research communications
N,N-diisopropyl-4-methylbenzenesulfonamide
ofaDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu
The synthesis of the title compound, C13H21NO2S, is reported here along with its This compound crystallizes with two molecules in the The sulfonamide of this structure features S=O bond lengths ranging from 1.433 (3) to 1.439 (3) Å, S—C bond lengths of 1.777 (3) and 1.773 (4) Å, and S—N bond lengths of 1.622 (3) and 1.624 (3) Å. When viewing the molecules down the S—N bond, the isopropyl groups are gauche to the aromatic ring. On each molecule, two methyl hydrogen atoms of one isopropyl group are engaged in intramolecular C—H⋯O hydrogen bonds with a nearby sulfonamide oxygen atom. Intermolecular C—H⋯O hydrogen bonds and C—H⋯π interactions link molecules of the title compound in the solid state.
Keywords: crystal structure; sulfonamide; intramolecular C—H⋯O hydrogen bond; intermolecular C—H⋯O hydrogen bond; intermolecular C—H⋯π interaction.
CCDC reference: 2006237
1. Chemical context
et al., 2005). Since then, have been reported to exhibit a variety of therapeutic properties. These properties include the inhibition of hepatitis C virus (HCV). First discovered in 1989, HCV is a liver disease that is responsible for the majority of liver-related deaths (Chen & Morgan, 2006; Morozov & Lagaye, 2018). According to data published in 2016, approximately 69.6 million individuals are affected by HCV (Hill et al., 2017).
are biologically significant compounds that were first introduced as potent antibacterial agents (ChohanAdvances in HCV treatment have brought about a variety of novel HCV inhibitors that contain the sulfonamide moiety (Johansson et al., 2003; Gopalsamy et al., 2006). The pan genotypic NS5A inhibitor, Daclatasvir, and the NS3/4A protease inhibitor, Simeprevir, are examples of sulfonamide drugs approved for the treatment of HCV (Zeuzem et al., 2016). Arylsulfonamides, similar in structure to the title compound, were discovered as potent hepatitis C virus (HCV) 1b replicon inhibitors that target the HCV NS4B protein (Fig. 1; Zhang et al., 2013). The HCV NS4B protein is a key component for the replication of HCV RNA (Blight, 2011). It is necessary to synthesize a variety of potential inhibitors to work towards the treatment of HCV.
Producing biologically significant sulfonamide compounds is highly dependent on a facile synthetic method. A review of the current literature suggests a viable route of synthesis is the reaction between an electrophilic sulfonyl chloride and nucleophilic amine (Almarhoon et al., 2019). Another notable method for synthesizing sulfonamide compounds is the reaction between an N-silylamine and a sulfonyl chloride (Naredla & Klumpp, 2013). The title compound was synthesized by an analogous nucleophilic acyl between p-toluenesulfonyl chloride and diisopropylamine in the presence of pyridine. The use of p-toluenesulfonyl chloride as an is a good starting point in synthesizing arylsulfonamides due to its availability and low cost. Herein, we report the synthesis and of N,N-diisopropyl-4-methylbenzenesulfonamide. The of the title compound was obtained via single crystal X-ray diffraction.
2. Structural commentary
The title compound crystallizes in the monoclinic Pc, with two equivalents of the molecule in the The structure was solved with a of 0.002 (14) (Parsons et al., 2013). The atom labeling scheme is shown in Fig. 2. The molecules boast S=O bond lengths ranging from 1.433 (3) to 1.439 (3) Å, S—N bond lengths of 1.622 (3) and 1.624 (3) Å, and S—C bond lengths of 1.777 (3) and 1.773 (4) Å. These values lie in the expected ranges for an aromatic sulfonamide group. The O—S—O bond angles for each molecule are 119.35 (16) and 119.54 (16)°. When the molecules are viewed down the S—N bond, both have adopted a similar conformation with the isopropyl groups being gauche to the aromatic ring. In each molecule, the methine carbon atom of one of the isopropyl groups is nearly coplanar with a sulfonamide oxygen with O1—S1—N1—C8 and O1A—S1A—N1A—C8A torsion angles of 17.1 (3) and 15.7 (3)°, respectively. We attribute this relatively small torsion angle to the presence of intramolecular C-H⋯O interactions, which are described in more detail below. The torsion angles (O2—S1—N1—C11 and O2A—S1A—N1A—C11A) between the methine carbon atom of the other isopropyl group and the other sulfonamide oxygen are 46.7 (3) and 46.8 (3)°, respectively. Both sulfur atoms adopt a slightly distorted tetrahedral geometry with τ4 descriptors for fourfold coordination of 0.94 for both S1 and S1A (where 0 = square planar, 0.85 = trigonal pyramidal, and 1 = tetrahedral; Yang et al., 2007). Finally, there are two intramolecular C—H⋯O hydrogen bonds present between one sulfonamide oxygen atom and the methyl hydrogen atoms of an adjacent isopropyl group (Sutor, 1958, 1962, 1963; Steiner, 1996). While these interactions could be simply due to sterics since the D—H⋯A angles are around 120° (see below), we describe them here as potential C—H⋯O hydrogen bonds. Specifically, O1 interacts with C9(H9A) and C10(H10B), while the equivalent atom O1a interacts with C9A(H9AC) and C10A(H10F). These interactions have D⋯A distances ranging from 3.039 (5) to 3.157 (5) Å and D—H⋯A angles ranging from 117 to 121° (Table 1, Fig. 3).
3. Supramolecular features
Molecules of the title compound are held together in the solid state by intermolecular C–H⋯π interactions and C–H⋯O hydrogen bonds (Fig. 3). The C–H⋯π interactions have C⋯centroid distances of 3.515 (4) and 3.548 (4) Å, with C—H··centroid angles of 120 and 121°. The intermolecular C—H⋯O hydrogen bond is present between C8(H8) and O2i [symmetry code: (i) x, −1 + y, z] with a D⋯A distance of 3.465 (4) Å and a D—H⋯A angle of 150.8° (Table 1). These supramolecular interactions form ribbons that run parallel to the b-axis direction (Fig. 4).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom et al., 2016) reveals over 5,000 structures of p-methylbenzenesulfonamides where the nitrogen atom bears two carbon groups. A few structures that have relatively simple –R groups bonded to the sulfonamide nitrogen atom are RUGQEQ (Khan et al., 2009), CIQGOZ (Zhou & Zheng, 2007) and CEMFUX (Zhou et al., 2012). In the structure of RUGQEQ, the sulfonamide nitrogen atom bears a benzyl and a cyclohexyl group, while in CIQGOZ the –R groups are methyl and phenyl. For the structure CEMFUX, two sulfonamide nitrogen atoms are linked via an ethylene chain, and the other –R group is a substituted propyl ester.
5. Synthesis and crystallization
The title compound was prepared by the dropwise addition of p-toluenesulfonyl chloride (1.00 g, 5.25 mmol) to a stirring mixture of diisopropylamine (0.83 mL, 5.90 mmol), pyridine (0.48 mL, 5.90 mmol) and 10 mL of degassed dichloromethane under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 24 h under a nitrogen atmosphere. After acidification with 5 M HCl and dilution with 15 mL of dichloromethane, the organic layer was washed with water and brine. The aqueous layers were back extracted with 10 mL of dichloromethane. The combined organic layers were then dried over anhydrous sodium sulfate and evaporated to dryness. The resulting solid was dissolved in hot ethanol and filtered. The filtrate was placed in a freezer for two days and the product was isolated via vacuum filtration to give colorless crystals (13%; m.p. 362–365 K).
6. Refinement
Crystal data, data collection and structure . For this structure, hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methine groups and aromatic hydrogen atoms, and Uiso(H) = 1.5Ueq(C) for methyl groups.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2006237
https://doi.org/10.1107/S2056989020007185/pk2628sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007185/pk2628Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020007185/pk2628Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015) and XP (Sheldrick, 2008); software used to prepare material for publication: CrystalMaker (Palmer, 2007).C13H21NO2S | F(000) = 552 |
Mr = 255.37 | Dx = 1.242 Mg m−3 |
Monoclinic, Pc | Cu Kα radiation, λ = 1.54178 Å |
a = 12.87828 (18) Å | Cell parameters from 9971 reflections |
b = 6.88418 (10) Å | θ = 3.6–72.1° |
c = 16.2080 (2) Å | µ = 2.03 mm−1 |
β = 108.1513 (8)° | T = 173 K |
V = 1365.43 (3) Å3 | Block, colourless |
Z = 4 | 0.18 × 0.16 × 0.14 mm |
Bruker APEXII CCD diffractometer | 4746 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.034 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 72.1°, θmin = 3.6° |
Tmin = 0.640, Tmax = 0.754 | h = −15→15 |
15150 measured reflections | k = −8→8 |
4924 independent reflections | l = −20→18 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0814P)2 + 0.0782P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.109 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.63 e Å−3 |
4924 reflections | Δρmin = −0.24 e Å−3 |
317 parameters | Absolute structure: Flack x determined using 2083 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.002 (14) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.25085 (5) | 0.34566 (10) | 0.27005 (5) | 0.0236 (2) | |
O1 | 0.1864 (2) | 0.3511 (4) | 0.32791 (17) | 0.0323 (6) | |
O2 | 0.3339 (2) | 0.4906 (3) | 0.27789 (17) | 0.0315 (5) | |
N1 | 0.3086 (2) | 0.1339 (4) | 0.27951 (19) | 0.0249 (6) | |
C1 | 0.1606 (3) | 0.3671 (5) | 0.1623 (2) | 0.0240 (7) | |
C2 | 0.0507 (3) | 0.3170 (5) | 0.1436 (2) | 0.0274 (7) | |
H2 | 0.0228 | 0.2759 | 0.1885 | 0.033* | |
C3 | −0.0170 (3) | 0.3280 (5) | 0.0586 (3) | 0.0308 (7) | |
H3 | −0.0918 | 0.2937 | 0.0456 | 0.037* | |
C4 | 0.0219 (3) | 0.3880 (5) | −0.0081 (2) | 0.0298 (7) | |
C5 | 0.1322 (3) | 0.4381 (5) | 0.0119 (2) | 0.0303 (7) | |
H5 | 0.1603 | 0.4787 | −0.0330 | 0.036* | |
C6 | 0.2006 (3) | 0.4289 (5) | 0.0968 (2) | 0.0291 (7) | |
H6 | 0.2752 | 0.4652 | 0.1101 | 0.035* | |
C7 | −0.0533 (3) | 0.4041 (6) | −0.1000 (3) | 0.0393 (9) | |
H7A | −0.1056 | 0.5097 | −0.1038 | 0.059* | |
H7B | −0.0930 | 0.2816 | −0.1171 | 0.059* | |
H7C | −0.0103 | 0.4315 | −0.1390 | 0.059* | |
C8 | 0.2723 (3) | −0.0367 (5) | 0.3194 (2) | 0.0271 (7) | |
H8 | 0.3160 | −0.1489 | 0.3092 | 0.033* | |
C9 | 0.3011 (3) | −0.0184 (6) | 0.4176 (3) | 0.0365 (8) | |
H9A | 0.2604 | 0.0900 | 0.4318 | 0.055* | |
H9B | 0.3797 | 0.0054 | 0.4428 | 0.055* | |
H9C | 0.2818 | −0.1391 | 0.4415 | 0.055* | |
C10 | 0.1530 (3) | −0.0920 (6) | 0.2761 (3) | 0.0357 (8) | |
H10A | 0.1378 | −0.0968 | 0.2130 | 0.054* | |
H10B | 0.1056 | 0.0050 | 0.2905 | 0.054* | |
H10C | 0.1389 | −0.2198 | 0.2971 | 0.054* | |
C11 | 0.3851 (3) | 0.0994 (5) | 0.2283 (2) | 0.0279 (7) | |
H11 | 0.3971 | 0.2268 | 0.2030 | 0.034* | |
C12 | 0.3388 (4) | −0.0400 (6) | 0.1535 (3) | 0.0396 (9) | |
H12A | 0.2677 | 0.0079 | 0.1168 | 0.059* | |
H12B | 0.3296 | −0.1685 | 0.1763 | 0.059* | |
H12C | 0.3890 | −0.0495 | 0.1190 | 0.059* | |
C13 | 0.4957 (3) | 0.0315 (7) | 0.2889 (3) | 0.0405 (9) | |
H13A | 0.4871 | −0.0953 | 0.3135 | 0.061* | |
H13B | 0.5230 | 0.1260 | 0.3359 | 0.061* | |
H13C | 0.5478 | 0.0203 | 0.2561 | 0.061* | |
S1A | 0.68214 (5) | 0.14554 (10) | 0.62704 (5) | 0.0245 (2) | |
O1A | 0.7462 (2) | 0.1368 (4) | 0.71678 (18) | 0.0341 (6) | |
O2A | 0.5988 (2) | 0.0023 (4) | 0.59227 (18) | 0.0321 (6) | |
N1A | 0.6249 (2) | 0.3582 (4) | 0.60873 (19) | 0.0245 (6) | |
C1A | 0.7733 (3) | 0.1253 (5) | 0.5650 (2) | 0.0244 (6) | |
C2A | 0.8822 (3) | 0.1807 (5) | 0.6000 (2) | 0.0273 (7) | |
H2A | 0.9094 | 0.2242 | 0.6584 | 0.033* | |
C3A | 0.9505 (3) | 0.1721 (5) | 0.5491 (3) | 0.0298 (7) | |
H3A | 1.0248 | 0.2099 | 0.5732 | 0.036* | |
C4A | 0.9125 (3) | 0.1091 (5) | 0.4631 (2) | 0.0295 (7) | |
C5A | 0.8030 (3) | 0.0539 (5) | 0.4289 (2) | 0.0300 (7) | |
H5A | 0.7754 | 0.0116 | 0.3703 | 0.036* | |
C6A | 0.7346 (3) | 0.0606 (5) | 0.4797 (2) | 0.0275 (7) | |
H6A | 0.6606 | 0.0207 | 0.4561 | 0.033* | |
C7A | 0.9887 (3) | 0.0957 (6) | 0.4096 (3) | 0.0395 (9) | |
H7AA | 1.0400 | −0.0115 | 0.4310 | 0.059* | |
H7AB | 1.0293 | 0.2177 | 0.4142 | 0.059* | |
H7AC | 0.9464 | 0.0723 | 0.3488 | 0.059* | |
C8A | 0.6606 (3) | 0.5254 (5) | 0.6691 (2) | 0.0284 (7) | |
H8A | 0.6168 | 0.6393 | 0.6390 | 0.034* | |
C9A | 0.6315 (4) | 0.4982 (6) | 0.7524 (3) | 0.0400 (9) | |
H9AA | 0.5536 | 0.4672 | 0.7381 | 0.060* | |
H9AB | 0.6472 | 0.6181 | 0.7867 | 0.060* | |
H9AC | 0.6749 | 0.3916 | 0.7863 | 0.060* | |
C10A | 0.7800 (3) | 0.5825 (6) | 0.6868 (3) | 0.0396 (9) | |
H10E | 0.7948 | 0.7034 | 0.7204 | 0.059* | |
H10D | 0.7948 | 0.6015 | 0.6316 | 0.059* | |
H10F | 0.8273 | 0.4791 | 0.7199 | 0.059* | |
C11A | 0.5500 (3) | 0.3973 (5) | 0.5205 (2) | 0.0285 (7) | |
H11A | 0.5371 | 0.2713 | 0.4882 | 0.034* | |
C12A | 0.5984 (3) | 0.5382 (6) | 0.4700 (3) | 0.0382 (8) | |
H12D | 0.6099 | 0.6647 | 0.4992 | 0.057* | |
H12E | 0.5480 | 0.5529 | 0.4110 | 0.057* | |
H12F | 0.6684 | 0.4876 | 0.4674 | 0.057* | |
C13A | 0.4399 (3) | 0.4693 (6) | 0.5249 (3) | 0.0371 (8) | |
H13D | 0.4116 | 0.3783 | 0.5592 | 0.056* | |
H13E | 0.3883 | 0.4781 | 0.4660 | 0.056* | |
H13F | 0.4489 | 0.5978 | 0.5522 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0291 (4) | 0.0182 (4) | 0.0235 (4) | 0.0012 (3) | 0.0081 (3) | −0.0022 (3) |
O1 | 0.0406 (14) | 0.0291 (14) | 0.0286 (13) | 0.0074 (10) | 0.0126 (10) | −0.0021 (9) |
O2 | 0.0357 (12) | 0.0214 (11) | 0.0341 (13) | −0.0035 (10) | 0.0062 (10) | −0.0020 (9) |
N1 | 0.0300 (15) | 0.0225 (14) | 0.0233 (15) | 0.0042 (11) | 0.0100 (12) | 0.0020 (10) |
C1 | 0.0288 (15) | 0.0201 (15) | 0.0230 (16) | 0.0045 (12) | 0.0080 (12) | 0.0001 (11) |
C2 | 0.0284 (15) | 0.0218 (14) | 0.0338 (17) | 0.0031 (13) | 0.0123 (13) | 0.0005 (12) |
C3 | 0.0286 (15) | 0.0212 (15) | 0.0400 (19) | 0.0001 (12) | 0.0070 (14) | −0.0023 (13) |
C4 | 0.0387 (17) | 0.0178 (14) | 0.0301 (18) | 0.0067 (14) | 0.0067 (14) | −0.0014 (12) |
C5 | 0.0381 (17) | 0.0265 (17) | 0.0280 (17) | 0.0061 (14) | 0.0130 (13) | 0.0056 (13) |
C6 | 0.0300 (15) | 0.0265 (17) | 0.0313 (18) | 0.0021 (13) | 0.0104 (13) | 0.0052 (13) |
C7 | 0.049 (2) | 0.0281 (18) | 0.0316 (19) | 0.0017 (16) | −0.0012 (15) | −0.0011 (14) |
C8 | 0.0343 (16) | 0.0201 (15) | 0.0298 (17) | 0.0005 (13) | 0.0140 (13) | 0.0030 (13) |
C9 | 0.047 (2) | 0.0337 (19) | 0.0285 (18) | −0.0011 (16) | 0.0117 (15) | 0.0063 (14) |
C10 | 0.0382 (18) | 0.0300 (17) | 0.043 (2) | −0.0069 (15) | 0.0182 (15) | −0.0011 (15) |
C11 | 0.0323 (16) | 0.0247 (15) | 0.0301 (17) | 0.0029 (13) | 0.0144 (13) | 0.0013 (13) |
C12 | 0.052 (2) | 0.040 (2) | 0.0306 (19) | 0.0053 (18) | 0.0188 (16) | −0.0065 (15) |
C13 | 0.0327 (17) | 0.046 (2) | 0.045 (2) | 0.0097 (16) | 0.0149 (16) | 0.0061 (17) |
S1A | 0.0310 (4) | 0.0190 (4) | 0.0267 (4) | 0.0036 (3) | 0.0135 (3) | 0.0040 (3) |
O1A | 0.0438 (15) | 0.0305 (13) | 0.0311 (14) | 0.0098 (11) | 0.0161 (11) | 0.0078 (9) |
O2A | 0.0371 (12) | 0.0230 (12) | 0.0422 (15) | −0.0022 (10) | 0.0211 (11) | 0.0008 (10) |
N1A | 0.0289 (14) | 0.0197 (13) | 0.0256 (15) | 0.0031 (10) | 0.0096 (11) | −0.0003 (10) |
C1A | 0.0304 (16) | 0.0191 (14) | 0.0274 (17) | 0.0070 (12) | 0.0141 (13) | 0.0023 (11) |
C2A | 0.0284 (15) | 0.0231 (15) | 0.0296 (17) | 0.0022 (13) | 0.0078 (13) | 0.0000 (12) |
C3A | 0.0286 (15) | 0.0214 (15) | 0.0398 (19) | 0.0018 (13) | 0.0114 (13) | 0.0035 (13) |
C4A | 0.0370 (17) | 0.0182 (14) | 0.0381 (19) | 0.0080 (13) | 0.0185 (15) | 0.0069 (13) |
C5A | 0.0396 (17) | 0.0248 (16) | 0.0269 (17) | 0.0072 (14) | 0.0120 (13) | −0.0004 (12) |
C6A | 0.0274 (14) | 0.0242 (16) | 0.0300 (17) | 0.0051 (13) | 0.0075 (12) | −0.0001 (13) |
C7A | 0.047 (2) | 0.0306 (18) | 0.052 (2) | 0.0040 (16) | 0.0325 (18) | 0.0047 (16) |
C8A | 0.0350 (16) | 0.0237 (15) | 0.0260 (16) | 0.0044 (13) | 0.0089 (13) | −0.0022 (12) |
C9A | 0.055 (2) | 0.038 (2) | 0.0320 (19) | 0.0065 (18) | 0.0203 (17) | −0.0040 (15) |
C10A | 0.042 (2) | 0.038 (2) | 0.035 (2) | −0.0047 (17) | 0.0059 (15) | −0.0056 (16) |
C11A | 0.0335 (17) | 0.0251 (16) | 0.0254 (16) | 0.0041 (14) | 0.0070 (13) | −0.0006 (13) |
C12A | 0.051 (2) | 0.039 (2) | 0.0285 (18) | 0.0049 (17) | 0.0186 (16) | 0.0072 (15) |
C13A | 0.0298 (16) | 0.0352 (19) | 0.045 (2) | 0.0068 (15) | 0.0091 (14) | 0.0003 (16) |
S1—O1 | 1.434 (3) | S1A—O1A | 1.433 (3) |
S1—O2 | 1.439 (3) | S1A—O2A | 1.437 (3) |
S1—N1 | 1.622 (3) | S1A—N1A | 1.624 (3) |
S1—C1 | 1.777 (3) | S1A—C1A | 1.773 (4) |
N1—C8 | 1.484 (4) | N1A—C8A | 1.489 (4) |
N1—C11 | 1.493 (4) | N1A—C11A | 1.479 (4) |
C1—C2 | 1.395 (5) | C1A—C2A | 1.393 (5) |
C1—C6 | 1.383 (5) | C1A—C6A | 1.390 (5) |
C2—H2 | 0.9500 | C2A—H2A | 0.9500 |
C2—C3 | 1.384 (5) | C2A—C3A | 1.381 (5) |
C3—H3 | 0.9500 | C3A—H3A | 0.9500 |
C3—C4 | 1.388 (6) | C3A—C4A | 1.395 (5) |
C4—C5 | 1.398 (5) | C4A—C5A | 1.398 (5) |
C4—C7 | 1.507 (5) | C4A—C7A | 1.500 (5) |
C5—H5 | 0.9500 | C5A—H5A | 0.9500 |
C5—C6 | 1.385 (5) | C5A—C6A | 1.381 (5) |
C6—H6 | 0.9500 | C6A—H6A | 0.9500 |
C7—H7A | 0.9800 | C7A—H7AA | 0.9800 |
C7—H7B | 0.9800 | C7A—H7AB | 0.9800 |
C7—H7C | 0.9800 | C7A—H7AC | 0.9800 |
C8—H8 | 1.0000 | C8A—H8A | 1.0000 |
C8—C9 | 1.524 (5) | C8A—C9A | 1.521 (5) |
C8—C10 | 1.525 (5) | C8A—C10A | 1.525 (5) |
C9—H9A | 0.9800 | C9A—H9AA | 0.9800 |
C9—H9B | 0.9800 | C9A—H9AB | 0.9800 |
C9—H9C | 0.9800 | C9A—H9AC | 0.9800 |
C10—H10A | 0.9800 | C10A—H10D | 0.9800 |
C10—H10B | 0.9800 | C10A—H10E | 0.9800 |
C10—H10C | 0.9800 | C10A—H10F | 0.9800 |
C11—H11 | 1.0000 | C11A—H11A | 1.0000 |
C11—C12 | 1.516 (5) | C11A—C12A | 1.522 (5) |
C11—C13 | 1.529 (5) | C11A—C13A | 1.525 (5) |
C12—H12A | 0.9800 | C12A—H12D | 0.9800 |
C12—H12B | 0.9800 | C12A—H12E | 0.9800 |
C12—H12C | 0.9800 | C12A—H12F | 0.9800 |
C13—H13A | 0.9800 | C13A—H13D | 0.9800 |
C13—H13B | 0.9800 | C13A—H13E | 0.9800 |
C13—H13C | 0.9800 | C13A—H13F | 0.9800 |
O1—S1—O2 | 119.35 (16) | O1A—S1A—O2A | 119.54 (16) |
O1—S1—N1 | 107.65 (15) | O1A—S1A—N1A | 107.96 (15) |
O1—S1—C1 | 107.80 (16) | O1A—S1A—C1A | 107.38 (17) |
O2—S1—N1 | 107.99 (14) | O2A—S1A—N1A | 107.79 (15) |
O2—S1—C1 | 105.66 (16) | O2A—S1A—C1A | 105.62 (16) |
N1—S1—C1 | 107.92 (15) | N1A—S1A—C1A | 108.09 (15) |
C8—N1—S1 | 123.7 (2) | C8A—N1A—S1A | 123.2 (2) |
C8—N1—C11 | 117.9 (3) | C11A—N1A—S1A | 117.6 (2) |
C11—N1—S1 | 117.0 (2) | C11A—N1A—C8A | 118.1 (3) |
C2—C1—S1 | 120.1 (3) | C2A—C1A—S1A | 120.6 (3) |
C6—C1—S1 | 119.6 (3) | C6A—C1A—S1A | 119.6 (3) |
C6—C1—C2 | 120.3 (3) | C6A—C1A—C2A | 119.8 (3) |
C1—C2—H2 | 120.5 | C1A—C2A—H2A | 120.2 |
C3—C2—C1 | 119.0 (3) | C3A—C2A—C1A | 119.6 (3) |
C3—C2—H2 | 120.5 | C3A—C2A—H2A | 120.2 |
C2—C3—H3 | 119.2 | C2A—C3A—H3A | 119.3 |
C2—C3—C4 | 121.6 (3) | C2A—C3A—C4A | 121.3 (3) |
C4—C3—H3 | 119.2 | C4A—C3A—H3A | 119.3 |
C3—C4—C5 | 118.6 (3) | C3A—C4A—C5A | 118.5 (3) |
C3—C4—C7 | 121.0 (3) | C3A—C4A—C7A | 120.5 (3) |
C5—C4—C7 | 120.3 (3) | C5A—C4A—C7A | 121.0 (3) |
C4—C5—H5 | 119.8 | C4A—C5A—H5A | 119.8 |
C6—C5—C4 | 120.3 (3) | C6A—C5A—C4A | 120.5 (3) |
C6—C5—H5 | 119.8 | C6A—C5A—H5A | 119.8 |
C1—C6—C5 | 120.2 (3) | C1A—C6A—H6A | 119.8 |
C1—C6—H6 | 119.9 | C5A—C6A—C1A | 120.4 (3) |
C5—C6—H6 | 119.9 | C5A—C6A—H6A | 119.8 |
C4—C7—H7A | 109.5 | C4A—C7A—H7AA | 109.5 |
C4—C7—H7B | 109.5 | C4A—C7A—H7AB | 109.5 |
C4—C7—H7C | 109.5 | C4A—C7A—H7AC | 109.5 |
H7A—C7—H7B | 109.5 | H7AA—C7A—H7AB | 109.5 |
H7A—C7—H7C | 109.5 | H7AA—C7A—H7AC | 109.5 |
H7B—C7—H7C | 109.5 | H7AB—C7A—H7AC | 109.5 |
N1—C8—H8 | 105.7 | N1A—C8A—H8A | 105.8 |
N1—C8—C9 | 112.5 (3) | N1A—C8A—C9A | 112.1 (3) |
N1—C8—C10 | 114.0 (3) | N1A—C8A—C10A | 114.2 (3) |
C9—C8—H8 | 105.7 | C9A—C8A—H8A | 105.8 |
C9—C8—C10 | 112.5 (3) | C9A—C8A—C10A | 112.2 (3) |
C10—C8—H8 | 105.7 | C10A—C8A—H8A | 105.8 |
C8—C9—H9A | 109.5 | C8A—C9A—H9AA | 109.5 |
C8—C9—H9B | 109.5 | C8A—C9A—H9AB | 109.5 |
C8—C9—H9C | 109.5 | C8A—C9A—H9AC | 109.5 |
H9A—C9—H9B | 109.5 | H9AA—C9A—H9AB | 109.5 |
H9A—C9—H9C | 109.5 | H9AA—C9A—H9AC | 109.5 |
H9B—C9—H9C | 109.5 | H9AB—C9A—H9AC | 109.5 |
C8—C10—H10A | 109.5 | C8A—C10A—H10D | 109.5 |
C8—C10—H10B | 109.5 | C8A—C10A—H10E | 109.5 |
C8—C10—H10C | 109.5 | C8A—C10A—H10F | 109.5 |
H10A—C10—H10B | 109.5 | H10D—C10A—H10E | 109.5 |
H10A—C10—H10C | 109.5 | H10D—C10A—H10F | 109.5 |
H10B—C10—H10C | 109.5 | H10E—C10A—H10F | 109.5 |
N1—C11—H11 | 107.5 | N1A—C11A—H11A | 107.5 |
N1—C11—C12 | 112.5 (3) | N1A—C11A—C12A | 112.5 (3) |
N1—C11—C13 | 109.6 (3) | N1A—C11A—C13A | 110.5 (3) |
C12—C11—H11 | 107.5 | C12A—C11A—H11A | 107.5 |
C12—C11—C13 | 112.1 (3) | C12A—C11A—C13A | 111.1 (3) |
C13—C11—H11 | 107.5 | C13A—C11A—H11A | 107.5 |
C11—C12—H12A | 109.5 | C11A—C12A—H12D | 109.5 |
C11—C12—H12B | 109.5 | C11A—C12A—H12E | 109.5 |
C11—C12—H12C | 109.5 | C11A—C12A—H12F | 109.5 |
H12A—C12—H12B | 109.5 | H12D—C12A—H12E | 109.5 |
H12A—C12—H12C | 109.5 | H12D—C12A—H12F | 109.5 |
H12B—C12—H12C | 109.5 | H12E—C12A—H12F | 109.5 |
C11—C13—H13A | 109.5 | C11A—C13A—H13D | 109.5 |
C11—C13—H13B | 109.5 | C11A—C13A—H13E | 109.5 |
C11—C13—H13C | 109.5 | C11A—C13A—H13F | 109.5 |
H13A—C13—H13B | 109.5 | H13D—C13A—H13E | 109.5 |
H13A—C13—H13C | 109.5 | H13D—C13A—H13F | 109.5 |
H13B—C13—H13C | 109.5 | H13E—C13A—H13F | 109.5 |
Cg1 and Cg2 are the centroids of the C1–C6 and C1A–C6A rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2i | 1.00 | 2.56 | 3.464 (4) | 151 |
C9—H9A···O1 | 0.98 | 2.44 | 3.071 (5) | 121 |
C10—H10B···O1 | 0.98 | 2.59 | 3.157 (5) | 117 |
C9A—H9AC···O1A | 0.98 | 2.41 | 3.039 (5) | 121 |
C10A—H10F···O1A | 0.98 | 2.57 | 3.157 (5) | 118 |
C3—H3···Cg2ii | 0.95 | 2.95 | 3.515 (4) | 120 |
C3A—H3A···Cg1iii | 0.95 | 2.96 | 3.548 (4) | 121 |
Symmetry codes: (i) x, y−1, z; (ii) x−1, −y, z−1/2; (iii) x+1, −y+1, z+1/2. |
Acknowledgements
The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were replaced and/or upgraded with departmental funds.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. MRI CHE-1725699; grant No. MRI CHE-1919817); GVSU Chemistry Department's Weldon Fund .
References
Almarhoon, Z., Soliman, S. M., Ghabbour, H. A. & El-Faham, A. (2019). Crystals, 9, 35. Web of Science CrossRef Google Scholar
Blight, K. J. (2011). J. Virol. 85, 8158–8171. Web of Science CrossRef CAS PubMed Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Chen, S. L. & Morgan, T. R. (2006). Int. J. Med. Sci. pp. 47–52. CrossRef Google Scholar
Chohan, Z. H., Mahmood-ul-Hassan, Khan, K. M. & Supuran, C. T. (2005). J. Enzyme Inhib. Med. Chem. 20, 183–188. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gopalsamy, A., Chopra, R., Lim, K., Ciszewski, G., Shi, M., Curran, K. J., Sukits, S. F., Svenson, K., Bard, J., Ellingboe, J. W., Agarwal, A., Krishnamurthy, G., Howe, A. Y. M., Orlowski, M., Feld, B., O'Connell, J. & Mansour, T. S. (2006). J. Med. Chem. 49, 3052–3055. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hill, A. M., Nath, S. & Simmons, B. (2017). J. Virus Erad. 3, 117–123. Web of Science PubMed Google Scholar
Johansson, A., Poliakov, A., Åkerblom, E., Wiklund, K., Lindeberg, G., Winiwarter, S., Danielson, U. H., Samuelsson, B. & Hallberg, A. (2003). Bioorg. Med. Chem. 11, 2551–2568. Web of Science CrossRef PubMed CAS Google Scholar
Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Shafiq, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3109. Web of Science CSD CrossRef IUCr Journals Google Scholar
Morozov, V. A. & Lagaye, S. (2018). J. Hepatol. 10, 186–212. Google Scholar
Naredla, R. R. & Klumpp, D. A. (2013). Tetrahedron Lett. 54, 5945–5947. Web of Science CrossRef CAS PubMed Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Steiner, T. (1996). Crystallogr. Rev. 6, 1–51. CrossRef CAS Google Scholar
Sutor, D. J. (1958). Acta Cryst. 11, 453–458. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sutor, D. J. (1962). Nature, 195, 68–69. CAS Google Scholar
Sutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110. CrossRef Web of Science Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zeuzem, S., Hézode, C., Bronowicki, J., Loustaud-Ratti, V., Gea, F., Buti, M., Olveira, A., Banyai, T., Al-Assi, M. T., Petersen, J., Thabut, D., Gadano, A., Pruitt, R., Makara, M., Bourlière, M., Pol, S., Beumont-Mauviel, M., Ouwerkerk-Mahadevan, S., Picchio, G., Bifano, G., McPhee, F., Boparai, N., Cheung, K., Hughes, E. A. & Noviello, S. (2016). J. Hepatol. 64, 292–300. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, X., Zhang, N., Chen, G., Turpoff, A., Ren, H., Takasugi, J., Morrill, C., Zhu, J., Li, C., Lennox, W., Paget, S., Liu, Y., Almstead, N., Njoroge, F. G., Gu, Z., Komatsu, T., Clausen, V., Espiritu, C., Graci, J., Colacino, J., Lahser, F., Risher, N., Weetall, M., Nomeir, A. & Karp, G. M. (2013). Bioorg. Med. Chem. Lett. 23, 3947–3953. Web of Science CrossRef CAS PubMed Google Scholar
Zhou, B. & Zheng, P.-W. (2007). Acta Cryst. E63, o4727. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, R., Wang, J., Duan, C. & He, Z. (2012). Org. Lett. 14, 6134–6137. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.