research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-methyl-4-(2-methyl-10H-benzo[b]thieno[2,3-e][1,4]diazepin-4-yl)piperazin-1-ium 2,5-di­hy­droxy­benzoate propan-2-ol monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, M.Kumarasamy College of Engineering, Karur 639113, Tamil Nadu, India, bDepartment of Physics, Shrimati Indira Gandhi College, Tiruchirappalli 620 002, Tamilnadu, India, and cPostgraduate and Research Department of Physics, National College (Autonomous), Tiruchirappalli 620 001, Tamilnadu, India
*Correspondence e-mail: natchimuthu88@gmail.com

Edited by J. T. Mague, Tulane University, USA (Received 21 May 2020; accepted 19 June 2020; online 30 June 2020)

The asymmetric unit of the title salt, C17H21N4S+·C7H5O4·C3H7OH, consists of an olanzapinium cation, an independent 2,5-di­hydroxy­benzoate anion and a solvent isopropyl alcohol mol­ecule. The central seven-membered heterocycle is in a boat conformation, while the piperazine ring displays a distorted chair conformation. The dihedral angle between the benzene and thiene rings flanking the diazepine ring is 52.58 (19)°. In the crystal, the anions and cations are connected by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.

1. Chemical context

Olanzapine is an atypical anti­psychotic with indications for the treatment of schizophrenia, acute mania and the prevention of relapse in bipolar disorder. Olanzapine is structurally similar to clozapine, but is classified as a thienobenzodiazepine. Reviews on olanzapine in the management of bipolar disorders (Narasimhan et al., 2007[Narasimhan, M., Bruce, T. O. & Masand, P. (2007). Neuropsychiatr. Dis. Treat. 3, 579-587.]) and olanzapine-associated toxicity and fatality in overdose (Chue & Singer, 2003[Chue, P. & Singer, P. (2003). J. Psychiatry Neurosci. 28, 253-261.]) have been published. Olanzapine, the pharmaceutically active component of the title compound, a thienobenzodiazepine derivative, along with clozapine, quetiapine, risperidone and ziprasidone, belongs to the newer generation of atypical anti­psychotic agents (Chakrabarti et al., 1980[Chakrabarti, J. K., Horsman, L., Hotten, T. M., Pullar, I. A., Tupper, D. E. & Wright, F. C. (1980). J. Med. Chem. 23, 878-884.]; Callaghan et al., 1999[Callaghan, J. T., Bergstrom, R. F., Ptak, L. R. & Beasley, C. M. (1999). Clin. Pharmacokinet. 37, 177-193.]; Kennedy et al., 2001[Kennedy, J. S., Bymaster, F. P., Schuh, L., Calligaro, D. O., Nomikos, G., Felder, C. C., Bernauer, M., Kinon, B. J., Baker, R. W., Hay, D., Roth, H. J., Dossenbach, M., Kaiser, C., Beasley, C. M., Holcombe, J. H., Effron, M. B. & Breier, A. (2001). Int. J. Geriat. Psychiatr. 16, S33-S61.]; Tandon & Jibson, 2003[Tandon, R. & Jibson, M. D. (2003). Psychoneuroendocrinology, 28, 9-26.]).

These atypical anti­psychotic agents, in comparison with the older generation, show greater efficacy against both positive and negative symptoms of schizophrenia (a debilitating mental disorder) as well as associated cognitive deficits and are virtually devoid of extrapyramidal symptoms (Tandon, 2002[Tandon, R. (2002). Psychiatr. Q. 73, 297-311.]). The therapeutic action of olanzapine against the symptoms of schizophrenia is thought to be due to its high affinity for dopamine­rgic D2 and serotonergic 5-HT2A receptor systems implicated in the pathogenesis of this disease (Bever & Perry, 1998[Bever, K. A. & Perry, P. J. (1998). Am. J. Health Syst. Pharm. 55, 1003-1016.]).

The crystal structures of 2-methyl-4-(4-methyl­piperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine methanol solvate monohydrate (Capuano et al., 2003[Capuano, B., Crosby, I. T., Fallon, G. D., Lloyd, E. J., Yuriev, E. & Egan, S. J. (2003). Acta Cryst. E59, o1367-o1369.]), polymorphic form II of 2-methyl-4-(4-methyl-1-piperazin­yl)-10H-thieno[2,3-b][1,5]benzodiazepine (Wawrzycka-Gorczyca et al., 2004a[Wawrzycka-Gorczyca, I., Koziol, A. E., Glice, M. & Cybulski, J. (2004a). Acta Cryst. E60, o66-o68.]), 2-meth­yl-4-(4-methyl-1-piperazin­yl)-10H-thieno[2,3-b][1,5] benzo­di­azepine methanol solvate (Wawrzycka-Gorczyca et al., 2004b[Wawrzycka-Gorczyca, I., Mazur, L. & Koziol, A. E. (2004b). Acta Cryst. E60, o69-o71.]), olazipinium nicotinate (Ravikumar et al., 2005[Ravikumar, K., Swamy, G. Y. S. K., Sridhar, B. & Roopa, S. (2005). Acta Cryst. E61, o2720-o2723.]), olanzapine and its solvates (Wawrzycka-Gorczyca et al., 2007[Wawrzycka-Gorczyca, I., Borowski, P., Osypiuk-Tomasik, J., Mazur, L. & Koziol, A. E. (2007). J. Mol. Struct. 830, 188-197.]), highly soluble olanzapinium maleate crystalline salts (Thakuria & Nangia, 2011a[Thakuria, R. & Nangia, A. (2011a). CrystEngComm, 13, 1759-1764.]) and polymorphic form IV of olanzapine (Thakuria & Nangia, 2011b[Thakuria, R. & Nangia, A. (2011b). Acta Cryst. C67, o461-o463.]) have been reported. In view of the importance of olanzapine, this paper reports the crystal structure of the title salt, C17H21N4S+·C7H5O4·C3H7OH, (I)[link]

[Scheme 1]
.

2. Structural commentary

A perspective view of (I)[link], with the atomic numbering scheme, is illustrated in Fig. 1[link]. The asymmetric unit comprises an olanzapinium cation, an independent 2,5-di­hydroxy­benzoate anion and a solvent isopropyl alcohol mol­ecule. The central seven-membered (N1/C11/C6/N2/C5/C4/C12) heterocycle is in a boat conformation with puckering parameter Q = 0.715 (3) Å while the six-membered piperazine ring, N3/C13/C14/N4/C15/C16, adopts a distorted chair conformation with puckering parameters Q = 0.564 (3) Å, θ = 175.3 (3)°, φ = 200 (4)°. The dihedral angle between the benzene and thiene rings flanking the diazepine ring is 52.58 (19)°. This is similar to the values observed in the related structure olanzapinium dipicrate (II) [58.7 (9)°] . The dihedral angles between the plane of the four C atoms in the piperazine ring and the planes of the benzene and thio­phene rings are 27.04 (13) and 33.36 (18)°, respectively. In the 2,5-di­hydroxy­benzoate, the mean plane of the C18–O1–O2 group is twisted by 4.7 (5)° from that of the benzene ring (C19–C24). The bond lengths and bond angles of the thiene and piperazine rings of compound (I)[link] are also comparable with the values observed for related structures (Kavitha et al., 2013[Kavitha, C. N., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Dayananda, A. S. (2013). Acta Cryst. E69, o232-o233.]; Ravikumar et al., 2005[Ravikumar, K., Swamy, G. Y. S. K., Sridhar, B. & Roopa, S. (2005). Acta Cryst. E61, o2720-o2723.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids for the non-H atoms drawn at the 30% probability level. Hydrogen bonds (Table 1[link]) are shown as dashed lines.

The superimposed fit (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]) of the olaza­pine group of (I)[link] (atoms C1–C8, N1, O1 and O2) gives an r.m.s deviation of 1.179 Å with olanzapinium dipicrate (II) (Kavitha et al., 2013[Kavitha, C. N., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Dayananda, A. S. (2013). Acta Cryst. E69, o232-o233.]) (Fig. 2[link]) and 1.175 Å with olazipinium nicotinate (III) (Ravikumar et al., 2005[Ravikumar, K., Swamy, G. Y. S. K., Sridhar, B. & Roopa, S. (2005). Acta Cryst. E61, o2720-o2723.]) (Fig. 3[link]). The larger r.m.s deviation with the related structure may be due to the different substitution of groups on the olanzapinium cation.

[Figure 2]
Figure 2
A superimposed fit of (I)[link] (red) and the related structure (II) (blue).
[Figure 3]
Figure 3
A superimposed fit of (I)[link] (red) and the related structure (III) (green).

3. Supra­molecular features

In the crystal, the anions and cations are connected by C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]), forming a three-dimensional network. The inter­action between C1—O1 and C10—O1 via atoms H1A and H10 encloses an R42 (22) ring motif. In addition, the inter­action between C1—O1 and C13—O4 via atoms H1A and H13A forms an R22 (15) ring motif and that between C17—O2 and N4—O1 via atoms H17B and H4N encloses an R22 (7) ring motif (Fig. 4[link]). The atoms O2 and O3, O4, O5 and O3, O5 are connected through H3A, H4A and H5, forming an inter­molecular ring motif. The contact between atoms N4 and O1 via H4N generates parallel chains to form a three dimensional network (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.96 2.64 3.579 (4) 168
C10—H10⋯O1ii 0.93 2.52 3.316 (4) 143
C13—H13A⋯O4i 0.97 2.62 3.233 (4) 122
C17—H17B⋯O2 0.96 2.63 3.216 (4) 120
N2—H2⋯O4iii 0.87 (3) 2.28 (3) 3.088 (4) 156 (3)
N4—H4⋯O1 0.89 (4) 1.77 (4) 2.660 (3) 178 (4)
O3—H3A⋯O2 0.89 (4) 1.63 (4) 2.479 (3) 156 (4)
O4—H4A⋯O5iv 0.85 (4) 1.84 (4) 2.682 (3) 173 (4)
O5—H5⋯O3v 0.88 (4) 1.88 (4) 2.764 (3) 178 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Crystal packing of (I)[link], showing the C—H⋯O hydrogen bonds [R42 (22) ring motif, R22 (15) and R22 (7) ring motifs; Table 1[link]] as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 5]
Figure 5
Crystal packing of (I)[link], showing the O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]) as dashed lines; the shortest contacts between O2 and O3 give rise to an R(6) motif. H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.41, last update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave only twenty-two entries based on the olanzapine drug mol­ecule. They include salts with gallic acid: {CSD refcodes SUKPEW, 1-methyl-4-(2-methyl-10H-thieno[2,3-b][1,5]ben­zo­diazepin-4-yl)piperazin-1-ium 2,4,6-tri­hydroxy­benzoate, and SUKPOG, 1-methyl-4-(2-methyl-10H-thieno[2,3-b][1,5]benzodiazepin-4-yl)piperazin-1-ium 3,4,5-tri­hydroxy­benzoate dihydrate; Sarmah et al., 2020[Sarmah, K. K., Nath, N., Rao, D. R. & Thakuria, R. (2020). CrystEngComm, 22, 1120-1130.]}, with mono and dihy­droxy benzoic acid {FABJUQ, 1-methyl-4-(2-methyl-10H-thieno[2,3-b][1,5]benzodiazepin-4-yl) piperazin-1-ium 4-hy­droxy­benzoate aceto­nitrile solvate, FABJIE, 1-methyl-4-(2-methyl-10H-thieno[2,3-b][1,5]benzodiazepin-4-yl) piperazin-1-ium 2,5di­hydroxy­benzoate, FABJEA, 1-methyl-4-(2-methyl-10H-thieno[2,3-b][1,5]benzodiazepin-4-yl)piperazin-1-ium 2,4-di­hydroxy­benzoate and FABJOK, 1-methyl-4-(2-methyl-10H-thieno[2,3-b][1,5]benzodiazepin-4-yl) piperazin-1-ium 2,6di­hydroxy­benzoate; Sarmah et al., 2016[Sarmah, K. K., Sarma, A., Roy, K., Rao, D. R. & Thakuria, R. (2016). Cryst. Growth Des. 16, 1047-1055.]}, with nicotinic acid {TAQNUV, 1-methyl-4-(2-methyl-10H-thieno[2,3-b][1,5]ben­zo­diazepin-4-yl) hexa­hydro­pyrazin-1-ium nicotinate; Ravikumar et al., 2005[Ravikumar, K., Swamy, G. Y. S. K., Sridhar, B. & Roopa, S. (2005). Acta Cryst. E61, o2720-o2723.]}, with pyrazinoic acid (SUKPAS; Sarmah et al., 2020[Sarmah, K. K., Nath, N., Rao, D. R. & Thakuria, R. (2020). CrystEngComm, 22, 1120-1130.]) and with other carb­oxy­lic acids (AMIYUR and AMIZAY; Thakuria et al., 2011a[Thakuria, R. & Nangia, A. (2011a). CrystEngComm, 13, 1759-1764.] and Sarmah et al., 2020[Sarmah, K. K., Nath, N., Rao, D. R. & Thakuria, R. (2020). CrystEngComm, 22, 1120-1130.]; FABKAX and FABKEB; Sarmah et al., 2016[Sarmah, K. K., Sarma, A., Roy, K., Rao, D. R. & Thakuria, R. (2016). Cryst. Growth Des. 16, 1047-1055.]; FHIRYUE, HIRZAL, HIRZEP and HIRZIT; Thakuria et al., 2013[Thakuria, R. & Nangia, A. (2013). Cryst. GrowthDes.13(8),3672-3680.]; JIXROY; Sridhar & Ravikumar, 2007[Sridhar, B. & Ravikumar, K. (2007). Zh. Strukt. Khim. 48, 194-202.]; LESQIL; Kavitha et al., 2013[Kavitha, C. N., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Dayananda, A. S. (2013). Acta Cryst. E69, o232-o233.]; PEWPUF, PEWQAM and PEWQEQ; Sarmah et al., 2018[Sarmah, K. K., Sarma, P., Rao, D. R., Gupta, P., Nath, N. K., Arhangelskis, M. & Thakuria, R. (2018). Cryst. Growth Des. 18, 2138-2150.]; TAQNUV; Ravikumar et al., 2005[Ravikumar, K., Swamy, G. Y. S. K., Sridhar, B. & Roopa, S. (2005). Acta Cryst. E61, o2720-o2723.]). Among them, the crystal structures of PEWQEQ, PEWQAM, HIRZIT, FABJUQ, SUKPIA, SUKPOG, FABKEB, HIRZEP and PEWQAM contain solvent mol­ecules.

5. Hirshfeld surface (HS) analysis

The HS analysis (McKinnon et al., 1998[McKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136-2141.], 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.], 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed to understand the inter­molecular inter­actions in the crystal structure of (I)[link] and was constructed in the crystal environment using CrystalExplorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.]). The various non-covalent inter­actions are qu­anti­fied with decomposed, two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The HS plotted over dnorm is shown in Fig. 6[link] with red areas indicating distances shorter (in closer contact) and blue those longer (distant contact) than the van der Waals radii. The contacts with distances equal to the sum of van der Waals radii are indicated in white (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). From Fig. 6[link], the bright-red spots appearing near the hydrogen atoms H2N, H4N, H10, and H13 in the cation indicate that these hydrogen atoms are involved in the inter­molecular inter­actions. The shape-index (SI) diagram, a tool to visualize ππ stacking inter­actions, for the cation, anion and solvent mol­ecule is shown in Fig. 7[link]. No adjacent red and blue triangles are seen, indicating that no ππ inter­actions are present, which is in agreement with the experimental findings. The overall two-dimensional fingerprint (2D–FP) plots are illustrated in Fig. 6[link]. The H⋯H contacts make the highest contribution (53.8%) to the total crystal packing (broad peaks at de+ di = ∼2.3 Å). The second highest contribution is from H⋯C/C⋯H contacts (21.8%) and is indicated by the broad wing-like structure at de+ di = ∼2.6 Å. The symmetrical sharp spikes at de+ di = ∼1.6 Å are attributed to H⋯O/O⋯H contacts (14.3%).

[Figure 6]
Figure 6
Views of the Hirshfeld surfaces of title compound (I)[link] mapped with dnorm in two different orientations. The HS is plotted in the range −0.1500 to 1.4938 a.u.
[Figure 7]
Figure 7
Views of the shape-index diagram of title compound (I)[link].

6. Synthesis and crystallization

Olanzapine (156 mg, 0.5 mmol) and 2,5-di­hydroxy­benzoic acid (77 mg, 0.5 mmol) were dissolved in 20 mL of isopropyl alcohol and stirred magnetically for 5 h at 330 K. The mixture was kept aside for two days at room temperature and the salt formed was filtered off and dried. The compound was recrystallized from (1:1) isopropyl alcohol/DMF by slow evaporation at room temperature (m.p. 373–375 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound and O-bound H atoms were located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H21N4S+·C7H5O4·C3H8O
Mr 526.64
Crystal system, space group Monoclinic, P21/n
Temperature (K) 294
a, b, c (Å) 8.4867 (6), 29.764 (2), 10.6334 (8)
β (°) 94.381 (1)
V3) 2678.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.15 × 0.14 × 0.06
 
Data collection
Diffractometer Bruker SMART CCD area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.96, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 25175, 4560, 4081
Rint 0.040
(sin θ/λ)max−1) 0.588
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.143, 1.31
No. of reflections 4560
No. of parameters 358
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.21
Computer programs: SMART (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), QMOL (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL- 6895. Oak Ridge National Laboratory, Tennessee, USA.]), WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2018); molecular graphics: QMOL (Gans & Shalloway, 2001), Mercury (Macrae et al., 2020); software used to prepare material for publication: ORTEPIII (Burnett & Johnson, 1996), WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2020).

1-Methyl-4-(2-methyl-10H-benzo[b]thieno[2,3-e][1,4]diazepin-4-yl)piperazin-1-ium 2,5-dihydroxybenzoate propan-2-ol monosolvate top
Crystal data top
C17H21N4S+·C7H5O4·C3H8OF(000) = 1120
Mr = 526.64Dx = 1.306 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4867 (6) ÅCell parameters from 4689 reflections
b = 29.764 (2) Åθ = 2.3–24.2°
c = 10.6334 (8) ŵ = 0.17 mm1
β = 94.381 (1)°T = 294 K
V = 2678.1 (3) Å3Solid, white
Z = 40.15 × 0.14 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4081 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.040
ω and φ scanθmax = 24.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.96, Tmax = 0.98k = 3535
25175 measured reflectionsl = 1212
4560 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: mixed
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.31 w = 1/[σ2(Fo2) + (0.0423P)2 + 1.7858P]
where P = (Fo2 + 2Fc2)/3
4560 reflections(Δ/σ)max = 0.001
358 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3762 (4)0.47317 (12)0.3380 (4)0.0585 (9)
H1A0.3900990.4474600.2837530.088*
H1B0.4599220.4942680.3179930.088*
H1C0.3782280.4638510.4242670.088*
C20.2208 (3)0.49488 (10)0.3192 (3)0.0406 (7)
C30.1143 (3)0.48603 (10)0.2353 (3)0.0385 (7)
H30.1288230.4635840.1747150.046*
C40.0236 (3)0.51399 (9)0.2470 (3)0.0352 (7)
C50.0161 (3)0.54454 (9)0.3420 (3)0.0350 (7)
C60.1609 (3)0.60738 (10)0.2772 (3)0.0366 (7)
C70.1472 (4)0.65330 (10)0.2934 (3)0.0430 (7)
H70.1107940.6642790.3677340.052*
C80.1862 (4)0.68310 (11)0.2016 (3)0.0489 (8)
H80.1768870.7138770.2141090.059*
C90.2390 (4)0.66693 (11)0.0915 (3)0.0524 (9)
H90.2646400.6866700.0284000.063*
C100.2537 (4)0.62100 (11)0.0749 (3)0.0467 (8)
H100.2903720.6104110.0002390.056*
C110.2157 (3)0.59022 (10)0.1660 (3)0.0379 (7)
C120.1630 (3)0.51169 (10)0.1725 (3)0.0374 (7)
C130.1896 (4)0.42917 (9)0.2035 (3)0.0395 (7)
H13A0.1089540.4328850.2626270.047*
H13B0.2901780.4245500.2514010.047*
C140.1511 (4)0.38905 (10)0.1209 (3)0.0446 (8)
H14A0.1492510.3622540.1726740.054*
H14B0.0471230.3928260.0777080.054*
C150.2881 (4)0.42556 (11)0.0459 (3)0.0491 (8)
H15A0.1922610.4309320.0995380.059*
H15B0.3743720.4220190.0998540.059*
C160.3204 (4)0.46547 (10)0.0388 (3)0.0440 (8)
H16A0.4221920.4619090.0857800.053*
H16B0.3239240.4925490.0116720.053*
C170.2321 (5)0.34478 (12)0.0581 (4)0.0658 (11)
H17A0.1300210.3491450.1017150.099*
H17B0.2315000.3176860.0091570.099*
H17C0.3104670.3424280.1183160.099*
N10.2492 (3)0.54488 (8)0.1415 (2)0.0422 (6)
N20.1266 (3)0.57751 (9)0.3767 (2)0.0401 (6)
H20.104 (3)0.5922 (10)0.443 (3)0.038 (9)*
N30.1973 (3)0.46954 (8)0.1257 (2)0.0401 (6)
N40.2699 (3)0.38349 (9)0.0266 (2)0.0426 (6)
H40.359 (4)0.3785 (12)0.075 (3)0.062 (11)*
S10.15686 (9)0.53903 (3)0.41676 (8)0.0417 (2)
C180.5648 (4)0.32953 (11)0.1890 (3)0.0392 (7)
C190.7193 (3)0.31664 (9)0.2566 (3)0.0323 (6)
C200.8224 (3)0.34904 (9)0.3104 (3)0.0333 (6)
H200.7959660.3792780.3022110.040*
C210.9623 (3)0.33711 (9)0.3753 (3)0.0332 (6)
C221.0032 (4)0.29233 (10)0.3851 (3)0.0431 (8)
H221.0985730.2840640.4276580.052*
C230.9038 (4)0.25982 (10)0.3322 (3)0.0466 (8)
H230.9327320.2297320.3388200.056*
C240.7613 (3)0.27150 (10)0.2692 (3)0.0380 (7)
O10.5341 (2)0.37036 (7)0.1732 (2)0.0469 (6)
O20.4736 (3)0.29822 (8)0.1504 (2)0.0603 (7)
O30.6639 (3)0.23843 (8)0.2203 (3)0.0571 (7)
H3A0.581 (5)0.2537 (13)0.186 (4)0.071 (13)*
O41.0557 (3)0.37078 (7)0.4286 (2)0.0442 (5)
H4A1.127 (5)0.3588 (13)0.478 (4)0.071 (13)*
C250.4829 (5)0.37490 (14)0.5193 (4)0.0740 (12)
H25A0.4636660.4006510.5702760.111*
H25B0.4217610.3773290.4398080.111*
H25C0.5931850.3734970.5051300.111*
C260.4367 (4)0.33350 (12)0.5852 (3)0.0519 (9)
H260.4937460.3329910.6688680.062*
C270.4755 (6)0.29132 (15)0.5177 (4)0.0808 (13)
H27A0.4268070.2921360.4331920.121*
H27B0.4365020.2658850.5613630.121*
H27C0.5879680.2888510.5151490.121*
O50.2703 (3)0.33712 (9)0.6017 (2)0.0548 (6)
H50.238 (4)0.3130 (12)0.641 (3)0.058 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.052 (2)0.078 (3)0.0084 (16)0.0086 (18)0.0055 (19)
C20.0369 (17)0.0321 (16)0.0523 (19)0.0018 (13)0.0002 (14)0.0041 (14)
C30.0413 (17)0.0286 (15)0.0445 (17)0.0018 (13)0.0032 (14)0.0019 (13)
C40.0381 (17)0.0292 (15)0.0377 (16)0.0041 (12)0.0004 (13)0.0056 (13)
C50.0369 (16)0.0324 (16)0.0353 (16)0.0010 (13)0.0001 (13)0.0057 (13)
C60.0335 (16)0.0379 (17)0.0378 (16)0.0064 (13)0.0003 (13)0.0048 (13)
C70.0422 (18)0.0393 (18)0.0476 (18)0.0023 (14)0.0044 (14)0.0037 (15)
C80.0488 (19)0.0377 (18)0.061 (2)0.0000 (15)0.0075 (16)0.0042 (16)
C90.058 (2)0.0422 (19)0.058 (2)0.0043 (16)0.0106 (17)0.0165 (16)
C100.051 (2)0.047 (2)0.0431 (18)0.0029 (15)0.0104 (15)0.0032 (15)
C110.0324 (16)0.0384 (17)0.0429 (17)0.0023 (13)0.0021 (13)0.0042 (14)
C120.0416 (17)0.0363 (17)0.0336 (16)0.0058 (14)0.0014 (13)0.0027 (13)
C130.0405 (17)0.0361 (17)0.0424 (17)0.0082 (13)0.0064 (14)0.0051 (14)
C140.0391 (17)0.0388 (17)0.055 (2)0.0058 (14)0.0006 (15)0.0009 (15)
C150.057 (2)0.054 (2)0.0368 (17)0.0186 (17)0.0026 (15)0.0040 (15)
C160.0481 (19)0.0451 (19)0.0397 (17)0.0075 (15)0.0088 (14)0.0053 (14)
C170.077 (3)0.057 (2)0.060 (2)0.012 (2)0.017 (2)0.0209 (19)
N10.0428 (15)0.0379 (15)0.0469 (15)0.0026 (12)0.0090 (12)0.0031 (12)
N20.0490 (16)0.0389 (15)0.0321 (14)0.0091 (12)0.0011 (12)0.0037 (12)
N30.0484 (15)0.0334 (14)0.0396 (14)0.0055 (11)0.0096 (12)0.0037 (11)
N40.0431 (15)0.0422 (15)0.0408 (15)0.0124 (12)0.0072 (13)0.0056 (12)
S10.0447 (5)0.0361 (4)0.0455 (5)0.0030 (3)0.0105 (4)0.0033 (3)
C180.0372 (17)0.0459 (19)0.0346 (16)0.0043 (15)0.0032 (13)0.0043 (14)
C190.0315 (15)0.0368 (16)0.0294 (14)0.0039 (12)0.0063 (12)0.0023 (12)
C200.0379 (16)0.0268 (14)0.0354 (15)0.0050 (12)0.0047 (13)0.0017 (12)
C210.0363 (16)0.0327 (16)0.0307 (14)0.0023 (12)0.0028 (12)0.0000 (12)
C220.0397 (17)0.0405 (18)0.0472 (18)0.0078 (14)0.0085 (14)0.0035 (14)
C230.0491 (19)0.0253 (16)0.064 (2)0.0052 (14)0.0056 (16)0.0023 (15)
C240.0359 (16)0.0348 (16)0.0430 (17)0.0012 (13)0.0022 (13)0.0060 (13)
O10.0411 (12)0.0462 (14)0.0518 (13)0.0106 (10)0.0059 (10)0.0003 (10)
O20.0412 (13)0.0572 (15)0.0789 (18)0.0010 (12)0.0182 (12)0.0084 (13)
O30.0453 (14)0.0362 (13)0.0874 (19)0.0014 (11)0.0101 (13)0.0156 (12)
O40.0440 (13)0.0357 (12)0.0507 (13)0.0039 (10)0.0116 (11)0.0016 (10)
C250.051 (2)0.083 (3)0.089 (3)0.008 (2)0.006 (2)0.022 (2)
C260.0376 (18)0.065 (2)0.052 (2)0.0007 (16)0.0038 (15)0.0092 (17)
C270.087 (3)0.077 (3)0.083 (3)0.001 (2)0.034 (3)0.006 (2)
O50.0398 (13)0.0617 (16)0.0624 (16)0.0048 (11)0.0001 (11)0.0184 (13)
Geometric parameters (Å, º) top
C1—C21.496 (4)C16—N31.452 (4)
C1—H1A0.9600C16—H16A0.9700
C1—H1B0.9600C16—H16B0.9700
C1—H1C0.9600C17—N41.483 (4)
C2—C31.343 (4)C17—H17A0.9600
C2—S11.736 (3)C17—H17B0.9600
C3—C41.434 (4)C17—H17C0.9600
C3—H30.9300N2—H20.87 (3)
C4—C51.365 (4)N4—H40.89 (4)
C4—C121.474 (4)C18—O11.252 (4)
C5—N21.388 (4)C18—O21.260 (4)
C5—S11.729 (3)C18—C191.496 (4)
C6—C71.383 (4)C19—C241.394 (4)
C6—C111.400 (4)C19—C201.395 (4)
C6—N21.429 (4)C20—C211.373 (4)
C7—C81.378 (4)C20—H200.9300
C7—H70.9300C21—O41.373 (3)
C8—C91.372 (5)C21—C221.379 (4)
C8—H80.9300C22—C231.376 (4)
C9—C101.385 (4)C22—H220.9300
C9—H90.9300C23—C241.381 (4)
C10—C111.388 (4)C23—H230.9300
C10—H100.9300C24—O31.363 (4)
C11—N11.408 (4)O3—H3A0.89 (4)
C12—N11.287 (4)O4—H4A0.85 (4)
C12—N31.389 (4)C25—C261.485 (5)
C13—N31.463 (4)C25—H25A0.9600
C13—C141.503 (4)C25—H25B0.9600
C13—H13A0.9700C25—H25C0.9600
C13—H13B0.9700C26—O51.440 (4)
C14—N41.484 (4)C26—C271.495 (5)
C14—H14A0.9700C26—H260.9800
C14—H14B0.9700C27—H27A0.9600
C15—N41.485 (4)C27—H27B0.9600
C15—C161.503 (4)C27—H27C0.9600
C15—H15A0.9700O5—H50.88 (4)
C15—H15B0.9700
C2—C1—H1A109.5N4—C17—H17A109.5
C2—C1—H1B109.5N4—C17—H17B109.5
H1A—C1—H1B109.5H17A—C17—H17B109.5
C2—C1—H1C109.5N4—C17—H17C109.5
H1A—C1—H1C109.5H17A—C17—H17C109.5
H1B—C1—H1C109.5H17B—C17—H17C109.5
C3—C2—C1130.5 (3)C12—N1—C11124.2 (3)
C3—C2—S1110.5 (2)C5—N2—C6114.5 (2)
C1—C2—S1119.1 (2)C5—N2—H2113 (2)
C2—C3—C4114.5 (3)C6—N2—H2111 (2)
C2—C3—H3122.7C12—N3—C16119.0 (2)
C4—C3—H3122.7C12—N3—C13121.3 (2)
C5—C4—C3111.5 (3)C16—N3—C13110.9 (2)
C5—C4—C12120.9 (3)C17—N4—C14111.8 (3)
C3—C4—C12127.6 (3)C17—N4—C15111.5 (3)
C4—C5—N2126.8 (3)C14—N4—C15111.1 (2)
C4—C5—S1111.5 (2)C17—N4—H4111 (2)
N2—C5—S1121.7 (2)C14—N4—H4103 (2)
C7—C6—C11120.1 (3)C15—N4—H4109 (2)
C7—C6—N2119.9 (3)C5—S1—C291.97 (14)
C11—C6—N2119.9 (3)O1—C18—O2123.9 (3)
C8—C7—C6121.4 (3)O1—C18—C19118.6 (3)
C8—C7—H7119.3O2—C18—C19117.5 (3)
C6—C7—H7119.3C24—C19—C20118.6 (3)
C9—C8—C7119.4 (3)C24—C19—C18120.1 (3)
C9—C8—H8120.3C20—C19—C18121.3 (3)
C7—C8—H8120.3C21—C20—C19121.2 (3)
C8—C9—C10119.5 (3)C21—C20—H20119.4
C8—C9—H9120.2C19—C20—H20119.4
C10—C9—H9120.2O4—C21—C20117.9 (3)
C9—C10—C11122.3 (3)O4—C21—C22122.7 (3)
C9—C10—H10118.8C20—C21—C22119.4 (3)
C11—C10—H10118.8C23—C22—C21120.4 (3)
C10—C11—C6117.3 (3)C23—C22—H22119.8
C10—C11—N1116.3 (3)C21—C22—H22119.8
C6—C11—N1126.2 (3)C22—C23—C24120.5 (3)
N1—C12—N3117.6 (3)C22—C23—H23119.7
N1—C12—C4126.6 (3)C24—C23—H23119.7
N3—C12—C4115.7 (3)O3—C24—C23119.1 (3)
N3—C13—C14109.8 (2)O3—C24—C19121.1 (3)
N3—C13—H13A109.7C23—C24—C19119.8 (3)
C14—C13—H13A109.7C24—O3—H3A103 (2)
N3—C13—H13B109.7C21—O4—H4A108 (3)
C14—C13—H13B109.7C26—C25—H25A109.5
H13A—C13—H13B108.2C26—C25—H25B109.5
N4—C14—C13110.8 (2)H25A—C25—H25B109.5
N4—C14—H14A109.5C26—C25—H25C109.5
C13—C14—H14A109.5H25A—C25—H25C109.5
N4—C14—H14B109.5H25B—C25—H25C109.5
C13—C14—H14B109.5O5—C26—C25107.0 (3)
H14A—C14—H14B108.1O5—C26—C27112.0 (3)
N4—C15—C16112.1 (3)C25—C26—C27113.2 (3)
N4—C15—H15A109.2O5—C26—H26108.1
C16—C15—H15A109.2C25—C26—H26108.1
N4—C15—H15B109.2C27—C26—H26108.1
C16—C15—H15B109.2C26—C27—H27A109.5
H15A—C15—H15B107.9C26—C27—H27B109.5
N3—C16—C15109.9 (3)H27A—C27—H27B109.5
N3—C16—H16A109.7C26—C27—H27C109.5
C15—C16—H16A109.7H27A—C27—H27C109.5
N3—C16—H16B109.7H27B—C27—H27C109.5
C15—C16—H16B109.7C26—O5—H5110 (2)
H16A—C16—H16B108.2
C1—C2—C3—C4179.3 (3)N1—C12—N3—C163.9 (4)
S1—C2—C3—C40.6 (3)C4—C12—N3—C16172.5 (3)
C2—C3—C4—C50.6 (4)N1—C12—N3—C13140.6 (3)
C2—C3—C4—C12177.8 (3)C4—C12—N3—C1342.9 (4)
C3—C4—C5—N2178.0 (3)C15—C16—N3—C12152.5 (3)
C12—C4—C5—N23.5 (4)C15—C16—N3—C1359.5 (3)
C3—C4—C5—S10.3 (3)C14—C13—N3—C12151.8 (3)
C12—C4—C5—S1178.3 (2)C14—C13—N3—C1661.1 (3)
C11—C6—C7—C80.1 (5)C13—C14—N4—C17178.6 (3)
N2—C6—C7—C8177.0 (3)C13—C14—N4—C1553.4 (3)
C6—C7—C8—C90.4 (5)C16—C15—N4—C17177.9 (3)
C7—C8—C9—C100.7 (5)C16—C15—N4—C1452.5 (4)
C8—C9—C10—C110.5 (5)C4—C5—S1—C20.1 (2)
C9—C10—C11—C60.0 (5)N2—C5—S1—C2178.4 (2)
C9—C10—C11—N1174.7 (3)C3—C2—S1—C50.4 (2)
C7—C6—C11—C100.3 (4)C1—C2—S1—C5179.6 (3)
N2—C6—C11—C10177.2 (3)O1—C18—C19—C24176.1 (3)
C7—C6—C11—N1173.8 (3)O2—C18—C19—C243.3 (4)
N2—C6—C11—N13.1 (5)O1—C18—C19—C205.2 (4)
C5—C4—C12—N134.3 (4)O2—C18—C19—C20175.4 (3)
C3—C4—C12—N1147.5 (3)C24—C19—C20—C210.4 (4)
C5—C4—C12—N3149.7 (3)C18—C19—C20—C21178.3 (3)
C3—C4—C12—N328.6 (4)C19—C20—C21—O4178.3 (2)
N3—C13—C14—N457.4 (3)C19—C20—C21—C221.5 (4)
N4—C15—C16—N355.2 (3)O4—C21—C22—C23178.6 (3)
N3—C12—N1—C11170.5 (3)C20—C21—C22—C231.1 (5)
C4—C12—N1—C115.5 (5)C21—C22—C23—C240.4 (5)
C10—C11—N1—C12144.3 (3)C22—C23—C24—O3178.5 (3)
C6—C11—N1—C1241.5 (5)C22—C23—C24—C191.5 (5)
C4—C5—N2—C656.1 (4)C20—C19—C24—O3178.9 (3)
S1—C5—N2—C6121.9 (3)C18—C19—C24—O30.2 (4)
C7—C6—N2—C5125.9 (3)C20—C19—C24—C231.1 (4)
C11—C6—N2—C557.2 (4)C18—C19—C24—C23179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.962.643.579 (4)168
C10—H10···O1ii0.932.523.316 (4)143
C13—H13A···O4i0.972.623.233 (4)122
C17—H17B···O20.962.633.216 (4)120
N2—H2···O4iii0.87 (3)2.28 (3)3.088 (4)156 (3)
N4—H4···O10.89 (4)1.77 (4)2.660 (3)178 (4)
O3—H3A···O20.89 (4)1.63 (4)2.479 (3)156 (4)
O4—H4A···O5iv0.85 (4)1.84 (4)2.682 (3)173 (4)
O5—H5···O3v0.88 (4)1.88 (4)2.764 (3)178 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x1/2, y+1/2, z+1/2.
 

Acknowledgements

VN thanks Dr K. Ravikumar of the Indian Institute of Chemical Technology, Hyderabad, for his kind help and useful discussions.

References

First citationBever, K. A. & Perry, P. J. (1998). Am. J. Health Syst. Pharm. 55, 1003–1016.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL- 6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCallaghan, J. T., Bergstrom, R. F., Ptak, L. R. & Beasley, C. M. (1999). Clin. Pharmacokinet. 37, 177–193.  CrossRef PubMed CAS Google Scholar
First citationCapuano, B., Crosby, I. T., Fallon, G. D., Lloyd, E. J., Yuriev, E. & Egan, S. J. (2003). Acta Cryst. E59, o1367–o1369.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChakrabarti, J. K., Horsman, L., Hotten, T. M., Pullar, I. A., Tupper, D. E. & Wright, F. C. (1980). J. Med. Chem. 23, 878–884.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChue, P. & Singer, P. (2003). J. Psychiatry Neurosci. 28, 253–261.  PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Dayananda, A. S. (2013). Acta Cryst. E69, o232–o233.  CrossRef IUCr Journals Google Scholar
First citationKennedy, J. S., Bymaster, F. P., Schuh, L., Calligaro, D. O., Nomikos, G., Felder, C. C., Bernauer, M., Kinon, B. J., Baker, R. W., Hay, D., Roth, H. J., Dossenbach, M., Kaiser, C., Beasley, C. M., Holcombe, J. H., Effron, M. B. & Breier, A. (2001). Int. J. Geriat. Psychiatr. 16, S33–S61.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136–2141.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarasimhan, M., Bruce, T. O. & Masand, P. (2007). Neuropsychiatr. Dis. Treat. 3, 579–587.  PubMed CAS Google Scholar
First citationRavikumar, K., Swamy, G. Y. S. K., Sridhar, B. & Roopa, S. (2005). Acta Cryst. E61, o2720–o2723.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarmah, K. K., Nath, N., Rao, D. R. & Thakuria, R. (2020). CrystEngComm, 22, 1120–1130.  CrossRef CAS Google Scholar
First citationSarmah, K. K., Sarma, A., Roy, K., Rao, D. R. & Thakuria, R. (2016). Cryst. Growth Des. 16, 1047–1055.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarmah, K. K., Sarma, P., Rao, D. R., Gupta, P., Nath, N. K., Arhangelskis, M. & Thakuria, R. (2018). Cryst. Growth Des. 18, 2138–2150.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridhar, B. & Ravikumar, K. (2007). Zh. Strukt. Khim. 48, 194–202.  Google Scholar
First citationTandon, R. (2002). Psychiatr. Q. 73, 297–311.  Web of Science CrossRef PubMed Google Scholar
First citationTandon, R. & Jibson, M. D. (2003). Psychoneuroendocrinology, 28, 9–26.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThakuria, R. & Nangia, A. (2011a). CrystEngComm, 13, 1759–1764.  Web of Science CSD CrossRef CAS Google Scholar
First citationThakuria, R. & Nangia, A. (2011b). Acta Cryst. C67, o461–o463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThakuria, R. & Nangia, A. (2013). Cryst. GrowthDes.13(8),3672-3680.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationWawrzycka-Gorczyca, I., Borowski, P., Osypiuk-Tomasik, J., Mazur, L. & Koziol, A. E. (2007). J. Mol. Struct. 830, 188–197.  CAS Google Scholar
First citationWawrzycka-Gorczyca, I., Koziol, A. E., Glice, M. & Cybulski, J. (2004a). Acta Cryst. E60, o66–o68.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWawrzycka-Gorczyca, I., Mazur, L. & Koziol, A. E. (2004b). Acta Cryst. E60, o69–o71.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds