2 (494 mg, 0.5 mmol) in 10 mL acetone. The reaction mixture was stirred at ambient temperature (AT) and filtered off after 30 minutes to remove the insoluble part. Subsequently, slow evaporation of the solvent of the obtained solution at AT gave within 10 h transparent crystals, which were suitable for X-ray diffraction and other analyses. The yield was 515 mg (90%). %Pt (found/calculated): 34.15/34.06. ESI MS (m/z, intensity), −MS: 1021, 100%, [2M – 2Py + Cl]; +MS: 1067, 100%, [2M – Py + H]+; 988, 30%, [2M – 2Py + H]+. IR (cm−1, ν): 3089, 2970 and 2839 (CH); 1748 (C=O); 1597 and 1477 (C=C, C=N). 1H NMR (500 MHz, acetone-d6): 8.79 (ov, 2H, Ar—H), 8.04 (m, 1H, Ar—H), 7.65 (ov, 2H, Ar—H), 7.04 (s, 3JPtH = 40, 1H, Ar—H), 6.66 (s, 1H, Ar—H), 5.07 (m, 1H, O—CH), 4.83 (m, 2JPtH = 70 Hz, 1H, CH=CH2), 4.54 (s, 2H, OCH2), 3.81 [d, 3J(H,H) = 13.0 Hz, 1H, CH=CH2], 3.78–3.74 (ov, 2H, CH=CH2, CH2—CH), 3.73 (s, 3H, OCH3), 2.66 (d, 2J(H,H) = 16.5 Hz, 3JPtH = 110 Hz, 1H, CH2—CH), 1.27 [d, 3J(H,H) = 6.5 Hz, 6H, CH—(CH3)2].

[PtCl(iPrEug)(4-methyl­pyridine)] (II). This complex was prepared starting from [Pt(μ-Cl)(iPrEug)]2 (494 mg, 0.5 mmol) and 4-methyl­pyridine (100 µL, 1.0 mmol) according to the procedure for the synthesis of I. The yield was 539 mg (92%), transparent crystals were suitable for X-ray diffraction and other analyses. %Pt (found/calculated): 32.34/32.25. ESI MS (m/z, intensity), −MS: 1021, 100%, [2M – 2MePy + Cl]; +MS: 1079, 70%, [2M – MePy + H]+; 986, 25%, [2M – 2MePy + H]+;. IR (cm−1, ν): 2970, 2920 and 2839 (CH); 1748 (C=O); 1616 and 1477 (C=C, C=N). 1H NMR (500 MHz, acetone-d6): 8.60 [d, 3J(H,H) = 5.5 Hz, 2H, Ar—H], 7.46 [d, 3J(H,H) = 5.5 Hz, 2H, Ar—H], 7.04 (s, 3JPtH = 40, 1H, Ar—H), 6.65 (s, 1H, Ar-H), 5.07 (m, 1H, O—CH), 4.79 (m, 2JPtH = 70 Hz, 1H, CH=CH2), 4.54 (s, 2H, OCH2), 3.78 [d, 3J(H,H) = 13.0 Hz, 1H, CH=CH2], 3.76–3.74 (ov, 2H, CH=CH2, CH2—CH), 3.73 (s, 3H, OCH3), 2.64 [d, 2J(H,H) = 16.5 Hz, 1H, CH2—CH], 2.46 (s, 3H, CH3), 1.27 [d, 3J(H,H) = 6.5 Hz, 6H, CH—(CH3)2].

[PtCl(iPrEug)(pyridine-4-carb­oxy­lic acid)] (III). A mixture of pyridine-4-carb­oxy­lic acid (123 mg, 1.0 mmol) and [Pt(μ-Cl)(iPrEug)]2 (494 mg, 0.5 mmol) in 10 mL acetone was stirred at AT for 8 h. The resulting precipitate was filtered off and washed consecutively with ethanol (2 × 5 mL) and cold chloro­form (2 × 5 mL), then crystallized in chloro­form to give a light-yellow powder. The yield was 493 mg (80%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation within 8 h from a concentrated chloro­form/ethanol solution at AT. %Pt (found/calculated): 31.58/31.63. ESI MS (m/z, intensity), -MS: 1021, 100%, [2M – 2PyCOOH + Cl]; +MS: 1110, 8%, [2M – PyCOOH + H]+; 989, 10%, [2M – 2PyCOOH + H]+. IR (cm−1, ν): 3267 (OH), 3093, 2974 and 2839 (CH); 1728 (C=O); 1586 and 1477 (C=C, C=N). 1H NMR (500 MHz, dimethyl sulfoxide-d6): 13.80 (br, 1H, OH), 8.79 [d, 3J(H,H) = 4.5 Hz, 2H, Ar—H], 7.83 [d, 3J(H,H) = 4.5 Hz, 2H, Ar—H], 6.75–6.74 (ov, 2H, Ar—H), 5.08 (m, 1H, CH=CH2), 4.97 (m, 1H, O—CH), 4.58/4.51 [d, 2J(H,H) = 16.5 Hz, 2H, OCH2], 4.33 [d, 3J(H,H) = 6.0 Hz, 1H, CH=CH2], 3.93 [d, 3J(H,H) = 13.5 Hz, 1H, CH=CH2], 3.79–3.70 (ov, 4H, CH2—CH, OCH3), 2.77 [d, 2J(H,H) = 17.0 Hz, 1H, CH2—CH], 1.23 [d, 3J(H,H) = 6.0 Hz, 6H, CH—(CH3)2].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link].

Table 5
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [Pt(C15H19O4)Cl(C5H5N)] [Pt(C15H19O4)Cl(C6H7N)] [Pt(C15H19O4)Cl(C6H5NO2)]
Mr 572.94 586.97 616.95
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 8.3146 (3), 8.6714 (4), 14.5827 (6) 8.36089 (15), 9.12717 (16), 14.5582 (3) 7.8746 (2), 9.7566 (2), 15.0004 (4)
α, β, γ (°) 90.534 (4), 104.376 (4), 101.135 (3) 94.9089 (15), 102.2766 (16), 100.4541 (15) 95.782 (2), 102.874 (2), 93.843 (2)
V3) 997.49 (7) 1058.58 (3) 1113.02 (5)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 7.19 6.78 6.46
Crystal size (mm) 0.25 × 0.2 × 0.15 0.25 × 0.2 × 0.2 0.4 × 0.4 × 0.35
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.717, 1.000 0.671, 1.000 0.429, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17455, 4084, 3881 43513, 4327, 4252 22839, 4542, 4276
Rint 0.040 0.036 0.077
(sin θ/λ)max−1) 0.625 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.040, 1.05 0.013, 0.033, 1.12 0.027, 0.068, 1.05
No. of reflections 4084 4327 4542
No. of parameters 247 257 275
No. of restraints 0 0 27
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.68 0.38, −0.92 1.87, −1.77
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL 2016/4 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The H atoms were placed in idealized positions and included as riding contributions with Uiso(H) values of 1.2Ueq or 1.5Ueq of the parent atoms, with C—H distances of 0.95 (aromatic), 1.00 (CH), 0.99 (CH2) and 0.98 Å (CH3). The carb­oxy­lic acid H atom in (III) was refined as rotating group with a O—H distance of 0.84 Å. The displacement parameters of the bonded atoms in the carb­oxy­lic acid and isopropyl groups in (III) were restrained to be similar along the bond.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2008). Program(s) used to refine structure: SHELXL (Sheldrick, 2015) for (I), (II); SHELXL 2016/4 (Sheldrick, 2015) for (III). For all structures, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(η2-2-Allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-κC1)chlorido(pyridine-κN)platinum(II) (I) top
Crystal data top
[Pt(C15H19O4)Cl(C5H5N)]Z = 2
Mr = 572.94F(000) = 556
Triclinic, P1Dx = 1.908 Mg m3
a = 8.3146 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6714 (4) ÅCell parameters from 12348 reflections
c = 14.5827 (6) Åθ = 3.2–29.0°
α = 90.534 (4)°µ = 7.19 mm1
β = 104.376 (4)°T = 100 K
γ = 101.135 (3)°Needle, clear colourless
V = 997.49 (7) Å30.25 × 0.2 × 0.15 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
diffractometer
4084 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3881 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
CrysAlisPro (Rigaku OD, 2018)
k = 1010
Tmin = 0.717, Tmax = 1.000l = 1818
17455 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0133P)2 + 0.0785P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4084 reflectionsΔρmax = 0.53 e Å3
247 parametersΔρmin = 0.68 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.99983 (2)0.56342 (2)0.66724 (2)0.00936 (4)
C20.9123 (4)0.3610 (3)0.7197 (2)0.0114 (6)
C30.7406 (3)0.2958 (3)0.6843 (2)0.0112 (6)
C40.6695 (4)0.1536 (3)0.7156 (2)0.0118 (6)
H40.5529070.1090680.6897520.014*
C50.7671 (4)0.0764 (3)0.7842 (2)0.0109 (6)
C60.9385 (3)0.1462 (3)0.8242 (2)0.0107 (6)
C71.0104 (4)0.2848 (3)0.79078 (19)0.0111 (6)
H71.1271970.3289420.8161690.013*
C80.6398 (4)0.3846 (3)0.6098 (2)0.0159 (7)
H8A0.5277560.3839670.6220710.019*
H8B0.6210580.3324880.5463050.019*
C90.7352 (3)0.5535 (3)0.6122 (2)0.0165 (7)
H90.7554040.5950400.5550640.020*
C100.7937 (4)0.6486 (4)0.6956 (2)0.0211 (7)
H10A0.7744330.6085330.7531760.025*
H10B0.8530530.7537270.6950700.025*
O110.7105 (2)0.0634 (2)0.81928 (13)0.0131 (4)
C120.5418 (3)0.1455 (3)0.7741 (2)0.0149 (7)
H12A0.5305110.1622990.7060520.022*
H12B0.4602860.0828640.7835490.022*
H12C0.5192460.2474700.8017960.022*
O131.0221 (2)0.0671 (2)0.89596 (14)0.0170 (5)
C141.1676 (4)0.1557 (4)0.9612 (2)0.0159 (7)
H14A1.1806150.1085801.0235590.019*
H14B1.1510720.2644930.9695090.019*
C151.3272 (4)0.1608 (3)0.9288 (2)0.0127 (6)
O161.3354 (3)0.0981 (2)0.85702 (14)0.0194 (5)
O171.4603 (2)0.2461 (2)0.99284 (14)0.0159 (5)
C181.6258 (4)0.2675 (4)0.9695 (2)0.0175 (7)
H181.6351790.1683890.9374560.021*
C191.7574 (4)0.2994 (4)1.0648 (2)0.0248 (8)
H19A1.7431630.3928151.0978580.037*
H19B1.8713720.3175641.0543670.037*
H19C1.7421920.2084151.1033660.037*
C201.6394 (4)0.4002 (4)0.9044 (2)0.0204 (7)
H20A1.5491670.3737730.8455890.031*
H20B1.7499640.4166590.8895660.031*
H20C1.6278840.4967380.9354500.031*
Cl211.25878 (9)0.49780 (8)0.67051 (5)0.01618 (16)
N221.0890 (3)0.7834 (3)0.61344 (17)0.0113 (5)
C231.1235 (4)0.9189 (3)0.6672 (2)0.0140 (6)
H231.0990250.9163920.7275210.017*
C241.1935 (4)1.0613 (3)0.6375 (2)0.0157 (7)
H241.2167481.1552790.6766460.019*
C251.2290 (4)1.0645 (4)0.5497 (2)0.0168 (7)
H251.2774211.1609670.5277900.020*
C261.1935 (4)0.9263 (4)0.4941 (2)0.0169 (7)
H261.2166710.9263210.4335460.020*
C271.1239 (4)0.7885 (3)0.5282 (2)0.0136 (6)
H271.0996680.6933460.4900650.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00967 (6)0.00807 (6)0.01093 (7)0.00194 (4)0.00356 (5)0.00123 (4)
C20.0130 (15)0.0100 (14)0.0118 (15)0.0020 (11)0.0044 (12)0.0017 (12)
C30.0122 (14)0.0114 (14)0.0104 (14)0.0028 (11)0.0035 (12)0.0017 (12)
C40.0105 (14)0.0130 (15)0.0113 (15)0.0007 (11)0.0031 (12)0.0014 (12)
C50.0160 (15)0.0102 (14)0.0092 (14)0.0018 (11)0.0088 (12)0.0000 (12)
C60.0103 (14)0.0106 (14)0.0105 (14)0.0038 (11)0.0002 (12)0.0004 (12)
C70.0092 (14)0.0132 (15)0.0110 (15)0.0014 (11)0.0036 (12)0.0003 (12)
C80.0119 (15)0.0150 (16)0.0212 (17)0.0039 (12)0.0041 (13)0.0050 (13)
C90.0084 (14)0.0181 (16)0.0261 (18)0.0068 (12)0.0070 (13)0.0089 (14)
C100.0184 (17)0.0163 (16)0.034 (2)0.0053 (13)0.0153 (15)0.0048 (15)
O110.0121 (10)0.0111 (10)0.0122 (10)0.0033 (8)0.0003 (8)0.0022 (8)
C120.0095 (14)0.0149 (15)0.0175 (16)0.0030 (12)0.0021 (12)0.0005 (13)
O130.0117 (11)0.0160 (11)0.0168 (11)0.0030 (8)0.0040 (9)0.0072 (9)
C140.0125 (15)0.0213 (17)0.0104 (15)0.0008 (13)0.0003 (12)0.0051 (13)
C150.0132 (15)0.0096 (14)0.0140 (15)0.0023 (11)0.0012 (12)0.0037 (12)
O160.0184 (12)0.0210 (12)0.0160 (11)0.0036 (9)0.0004 (9)0.0072 (10)
O170.0106 (10)0.0203 (11)0.0137 (11)0.0026 (8)0.0019 (9)0.0044 (9)
C180.0124 (15)0.0224 (17)0.0183 (16)0.0009 (13)0.0073 (13)0.0015 (14)
C190.0159 (17)0.032 (2)0.0223 (18)0.0008 (14)0.0018 (14)0.0025 (16)
C200.0222 (17)0.0204 (17)0.0188 (17)0.0016 (13)0.0100 (14)0.0001 (14)
Cl210.0109 (3)0.0124 (4)0.0265 (4)0.0028 (3)0.0067 (3)0.0034 (3)
N220.0079 (12)0.0111 (12)0.0140 (13)0.0013 (9)0.0013 (10)0.0014 (10)
C230.0136 (15)0.0151 (15)0.0126 (15)0.0052 (12)0.0001 (12)0.0017 (13)
C240.0147 (15)0.0122 (15)0.0189 (16)0.0020 (12)0.0027 (13)0.0023 (13)
C250.0129 (15)0.0138 (15)0.0215 (17)0.0011 (12)0.0011 (13)0.0056 (13)
C260.0190 (16)0.0212 (17)0.0131 (15)0.0057 (13)0.0075 (13)0.0044 (13)
C270.0121 (15)0.0149 (15)0.0142 (15)0.0046 (12)0.0024 (12)0.0012 (13)
Geometric parameters (Å, º) top
Pt1—C22.001 (3)O13—C141.419 (3)
Pt1—C92.131 (3)C14—H14A0.9900
Pt1—C102.118 (3)C14—H14B0.9900
Pt1—Cl212.3205 (7)C14—C151.509 (4)
Pt1—N222.139 (2)C15—O161.198 (3)
C2—C31.393 (4)C15—O171.342 (3)
C2—C71.407 (4)O17—C181.476 (3)
C3—C41.393 (4)C18—H181.0000
C3—C81.513 (4)C18—C191.525 (4)
C4—H40.9500C18—C201.505 (4)
C4—C51.388 (4)C19—H19A0.9800
C5—C61.409 (4)C19—H19B0.9800
C5—O111.365 (3)C19—H19C0.9800
C6—C71.384 (4)C20—H20A0.9800
C6—O131.373 (3)C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
C8—H8A0.9900N22—C231.349 (4)
C8—H8B0.9900N22—C271.344 (4)
C8—C91.520 (4)C23—H230.9500
C9—H90.9500C23—C241.381 (4)
C9—C101.389 (4)C24—H240.9500
C10—H10A0.9500C24—C251.383 (4)
C10—H10B0.9500C25—H250.9500
O11—C121.434 (3)C25—C261.380 (4)
C12—H12A0.9800C26—H260.9500
C12—H12B0.9800C26—C271.378 (4)
C12—H12C0.9800C27—H270.9500
C2—Pt1—C981.36 (12)H12A—C12—H12B109.5
C2—Pt1—C1087.41 (12)H12A—C12—H12C109.5
C2—Pt1—Cl2193.43 (9)H12B—C12—H12C109.5
C2—Pt1—N22178.21 (10)C6—O13—C14117.1 (2)
C9—Pt1—Cl21154.99 (9)O13—C14—H14A109.1
C9—Pt1—N2297.67 (10)O13—C14—H14B109.1
C10—Pt1—C938.16 (12)O13—C14—C15112.3 (2)
C10—Pt1—Cl21166.72 (9)H14A—C14—H14B107.9
C10—Pt1—N2290.90 (11)C15—C14—H14A109.1
N22—Pt1—Cl2188.08 (7)C15—C14—H14B109.1
C3—C2—Pt1116.6 (2)O16—C15—C14125.5 (3)
C3—C2—C7118.8 (3)O16—C15—O17124.6 (3)
C7—C2—Pt1124.6 (2)O17—C15—C14109.8 (2)
C2—C3—C8116.7 (3)C15—O17—C18116.4 (2)
C4—C3—C2120.5 (3)O17—C18—H18109.6
C4—C3—C8122.8 (2)O17—C18—C19105.1 (2)
C3—C4—H4119.6O17—C18—C20109.0 (3)
C5—C4—C3120.7 (3)C19—C18—H18109.6
C5—C4—H4119.6C20—C18—H18109.6
C4—C5—C6119.1 (3)C20—C18—C19113.7 (3)
O11—C5—C4125.5 (3)C18—C19—H19A109.5
O11—C5—C6115.5 (3)C18—C19—H19B109.5
C7—C6—C5120.0 (3)C18—C19—H19C109.5
O13—C6—C5115.1 (2)H19A—C19—H19B109.5
O13—C6—C7124.9 (2)H19A—C19—H19C109.5
C2—C7—H7119.6H19B—C19—H19C109.5
C6—C7—C2120.7 (3)C18—C20—H20A109.5
C6—C7—H7119.6C18—C20—H20B109.5
C3—C8—H8A109.7C18—C20—H20C109.5
C3—C8—H8B109.7H20A—C20—H20B109.5
C3—C8—C9109.8 (2)H20A—C20—H20C109.5
H8A—C8—H8B108.2H20B—C20—H20C109.5
C9—C8—H8A109.7C23—N22—Pt1120.7 (2)
C9—C8—H8B109.7C27—N22—Pt1120.71 (19)
Pt1—C9—H990.2C27—N22—C23118.4 (2)
C8—C9—Pt1109.4 (2)N22—C23—H23118.9
C8—C9—H9119.1N22—C23—C24122.1 (3)
C10—C9—Pt170.44 (17)C24—C23—H23118.9
C10—C9—C8121.7 (3)C23—C24—H24120.6
C10—C9—H9119.1C23—C24—C25118.7 (3)
Pt1—C10—H10A108.6C25—C24—H24120.6
Pt1—C10—H10B90.0C24—C25—H25120.3
C9—C10—Pt171.40 (18)C26—C25—C24119.4 (3)
C9—C10—H10A120.0C26—C25—H25120.3
C9—C10—H10B120.0C25—C26—H26120.6
H10A—C10—H10B120.0C27—C26—C25118.8 (3)
C5—O11—C12117.1 (2)C27—C26—H26120.6
O11—C12—H12A109.5N22—C27—C26122.5 (3)
O11—C12—H12B109.5N22—C27—H27118.7
O11—C12—H12C109.5C26—C27—H27118.7
Pt1—C2—C3—C4178.9 (2)C7—C2—C3—C43.1 (4)
Pt1—C2—C3—C80.3 (3)C7—C2—C3—C8178.4 (3)
Pt1—C2—C7—C6178.8 (2)C7—C6—O13—C1422.9 (4)
Pt1—N22—C23—C24174.9 (2)C8—C3—C4—C5179.9 (3)
Pt1—N22—C27—C26175.0 (2)C8—C9—C10—Pt1101.2 (3)
C2—C3—C4—C51.6 (4)O11—C5—C6—C7177.3 (2)
C2—C3—C8—C918.2 (4)O11—C5—C6—O132.8 (4)
C3—C2—C7—C60.9 (4)O13—C6—C7—C2177.2 (3)
C3—C4—C5—C62.1 (4)O13—C14—C15—O160.4 (4)
C3—C4—C5—O11179.6 (3)O13—C14—C15—O17179.9 (2)
C3—C8—C9—Pt125.9 (3)C14—C15—O17—C18177.7 (2)
C3—C8—C9—C1052.5 (4)C15—O17—C18—C19155.7 (2)
C4—C3—C8—C9163.3 (3)C15—O17—C18—C2082.1 (3)
C4—C5—C6—C74.2 (4)O16—C15—O17—C182.6 (4)
C4—C5—C6—O13175.7 (3)N22—C23—C24—C250.0 (4)
C4—C5—O11—C127.4 (4)C23—N22—C27—C260.1 (4)
C5—C6—C7—C22.7 (4)C23—C24—C25—C260.2 (4)
C5—C6—O13—C14156.9 (3)C24—C25—C26—C270.2 (4)
C6—C5—O11—C12174.1 (2)C25—C26—C27—N220.1 (5)
C6—O13—C14—C1588.0 (3)C27—N22—C23—C240.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C2–C7 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···O16i0.982.423.354 (3)160
C14—H14A···O11ii0.992.313.266 (3)161
C14—H14A···O13ii0.992.563.330 (4)134
C20—H20B···Cg5iii0.982.933.586 (3)125
C26—H26···Cg5iv0.952.883.736 (3)150
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+2; (iii) x+1, y, z; (iv) x+2, y+1, z+1.
(η2-2-Allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-κC1)chlorido(4-methylpyridine-κN)platinum(II) (II) top
Crystal data top
[Pt(C15H19O4)Cl(C6H7N)]Z = 2
Mr = 586.97F(000) = 572
Triclinic, P1Dx = 1.841 Mg m3
a = 8.36089 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.12717 (16) ÅCell parameters from 35745 reflections
c = 14.5582 (3) Åθ = 3.2–29.0°
α = 94.9089 (15)°µ = 6.78 mm1
β = 102.2766 (16)°T = 100 K
γ = 100.4541 (15)°Needle, colourless
V = 1058.58 (3) Å30.25 × 0.2 × 0.2 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
diffractometer
4327 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4252 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1010
Absorption correction: multi-scan
CrysAlisPro (Rigaku OD, 2018)
k = 1111
Tmin = 0.671, Tmax = 1.000l = 1818
43513 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.013H-atom parameters constrained
wR(F2) = 0.033 w = 1/[σ2(Fo2) + (0.015P)2 + 0.659P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.005
4327 reflectionsΔρmax = 0.38 e Å3
257 parametersΔρmin = 0.92 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt11.00923 (2)0.54971 (2)0.69268 (2)0.00989 (3)
C20.9207 (3)0.3594 (2)0.74088 (15)0.0119 (4)
C30.7507 (3)0.2995 (2)0.70567 (15)0.0126 (4)
C40.6771 (3)0.1616 (2)0.72883 (15)0.0122 (4)
H40.5620250.1201850.7022540.015*
C50.7718 (3)0.0851 (2)0.79059 (15)0.0119 (4)
C60.9409 (3)0.1511 (2)0.83258 (15)0.0124 (4)
C71.0146 (3)0.2846 (2)0.80607 (15)0.0126 (4)
H71.1298360.3258020.8322410.015*
C80.6526 (3)0.3880 (2)0.63896 (16)0.0163 (4)
H8A0.6327730.3400770.5728040.020*
H8B0.5426820.3878170.6541780.020*
C90.7486 (3)0.5483 (2)0.64848 (17)0.0176 (5)
H90.7644090.5898740.5926500.021*
C100.8151 (3)0.6376 (3)0.73626 (18)0.0202 (5)
H10A0.8006710.5981440.7929440.024*
H10B0.8745000.7376360.7391100.024*
O110.71319 (18)0.05067 (16)0.81844 (11)0.0144 (3)
C120.5483 (3)0.1295 (2)0.76921 (16)0.0164 (4)
H12A0.5422650.1440010.7009810.025*
H12B0.4661720.0707300.7814340.025*
H12C0.5240500.2275160.7916250.025*
O131.02076 (19)0.07216 (17)0.89891 (11)0.0171 (3)
C141.1632 (3)0.1545 (2)0.96761 (15)0.0155 (4)
H14A1.1739240.1064481.0264480.019*
H14B1.1470680.2578140.9829310.019*
C151.3235 (3)0.1620 (2)0.93298 (15)0.0134 (4)
O161.3310 (2)0.10801 (18)0.85616 (11)0.0201 (3)
O171.45437 (18)0.23658 (17)1.00086 (10)0.0160 (3)
C181.6184 (3)0.2570 (3)0.97671 (16)0.0165 (4)
H181.6234670.1663680.9345550.020*
C191.7466 (3)0.2720 (3)1.06927 (18)0.0277 (6)
H19A1.8587920.2853001.0569680.042*
H19B1.7245720.1810591.0996560.042*
H19C1.7395890.3593121.1112160.042*
C201.6403 (3)0.3939 (3)0.92522 (18)0.0239 (5)
H20A1.6370860.4830100.9668950.036*
H20B1.5498790.3799570.8680300.036*
H20C1.7481940.4074430.9074100.036*
Cl211.26067 (6)0.48086 (6)0.68589 (4)0.01889 (11)
N221.0906 (2)0.74891 (19)0.63327 (13)0.0129 (4)
C231.1236 (3)0.8889 (2)0.68027 (15)0.0135 (4)
H231.1072920.9010030.7428730.016*
C241.1802 (3)1.0157 (2)0.64104 (15)0.0147 (4)
H241.2031761.1124150.6766890.018*
C251.2034 (3)1.0004 (2)0.54849 (16)0.0146 (4)
C261.1654 (3)0.8558 (2)0.49975 (16)0.0175 (5)
H261.1763760.8407200.4361930.021*
C271.1117 (3)0.7344 (2)0.54383 (16)0.0168 (4)
H271.0885890.6365140.5097650.020*
C281.2680 (3)1.1334 (3)0.50278 (17)0.0195 (5)
H28A1.2565241.2258180.5380170.029*
H28B1.2034881.1236240.4371620.029*
H28C1.3861581.1373760.5033700.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00854 (5)0.00956 (5)0.01200 (5)0.00219 (3)0.00279 (3)0.00204 (3)
C20.0118 (10)0.0109 (10)0.0139 (10)0.0034 (8)0.0048 (8)0.0004 (8)
C30.0119 (10)0.0141 (10)0.0136 (10)0.0058 (8)0.0038 (8)0.0023 (8)
C40.0073 (9)0.0153 (10)0.0139 (10)0.0024 (8)0.0027 (8)0.0005 (8)
C50.0113 (10)0.0112 (10)0.0140 (10)0.0011 (8)0.0055 (8)0.0014 (8)
C60.0111 (10)0.0137 (10)0.0127 (10)0.0044 (8)0.0011 (8)0.0026 (8)
C70.0090 (10)0.0145 (10)0.0133 (10)0.0016 (8)0.0013 (8)0.0014 (8)
C80.0108 (10)0.0175 (11)0.0209 (12)0.0042 (8)0.0019 (9)0.0060 (9)
C90.0095 (10)0.0191 (11)0.0274 (13)0.0063 (9)0.0058 (9)0.0098 (9)
C100.0173 (11)0.0149 (11)0.0339 (14)0.0066 (9)0.0148 (10)0.0045 (10)
O110.0092 (7)0.0125 (7)0.0189 (8)0.0015 (6)0.0005 (6)0.0044 (6)
C120.0090 (10)0.0145 (10)0.0229 (12)0.0014 (8)0.0012 (9)0.0016 (9)
O130.0109 (7)0.0157 (7)0.0203 (8)0.0019 (6)0.0045 (6)0.0080 (6)
C140.0112 (10)0.0185 (11)0.0138 (11)0.0009 (8)0.0010 (9)0.0043 (9)
C150.0119 (10)0.0112 (10)0.0148 (11)0.0015 (8)0.0020 (8)0.0032 (8)
O160.0172 (8)0.0239 (8)0.0160 (8)0.0047 (7)0.0004 (7)0.0047 (7)
O170.0092 (7)0.0218 (8)0.0136 (8)0.0023 (6)0.0020 (6)0.0021 (6)
C180.0105 (10)0.0200 (11)0.0179 (11)0.0001 (8)0.0051 (9)0.0017 (9)
C190.0129 (11)0.0416 (15)0.0245 (13)0.0005 (11)0.0011 (10)0.0027 (11)
C200.0212 (12)0.0226 (12)0.0291 (14)0.0001 (10)0.0123 (11)0.0039 (10)
Cl210.0115 (2)0.0175 (3)0.0308 (3)0.0050 (2)0.0091 (2)0.0056 (2)
N220.0119 (9)0.0119 (8)0.0145 (9)0.0022 (7)0.0020 (7)0.0028 (7)
C230.0118 (10)0.0159 (10)0.0108 (10)0.0021 (8)0.0007 (8)0.0007 (8)
C240.0127 (10)0.0142 (10)0.0140 (11)0.0018 (8)0.0023 (8)0.0002 (8)
C250.0088 (10)0.0170 (11)0.0171 (11)0.0021 (8)0.0001 (8)0.0046 (9)
C260.0199 (11)0.0189 (11)0.0153 (11)0.0044 (9)0.0073 (9)0.0025 (9)
C270.0194 (11)0.0143 (10)0.0163 (11)0.0021 (9)0.0059 (9)0.0021 (8)
C280.0195 (12)0.0180 (11)0.0195 (12)0.0008 (9)0.0029 (10)0.0059 (9)
Geometric parameters (Å, º) top
Pt1—C22.005 (2)C14—H14B0.9900
Pt1—C92.134 (2)C14—C151.521 (3)
Pt1—C102.123 (2)C15—O161.202 (3)
Pt1—Cl212.3197 (5)C15—O171.339 (3)
Pt1—N222.1418 (18)O17—C181.471 (3)
C2—C31.393 (3)C18—H181.0000
C2—C71.405 (3)C18—C191.512 (3)
C3—C41.399 (3)C18—C201.514 (3)
C3—C81.518 (3)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C4—C51.388 (3)C19—H19C0.9800
C5—C61.413 (3)C20—H20A0.9800
C5—O111.375 (2)C20—H20B0.9800
C6—C71.387 (3)C20—H20C0.9800
C6—O131.384 (2)N22—C231.348 (3)
C7—H70.9500N22—C271.349 (3)
C8—H8A0.9900C23—H230.9500
C8—H8B0.9900C23—C241.386 (3)
C8—C91.515 (3)C24—H240.9500
C9—H90.9500C24—C251.400 (3)
C9—C101.401 (3)C25—C261.392 (3)
C10—H10A0.9500C25—C281.503 (3)
C10—H10B0.9500C26—H260.9500
O11—C121.436 (2)C26—C271.380 (3)
C12—H12A0.9800C27—H270.9500
C12—H12B0.9800C28—H28A0.9800
C12—H12C0.9800C28—H28B0.9800
O13—C141.423 (3)C28—H28C0.9800
C14—H14A0.9900
C2—Pt1—C981.60 (8)C6—O13—C14117.11 (16)
C2—Pt1—C1086.78 (9)O13—C14—H14A109.2
C2—Pt1—Cl2193.24 (6)O13—C14—H14B109.2
C2—Pt1—N22176.29 (7)O13—C14—C15112.13 (18)
C9—Pt1—Cl21156.66 (7)H14A—C14—H14B107.9
C9—Pt1—N2295.50 (8)C15—C14—H14A109.2
C10—Pt1—C938.42 (9)C15—C14—H14B109.2
C10—Pt1—Cl21164.63 (7)O16—C15—C14124.81 (19)
C10—Pt1—N2292.37 (8)O16—C15—O17125.2 (2)
N22—Pt1—Cl2188.53 (5)O17—C15—C14109.96 (18)
C3—C2—Pt1115.65 (15)C15—O17—C18116.30 (16)
C3—C2—C7118.71 (19)O17—C18—H18109.5
C7—C2—Pt1125.64 (16)O17—C18—C19106.23 (18)
C2—C3—C4120.89 (19)O17—C18—C20108.67 (18)
C2—C3—C8116.84 (19)C19—C18—H18109.5
C4—C3—C8122.23 (19)C19—C18—C20113.4 (2)
C3—C4—H4119.9C20—C18—H18109.5
C5—C4—C3120.14 (19)C18—C19—H19A109.5
C5—C4—H4119.9C18—C19—H19B109.5
C4—C5—C6119.24 (19)C18—C19—H19C109.5
O11—C5—C4125.30 (19)H19A—C19—H19B109.5
O11—C5—C6115.42 (18)H19A—C19—H19C109.5
C7—C6—C5120.07 (19)H19B—C19—H19C109.5
O13—C6—C5114.89 (18)C18—C20—H20A109.5
O13—C6—C7125.04 (19)C18—C20—H20B109.5
C2—C7—H7119.7C18—C20—H20C109.5
C6—C7—C2120.66 (19)H20A—C20—H20B109.5
C6—C7—H7119.7H20A—C20—H20C109.5
C3—C8—H8A109.6H20B—C20—H20C109.5
C3—C8—H8B109.6C23—N22—Pt1123.87 (15)
H8A—C8—H8B108.2C23—N22—C27117.67 (18)
C9—C8—C3110.11 (18)C27—N22—Pt1118.46 (14)
C9—C8—H8A109.6N22—C23—H23118.6
C9—C8—H8B109.6N22—C23—C24122.7 (2)
Pt1—C9—H991.2C24—C23—H23118.6
C8—C9—Pt1108.44 (14)C23—C24—H24120.2
C8—C9—H9118.7C23—C24—C25119.5 (2)
C10—C9—Pt170.35 (12)C25—C24—H24120.2
C10—C9—C8122.7 (2)C24—C25—C28122.0 (2)
C10—C9—H9118.7C26—C25—C24117.3 (2)
Pt1—C10—H10A107.5C26—C25—C28120.6 (2)
Pt1—C10—H10B91.2C25—C26—H26120.0
C9—C10—Pt171.23 (12)C27—C26—C25119.9 (2)
C9—C10—H10A120.0C27—C26—H26120.0
C9—C10—H10B120.0N22—C27—C26122.8 (2)
H10A—C10—H10B120.0N22—C27—H27118.6
C5—O11—C12116.96 (16)C26—C27—H27118.6
O11—C12—H12A109.5C25—C28—H28A109.5
O11—C12—H12B109.5C25—C28—H28B109.5
O11—C12—H12C109.5C25—C28—H28C109.5
H12A—C12—H12B109.5H28A—C28—H28B109.5
H12A—C12—H12C109.5H28A—C28—H28C109.5
H12B—C12—H12C109.5H28B—C28—H28C109.5
Pt1—C2—C3—C4175.43 (16)C7—C2—C3—C8177.26 (19)
Pt1—C2—C3—C82.5 (2)C7—C6—O13—C1423.4 (3)
Pt1—C2—C7—C6178.28 (16)C8—C3—C4—C5179.68 (19)
Pt1—N22—C23—C24178.30 (15)C8—C9—C10—Pt199.79 (19)
Pt1—N22—C27—C26179.30 (17)O11—C5—C6—C7176.98 (18)
C2—C3—C4—C52.5 (3)O11—C5—C6—O132.7 (3)
C2—C3—C8—C917.9 (3)O13—C6—C7—C2177.25 (19)
C3—C2—C7—C62.0 (3)O13—C14—C15—O161.4 (3)
C3—C4—C5—C62.6 (3)O13—C14—C15—O17178.19 (16)
C3—C4—C5—O11179.99 (19)C14—C15—O17—C18178.25 (17)
C3—C8—C9—Pt127.8 (2)C15—O17—C18—C19153.51 (19)
C3—C8—C9—C1050.2 (3)C15—O17—C18—C2084.2 (2)
C4—C3—C8—C9164.2 (2)O16—C15—O17—C182.2 (3)
C4—C5—C6—C75.4 (3)N22—C23—C24—C250.7 (3)
C4—C5—C6—O13174.91 (18)C23—N22—C27—C260.2 (3)
C4—C5—O11—C129.6 (3)C23—C24—C25—C260.8 (3)
C5—C6—C7—C23.1 (3)C23—C24—C25—C28178.7 (2)
C5—C6—O13—C14156.95 (19)C24—C25—C26—C271.7 (3)
C6—C5—O11—C12172.89 (18)C25—C26—C27—N221.3 (3)
C6—O13—C14—C1587.5 (2)C27—N22—C23—C241.2 (3)
C7—C2—C3—C44.8 (3)C28—C25—C26—C27177.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C2–C7 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···O16i0.982.453.397 (3)162
C14—H14A···O11ii0.992.393.341 (3)161
C14—H14A···O13ii0.992.573.351 (3)136
C8—H8B···Cl21i0.992.763.713 (3)162
C20—H20B···Cg5iii0.982.873.562 (3)128
C26—H26···Cg5iv0.952.933.873 (3)171
C28—H28B···Cg4v0.982.873.425 (3)117
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+2; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x+2, y+2, z+1.
(η2-2-Allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-κC1)chlorido(pyridine-4-carboxylic acid-κN)platinum(II) (III) top
Crystal data top
[Pt(C15H19O4)Cl(C6H5NO2)]Z = 2
Mr = 616.95F(000) = 600
Triclinic, P1Dx = 1.841 Mg m3
a = 7.8746 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7566 (2) ÅCell parameters from 13370 reflections
c = 15.0004 (4) Åθ = 2.8–29.1°
α = 95.782 (2)°µ = 6.46 mm1
β = 102.874 (2)°T = 100 K
γ = 93.843 (2)°Block, light yellow
V = 1113.02 (5) Å30.4 × 0.4 × 0.35 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
diffractometer
4542 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source4276 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.077
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
CrysAlisPro (Rigaku OD, 2018)
k = 1212
Tmin = 0.429, Tmax = 1.000l = 1818
22839 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.7413P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4542 reflectionsΔρmax = 1.87 e Å3
275 parametersΔρmin = 1.77 e Å3
27 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.08260 (2)0.65313 (2)0.08249 (2)0.01501 (7)
C20.0203 (5)0.6097 (4)0.2108 (3)0.0169 (8)
C30.0464 (5)0.4856 (4)0.2343 (3)0.0187 (9)
C40.0185 (5)0.4418 (4)0.3205 (3)0.0183 (8)
H40.0284520.3571640.3353820.022*
C50.1523 (5)0.5231 (4)0.3843 (3)0.0178 (9)
C60.2201 (5)0.6479 (4)0.3614 (3)0.0174 (8)
C70.1555 (5)0.6914 (4)0.2757 (3)0.0169 (8)
H70.2025970.7761690.2609730.020*
C80.1822 (6)0.3961 (4)0.1617 (3)0.0217 (9)
H8A0.2736120.3560190.1898270.026*
H8B0.1273520.3190450.1343420.026*
C90.2649 (5)0.4817 (4)0.0868 (3)0.0211 (9)
H90.2696140.4497170.0242840.025*
C100.3329 (5)0.6041 (5)0.1073 (3)0.0245 (10)
H10A0.3290330.6373540.1694860.029*
H10B0.3836910.6554300.0591430.029*
O110.2235 (4)0.4935 (3)0.47161 (19)0.0224 (7)
C120.1579 (6)0.3684 (4)0.4996 (3)0.0239 (9)
H12A0.2113320.3644480.5647330.036*
H12B0.1868940.2887190.4623770.036*
H12C0.0306200.3662760.4907300.036*
O130.3539 (4)0.7181 (3)0.43083 (18)0.0200 (6)
C140.4376 (6)0.8428 (4)0.4126 (3)0.0219 (9)
H14A0.5057690.8938020.4715140.026*
H14B0.3473150.9017100.3849270.026*
C150.5587 (6)0.8167 (4)0.3483 (3)0.0239 (10)
O160.5679 (4)0.7092 (3)0.3051 (2)0.0245 (7)
O170.6589 (5)0.9325 (3)0.3507 (3)0.0485 (10)
C180.7874 (8)0.9294 (6)0.2922 (5)0.0561 (14)
H180.8234710.8334820.2841210.067*
C190.9440 (9)1.0257 (7)0.3460 (7)0.091 (2)
H19A0.9995680.9857880.4014110.136*
H19B0.9052671.1157130.3637460.136*
H19C1.0282271.0377230.3075260.136*
C200.7028 (9)0.9695 (7)0.1996 (6)0.0701 (17)
H20A0.6786871.0667970.2062700.105*
H20B0.5928480.9112670.1742770.105*
H20C0.7815480.9565880.1578630.105*
Cl210.16747 (13)0.78892 (10)0.07378 (7)0.0212 (2)
N220.2017 (4)0.6881 (4)0.0569 (2)0.0177 (7)
C230.1998 (6)0.8167 (4)0.0836 (3)0.0208 (9)
H230.1462760.8929100.0394690.025*
C240.2727 (5)0.8411 (4)0.1723 (3)0.0194 (9)
H240.2649640.9320450.1894940.023*
C250.3581 (5)0.7307 (4)0.2368 (3)0.0152 (8)
C260.3638 (5)0.5988 (4)0.2095 (3)0.0160 (8)
H260.4220900.5216990.2514170.019*
C270.2827 (5)0.5822 (4)0.1198 (3)0.0170 (8)
H270.2842270.4915740.1018250.020*
C280.4300 (5)0.7530 (4)0.3353 (3)0.0173 (8)
O290.3773 (4)0.8497 (3)0.3691 (2)0.0245 (7)
O300.5521 (4)0.6547 (3)0.3784 (2)0.0275 (7)
H300.5763780.6619650.4350150.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01412 (10)0.01776 (10)0.00990 (10)0.00293 (7)0.00293 (6)0.00194 (6)
C20.014 (2)0.020 (2)0.014 (2)0.0018 (16)0.0022 (16)0.0023 (16)
C30.015 (2)0.023 (2)0.015 (2)0.0046 (17)0.0008 (16)0.0015 (17)
C40.019 (2)0.022 (2)0.013 (2)0.0014 (17)0.0005 (16)0.0046 (16)
C50.019 (2)0.023 (2)0.0099 (19)0.0038 (17)0.0003 (16)0.0039 (16)
C60.017 (2)0.020 (2)0.012 (2)0.0016 (16)0.0024 (16)0.0019 (16)
C70.017 (2)0.018 (2)0.0115 (19)0.0026 (16)0.0020 (16)0.0017 (16)
C80.024 (2)0.026 (2)0.012 (2)0.0062 (18)0.0012 (17)0.0041 (17)
C90.016 (2)0.028 (2)0.015 (2)0.0119 (18)0.0013 (17)0.0022 (17)
C100.013 (2)0.040 (3)0.019 (2)0.0039 (19)0.0005 (17)0.0070 (19)
O110.0249 (16)0.0260 (16)0.0124 (15)0.0013 (13)0.0049 (12)0.0070 (12)
C120.026 (2)0.026 (2)0.020 (2)0.0035 (19)0.0027 (18)0.0083 (18)
O130.0235 (16)0.0185 (14)0.0110 (14)0.0055 (12)0.0084 (12)0.0013 (11)
C140.026 (2)0.016 (2)0.018 (2)0.0019 (17)0.0063 (18)0.0013 (16)
C150.018 (2)0.016 (2)0.032 (3)0.0025 (17)0.0063 (18)0.0036 (18)
O160.0247 (17)0.0199 (15)0.0252 (17)0.0025 (13)0.0003 (13)0.0011 (13)
O170.036 (2)0.0189 (17)0.095 (3)0.0076 (15)0.034 (2)0.0052 (18)
C180.042 (3)0.023 (3)0.111 (4)0.009 (2)0.045 (3)0.007 (3)
C190.045 (3)0.049 (4)0.178 (7)0.024 (3)0.047 (4)0.020 (4)
C200.065 (4)0.047 (4)0.125 (4)0.018 (3)0.067 (3)0.023 (3)
Cl210.0205 (5)0.0226 (5)0.0168 (5)0.0075 (4)0.0013 (4)0.0031 (4)
N220.0149 (18)0.0186 (17)0.0158 (18)0.0037 (14)0.0022 (14)0.0006 (14)
C230.024 (2)0.018 (2)0.016 (2)0.0053 (17)0.0012 (17)0.0012 (17)
C240.023 (2)0.0152 (19)0.016 (2)0.0005 (17)0.0018 (17)0.0020 (16)
C250.0131 (19)0.0181 (19)0.013 (2)0.0024 (16)0.0005 (15)0.0041 (16)
C260.015 (2)0.0165 (19)0.013 (2)0.0004 (16)0.0013 (16)0.0014 (16)
C270.018 (2)0.0157 (19)0.014 (2)0.0015 (16)0.0020 (16)0.0026 (16)
C280.0174 (18)0.0186 (15)0.0125 (18)0.0013 (12)0.0030 (14)0.0010 (12)
O290.0297 (17)0.0234 (14)0.0165 (15)0.0021 (12)0.0035 (13)0.0067 (11)
O300.0302 (17)0.0320 (15)0.0113 (15)0.0110 (13)0.0095 (13)0.0017 (12)
Geometric parameters (Å, º) top
Pt1—C22.014 (4)C14—H14B0.9900
Pt1—C92.146 (4)C14—C151.517 (6)
Pt1—C102.118 (4)C15—O161.191 (5)
Pt1—Cl212.3345 (10)C15—O171.327 (5)
Pt1—N222.164 (3)O17—C181.480 (7)
C2—C31.396 (6)C18—H181.0000
C2—C71.409 (5)C18—C191.517 (8)
C3—C41.401 (6)C18—C201.503 (11)
C3—C81.502 (5)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C4—C51.393 (6)C19—H19C0.9800
C5—C61.401 (6)C20—H20A0.9800
C5—O111.373 (5)C20—H20B0.9800
C6—C71.393 (5)C20—H20C0.9800
C6—O131.390 (5)N22—C231.355 (5)
C7—H70.9500N22—C271.346 (5)
C8—H8A0.9900C23—H230.9500
C8—H8B0.9900C23—C241.379 (6)
C8—C91.523 (6)C24—H240.9500
C9—H90.9500C24—C251.396 (5)
C9—C101.376 (6)C25—C261.391 (5)
C10—H10A0.9500C25—C281.504 (5)
C10—H10B0.9500C26—H260.9500
O11—C121.431 (5)C26—C271.385 (5)
C12—H12A0.9800C27—H270.9500
C12—H12B0.9800C28—O291.206 (5)
C12—H12C0.9800C28—O301.318 (5)
O13—C141.424 (5)O30—H300.8400
C14—H14A0.9900
C2—Pt1—C981.33 (16)H12B—C12—H12C109.5
C2—Pt1—C1087.62 (17)C6—O13—C14118.0 (3)
C2—Pt1—Cl2193.86 (12)O13—C14—H14A109.1
C2—Pt1—N22176.68 (13)O13—C14—H14B109.1
C9—Pt1—Cl21163.54 (12)O13—C14—C15112.5 (3)
C9—Pt1—N2295.48 (14)H14A—C14—H14B107.8
C10—Pt1—C937.64 (16)C15—C14—H14A109.1
C10—Pt1—Cl21158.51 (13)C15—C14—H14B109.1
C10—Pt1—N2290.39 (15)O16—C15—C14126.1 (4)
N22—Pt1—Cl2188.97 (9)O16—C15—O17125.2 (5)
C3—C2—Pt1115.9 (3)O17—C15—C14108.7 (4)
C3—C2—C7118.8 (4)C15—O17—C18117.4 (4)
C7—C2—Pt1125.3 (3)O17—C18—H18109.1
C2—C3—C4121.2 (4)O17—C18—C19105.4 (5)
C2—C3—C8117.6 (4)O17—C18—C20108.8 (5)
C4—C3—C8121.0 (4)C19—C18—H18109.1
C3—C4—H4120.2C20—C18—H18109.1
C5—C4—C3119.7 (4)C20—C18—C19115.0 (6)
C5—C4—H4120.2C18—C19—H19A109.5
C4—C5—C6119.5 (4)C18—C19—H19B109.5
O11—C5—C4125.2 (4)C18—C19—H19C109.5
O11—C5—C6115.2 (4)H19A—C19—H19B109.5
C7—C6—C5120.8 (4)H19A—C19—H19C109.5
O13—C6—C5113.7 (3)H19B—C19—H19C109.5
O13—C6—C7125.6 (4)C18—C20—H20A109.5
C2—C7—H7120.0C18—C20—H20B109.5
C6—C7—C2120.0 (4)C18—C20—H20C109.5
C6—C7—H7120.0H20A—C20—H20B109.5
C3—C8—H8A109.7H20A—C20—H20C109.5
C3—C8—H8B109.7H20B—C20—H20C109.5
C3—C8—C9109.9 (3)C23—N22—Pt1121.5 (3)
H8A—C8—H8B108.2C27—N22—Pt1120.7 (3)
C9—C8—H8A109.7C27—N22—C23117.8 (3)
C9—C8—H8B109.7N22—C23—H23118.8
Pt1—C9—H990.7N22—C23—C24122.4 (4)
C8—C9—Pt1109.2 (3)C24—C23—H23118.8
C8—C9—H9119.1C23—C24—H24120.4
C10—C9—Pt170.1 (2)C23—C24—C25119.3 (4)
C10—C9—C8121.8 (4)C25—C24—H24120.4
C10—C9—H9119.1C24—C25—C28120.4 (4)
Pt1—C10—H10A107.8C26—C25—C24118.6 (4)
Pt1—C10—H10B89.9C26—C25—C28120.8 (4)
C9—C10—Pt172.3 (2)C25—C26—H26120.7
C9—C10—H10A120.0C27—C26—C25118.6 (4)
C9—C10—H10B120.0C27—C26—H26120.7
H10A—C10—H10B120.0N22—C27—C26123.2 (4)
C5—O11—C12117.9 (3)N22—C27—H27118.4
O11—C12—H12A109.5C26—C27—H27118.4
O11—C12—H12B109.5O29—C28—C25122.4 (4)
O11—C12—H12C109.5O29—C28—O30125.7 (4)
H12A—C12—H12B109.5O30—C28—C25112.0 (3)
H12A—C12—H12C109.5C28—O30—H30109.5
Pt1—C2—C3—C4177.9 (3)C8—C3—C4—C5175.9 (4)
Pt1—C2—C3—C81.8 (5)C8—C9—C10—Pt1100.7 (4)
Pt1—C2—C7—C6177.7 (3)O11—C5—C6—C7178.3 (4)
Pt1—N22—C23—C24179.1 (3)O11—C5—C6—O132.4 (5)
Pt1—N22—C27—C26178.8 (3)O13—C6—C7—C2179.3 (4)
C2—C3—C4—C50.1 (6)O13—C14—C15—O1610.9 (6)
C2—C3—C8—C919.4 (5)O13—C14—C15—O17166.5 (4)
C3—C2—C7—C60.0 (6)C14—C15—O17—C18179.9 (5)
C3—C4—C5—C60.1 (6)C15—O17—C18—C19146.0 (5)
C3—C4—C5—O11178.1 (4)C15—O17—C18—C2090.2 (6)
C3—C8—C9—Pt126.1 (4)O16—C15—O17—C182.7 (8)
C3—C8—C9—C1051.9 (5)N22—C23—C24—C252.6 (7)
C4—C3—C8—C9164.5 (4)C23—N22—C27—C260.2 (6)
C4—C5—C6—C70.1 (6)C23—C24—C25—C261.2 (6)
C4—C5—C6—O13179.5 (4)C23—C24—C25—C28176.6 (4)
C4—C5—O11—C121.1 (6)C24—C25—C26—C270.8 (6)
C5—C6—C7—C20.1 (6)C24—C25—C28—O2921.8 (6)
C5—C6—O13—C14176.9 (4)C24—C25—C28—O30159.1 (4)
C6—C5—O11—C12179.1 (4)C25—C26—C27—N221.6 (6)
C6—O13—C14—C1573.7 (4)C26—C25—C28—O29153.5 (4)
C7—C2—C3—C40.0 (6)C26—C25—C28—O3025.6 (6)
C7—C2—C3—C8176.1 (4)C27—N22—C23—C241.9 (6)
C7—C6—O13—C142.4 (6)C28—C25—C26—C27174.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O30—H30···O13i0.842.102.932 (4)170
C10—H10A···O16ii0.952.413.317 (5)159
C12—H12A···O16iii0.982.513.415 (5)154
C14—H14A···O29iv0.992.463.268 (5)139
C14—H14B···O29v0.992.463.178 (5)129
C26—H26···O16vi0.952.433.336 (5)159
Symmetry codes: (i) x1, y, z1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y+2, z; (vi) x, y+1, z.
Pt bond distances (Å) for Pt complexes with the Pt atom coordinated to a Cl atom, N atom and allylaryl ligand found in the Cambridge Structural Database top
Caryl is the aryl C atom and Cg the centroid of the CC group of the coordinating allylaryl ligand.
CSD refcodePt—ClPt—NPt—CarylPt—CgReference
EWAVOP2.3232.1071.9952.011Nguyen Thi Thanh et al. (2016)
GOYJEL2.3242.1772.0012.011Da et al. (2015)
OFUREN2.3192.1602.1092.057Da et al. (2008)
OFUREN2.3402.1871.8431.995Da et al. (2008)
SOMNUF2.3292.1882.0152.009Mangwala Kimpende et al. (2014)
TALTIM2.3212.1432.0022.009Le Thi Hong et al. (2017)
VEZHOA2.3322.1402.0062.010Chi et al. (2018)
VEZJIW2.3142.1421.9912.007Chi et al. (2018)
VEZJIW2.3182.1381.9992.017Chi et al. (2018)
VEZJOC2.3172.1992.0022.015Chi et al. (2018)
 

Funding information

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationBigioni, M., Ganis, P., Panunzi, A., Ruffo, F., Salvatore, C. & Vito, A. (2000). Eur. J. Inorg. Chem. pp. 1717–1721.  CrossRef Google Scholar
First citationChi, N. T. T., Da, T. T., Ha, N. V. & Dinh, N. H. (2017). J. Coord. Chem. 70, 1008–1019.  Google Scholar
First citationChi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). Polyhedron, 151, 330–337.  Web of Science CSD CrossRef CAS Google Scholar
First citationCucciolito, M. E., D'Amora, A., De Feo, G., Ferraro, G., Giorgio, A., Petruk, G., Monti, D. M., Merlino, A. & Ruffo, F. (2018). Inorg. Chem. 57, 3133–3143.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDa, T. T., Chi, N. T. T., Van Meervelt, L., Kimpende, P. M. & Dinh, N. H. (2015). Polyhedron, 85, 104–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationDa, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131–142.  Web of Science CrossRef CAS Google Scholar
First citationDa, T. T., Kim, Y. M., Chi, N. T. T., Chien, L. X., Minh, N. V. & Dinh, N. H. (2008). Organometallics, 27, 3611–3613.  Web of Science CSD CrossRef CAS Google Scholar
First citationDodoff, N. I., Lalia-Kantouri, M., Gdaniec, M., Czapik, A., Vassilev, N. G., Markova, L. S. & Apostolova, M. D. (2012). J. Coord. Chem. 65, 688–704.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJohnstone, T. C., Suntharalingam, K. & Lippard, S. J. (2016). Chem. Rev. 116, 3436–3486.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLe Thi Hong, H., Nguyen Thu, T., Nguyen, H. & Van Meervelt, L. (2017). Acta Cryst. E73, 573–578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLikhitwitayawuid, K., Angerhofer, C. K., Cordell, G. A., Pezzuto, J. M. & Ruangrungsi, N. (1993). J. Nat. Prod. 56, 30–38.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMangwala Kimpende, P., Thi Da, T., Nguyen Huu, D. & Van Meervelt, L. (2014). Acta Cryst. E70, 435–437.  CSD CrossRef IUCr Journals Google Scholar
First citationNguyen Thi Thanh, C., Pham Van, T., Le Thi Hong, H. & Van Meervelt, L. (2016). Acta Cryst. C72, 758–764.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). J. Natl Cancer Inst. 82, 1107–1112.  CrossRef CAS PubMed Web of Science Google Scholar
First citationThong, P. V. & Chi, N. T. T. (2014). J. Chem (Vietnam) 52, 381–386.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds