research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N-diiso­propyl-4-methyl­benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 15 May 2020; accepted 28 May 2020; online 5 June 2020)

The synthesis of the title compound, C13H21NO2S, is reported here along with its crystal structure. This compound crystallizes with two mol­ecules in the asymmetric unit. The sulfonamide functional group of this structure features S=O bond lengths ranging from 1.433 (3) to 1.439 (3) Å, S—C bond lengths of 1.777 (3) and 1.773 (4) Å, and S—N bond lengths of 1.622 (3) and 1.624 (3) Å. When viewing the mol­ecules down the S—N bond, the isopropyl groups are gauche to the aromatic ring. On each mol­ecule, two methyl hydrogen atoms of one isopropyl group are engaged in intra­molecular C—H⋯O hydrogen bonds with a nearby sulfonamide oxygen atom. Inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions link mol­ecules of the title compound in the solid state.

1. Chemical context

Sulfonamides are biologically significant compounds that were first introduced as potent anti­bacterial agents (Chohan et al., 2005[Chohan, Z. H., Mahmood-ul-Hassan, Khan, K. M. & Supuran, C. T. (2005). J. Enzyme Inhib. Med. Chem. 20, 183-188.]). Since then, sulfonamides have been reported to exhibit a variety of therapeutic properties. These properties include the inhibition of hepatitis C virus (HCV). First discovered in 1989, HCV is a liver disease that is responsible for the majority of liver-related deaths (Chen & Morgan, 2006[Chen, S. L. & Morgan, T. R. (2006). Int. J. Med. Sci. pp. 47-52.]; Morozov & Lagaye, 2018[Morozov, V. A. & Lagaye, S. (2018). J. Hepatol. 10, 186-212.]). According to data published in 2016, approximately 69.6 million individuals are affected by HCV (Hill et al., 2017[Hill, A. M., Nath, S. & Simmons, B. (2017). J. Virus Erad. 3, 117-123.]).

Advances in HCV treatment have brought about a variety of novel HCV inhibitors that contain the sulfonamide moiety (Johansson et al., 2003[Johansson, A., Poliakov, A., Åkerblom, E., Wiklund, K., Lindeberg, G., Winiwarter, S., Danielson, U. H., Samuelsson, B. & Hallberg, A. (2003). Bioorg. Med. Chem. 11, 2551-2568.]; Gopalsamy et al., 2006[Gopalsamy, A., Chopra, R., Lim, K., Ciszewski, G., Shi, M., Curran, K. J., Sukits, S. F., Svenson, K., Bard, J., Ellingboe, J. W., Agarwal, A., Krishnamurthy, G., Howe, A. Y. M., Orlowski, M., Feld, B., O'Connell, J. & Mansour, T. S. (2006). J. Med. Chem. 49, 3052-3055.]). The pan genotypic NS5A inhibitor, Daclatasvir, and the NS3/4A protease inhibitor, Simeprevir, are examples of sulfonamide drugs approved for the treatment of HCV (Zeuzem et al., 2016[Zeuzem, S., Hézode, C., Bronowicki, J., Loustaud-Ratti, V., Gea, F., Buti, M., Olveira, A., Banyai, T., Al-Assi, M. T., Petersen, J., Thabut, D., Gadano, A., Pruitt, R., Makara, M., Bourlière, M., Pol, S., Beumont-Mauviel, M., Ouwerkerk-Mahadevan, S., Picchio, G., Bifano, G., McPhee, F., Boparai, N., Cheung, K., Hughes, E. A. & Noviello, S. (2016). J. Hepatol. 64, 292-300.]). Aryl­sulfonamides, similar in structure to the title compound, were discovered as potent hepatitis C virus (HCV) 1b replicon inhibitors that target the HCV NS4B protein (Fig. 1[link]; Zhang et al., 2013[Zhang, X., Zhang, N., Chen, G., Turpoff, A., Ren, H., Takasugi, J., Morrill, C., Zhu, J., Li, C., Lennox, W., Paget, S., Liu, Y., Almstead, N., Njoroge, F. G., Gu, Z., Komatsu, T., Clausen, V., Espiritu, C., Graci, J., Colacino, J., Lahser, F., Risher, N., Weetall, M., Nomeir, A. & Karp, G. M. (2013). Bioorg. Med. Chem. Lett. 23, 3947-3953.]). The HCV NS4B protein is a key component for the replication of HCV RNA (Blight, 2011[Blight, K. J. (2011). J. Virol. 85, 8158-8171.]). It is necessary to synthesize a variety of potential inhibitors to work towards the treatment of HCV.

[Figure 1]
Figure 1
Compounds structurally similar to the title compound, (a) 6-(indol-2-yl)pyridine-3-sulfonamides and (b) 4-(indol-2-yl)benzene sulfonamides, reported to inhibit hepatitis C virus NS4B.

Producing biologically significant sulfonamide compounds is highly dependent on a facile synthetic method. A review of the current literature suggests a viable route of synthesis is the reaction between an electrophilic sulfonyl chloride and nucleophilic amine (Almarhoon et al., 2019[Almarhoon, Z., Soliman, S. M., Ghabbour, H. A. & El-Faham, A. (2019). Crystals, 9, 35.]). Another notable method for synthesizing sulfonamide compounds is the reaction between an N-silyl­amine and a sulfonyl chloride (Naredla & Klumpp, 2013[Naredla, R. R. & Klumpp, D. A. (2013). Tetrahedron Lett. 54, 5945-5947.]). The title compound was synthesized by an analogous nucleophilic acyl substitution reaction between p-toluene­sulfonyl chloride and diiso­propyl­amine in the presence of pyridine. The use of p-toluene­sulfonyl chloride as an electrophile is a good starting point in synthesizing aryl­sulfonamides due to its availability and low cost. Herein, we report the synthesis and crystal structure of N,N-diisopropyl-4-methyl­benzene­sulfonamide. The crystal structure of the title compound was obtained via single crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group Pc, with two equivalents of the mol­ecule in the asymmetric unit. The structure was solved with a Flack parameter of 0.002 (14) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). The atom labeling scheme is shown in Fig. 2[link]. The mol­ecules boast S=O bond lengths ranging from 1.433 (3) to 1.439 (3) Å, S—N bond lengths of 1.622 (3) and 1.624 (3) Å, and S—C bond lengths of 1.777 (3) and 1.773 (4) Å. These values lie in the expected ranges for an aromatic sulfonamide group. The O—S—O bond angles for each mol­ecule are 119.35 (16) and 119.54 (16)°. When the mol­ecules are viewed down the S—N bond, both have adopted a similar conformation with the isopropyl groups being gauche to the aromatic ring. In each mol­ecule, the methine carbon atom of one of the isopropyl groups is nearly coplanar with a sulfonamide oxygen with O1—S1—N1—C8 and O1A—S1A—N1A—C8A torsion angles of 17.1 (3) and 15.7 (3)°, respectively. We attribute this relatively small torsion angle to the presence of intra­molecular C-H⋯O inter­actions, which are described in more detail below. The torsion angles (O2—S1—N1—C11 and O2A—S1A—N1A—C11A) between the methine carbon atom of the other isopropyl group and the other sulfonamide oxygen are 46.7 (3) and 46.8 (3)°, respectively. Both sulfur atoms adopt a slightly distorted tetra­hedral geometry with τ4 descriptors for fourfold coordination of 0.94 for both S1 and S1A (where 0 = square planar, 0.85 = trigonal pyramidal, and 1 = tetra­hedral; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). Finally, there are two intra­molecular C—H⋯O hydrogen bonds present between one sulfonamide oxygen atom and the methyl hydrogen atoms of an adjacent isopropyl group (Sutor, 1958[Sutor, D. J. (1958). Acta Cryst. 11, 453-458.], 1962[Sutor, D. J. (1962). Nature, 195, 68-69.], 1963[Sutor, D. J. (1963). J. Chem. Soc. pp. 1105-1110.]; Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]). While these inter­actions could be simply due to sterics since the D—H⋯A angles are around 120° (see below), we describe them here as potential C—H⋯O hydrogen bonds. Specifically, O1 inter­acts with C9(H9A) and C10(H10B), while the equivalent atom O1a inter­acts with C9A(H9AC) and C10A(H10F). These inter­actions have DA distances ranging from 3.039 (5) to 3.157 (5) Å and D—H⋯A angles ranging from 117 to 121° (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C1A–C6A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 1.00 2.56 3.464 (4) 151
C9—H9A⋯O1 0.98 2.44 3.071 (5) 121
C10—H10B⋯O1 0.98 2.59 3.157 (5) 117
C9A—H9AC⋯O1A 0.98 2.41 3.039 (5) 121
C10A—H10F⋯O1A 0.98 2.57 3.157 (5) 118
C3—H3⋯Cg2ii 0.95 2.95 3.515 (4) 120
C3A—H3ACg1iii 0.95 2.96 3.548 (4) 121
Symmetry codes: (i) x, y-1, z; (ii) [x-1, -y, z-{\script{1\over 2}}]; (iii) [x+1, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, with the atom labeling scheme for both crystallographically unique mol­ecules. Displacement ellipsoids are shown at the 40% probability level using standard CPK colors, and all hydrogen atoms have been omitted for clarity.
[Figure 3]
Figure 3
Non-covalent inter­actions present in the title compound, using a ball and stick model with standard CPK colors. C—H⋯π inter­actions are drawn with green, dashed lines and C—H⋯O hydrogen bonds are drawn with purple, dashed lines. Symmetry codes: (i) −1 + x, −y, −[{1\over 2}] + z; (ii) 1 + x, 1 − y, [{1\over 2}] + z; (iii) x, −1 + y, z.

3. Supra­molecular features

Mol­ecules of the title compound are held together in the solid state by inter­molecular C–H⋯π inter­actions and C–H⋯O hydrogen bonds (Fig. 3[link]). The C–H⋯π inter­actions have C⋯centroid distances of 3.515 (4) and 3.548 (4) Å, with C—H··centroid angles of 120 and 121°. The inter­molecular C—H⋯O hydrogen bond is present between C8(H8) and O2i [symmetry code: (i) x, −1 + y, z] with a DA distance of 3.465 (4) Å and a D—H⋯A angle of 150.8° (Table 1[link]). These supra­molecular inter­actions form ribbons that run parallel to the b-axis direction (Fig. 4[link]).

[Figure 4]
Figure 4
Supra­molecular ribbons of the title compound assembled via inter­molecular C—H⋯π inter­actions and C—H⋯O hydrogen bonds, as viewed down the c axis using a ball-and-stick model with standard CPK colors. The non-covalent inter­actions are depicted with dashed lines (C—H⋯π: green; C—H⋯O hydrogen bonds: purple), and the unit cell is drawn with orange. Only hydrogen atoms involved in a non-covalent inter­action are shown for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals over 5,000 structures of p-methyl­benzene­sulfonamides where the nitro­gen atom bears two carbon groups. A few structures that have relatively simple –R groups bonded to the sulfonamide nitro­gen atom are RUGQEQ (Khan et al., 2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Shafiq, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3109.]), CIQGOZ (Zhou & Zheng, 2007[Zhou, B. & Zheng, P.-W. (2007). Acta Cryst. E63, o4727.]) and CEMFUX (Zhou et al., 2012[Zhou, R., Wang, J., Duan, C. & He, Z. (2012). Org. Lett. 14, 6134-6137.]). In the structure of RUGQEQ, the sulfonamide nitro­gen atom bears a benzyl and a cyclo­hexyl group, while in CIQGOZ the –R groups are methyl and phenyl. For the structure CEMFUX, two sulfonamide nitro­gen atoms are linked via an ethyl­ene chain, and the other –R group is a substituted propyl ester.

5. Synthesis and crystallization

The title compound was prepared by the dropwise addition of p-toluene­sulfonyl chloride (1.00 g, 5.25 mmol) to a stirring mixture of diiso­propyl­amine (0.83 mL, 5.90 mmol), pyridine (0.48 mL, 5.90 mmol) and 10 mL of degassed di­chloro­methane under a nitro­gen atmosphere. The reaction mixture was stirred at room temperature for 24 h under a nitro­gen atmosphere. After acidification with 5 M HCl and dilution with 15 mL of di­chloro­methane, the organic layer was washed with water and brine. The aqueous layers were back extracted with 10 mL of di­chloro­methane. The combined organic layers were then dried over anhydrous sodium sulfate and evaporated to dryness. The resulting solid was dissolved in hot ethanol and filtered. The filtrate was placed in a freezer for two days and the product was isolated via vacuum filtration to give colorless crystals (13%; m.p. 362–365 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. For this structure, hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methine groups and aromatic hydrogen atoms, and Uiso(H) = 1.5Ueq(C) for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C13H21NO2S
Mr 255.37
Crystal system, space group Monoclinic, Pc
Temperature (K) 173
a, b, c (Å) 12.87828 (18), 6.88418 (10), 16.2080 (2)
β (°) 108.1513 (8)
V3) 1365.43 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.03
Crystal size (mm) 0.18 × 0.16 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.640, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 15150, 4924, 4746
Rint 0.034
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.07
No. of reflections 4924
No. of parameters 317
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.24
Absolute structure Flack x determined using 2083 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.002 (14)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015) and XP (Sheldrick, 2008); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

N,N-Diisopropyl-4-methylbenzenesulfonamide top
Crystal data top
C13H21NO2SF(000) = 552
Mr = 255.37Dx = 1.242 Mg m3
Monoclinic, PcCu Kα radiation, λ = 1.54178 Å
a = 12.87828 (18) ÅCell parameters from 9971 reflections
b = 6.88418 (10) Åθ = 3.6–72.1°
c = 16.2080 (2) ŵ = 2.03 mm1
β = 108.1513 (8)°T = 173 K
V = 1365.43 (3) Å3Block, colourless
Z = 40.18 × 0.16 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
4746 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 72.1°, θmin = 3.6°
Tmin = 0.640, Tmax = 0.754h = 1515
15150 measured reflectionsk = 88
4924 independent reflectionsl = 2018
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0814P)2 + 0.0782P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.63 e Å3
4924 reflectionsΔρmin = 0.24 e Å3
317 parametersAbsolute structure: Flack x determined using 2083 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.002 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25085 (5)0.34566 (10)0.27005 (5)0.0236 (2)
O10.1864 (2)0.3511 (4)0.32791 (17)0.0323 (6)
O20.3339 (2)0.4906 (3)0.27789 (17)0.0315 (5)
N10.3086 (2)0.1339 (4)0.27951 (19)0.0249 (6)
C10.1606 (3)0.3671 (5)0.1623 (2)0.0240 (7)
C20.0507 (3)0.3170 (5)0.1436 (2)0.0274 (7)
H20.02280.27590.18850.033*
C30.0170 (3)0.3280 (5)0.0586 (3)0.0308 (7)
H30.09180.29370.04560.037*
C40.0219 (3)0.3880 (5)0.0081 (2)0.0298 (7)
C50.1322 (3)0.4381 (5)0.0119 (2)0.0303 (7)
H50.16030.47870.03300.036*
C60.2006 (3)0.4289 (5)0.0968 (2)0.0291 (7)
H60.27520.46520.11010.035*
C70.0533 (3)0.4041 (6)0.1000 (3)0.0393 (9)
H7A0.10560.50970.10380.059*
H7B0.09300.28160.11710.059*
H7C0.01030.43150.13900.059*
C80.2723 (3)0.0367 (5)0.3194 (2)0.0271 (7)
H80.31600.14890.30920.033*
C90.3011 (3)0.0184 (6)0.4176 (3)0.0365 (8)
H9A0.26040.09000.43180.055*
H9B0.37970.00540.44280.055*
H9C0.28180.13910.44150.055*
C100.1530 (3)0.0920 (6)0.2761 (3)0.0357 (8)
H10A0.13780.09680.21300.054*
H10B0.10560.00500.29050.054*
H10C0.13890.21980.29710.054*
C110.3851 (3)0.0994 (5)0.2283 (2)0.0279 (7)
H110.39710.22680.20300.034*
C120.3388 (4)0.0400 (6)0.1535 (3)0.0396 (9)
H12A0.26770.00790.11680.059*
H12B0.32960.16850.17630.059*
H12C0.38900.04950.11900.059*
C130.4957 (3)0.0315 (7)0.2889 (3)0.0405 (9)
H13A0.48710.09530.31350.061*
H13B0.52300.12600.33590.061*
H13C0.54780.02030.25610.061*
S1A0.68214 (5)0.14554 (10)0.62704 (5)0.0245 (2)
O1A0.7462 (2)0.1368 (4)0.71678 (18)0.0341 (6)
O2A0.5988 (2)0.0023 (4)0.59227 (18)0.0321 (6)
N1A0.6249 (2)0.3582 (4)0.60873 (19)0.0245 (6)
C1A0.7733 (3)0.1253 (5)0.5650 (2)0.0244 (6)
C2A0.8822 (3)0.1807 (5)0.6000 (2)0.0273 (7)
H2A0.90940.22420.65840.033*
C3A0.9505 (3)0.1721 (5)0.5491 (3)0.0298 (7)
H3A1.02480.20990.57320.036*
C4A0.9125 (3)0.1091 (5)0.4631 (2)0.0295 (7)
C5A0.8030 (3)0.0539 (5)0.4289 (2)0.0300 (7)
H5A0.77540.01160.37030.036*
C6A0.7346 (3)0.0606 (5)0.4797 (2)0.0275 (7)
H6A0.66060.02070.45610.033*
C7A0.9887 (3)0.0957 (6)0.4096 (3)0.0395 (9)
H7AA1.04000.01150.43100.059*
H7AB1.02930.21770.41420.059*
H7AC0.94640.07230.34880.059*
C8A0.6606 (3)0.5254 (5)0.6691 (2)0.0284 (7)
H8A0.61680.63930.63900.034*
C9A0.6315 (4)0.4982 (6)0.7524 (3)0.0400 (9)
H9AA0.55360.46720.73810.060*
H9AB0.64720.61810.78670.060*
H9AC0.67490.39160.78630.060*
C10A0.7800 (3)0.5825 (6)0.6868 (3)0.0396 (9)
H10E0.79480.70340.72040.059*
H10D0.79480.60150.63160.059*
H10F0.82730.47910.71990.059*
C11A0.5500 (3)0.3973 (5)0.5205 (2)0.0285 (7)
H11A0.53710.27130.48820.034*
C12A0.5984 (3)0.5382 (6)0.4700 (3)0.0382 (8)
H12D0.60990.66470.49920.057*
H12E0.54800.55290.41100.057*
H12F0.66840.48760.46740.057*
C13A0.4399 (3)0.4693 (6)0.5249 (3)0.0371 (8)
H13D0.41160.37830.55920.056*
H13E0.38830.47810.46600.056*
H13F0.44890.59780.55220.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0291 (4)0.0182 (4)0.0235 (4)0.0012 (3)0.0081 (3)0.0022 (3)
O10.0406 (14)0.0291 (14)0.0286 (13)0.0074 (10)0.0126 (10)0.0021 (9)
O20.0357 (12)0.0214 (11)0.0341 (13)0.0035 (10)0.0062 (10)0.0020 (9)
N10.0300 (15)0.0225 (14)0.0233 (15)0.0042 (11)0.0100 (12)0.0020 (10)
C10.0288 (15)0.0201 (15)0.0230 (16)0.0045 (12)0.0080 (12)0.0001 (11)
C20.0284 (15)0.0218 (14)0.0338 (17)0.0031 (13)0.0123 (13)0.0005 (12)
C30.0286 (15)0.0212 (15)0.0400 (19)0.0001 (12)0.0070 (14)0.0023 (13)
C40.0387 (17)0.0178 (14)0.0301 (18)0.0067 (14)0.0067 (14)0.0014 (12)
C50.0381 (17)0.0265 (17)0.0280 (17)0.0061 (14)0.0130 (13)0.0056 (13)
C60.0300 (15)0.0265 (17)0.0313 (18)0.0021 (13)0.0104 (13)0.0052 (13)
C70.049 (2)0.0281 (18)0.0316 (19)0.0017 (16)0.0012 (15)0.0011 (14)
C80.0343 (16)0.0201 (15)0.0298 (17)0.0005 (13)0.0140 (13)0.0030 (13)
C90.047 (2)0.0337 (19)0.0285 (18)0.0011 (16)0.0117 (15)0.0063 (14)
C100.0382 (18)0.0300 (17)0.043 (2)0.0069 (15)0.0182 (15)0.0011 (15)
C110.0323 (16)0.0247 (15)0.0301 (17)0.0029 (13)0.0144 (13)0.0013 (13)
C120.052 (2)0.040 (2)0.0306 (19)0.0053 (18)0.0188 (16)0.0065 (15)
C130.0327 (17)0.046 (2)0.045 (2)0.0097 (16)0.0149 (16)0.0061 (17)
S1A0.0310 (4)0.0190 (4)0.0267 (4)0.0036 (3)0.0135 (3)0.0040 (3)
O1A0.0438 (15)0.0305 (13)0.0311 (14)0.0098 (11)0.0161 (11)0.0078 (9)
O2A0.0371 (12)0.0230 (12)0.0422 (15)0.0022 (10)0.0211 (11)0.0008 (10)
N1A0.0289 (14)0.0197 (13)0.0256 (15)0.0031 (10)0.0096 (11)0.0003 (10)
C1A0.0304 (16)0.0191 (14)0.0274 (17)0.0070 (12)0.0141 (13)0.0023 (11)
C2A0.0284 (15)0.0231 (15)0.0296 (17)0.0022 (13)0.0078 (13)0.0000 (12)
C3A0.0286 (15)0.0214 (15)0.0398 (19)0.0018 (13)0.0114 (13)0.0035 (13)
C4A0.0370 (17)0.0182 (14)0.0381 (19)0.0080 (13)0.0185 (15)0.0069 (13)
C5A0.0396 (17)0.0248 (16)0.0269 (17)0.0072 (14)0.0120 (13)0.0004 (12)
C6A0.0274 (14)0.0242 (16)0.0300 (17)0.0051 (13)0.0075 (12)0.0001 (13)
C7A0.047 (2)0.0306 (18)0.052 (2)0.0040 (16)0.0325 (18)0.0047 (16)
C8A0.0350 (16)0.0237 (15)0.0260 (16)0.0044 (13)0.0089 (13)0.0022 (12)
C9A0.055 (2)0.038 (2)0.0320 (19)0.0065 (18)0.0203 (17)0.0040 (15)
C10A0.042 (2)0.038 (2)0.035 (2)0.0047 (17)0.0059 (15)0.0056 (16)
C11A0.0335 (17)0.0251 (16)0.0254 (16)0.0041 (14)0.0070 (13)0.0006 (13)
C12A0.051 (2)0.039 (2)0.0285 (18)0.0049 (17)0.0186 (16)0.0072 (15)
C13A0.0298 (16)0.0352 (19)0.045 (2)0.0068 (15)0.0091 (14)0.0003 (16)
Geometric parameters (Å, º) top
S1—O11.434 (3)S1A—O1A1.433 (3)
S1—O21.439 (3)S1A—O2A1.437 (3)
S1—N11.622 (3)S1A—N1A1.624 (3)
S1—C11.777 (3)S1A—C1A1.773 (4)
N1—C81.484 (4)N1A—C8A1.489 (4)
N1—C111.493 (4)N1A—C11A1.479 (4)
C1—C21.395 (5)C1A—C2A1.393 (5)
C1—C61.383 (5)C1A—C6A1.390 (5)
C2—H20.9500C2A—H2A0.9500
C2—C31.384 (5)C2A—C3A1.381 (5)
C3—H30.9500C3A—H3A0.9500
C3—C41.388 (6)C3A—C4A1.395 (5)
C4—C51.398 (5)C4A—C5A1.398 (5)
C4—C71.507 (5)C4A—C7A1.500 (5)
C5—H50.9500C5A—H5A0.9500
C5—C61.385 (5)C5A—C6A1.381 (5)
C6—H60.9500C6A—H6A0.9500
C7—H7A0.9800C7A—H7AA0.9800
C7—H7B0.9800C7A—H7AB0.9800
C7—H7C0.9800C7A—H7AC0.9800
C8—H81.0000C8A—H8A1.0000
C8—C91.524 (5)C8A—C9A1.521 (5)
C8—C101.525 (5)C8A—C10A1.525 (5)
C9—H9A0.9800C9A—H9AA0.9800
C9—H9B0.9800C9A—H9AB0.9800
C9—H9C0.9800C9A—H9AC0.9800
C10—H10A0.9800C10A—H10D0.9800
C10—H10B0.9800C10A—H10E0.9800
C10—H10C0.9800C10A—H10F0.9800
C11—H111.0000C11A—H11A1.0000
C11—C121.516 (5)C11A—C12A1.522 (5)
C11—C131.529 (5)C11A—C13A1.525 (5)
C12—H12A0.9800C12A—H12D0.9800
C12—H12B0.9800C12A—H12E0.9800
C12—H12C0.9800C12A—H12F0.9800
C13—H13A0.9800C13A—H13D0.9800
C13—H13B0.9800C13A—H13E0.9800
C13—H13C0.9800C13A—H13F0.9800
O1—S1—O2119.35 (16)O1A—S1A—O2A119.54 (16)
O1—S1—N1107.65 (15)O1A—S1A—N1A107.96 (15)
O1—S1—C1107.80 (16)O1A—S1A—C1A107.38 (17)
O2—S1—N1107.99 (14)O2A—S1A—N1A107.79 (15)
O2—S1—C1105.66 (16)O2A—S1A—C1A105.62 (16)
N1—S1—C1107.92 (15)N1A—S1A—C1A108.09 (15)
C8—N1—S1123.7 (2)C8A—N1A—S1A123.2 (2)
C8—N1—C11117.9 (3)C11A—N1A—S1A117.6 (2)
C11—N1—S1117.0 (2)C11A—N1A—C8A118.1 (3)
C2—C1—S1120.1 (3)C2A—C1A—S1A120.6 (3)
C6—C1—S1119.6 (3)C6A—C1A—S1A119.6 (3)
C6—C1—C2120.3 (3)C6A—C1A—C2A119.8 (3)
C1—C2—H2120.5C1A—C2A—H2A120.2
C3—C2—C1119.0 (3)C3A—C2A—C1A119.6 (3)
C3—C2—H2120.5C3A—C2A—H2A120.2
C2—C3—H3119.2C2A—C3A—H3A119.3
C2—C3—C4121.6 (3)C2A—C3A—C4A121.3 (3)
C4—C3—H3119.2C4A—C3A—H3A119.3
C3—C4—C5118.6 (3)C3A—C4A—C5A118.5 (3)
C3—C4—C7121.0 (3)C3A—C4A—C7A120.5 (3)
C5—C4—C7120.3 (3)C5A—C4A—C7A121.0 (3)
C4—C5—H5119.8C4A—C5A—H5A119.8
C6—C5—C4120.3 (3)C6A—C5A—C4A120.5 (3)
C6—C5—H5119.8C6A—C5A—H5A119.8
C1—C6—C5120.2 (3)C1A—C6A—H6A119.8
C1—C6—H6119.9C5A—C6A—C1A120.4 (3)
C5—C6—H6119.9C5A—C6A—H6A119.8
C4—C7—H7A109.5C4A—C7A—H7AA109.5
C4—C7—H7B109.5C4A—C7A—H7AB109.5
C4—C7—H7C109.5C4A—C7A—H7AC109.5
H7A—C7—H7B109.5H7AA—C7A—H7AB109.5
H7A—C7—H7C109.5H7AA—C7A—H7AC109.5
H7B—C7—H7C109.5H7AB—C7A—H7AC109.5
N1—C8—H8105.7N1A—C8A—H8A105.8
N1—C8—C9112.5 (3)N1A—C8A—C9A112.1 (3)
N1—C8—C10114.0 (3)N1A—C8A—C10A114.2 (3)
C9—C8—H8105.7C9A—C8A—H8A105.8
C9—C8—C10112.5 (3)C9A—C8A—C10A112.2 (3)
C10—C8—H8105.7C10A—C8A—H8A105.8
C8—C9—H9A109.5C8A—C9A—H9AA109.5
C8—C9—H9B109.5C8A—C9A—H9AB109.5
C8—C9—H9C109.5C8A—C9A—H9AC109.5
H9A—C9—H9B109.5H9AA—C9A—H9AB109.5
H9A—C9—H9C109.5H9AA—C9A—H9AC109.5
H9B—C9—H9C109.5H9AB—C9A—H9AC109.5
C8—C10—H10A109.5C8A—C10A—H10D109.5
C8—C10—H10B109.5C8A—C10A—H10E109.5
C8—C10—H10C109.5C8A—C10A—H10F109.5
H10A—C10—H10B109.5H10D—C10A—H10E109.5
H10A—C10—H10C109.5H10D—C10A—H10F109.5
H10B—C10—H10C109.5H10E—C10A—H10F109.5
N1—C11—H11107.5N1A—C11A—H11A107.5
N1—C11—C12112.5 (3)N1A—C11A—C12A112.5 (3)
N1—C11—C13109.6 (3)N1A—C11A—C13A110.5 (3)
C12—C11—H11107.5C12A—C11A—H11A107.5
C12—C11—C13112.1 (3)C12A—C11A—C13A111.1 (3)
C13—C11—H11107.5C13A—C11A—H11A107.5
C11—C12—H12A109.5C11A—C12A—H12D109.5
C11—C12—H12B109.5C11A—C12A—H12E109.5
C11—C12—H12C109.5C11A—C12A—H12F109.5
H12A—C12—H12B109.5H12D—C12A—H12E109.5
H12A—C12—H12C109.5H12D—C12A—H12F109.5
H12B—C12—H12C109.5H12E—C12A—H12F109.5
C11—C13—H13A109.5C11A—C13A—H13D109.5
C11—C13—H13B109.5C11A—C13A—H13E109.5
C11—C13—H13C109.5C11A—C13A—H13F109.5
H13A—C13—H13B109.5H13D—C13A—H13E109.5
H13A—C13—H13C109.5H13D—C13A—H13F109.5
H13B—C13—H13C109.5H13E—C13A—H13F109.5
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C1A–C6A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i1.002.563.464 (4)151
C9—H9A···O10.982.443.071 (5)121
C10—H10B···O10.982.593.157 (5)117
C9A—H9AC···O1A0.982.413.039 (5)121
C10A—H10F···O1A0.982.573.157 (5)118
C3—H3···Cg2ii0.952.953.515 (4)120
C3A—H3A···Cg1iii0.952.963.548 (4)121
Symmetry codes: (i) x, y1, z; (ii) x1, y, z1/2; (iii) x+1, y+1, z+1/2.
 

Acknowledgements

The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were replaced and/or upgraded with departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. MRI CHE-1725699; grant No. MRI CHE-1919817); GVSU Chemistry Department's Weldon Fund .

References

First citationAlmarhoon, Z., Soliman, S. M., Ghabbour, H. A. & El-Faham, A. (2019). Crystals, 9, 35.  Web of Science CrossRef Google Scholar
First citationBlight, K. J. (2011). J. Virol. 85, 8158–8171.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, S. L. & Morgan, T. R. (2006). Int. J. Med. Sci. pp. 47–52.  CrossRef Google Scholar
First citationChohan, Z. H., Mahmood-ul-Hassan, Khan, K. M. & Supuran, C. T. (2005). J. Enzyme Inhib. Med. Chem. 20, 183–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGopalsamy, A., Chopra, R., Lim, K., Ciszewski, G., Shi, M., Curran, K. J., Sukits, S. F., Svenson, K., Bard, J., Ellingboe, J. W., Agarwal, A., Krishnamurthy, G., Howe, A. Y. M., Orlowski, M., Feld, B., O'Connell, J. & Mansour, T. S. (2006). J. Med. Chem. 49, 3052–3055.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHill, A. M., Nath, S. & Simmons, B. (2017). J. Virus Erad. 3, 117–123.  Web of Science PubMed Google Scholar
First citationJohansson, A., Poliakov, A., Åkerblom, E., Wiklund, K., Lindeberg, G., Winiwarter, S., Danielson, U. H., Samuelsson, B. & Hallberg, A. (2003). Bioorg. Med. Chem. 11, 2551–2568.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Shafiq, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorozov, V. A. & Lagaye, S. (2018). J. Hepatol. 10, 186–212.  Google Scholar
First citationNaredla, R. R. & Klumpp, D. A. (2013). Tetrahedron Lett. 54, 5945–5947.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationSutor, D. J. (1958). Acta Cryst. 11, 453–458.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSutor, D. J. (1962). Nature, 195, 68–69.  CAS Google Scholar
First citationSutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110.  CrossRef Web of Science Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZeuzem, S., Hézode, C., Bronowicki, J., Loustaud-Ratti, V., Gea, F., Buti, M., Olveira, A., Banyai, T., Al-Assi, M. T., Petersen, J., Thabut, D., Gadano, A., Pruitt, R., Makara, M., Bourlière, M., Pol, S., Beumont-Mauviel, M., Ouwerkerk-Mahadevan, S., Picchio, G., Bifano, G., McPhee, F., Boparai, N., Cheung, K., Hughes, E. A. & Noviello, S. (2016). J. Hepatol. 64, 292–300.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, X., Zhang, N., Chen, G., Turpoff, A., Ren, H., Takasugi, J., Morrill, C., Zhu, J., Li, C., Lennox, W., Paget, S., Liu, Y., Almstead, N., Njoroge, F. G., Gu, Z., Komatsu, T., Clausen, V., Espiritu, C., Graci, J., Colacino, J., Lahser, F., Risher, N., Weetall, M., Nomeir, A. & Karp, G. M. (2013). Bioorg. Med. Chem. Lett. 23, 3947–3953.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhou, B. & Zheng, P.-W. (2007). Acta Cryst. E63, o4727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, R., Wang, J., Duan, C. & He, Z. (2012). Org. Lett. 14, 6134–6137.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds