research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Reductive cleavage of N,N′-di-tert-butyl­carbodi­imide generates tert-butyl­cyanamide ligands, (Me3CNCN), that bind potassium both end-on and side-on in the same single crystal

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of California, Irvine, CA 92697-2025, USA
*Correspondence e-mail: wevans@uci.edu

Edited by J. T. Mague, Tulane University, USA (Received 11 May 2020; accepted 1 June 2020; online 9 June 2020)

N,N′-Di-tert-butyl­carbodi­imide, Me3CN=C=NCMe3, undergoes reductive cleavage in the presence of the GdII complex, [K(18-crown-6)2][GdII(NR2)3] (R = SiMe3), to form a new type of ligand, the tert-butyl­cyanamide anion, (Me3CNCN). This new ligand can bind metals with one or two donor atoms as demonstrated by the isolation of a single crystal containing potassium salts of both end-on and side-on bound tert-butyl­cyanamide anions, (Me3CNCN). The crystal contains [K(18-crown-6)(H2O)][NCNCMe3-kN], in which one (tBuNCN) anion is coordinated end-on to potassium ligated by 18-crown-6 and water, as well as [K(18-crown-6)][η2-NCNCMe3], in which an 18-crown-6 potassium is coordinated side-on to the terminal N—C linkage. This single crystal also contains one equivalent of 1,3-di-tert-butyl urea, (C9H20N2O), which is involved in hydrogen bonding that may stabilize the whole assembly, namely, aqua­(tert-butyl­cyanamidato)(1,4,7,10,13,16-hexa­oxa­cyclo­octa­deca­ne)potas­sium(I)–(tert-butyl­cyanamidato)(1,4,7,10,13,16-hexa­oxa­cyclo­octa­deca­ne)potas­sium(I)–N,N′-di-tert-butyl­carbodi­imide (1/1/1) [K(C5H9N2)(C12H24O6)]·[K(C5H9N2)(C12H24O6)(H2O)]·C9H20N2.

1. Chemical context

A crystal containing two different potassium 18-crown-6 salts of tert-butyl­cyanamide anions, (Me3CNCN), and one equivalent of 1,3-di-tert-butyl urea, Fig. 1[link], was isolated during the reduction of incompletely dried N,N′-di-tert-butyl­carbodi­imide with [K(18-crown-6)2][GdII(NR2)3]. A reductive N—C bond cleavage evidently occurred to remove a tert-butyl group from the starting carbodi­imide forming an (Me3CNCN) tert-butyl­cyanamide anion that has not previously been observed as a ligand. This reaction could be attributed to the presence of the highly reducing GdII ion (Ryan et al., 2018[Ryan, A. J., Darago, L. E., Balasubramani, S. G., Chen, G. P., Ziller, J. W., Furche, F., Long, J. R. & Evans, W. J. (2018). Chem. Eur. J. 24, 7702-7709.], 2020[Ryan, A. J., Ziller, J. W. & Evans, W. J. (2020). Chem. Sci. 11, 2006-2014.]). The urea component of the crystal is a formal hydrolysis product of di-tert-butyl­carbodi­imide. The presence of water in this reaction system is evident from the fact that one of the 18-crown-6 counter-cations is aqua­ted. The reduction of carbodi­imides with SmII bis­(tri­methyl­sil­yl)amides, which are not as reducing as GdII, has been known to form oxalamidinates and amidinates (Deacon et al., 2007[Deacon, G. B., Forsyth, C. M., Junk, C. P. & Wang, J. (2007). Inorg. Chem. 46, 10022-10030.]).

[Scheme 1]
[Figure 1]
Figure 1
The reaction scheme.

The presence of both end-on and side-on bound tert-butyl­cyanamide anions in the same single crystal suggests that these two forms of this ligand are similar in energy. Nature did not pick one over the other during the crystallization process. Hence, this could be a versatile ligand depending on the coordination environment of the cation. In addition, the presence of urea in the single crystal with its hydrogen-bonding connections suggests that this could be a valuable addition to crystallizations to construct complicated assemblies, as found here.

2. Structural commentary

An ORTEP diagram of the three components of the crystal is shown in Fig. 2[link]. The two distinct (Me3CNCN) anions have similar metrical parameters as shown in Table 1[link]. Both anions exhibit N—C—N angles approaching linear, N1—C13—N2 = 176.4 (3)° and N3—C30—N4 = 173.8 (3)°. The (terminal N)—C distances, N3—C30 = 1.185 (4) Å and N1—C13 = 1.179 (3) Å, are in between the 1.13–1.15 Å triple-bond range and the 1.27–1.34 Å double-bond range (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The Me3C—N bonds are also similar, C30—N4 = 1.267 (4) Å and C13—N2 = 1.294 (3) Å, and are in the double-bond range. The C—N—CCMe3 angle is 115.3 (2)° for C13—N2—C14 and 120.4 (3)° for C30—N4—C31.

Table 1
Selected geometric parameters (Å, °)

End-on (Me3CNCN)1− component Side-on (Me3CNCN)1− component
N1—C13 1.179 (3) N3—C30 1.185 (4)
N2—C13 1.294 (3) N4—C30 1.267 (4)
N2—C14 1.487 (3) N4—C31 1.457 (4)
C13—N2—C14 115.3 (2) C30—N4—C31 120.4 (3)
N1—C13—N2 176.4 (3) N3—C30—N4 173.8 (3)
C13—N1—K1 132.7 (2) C30—N3—K2 104.2 (2)
K1—N1 3.027 (2) K2—N3 2.690 (2)
    K2—C30 3.197 (3)
Urea Component      
O14—C35 1.233 (3)    
N5—C35 1.374 (3) N5—C36 1.477 (3)
N6—C35 1.367 (3) N6—C40 1.479 (3)
N6—C35—N5 113.0 (2)    
C35—N5—C36 122.5 (2) C35—N6—C40 123.3 (2)
[Figure 2]
Figure 2
ORTEP representation of tert-butyl­cyanamide anions bound side-on and end-on and 1,3-di-tert-butyl urea, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Although the basic structure of the anions is similar, their inter­actions with the potassium counter-cations are different. The K1—N1 distance of 3.027 (2) Å in the component with an end-on bound anion is considerably longer than the 2.699 (2) Å K2—N3 distance of the side-on form. The 3.197 (3) Å K2—C30 distance in the side-on component is considerably longer than either of these K—N distances.

The co-crystallized di-tert-butyl urea has metrical parameters identical within experimental error to the three structures in the literature (Gel'bol'dt et al., 2003[Gel'bol'dt, V. O., Filinchuk, E. & Koroeva, L. V. (2003). Coord. Chem. 29, 880.], 2005[Gel'bol'dt, V. O., Koroeva, L. V. & Filinchuk, F. (2005). Coord. Chem. 31, 818.]; So et al., 2014[So, Y.-M., Wang, G.-C., Li, Y., Sung, H. H.-Y., Williams, I. D., Lin, Z. & Leung, W.-H. (2014). Angew. Chem. Int. Ed. 53, 1626-1629.]).

3. Supra­molecular features

As shown in Fig. 3[link], the three components of the crystal are hydrogen bonded (Table 2[link]). One hydrogen of the water mol­ecule in the [K(18-crown-6)(H2O)]1+ cation is oriented toward N3, the terminal nitro­gen of the side-on bound cyanamide anion, at distances of 2.26 (3) and 2.29 (3) Å. Both N—H groups on the urea mol­ecule are oriented toward N2, the inter­nal nitro­gen in the end-on bound cyanamide anion, at distances of 2.41 and 2.36 Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯N1 0.81 (4) 2.11 (4) 2.862 (3) 154 (3)
O7—H7B⋯N3 0.95 (4) 1.85 (4) 2.788 (4) 173 (4)
N5—H5⋯N2 0.80 (3) 2.26 (3) 3.024 (3) 162 (3)
N6—H6⋯N2 0.82 (3) 2.29 (3) 3.071 (3) 160 (3)
[Figure 3]
Figure 3
ORTEP representation of tert-butyl­cyanamide anions bound side-on and end-on and 1,3-di-tert-butyl urea, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for (Me3CNCN) anions found no such structures. Three structures of free 1,3-di-tert-butyl urea are in the literature. Two structures of the pure compound differ only in the habit of the crystal (Gel'bol'dt et al., 2003[Gel'bol'dt, V. O., Filinchuk, E. & Koroeva, L. V. (2003). Coord. Chem. 29, 880.], 2005[Gel'bol'dt, V. O., Koroeva, L. V. & Filinchuk, F. (2005). Coord. Chem. 31, 818.]) and one structure has the urea co-crystallized with [Ce(LOEt)2(CO3)]·MeC(O)NH2 (LOEt = [Co(η5-C5H5)-{P(O)(OEt)2}3] ) (So et al., 2014[So, Y.-M., Wang, G.-C., Li, Y., Sung, H. H.-Y., Williams, I. D., Lin, Z. & Leung, W.-H. (2014). Angew. Chem. Int. Ed. 53, 1626-1629.]).

5. Synthesis and crystallization

N,N′-Di-tert-butyl­carbodi­imide was added dropwise to a dark-blue solution of [K(18-crown-6)2][GdII(NR2)3] (R = SiMe3) (30 mg, 0.026 mmol) in diethyl ether (5 mL) at 238 K. The solution changed from dark blue to colorless after a few minutes. Methyl­cyclo­hexane was layered into the solution and the solution was kept at 238 K, but no crystals were obtained. Solvent was removed to produce a white solid that was dissolved in toluene and placed in a vapor diffusion set up with hexa­nes. After 5 days, small colorless crystals were collected. [K(18-crown-6)2][GdII(NR2)3] was synthesized according to a literature procedure (Ryan et al., 2020[Ryan, A. J., Ziller, J. W. & Evans, W. J. (2020). Chem. Sci. 11, 2006-2014.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions and refined as riding with C—H = 0.98–0.99 and O—H = 0.91 Å and Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula [K(C5H9N2)(C12H24O6)]·[K(C5H9N2)(C12H24O6(H2O)]·C9H20N2O
Mr 991.39
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 88
a, b, c (Å) 21.1326 (10), 8.5470 (4), 29.9188 (14)
V3) 5403.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.47 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.700, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 42763, 11018, 9556
Rint 0.041
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.065, 1.02
No. of reflections 11018
No. of parameters 614
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.19
Absolute structure Flack x determined using 3971 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.015 (13)
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Aqua(tert-butylcyanamidato)(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(I)–(tert-butylcyanamidato)(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(I)–N,N'-di-tert-butylcarbodiimide (1/1/1) top
Crystal data top
[K(C5H9N2)(C12H24O6)]·[K(C5H9N2)(C12H24O6(H2O)]·C9H20N2ODx = 1.219 Mg m3
Mr = 991.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9917 reflections
a = 21.1326 (10) Åθ = 2.4–26.2°
b = 8.5470 (4) ŵ = 0.24 mm1
c = 29.9188 (14) ÅT = 88 K
V = 5403.9 (4) Å3Prism, colorless
Z = 40.47 × 0.15 × 0.14 mm
F(000) = 2152
Data collection top
Bruker SMART APEXII CCD
diffractometer
9556 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
φ and ω scansθmax = 26.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2626
Tmin = 0.700, Tmax = 0.745k = 1010
42763 measured reflectionsl = 3736
11018 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.3001P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
11018 reflectionsΔρmax = 0.19 e Å3
614 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack x determined using 3971 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A colorless crystal of approximate dimensions 0.140 x 0.150 x 0.474 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (45 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL4 program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups Pnma and Pna21. It was later determined that space group Pna21 was correct.

The structure was solved by direct methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms involved in hydrogen bonding were located from a difference-Fourier map and refined (x,y,z and Uiso). The remaining hydrogen atoms were included using a riding model.

Least-squares analysis yielded wR2 = 0.0649 and Goof = 1.017 for 614 variables refined against 11018 data (0.80 Å), R1 = 0.0326 for those 9556 data with I > 2.0sigma(I). The absolute structure was assigned by refinement of the Flack parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.50347 (2)0.28541 (6)0.48666 (2)0.01627 (12)
O10.43983 (8)0.5467 (2)0.44995 (6)0.0163 (4)
O20.48288 (8)0.3182 (2)0.39004 (6)0.0171 (4)
O30.53709 (8)0.0453 (2)0.42504 (6)0.0189 (4)
O40.50191 (8)0.0562 (2)0.51154 (6)0.0199 (4)
O50.45852 (9)0.1706 (2)0.57014 (6)0.0209 (4)
O60.40127 (8)0.4449 (2)0.53702 (6)0.0178 (4)
O70.61764 (9)0.4029 (3)0.46302 (9)0.0261 (5)
H7A0.6149 (16)0.453 (4)0.4860 (13)0.045 (11)*
H7B0.6279 (18)0.473 (5)0.4396 (13)0.061 (12)*
N10.57203 (11)0.5119 (3)0.54754 (8)0.0212 (5)
N20.63884 (10)0.4839 (2)0.61486 (7)0.0165 (5)
C10.42748 (12)0.5542 (3)0.40332 (9)0.0167 (6)
H1A0.42270.66460.39390.020*
H1B0.38770.49800.39630.020*
C20.48177 (13)0.4802 (3)0.37910 (9)0.0188 (6)
H2A0.47660.49370.34640.023*
H2B0.52200.53020.38820.023*
C30.53339 (12)0.2377 (3)0.36801 (10)0.0198 (6)
H3A0.57460.27820.37860.024*
H3B0.53070.25500.33530.024*
C40.52814 (12)0.0671 (3)0.37812 (9)0.0202 (6)
H4A0.48590.02790.36910.024*
H4B0.56070.00820.36130.024*
C50.53376 (14)0.1159 (3)0.43722 (10)0.0244 (7)
H5A0.56390.17750.41900.029*
H5B0.49060.15640.43170.029*
C60.54972 (12)0.1315 (3)0.48527 (11)0.0243 (6)
H6A0.55240.24360.49340.029*
H6B0.59140.08270.49120.029*
C70.51583 (14)0.0632 (3)0.55809 (10)0.0244 (7)
H7C0.55580.00700.56440.029*
H7D0.52100.17350.56750.029*
C80.46265 (14)0.0106 (3)0.58320 (10)0.0239 (7)
H8A0.42250.04400.57640.029*
H8B0.47040.00300.61580.029*
C90.41284 (13)0.2559 (3)0.59489 (10)0.0228 (7)
H9A0.42020.24170.62730.027*
H9B0.36980.21740.58780.027*
C100.41837 (13)0.4250 (3)0.58291 (9)0.0200 (6)
H10A0.39000.48810.60210.024*
H10B0.46240.46110.58770.024*
C110.40775 (12)0.6055 (3)0.52416 (9)0.0177 (6)
H11A0.45170.64100.52950.021*
H11B0.37900.67140.54230.021*
C120.39174 (12)0.6218 (3)0.47557 (9)0.0159 (6)
H12A0.35020.57270.46940.019*
H12B0.38920.73380.46740.019*
C130.60374 (12)0.4941 (3)0.57956 (9)0.0159 (6)
C140.64677 (12)0.3233 (3)0.63316 (9)0.0174 (6)
C150.69161 (14)0.3360 (3)0.67296 (10)0.0254 (7)
H15A0.73370.36710.66250.038*
H15B0.69440.23450.68810.038*
H15C0.67550.41470.69390.038*
C160.67458 (14)0.2138 (3)0.59801 (10)0.0243 (6)
H16A0.64760.21450.57130.036*
H16B0.67670.10730.61010.036*
H16C0.71720.24910.59000.036*
C170.58367 (13)0.2559 (3)0.64942 (11)0.0265 (7)
H17A0.56670.32200.67330.040*
H17B0.59040.14970.66080.040*
H17C0.55360.25280.62450.040*
K20.76503 (3)0.71665 (6)0.41341 (2)0.01671 (12)
O80.71779 (8)0.9403 (2)0.47080 (6)0.0179 (4)
O90.75617 (8)1.0449 (2)0.38524 (6)0.0187 (4)
O100.80020 (9)0.8080 (2)0.32776 (6)0.0207 (4)
O110.85430 (8)0.5369 (2)0.36352 (6)0.0175 (4)
O120.81650 (8)0.4450 (2)0.45097 (6)0.0170 (4)
O130.77067 (8)0.6711 (2)0.51103 (6)0.0168 (4)
N30.65318 (12)0.5890 (3)0.39073 (9)0.0342 (6)
N40.61560 (13)0.7606 (3)0.33083 (9)0.0340 (6)
C180.71782 (13)1.1022 (3)0.45834 (10)0.0225 (6)
H18A0.75951.14960.46520.027*
H18B0.68501.15930.47540.027*
C190.70471 (13)1.1137 (3)0.40962 (11)0.0239 (6)
H19A0.66481.05840.40250.029*
H19B0.69981.22490.40100.029*
C200.74328 (13)1.0441 (3)0.33832 (10)0.0230 (7)
H20A0.73781.15260.32740.028*
H20B0.70370.98570.33230.028*
C210.79751 (14)0.9677 (3)0.31456 (9)0.0231 (7)
H21A0.79140.97520.28180.028*
H21B0.83761.02110.32240.028*
C220.84643 (14)0.7199 (4)0.30375 (10)0.0259 (7)
H22A0.88940.75840.31100.031*
H22B0.83960.73140.27120.031*
C230.84004 (15)0.5522 (3)0.31702 (9)0.0257 (7)
H23A0.79640.51560.31120.031*
H23B0.86950.48700.29920.031*
C240.84914 (13)0.3786 (3)0.37773 (9)0.0198 (6)
H24A0.87840.31230.36020.024*
H24B0.80550.34050.37260.024*
C250.86499 (12)0.3674 (3)0.42617 (9)0.0182 (6)
H25A0.86760.25620.43530.022*
H25B0.90640.41730.43200.022*
C260.82601 (12)0.4338 (3)0.49793 (9)0.0184 (6)
H26A0.86530.48920.50660.022*
H26B0.83000.32280.50690.022*
C270.77003 (13)0.5070 (3)0.52049 (9)0.0183 (6)
H27A0.73040.45950.50920.022*
H27B0.77230.48950.55320.022*
C280.71563 (12)0.7480 (3)0.52768 (9)0.0177 (6)
H28A0.71190.73090.56030.021*
H28B0.67740.70500.51310.021*
C290.72106 (12)0.9189 (3)0.51804 (9)0.0194 (6)
H29A0.68620.97640.53280.023*
H29B0.76180.95950.52960.023*
C300.63535 (13)0.6661 (4)0.36033 (10)0.0255 (7)
C310.60600 (13)0.7081 (3)0.28500 (10)0.0228 (6)
C320.64918 (17)0.8036 (4)0.25414 (12)0.0444 (9)
H32A0.64040.91530.25800.067*
H32B0.64130.77390.22300.067*
H32C0.69350.78250.26160.067*
C330.53691 (16)0.7387 (4)0.27238 (13)0.0437 (9)
H33A0.50930.66960.28980.066*
H33B0.53090.71830.24040.066*
H33C0.52630.84800.27890.066*
C340.62093 (15)0.5333 (4)0.27866 (11)0.0326 (8)
H34A0.66550.51410.28570.049*
H34B0.61260.50340.24760.049*
H34C0.59410.47110.29860.049*
O140.66354 (8)0.9028 (2)0.71848 (6)0.0233 (4)
N50.59890 (10)0.7537 (3)0.67383 (8)0.0183 (5)
H50.6009 (13)0.681 (3)0.6572 (10)0.017 (8)*
N60.70546 (10)0.7594 (3)0.66096 (8)0.0175 (5)
H60.6967 (14)0.683 (4)0.6455 (10)0.026 (9)*
C350.65670 (12)0.8105 (3)0.68721 (9)0.0172 (6)
C360.54397 (12)0.7438 (3)0.70424 (9)0.0166 (6)
C370.56059 (13)0.6494 (3)0.74609 (9)0.0227 (6)
H37A0.57560.54530.73730.034*
H37B0.52290.63880.76490.034*
H37C0.59390.70360.76280.034*
C380.52015 (13)0.9054 (3)0.71749 (10)0.0221 (6)
H38A0.55320.96060.73410.033*
H38B0.48240.89460.73630.033*
H38C0.50940.96490.69050.033*
C390.49220 (12)0.6598 (3)0.67763 (10)0.0212 (6)
H39A0.50720.55560.66890.032*
H39B0.48210.72040.65080.032*
H39C0.45420.64950.69620.032*
C400.77287 (11)0.7822 (3)0.67250 (9)0.0167 (6)
C410.78957 (13)0.9557 (3)0.67113 (10)0.0222 (6)
H41A0.77930.99820.64160.033*
H41B0.83490.96890.67690.033*
H41C0.76531.01150.69400.033*
C420.78774 (13)0.7138 (3)0.71858 (9)0.0233 (6)
H42A0.76240.76750.74130.035*
H42B0.83280.72810.72520.035*
H42C0.77760.60190.71880.035*
C430.81127 (13)0.6953 (3)0.63716 (10)0.0239 (7)
H43A0.79930.58450.63710.036*
H43B0.85650.70490.64400.036*
H43C0.80270.74060.60770.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0166 (3)0.0147 (3)0.0174 (3)0.0007 (2)0.0000 (2)0.0001 (3)
O10.0146 (9)0.0188 (10)0.0154 (10)0.0031 (8)0.0010 (7)0.0010 (8)
O20.0168 (9)0.0133 (10)0.0213 (10)0.0009 (8)0.0042 (8)0.0003 (8)
O30.0226 (10)0.0115 (9)0.0225 (11)0.0006 (8)0.0006 (8)0.0018 (8)
O40.0190 (10)0.0175 (10)0.0232 (11)0.0026 (8)0.0030 (8)0.0015 (8)
O50.0255 (10)0.0175 (10)0.0198 (11)0.0021 (8)0.0018 (8)0.0023 (8)
O60.0205 (9)0.0164 (10)0.0165 (10)0.0008 (8)0.0012 (8)0.0003 (8)
O70.0275 (11)0.0238 (12)0.0269 (13)0.0030 (9)0.0043 (10)0.0049 (10)
N10.0233 (12)0.0190 (13)0.0214 (13)0.0020 (10)0.0021 (10)0.0034 (10)
N20.0216 (12)0.0129 (12)0.0151 (12)0.0006 (9)0.0028 (10)0.0000 (9)
C10.0191 (13)0.0139 (13)0.0170 (15)0.0002 (11)0.0045 (11)0.0023 (11)
C20.0230 (14)0.0182 (15)0.0151 (15)0.0034 (12)0.0022 (11)0.0018 (12)
C30.0168 (13)0.0260 (16)0.0167 (14)0.0010 (12)0.0024 (11)0.0025 (12)
C40.0151 (13)0.0216 (15)0.0239 (16)0.0008 (11)0.0016 (12)0.0055 (12)
C50.0253 (16)0.0137 (15)0.0341 (18)0.0007 (12)0.0104 (13)0.0020 (13)
C60.0173 (13)0.0145 (14)0.0411 (18)0.0049 (11)0.0045 (14)0.0055 (14)
C70.0274 (16)0.0165 (15)0.0294 (18)0.0044 (12)0.0120 (13)0.0058 (12)
C80.0337 (17)0.0178 (15)0.0203 (16)0.0055 (13)0.0080 (13)0.0063 (12)
C90.0250 (15)0.0291 (17)0.0145 (15)0.0025 (13)0.0018 (12)0.0018 (12)
C100.0229 (15)0.0254 (16)0.0118 (14)0.0019 (12)0.0013 (12)0.0038 (12)
C110.0180 (13)0.0141 (14)0.0210 (15)0.0016 (11)0.0023 (11)0.0018 (11)
C120.0147 (12)0.0122 (13)0.0209 (15)0.0028 (10)0.0007 (11)0.0018 (11)
C130.0178 (13)0.0099 (13)0.0200 (15)0.0020 (10)0.0061 (12)0.0008 (11)
C140.0201 (14)0.0163 (14)0.0157 (14)0.0023 (11)0.0012 (11)0.0010 (11)
C150.0347 (16)0.0190 (15)0.0225 (16)0.0037 (13)0.0059 (13)0.0006 (12)
C160.0318 (16)0.0193 (15)0.0218 (16)0.0067 (13)0.0008 (12)0.0016 (13)
C170.0264 (15)0.0203 (16)0.0326 (18)0.0003 (12)0.0019 (13)0.0082 (13)
K20.0175 (3)0.0149 (3)0.0178 (3)0.0014 (2)0.0012 (2)0.0003 (3)
O80.0219 (9)0.0121 (9)0.0197 (10)0.0001 (8)0.0014 (8)0.0007 (8)
O90.0168 (9)0.0179 (10)0.0213 (11)0.0011 (8)0.0021 (8)0.0016 (8)
O100.0224 (10)0.0187 (11)0.0210 (11)0.0023 (8)0.0020 (8)0.0045 (8)
O110.0212 (9)0.0164 (10)0.0150 (10)0.0014 (8)0.0001 (8)0.0018 (8)
O120.0172 (9)0.0179 (10)0.0158 (10)0.0054 (8)0.0001 (8)0.0005 (8)
O130.0156 (9)0.0141 (10)0.0207 (10)0.0008 (8)0.0040 (8)0.0009 (8)
N30.0282 (14)0.0487 (18)0.0258 (15)0.0134 (13)0.0058 (12)0.0018 (13)
N40.0456 (17)0.0273 (15)0.0290 (15)0.0095 (13)0.0031 (13)0.0055 (12)
C180.0224 (14)0.0120 (14)0.0332 (18)0.0029 (12)0.0071 (13)0.0024 (12)
C190.0182 (13)0.0171 (14)0.0364 (18)0.0029 (11)0.0034 (13)0.0056 (14)
C200.0251 (15)0.0194 (15)0.0246 (17)0.0014 (13)0.0095 (13)0.0053 (12)
C210.0284 (16)0.0234 (16)0.0175 (16)0.0044 (13)0.0045 (12)0.0062 (12)
C220.0297 (16)0.0324 (18)0.0156 (15)0.0060 (14)0.0046 (13)0.0000 (13)
C230.0340 (17)0.0291 (17)0.0139 (15)0.0069 (14)0.0030 (12)0.0050 (13)
C240.0210 (14)0.0140 (14)0.0246 (16)0.0024 (11)0.0016 (12)0.0035 (12)
C250.0157 (13)0.0149 (14)0.0241 (16)0.0034 (11)0.0018 (11)0.0000 (11)
C260.0211 (14)0.0149 (14)0.0193 (15)0.0016 (11)0.0053 (11)0.0016 (11)
C270.0223 (14)0.0146 (14)0.0180 (15)0.0034 (11)0.0014 (12)0.0032 (11)
C280.0152 (13)0.0244 (16)0.0136 (14)0.0010 (12)0.0026 (11)0.0029 (12)
C290.0143 (13)0.0240 (16)0.0198 (15)0.0020 (11)0.0011 (11)0.0069 (12)
C300.0178 (14)0.0332 (17)0.0255 (17)0.0078 (13)0.0050 (13)0.0113 (15)
C310.0226 (15)0.0220 (15)0.0237 (16)0.0038 (12)0.0001 (12)0.0036 (13)
C320.052 (2)0.050 (2)0.031 (2)0.0263 (18)0.0064 (17)0.0034 (17)
C330.0355 (19)0.039 (2)0.056 (2)0.0022 (16)0.0121 (17)0.0171 (18)
C340.0380 (18)0.0349 (19)0.0250 (17)0.0015 (15)0.0008 (14)0.0105 (14)
O140.0192 (10)0.0282 (11)0.0223 (11)0.0032 (9)0.0020 (8)0.0114 (9)
N50.0161 (12)0.0217 (13)0.0172 (13)0.0023 (10)0.0015 (9)0.0061 (11)
N60.0150 (11)0.0205 (13)0.0170 (13)0.0029 (10)0.0009 (9)0.0069 (10)
C350.0186 (13)0.0174 (14)0.0155 (14)0.0004 (11)0.0011 (11)0.0011 (11)
C360.0148 (13)0.0182 (15)0.0169 (14)0.0004 (11)0.0028 (11)0.0002 (11)
C370.0234 (15)0.0231 (16)0.0215 (16)0.0022 (12)0.0015 (12)0.0014 (13)
C380.0200 (14)0.0232 (16)0.0231 (15)0.0027 (12)0.0041 (12)0.0025 (12)
C390.0157 (13)0.0231 (15)0.0248 (16)0.0011 (11)0.0011 (12)0.0003 (13)
C400.0143 (12)0.0180 (13)0.0179 (14)0.0004 (11)0.0003 (11)0.0009 (12)
C410.0172 (14)0.0221 (16)0.0273 (17)0.0014 (12)0.0010 (12)0.0025 (13)
C420.0219 (14)0.0241 (16)0.0239 (16)0.0014 (13)0.0018 (12)0.0020 (13)
C430.0152 (13)0.0307 (18)0.0258 (16)0.0008 (12)0.0009 (12)0.0044 (13)
Geometric parameters (Å, º) top
K1—O72.707 (2)O11—C241.422 (3)
K1—O12.8291 (18)O11—C231.430 (3)
K1—O52.8465 (19)O12—C261.422 (3)
K1—O32.8490 (18)O12—C251.429 (3)
K1—O22.937 (2)O13—C281.426 (3)
K1—O62.9655 (19)O13—C271.431 (3)
K1—O43.0134 (19)N3—C301.185 (4)
K1—N13.027 (2)N4—C301.267 (4)
K1—H7A2.75 (4)N4—C311.457 (4)
O1—C11.421 (3)C18—C191.487 (4)
O1—C121.425 (3)C18—H18A0.9900
O2—C21.423 (3)C18—H18B0.9900
O2—C31.430 (3)C19—H19A0.9900
O3—C51.427 (3)C19—H19B0.9900
O3—C41.429 (3)C20—C211.498 (4)
O4—C71.425 (3)C20—H20A0.9900
O4—C61.433 (3)C20—H20B0.9900
O5—C91.419 (3)C21—H21A0.9900
O5—C81.425 (3)C21—H21B0.9900
O6—C101.430 (3)C22—C231.494 (4)
O6—C111.432 (3)C22—H22A0.9900
O7—H7A0.81 (4)C22—H22B0.9900
O7—H7B0.95 (4)C23—H23A0.9900
N1—C131.179 (3)C23—H23B0.9900
N2—C131.294 (3)C24—C251.491 (4)
N2—C141.487 (3)C24—H24A0.9900
C1—C21.497 (4)C24—H24B0.9900
C1—H1A0.9900C25—H25A0.9900
C1—H1B0.9900C25—H25B0.9900
C2—H2A0.9900C26—C271.499 (4)
C2—H2B0.9900C26—H26A0.9900
C3—C41.493 (4)C26—H26B0.9900
C3—H3A0.9900C27—H27A0.9900
C3—H3B0.9900C27—H27B0.9900
C4—H4A0.9900C28—C291.493 (4)
C4—H4B0.9900C28—H28A0.9900
C5—C61.483 (4)C28—H28B0.9900
C5—H5A0.9900C29—H29A0.9900
C5—H5B0.9900C29—H29B0.9900
C6—H6A0.9900C31—C331.531 (4)
C6—H6B0.9900C31—C321.533 (4)
C7—C81.492 (4)C31—C341.539 (4)
C7—H7C0.9900C32—H32A0.9800
C7—H7D0.9900C32—H32B0.9800
C8—H8A0.9900C32—H32C0.9800
C8—H8B0.9900C33—H33A0.9800
C9—C101.494 (4)C33—H33B0.9800
C9—H9A0.9900C33—H33C0.9800
C9—H9B0.9900C34—H34A0.9800
C10—H10A0.9900C34—H34B0.9800
C10—H10B0.9900C34—H34C0.9800
C11—C121.499 (4)O14—C351.233 (3)
C11—H11A0.9900N5—C351.374 (3)
C11—H11B0.9900N5—C361.477 (3)
C12—H12A0.9900N5—H50.80 (3)
C12—H12B0.9900N6—C351.367 (3)
C14—C161.525 (4)N6—C401.479 (3)
C14—C151.526 (4)N6—H60.82 (3)
C14—C171.532 (4)C36—C381.522 (4)
C15—H15A0.9800C36—C371.530 (4)
C15—H15B0.9800C36—C391.532 (4)
C15—H15C0.9800C37—H37A0.9800
C16—H16A0.9800C37—H37B0.9800
C16—H16B0.9800C37—H37C0.9800
C16—H16C0.9800C38—H38A0.9800
C17—H17A0.9800C38—H38B0.9800
C17—H17B0.9800C38—H38C0.9800
C17—H17C0.9800C39—H39A0.9800
K2—N32.690 (2)C39—H39B0.9800
K2—O82.7565 (18)C39—H39C0.9800
K2—O102.780 (2)C40—C411.525 (4)
K2—O122.7994 (18)C40—C431.526 (4)
K2—O112.8541 (18)C40—C421.530 (4)
K2—O92.9355 (19)C41—H41A0.9800
K2—O132.9489 (19)C41—H41B0.9800
K2—C303.197 (3)C41—H41C0.9800
O8—C291.427 (3)C42—H42A0.9800
O8—C181.433 (3)C42—H42B0.9800
O9—C201.430 (3)C42—H42C0.9800
O9—C191.435 (3)C43—H43A0.9800
O10—C211.422 (3)C43—H43B0.9800
O10—C221.427 (3)C43—H43C0.9800
O7—K1—O191.69 (6)O12—K2—C30114.87 (7)
O7—K1—O5130.88 (7)O11—K2—C30103.54 (6)
O1—K1—O5117.01 (6)O9—K2—C3086.08 (7)
O7—K1—O382.87 (6)O13—K2—C30120.58 (7)
O1—K1—O3115.85 (6)C29—O8—C18112.4 (2)
O5—K1—O3113.74 (5)C29—O8—K2120.69 (15)
O7—K1—O280.76 (6)C18—O8—K2120.49 (15)
O1—K1—O258.13 (5)C20—O9—C19110.9 (2)
O5—K1—O2147.89 (6)C20—O9—K2106.81 (15)
O3—K1—O257.90 (5)C19—O9—K2107.11 (15)
O7—K1—O6127.68 (6)C21—O10—C22113.2 (2)
O1—K1—O659.21 (5)C21—O10—K2120.98 (16)
O5—K1—O657.98 (5)C22—O10—K2119.93 (16)
O3—K1—O6147.32 (5)C24—O11—C23111.2 (2)
O2—K1—O6110.39 (5)C24—O11—K2107.76 (14)
O7—K1—O4115.70 (6)C23—O11—K2108.71 (15)
O1—K1—O4148.83 (5)C26—O12—C25112.37 (19)
O5—K1—O456.33 (5)C26—O12—K2120.47 (15)
O3—K1—O457.62 (5)C25—O12—K2117.09 (15)
O2—K1—O4109.51 (5)C28—O13—C27112.0 (2)
O6—K1—O4108.18 (5)C28—O13—K2104.60 (14)
O7—K1—N159.57 (7)C27—O13—K2108.97 (14)
O1—K1—N187.49 (6)C30—N3—K2104.3 (2)
O5—K1—N181.51 (6)C30—N4—C31120.3 (3)
O3—K1—N1136.95 (6)O8—C18—C19108.6 (2)
O2—K1—N1127.03 (6)O8—C18—H18A110.0
O6—K1—N175.45 (6)C19—C18—H18A110.0
O4—K1—N1118.45 (6)O8—C18—H18B110.0
O7—K1—H7A17.1 (8)C19—C18—H18B110.0
O1—K1—H7A89.6 (7)H18A—C18—H18B108.3
O5—K1—H7A118.1 (8)O9—C19—C18109.2 (2)
O3—K1—H7A99.0 (8)O9—C19—H19A109.8
O2—K1—H7A94.0 (8)C18—C19—H19A109.8
O6—K1—H7A112.8 (8)O9—C19—H19B109.8
O4—K1—H7A120.9 (7)C18—C19—H19B109.8
N1—K1—H7A42.5 (8)H19A—C19—H19B108.3
C1—O1—C12112.14 (19)O9—C20—C21108.8 (2)
C1—O1—K1120.27 (14)O9—C20—H20A109.9
C12—O1—K1119.04 (14)C21—C20—H20A109.9
C2—O2—C3112.0 (2)O9—C20—H20B109.9
C2—O2—K1108.77 (15)C21—C20—H20B109.9
C3—O2—K1107.29 (15)H20A—C20—H20B108.3
C5—O3—C4111.8 (2)O10—C21—C20108.5 (2)
C5—O3—K1121.19 (15)O10—C21—H21A110.0
C4—O3—K1120.57 (14)C20—C21—H21A110.0
C7—O4—C6111.8 (2)O10—C21—H21B110.0
C7—O4—K1106.26 (15)C20—C21—H21B110.0
C6—O4—K1106.97 (14)H21A—C21—H21B108.4
C9—O5—C8113.1 (2)O10—C22—C23108.1 (2)
C9—O5—K1120.52 (15)O10—C22—H22A110.1
C8—O5—K1123.45 (16)C23—C22—H22A110.1
C10—O6—C11110.36 (19)O10—C22—H22B110.1
C10—O6—K1104.42 (14)C23—C22—H22B110.1
C11—O6—K1103.56 (14)H22A—C22—H22B108.4
K1—O7—H7A85 (3)O11—C23—C22109.1 (2)
K1—O7—H7B129 (2)O11—C23—H23A109.9
H7A—O7—H7B108 (4)C22—C23—H23A109.9
C13—N1—K1132.71 (19)O11—C23—H23B109.9
C13—N2—C14115.3 (2)C22—C23—H23B109.9
O1—C1—C2108.4 (2)H23A—C23—H23B108.3
O1—C1—H1A110.0O11—C24—C25109.6 (2)
C2—C1—H1A110.0O11—C24—H24A109.8
O1—C1—H1B110.0C25—C24—H24A109.8
C2—C1—H1B110.0O11—C24—H24B109.8
H1A—C1—H1B108.4C25—C24—H24B109.8
O2—C2—C1108.2 (2)H24A—C24—H24B108.2
O2—C2—H2A110.1O12—C25—C24108.3 (2)
C1—C2—H2A110.1O12—C25—H25A110.0
O2—C2—H2B110.1C24—C25—H25A110.0
C1—C2—H2B110.1O12—C25—H25B110.0
H2A—C2—H2B108.4C24—C25—H25B110.0
O2—C3—C4108.7 (2)H25A—C25—H25B108.4
O2—C3—H3A110.0O12—C26—C27107.8 (2)
C4—C3—H3A110.0O12—C26—H26A110.2
O2—C3—H3B110.0C27—C26—H26A110.2
C4—C3—H3B110.0O12—C26—H26B110.2
H3A—C3—H3B108.3C27—C26—H26B110.2
O3—C4—C3108.5 (2)H26A—C26—H26B108.5
O3—C4—H4A110.0O13—C27—C26108.2 (2)
C3—C4—H4A110.0O13—C27—H27A110.1
O3—C4—H4B110.0C26—C27—H27A110.1
C3—C4—H4B110.0O13—C27—H27B110.1
H4A—C4—H4B108.4C26—C27—H27B110.1
O3—C5—C6108.9 (2)H27A—C27—H27B108.4
O3—C5—H5A109.9O13—C28—C29108.7 (2)
C6—C5—H5A109.9O13—C28—H28A109.9
O3—C5—H5B109.9C29—C28—H28A109.9
C6—C5—H5B109.9O13—C28—H28B109.9
H5A—C5—H5B108.3C29—C28—H28B109.9
O4—C6—C5109.3 (2)H28A—C28—H28B108.3
O4—C6—H6A109.8O8—C29—C28108.3 (2)
C5—C6—H6A109.8O8—C29—H29A110.0
O4—C6—H6B109.8C28—C29—H29A110.0
C5—C6—H6B109.8O8—C29—H29B110.0
H6A—C6—H6B108.3C28—C29—H29B110.0
O4—C7—C8108.6 (2)H29A—C29—H29B108.4
O4—C7—H7C110.0N3—C30—N4173.8 (3)
C8—C7—H7C110.0N3—C30—K254.62 (17)
O4—C7—H7D110.0N4—C30—K2122.8 (2)
C8—C7—H7D110.0N4—C31—C33108.2 (3)
H7C—C7—H7D108.3N4—C31—C32108.7 (2)
O5—C8—C7108.3 (2)C33—C31—C32109.2 (3)
O5—C8—H8A110.0N4—C31—C34112.8 (2)
C7—C8—H8A110.0C33—C31—C34109.3 (2)
O5—C8—H8B110.0C32—C31—C34108.7 (3)
C7—C8—H8B110.0C31—C32—H32A109.5
H8A—C8—H8B108.4C31—C32—H32B109.5
O5—C9—C10108.6 (2)H32A—C32—H32B109.5
O5—C9—H9A110.0C31—C32—H32C109.5
C10—C9—H9A110.0H32A—C32—H32C109.5
O5—C9—H9B110.0H32B—C32—H32C109.5
C10—C9—H9B110.0C31—C33—H33A109.5
H9A—C9—H9B108.3C31—C33—H33B109.5
O6—C10—C9109.0 (2)H33A—C33—H33B109.5
O6—C10—H10A109.9C31—C33—H33C109.5
C9—C10—H10A109.9H33A—C33—H33C109.5
O6—C10—H10B109.9H33B—C33—H33C109.5
C9—C10—H10B109.9C31—C34—H34A109.5
H10A—C10—H10B108.3C31—C34—H34B109.5
O6—C11—C12109.1 (2)H34A—C34—H34B109.5
O6—C11—H11A109.9C31—C34—H34C109.5
C12—C11—H11A109.9H34A—C34—H34C109.5
O6—C11—H11B109.9H34B—C34—H34C109.5
C12—C11—H11B109.9C35—N5—C36122.6 (2)
H11A—C11—H11B108.3C35—N5—H5114 (2)
O1—C12—C11108.6 (2)C36—N5—H5112 (2)
O1—C12—H12A110.0C35—N6—C40123.4 (2)
C11—C12—H12A110.0C35—N6—H6114 (2)
O1—C12—H12B110.0C40—N6—H6117 (2)
C11—C12—H12B110.0O14—C35—N6123.5 (2)
H12A—C12—H12B108.4O14—C35—N5123.5 (2)
N1—C13—N2176.4 (3)N6—C35—N5113.0 (2)
N2—C14—C16110.9 (2)N5—C36—C38111.6 (2)
N2—C14—C15106.9 (2)N5—C36—C37110.7 (2)
C16—C14—C15110.0 (2)C38—C36—C37110.0 (2)
N2—C14—C17111.5 (2)N5—C36—C39105.5 (2)
C16—C14—C17108.9 (2)C38—C36—C39108.9 (2)
C15—C14—C17108.6 (2)C37—C36—C39110.0 (2)
C14—C15—H15A109.5C36—C37—H37A109.5
C14—C15—H15B109.5C36—C37—H37B109.5
H15A—C15—H15B109.5H37A—C37—H37B109.5
C14—C15—H15C109.5C36—C37—H37C109.5
H15A—C15—H15C109.5H37A—C37—H37C109.5
H15B—C15—H15C109.5H37B—C37—H37C109.5
C14—C16—H16A109.5C36—C38—H38A109.5
C14—C16—H16B109.5C36—C38—H38B109.5
H16A—C16—H16B109.5H38A—C38—H38B109.5
C14—C16—H16C109.5C36—C38—H38C109.5
H16A—C16—H16C109.5H38A—C38—H38C109.5
H16B—C16—H16C109.5H38B—C38—H38C109.5
C14—C17—H17A109.5C36—C39—H39A109.5
C14—C17—H17B109.5C36—C39—H39B109.5
H17A—C17—H17B109.5H39A—C39—H39B109.5
C14—C17—H17C109.5C36—C39—H39C109.5
H17A—C17—H17C109.5H39A—C39—H39C109.5
H17B—C17—H17C109.5H39B—C39—H39C109.5
N3—K2—O896.89 (7)N6—C40—C41110.2 (2)
N3—K2—O1096.67 (7)N6—C40—C43106.6 (2)
O8—K2—O10118.44 (6)C41—C40—C43109.4 (2)
N3—K2—O1296.11 (7)N6—C40—C42111.0 (2)
O8—K2—O12117.76 (6)C41—C40—C42110.4 (2)
O10—K2—O12119.94 (6)C43—C40—C42109.2 (2)
N3—K2—O11103.34 (7)C40—C41—H41A109.5
O8—K2—O11159.77 (6)C40—C41—H41B109.5
O10—K2—O1159.49 (5)H41A—C41—H41B109.5
O12—K2—O1160.45 (5)C40—C41—H41C109.5
N3—K2—O9105.01 (7)H41A—C41—H41C109.5
O8—K2—O959.53 (5)H41B—C41—H41C109.5
O10—K2—O958.94 (5)C40—C42—H42A109.5
O12—K2—O9158.87 (6)C40—C42—H42B109.5
O11—K2—O9113.98 (5)H42A—C42—H42B109.5
N3—K2—O13103.40 (7)C40—C42—H42C109.5
O8—K2—O1359.29 (5)H42A—C42—H42C109.5
O10—K2—O13159.93 (6)H42B—C42—H42C109.5
O12—K2—O1358.48 (5)C40—C43—H43A109.5
O11—K2—O13114.85 (5)C40—C43—H43B109.5
O9—K2—O13114.41 (5)H43A—C43—H43B109.5
N3—K2—C3021.04 (8)C40—C43—H43C109.5
O8—K2—C3095.31 (6)H43A—C43—H43C109.5
O10—K2—C3079.00 (7)H43B—C43—H43C109.5
C12—O1—C1—C2177.1 (2)K2—O9—C20—C2162.2 (2)
K1—O1—C1—C235.3 (2)C22—O10—C21—C20174.2 (2)
C3—O2—C2—C1179.7 (2)K2—O10—C21—C2032.9 (3)
K1—O2—C2—C161.9 (2)O9—C20—C21—O1065.1 (3)
O1—C1—C2—O265.7 (3)C21—O10—C22—C23174.1 (2)
C2—O2—C3—C4175.4 (2)K2—O10—C22—C2332.7 (3)
K1—O2—C3—C465.4 (2)C24—O11—C23—C22179.7 (2)
C5—O3—C4—C3179.0 (2)K2—O11—C23—C2261.8 (2)
K1—O3—C4—C328.9 (2)O10—C22—C23—O1163.6 (3)
O2—C3—C4—O364.1 (3)C23—O11—C24—C25179.4 (2)
C4—O3—C5—C6174.4 (2)K2—O11—C24—C2561.6 (2)
K1—O3—C5—C633.7 (3)C26—O12—C25—C24177.2 (2)
C7—O4—C6—C5178.2 (2)K2—O12—C25—C2437.1 (2)
K1—O4—C6—C562.2 (2)O11—C24—C25—O1267.9 (3)
O3—C5—C6—O465.8 (3)C25—O12—C26—C27175.4 (2)
C6—O4—C7—C8177.4 (2)K2—O12—C26—C2740.2 (2)
K1—O4—C7—C866.2 (2)C28—O13—C27—C26174.4 (2)
C9—O5—C8—C7174.9 (2)K2—O13—C27—C2659.1 (2)
K1—O5—C8—C724.6 (3)O12—C26—C27—O1366.9 (3)
O4—C7—C8—O562.1 (3)C27—O13—C28—C29177.9 (2)
C8—O5—C9—C10172.6 (2)K2—O13—C28—C2964.2 (2)
K1—O5—C9—C1026.2 (3)C18—O8—C29—C28175.6 (2)
C11—O6—C10—C9178.4 (2)K2—O8—C29—C2832.3 (3)
K1—O6—C10—C967.7 (2)O13—C28—C29—O867.2 (3)
O5—C9—C10—O665.5 (3)C31—N4—C30—K2119.3 (3)
C10—O6—C11—C12178.0 (2)C30—N4—C31—C33122.2 (3)
K1—O6—C11—C1266.7 (2)C30—N4—C31—C32119.4 (3)
C1—O1—C12—C11178.8 (2)C30—N4—C31—C341.2 (4)
K1—O1—C12—C1130.8 (2)C40—N6—C35—O1413.1 (4)
O6—C11—C12—O168.9 (3)C40—N6—C35—N5169.7 (2)
C13—N2—C14—C1657.6 (3)C36—N5—C35—O1425.0 (4)
C13—N2—C14—C15177.6 (2)C36—N5—C35—N6157.7 (2)
C13—N2—C14—C1763.8 (3)C35—N5—C36—C3867.4 (3)
C29—O8—C18—C19171.7 (2)C35—N5—C36—C3755.5 (3)
K2—O8—C18—C1936.2 (3)C35—N5—C36—C39174.4 (2)
C20—O9—C19—C18176.0 (2)C35—N6—C40—C4166.7 (3)
K2—O9—C19—C1859.8 (2)C35—N6—C40—C43174.7 (2)
O8—C18—C19—O965.7 (3)C35—N6—C40—C4255.9 (3)
C19—O9—C20—C21178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···N10.81 (4)2.11 (4)2.862 (3)154 (3)
O7—H7B···N30.95 (4)1.85 (4)2.788 (4)173 (4)
N5—H5···N20.80 (3)2.26 (3)3.024 (3)162 (3)
N6—H6···N20.82 (3)2.29 (3)3.071 (3)160 (3)
Selected geometric parameters (Å, °) top
End-on (Me3CNCN)1- componentSide-on (Me3CNCN)1- component
N1—C131.179 (3)N3—C301.185 (4)
N2—C131.294 (3)N4—C301.267 (4)
N2—C141.487 (3)N4—C311.457 (4)
C13—N2—C14115.3 (2)C30—N4—C31120.4 (3)
N1—C13—N2176.4 (3)N3—C30—N4173.8 (3)
C13—N1—K1132.7 (2)C30—N3—K2104.2 (2)
K1—N13.027 (2)K2—N32.690 (2)
K2—C303.197 (3)
Urea Component
O14—C351.233 (3)
N5—C351.374 (3)N5—C361.477 (3)
N6—C351.367 (3)N6—C401.479 (3)
N6—C35—N5113.0 (2)
C35—N5—C36122.5 (2)C35—N6—C40123.3 (2)
 

Acknowledgements

We thank Daniel Huh for assistance with the X-ray crystallography.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1855328).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeacon, G. B., Forsyth, C. M., Junk, C. P. & Wang, J. (2007). Inorg. Chem. 46, 10022–10030.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGel'bol'dt, V. O., Filinchuk, E. & Koroeva, L. V. (2003). Coord. Chem. 29, 880.  Google Scholar
First citationGel'bol'dt, V. O., Koroeva, L. V. & Filinchuk, F. (2005). Coord. Chem. 31, 818.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRyan, A. J., Darago, L. E., Balasubramani, S. G., Chen, G. P., Ziller, J. W., Furche, F., Long, J. R. & Evans, W. J. (2018). Chem. Eur. J. 24, 7702–7709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRyan, A. J., Ziller, J. W. & Evans, W. J. (2020). Chem. Sci. 11, 2006–2014.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSo, Y.-M., Wang, G.-C., Li, Y., Sung, H. H.-Y., Williams, I. D., Lin, Z. & Leung, W.-H. (2014). Angew. Chem. Int. Ed. 53, 1626–1629.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds