research communications
μ2-1,2-bis[(4-methylphenylsulfanyl]-3-oxoprop-1-ene-1,3-diyl-1:2κ2C3:C1}dicarbonyl-1κ2C-[μ2-methylenebis(diphenylphosphane)-1:2κ2P:P′](triphenylphosphane-2κP)ironplatinum(Fe—Pt), [(OC)2Fe(μ-dppm){μ-C(=O)C(4-MeC6H4SCH2)=CCH2SC6H4Me-4}Pt(PPh3)]
of {aCentre D'Etude et de Recherche de Djibouti, Djibouti, bInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France, and cInstitute for Inorganic Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
The title compound, [FePt(C19H18OS2)(C18H15P)(C25H22P2)(CO)2], 1, [(OC)2Fe(μ-dppm)(μ-C(=O)C(CH2SC6H4Me-4)=CCH2SC6H4Me-4)Pt(PPh3)], represents the first example of a diphosphane-bridged heterobimetallic Fe—Pt dimetallacyclopentenone complex resulting from a bimetallic activation of metal-coordinated carbonyl ligand with an internal alkyne, namely 1,4-bis(p-tolylthio)but-2-yne. The bridging μ2-C(=O)C(CH2SC6H4Me-4)=CCH2SC6H4Me-4 unit (stemming from a carbon–carbon coupling reaction between CO and the triple bond of the alkyne dithioether) forms a five-membered dimetallacyclopentenone ring, in which the C=C bond is π-coordinated to the Fe center. The latter is connected to the Pt center through a short metal–metal bond of 2.5697 (6) Å.
Keywords: crystal structure; internal alkyne; iron; platinum; heterobimetallic; metal–metal bond; dimetallcyclopentenone; bis(diphenylphosphino)methane; thioether; hydrogen bonding.
CCDC reference: 1996804
1. Chemical context
Acetylenic dithioether ligands of type RSCH2C≡CCH2SR (R = aryl, alkyl) have in recent years not only attracted attention as reactive building blocks for further organic transformations (Pourcelot & Cadiot, 1966; Everhardus & Brandsma; 1978; Levanova et al., 2015) but also as promising ligands for coordination chemistry because of their dytopic character, allowing both coordination to soft metal centers through dative M←S bonding and π-bonding via the acetylenic triple bond. In this context, we have explored in a series of several papers the coordination of this ligand family to CuX salts in a self-assembly process to discrete molecular compounds, mono- and bidimensional coordination polymers and three-dimensional MOFs. For example, treatment of CuI with PhSCH2C≡CCH2SPh afforded a three-dimensional network incorporating Cu6(μ3-I) hexagonal prisms as connection nodes (Knorr et al., 2009; Bai et al., 2018). In contrast, reaction of BzSCH2C≡CCH2SBz (Bz = benzyl) with both CuI and CuBr provided simple isostructural dinuclear zero-dimensional complexes [{Cu(μ2-X)2Cu}(μ-BzSCH2C≡CCH2SBz)2] (X = I, Br). A far more original material resulted from coordination to CuCl, yielding a luminescent 2D material [{Cu2(μ2-Cl)(μ3-Cl)}(μ-BzSCH2C≡CCH2SBz)]n, in which the layers are assembled both by dative Cu—S thioether bonds and organometallic Cu-π–acetylenic interactions via the triple bond of the ligand. Furthermore, the CuI centers are interconnected through μ2- and μ3-bound chloro ligands. Treatment of CuI with the isomeric p-TolSCH2C≡CCH2STol-p (Tol = C6H4-p-Me) ligand led to the formation of a 2D network [{Cu4(μ3-I)4}(μ-TolSCH2C≡CCH2STol)2]n with closed cubane-type clusters as SBUs (Secondary Building Units), whilst with CuBr the 1D [{Cu(μ2-Br)2Cu}(μ-TolSCH2C≡CCH2STol)2]n coordination polymer was generated (Aly et al., 2014; Bonnot et al., 2015). An alternative approach to combining a metallic scaffold with RSCH2C≡CCH2SR-type ligands has been developed by Went and coworkers, who post-functionalized dicobaltatetrahedrane complexes [Co2(μ-HOCH2C≡CCH2OH)(CO)6] in the presence of HBF4·OEt2 and various RSH to obtain [Co2(μ-RSCH2C≡CCH2SR)(CO)6] and [Co2(μ-RSCH2C≡CCH2SR)(μ-dppm)(CO)4] [dppm = bis(diphenylphosphino)methane], respectively. Similar treatment of [Mo2(μ-HOCH2C≡CCH2OH)(CO)4Cp2] with EtSH yielded [Mo2(μ-EtSCH2C≡CCH2SEt)(CO)4Cp2]. These former Co–Co thioether complexes were then employed as metalloligands to coordinate further metal fragments such as [Cu(MeCN)4]PF6, AgBF4 and [Mo(CO)4(norbornadiene)] (Bennett, et al., 1992; Gelling et al., 1993). Related dicationic salts such as [(Co2(CO)6)2-μ,η2,η2-(Me2S—CH2C≡CCH2SMe2)][BF4]2 have also been described (Amouri et al., 2000). We and Shaw's group have demonstrated that upon treatment of the μ-carbonyl complex [(OC)3Fe(μ-dppm)(μ-CO)Pt(PPh3)] with ArC≡CH (Ar = Ph, p-Tol, 2,4,5-trimethylphenyl, p-C6H4F, 2,4-C6H3F2, p-C6H4CF3), dimetallacyclopentone complexes are formed, stemming from carbon–carbon coupling reactions between CO and the terminal alkyne (Fontaine et al., 1988; Jourdain et al., 2013; Knorr & Jourdain, 2017; Brieger et al., 2019). The first step involves the formation of a kinetic isomer [(OC)2Fe(μ-dppm){μ-C(=O)C(H)=C(Ar)}Pt(PPh3)], which then evolves to the thermodynamic one [(OC)2Fe(μ-dppm){μ-C(=O)C(Ar)=C(H)}Pt(PPh3)]. We were now intrigued as to whether this route may be extended to internal RC≡CR, which are in general less reactive than terminal ones. We therefore probed the possibility of coupling [(OC)3Fe(μ-dppm)(μ-CO)Pt(PPh3)] with p-TolSCH2C≡CCH2STol-p in hot toluene as solvent and succeeded in isolating the targeted dimetallacyclopentone [(OC)2Fe(μ-dppm)(μ-C(=O)C(4-MeC6H4SCH2)=CCH2SC6H4Me-4)Pt(PPh3)] (1) as a stable crystalline product according to the reaction scheme shown in Fig. 1. With this title compound 1 in hand, we now have the possibility of coordinating other metal fragments in upcoming studies, for example [Mo(CO)4(norbornadiene)] or ReBr(CO)5 in a chelating manner using the two adjacent thioether arms or of constructing coordination networks incorporating complex 1 as an organometallic building block by coordination of CuX or AgI salts on the S-donor sites (see above).
2. Structural commentary
The heterobimetallic compound 1 crystallizes in the monoclinic P21/c. The molecular structure is depicted in Fig. 2 and selected bond lengths and angles are given in Table 1.
|
The Fe—Pt bond [2.5697 (6) Å] is spanned by a dppm ligand and bridged by the C(=O)C(R)=C(R) (R = 4-MeC6H4SCH2) unit resulting from the carbon–carbon coupling reaction between CO and the alkyne. This value, which is less than 2.6 Å, is in the usual range for FePt(dppm)–dimetallacyclopentenone complexes. Note that extreme Fe—Pt distances are reported for the μ-carbene [(OC)3Fe{μ-C(Et)OSi(OMe)3}(μ-dppm)Pt(PPh3)] [d(Fe—Pt) = 2.5062 (9) Å; YOTCIT; Braunstein et al., 1995] and [Fe(η5-C5H4S)2Pt(PPh3)] [d(Fe—Pt = 2.935 (2) Å; FENCUW; Akabori et al., 1987]. Coupling of an internal alkyne does not affect the structural features of the [FeC(=O)C(R)=C(R)Pt] motif significantly with respect to carbon–carbon coupling with a terminal alkyne. The relevant bond lengths and angles are very similar to those of other Fe—Pt structures published by Fontaine et al. (1988) and our group (see above). The presence of a bulky substituent on the C1 atom bound to platinum implies a significant reduction of the P3—Pt—P2 angle [100.53 (4)°] concomitant with an increasing value of the angle P3—Pt—C1 of 107.33 (12)°. In related compounds described previously in the literature, these P3—Pt—P2 angles usually lie in the range 103.93 (8) to 106.63 (3)°, as exemplified by [(OC)2Fe(μ-dppm){μ-C(=O)C{(CH2)3CCH}=C(H)}Pt(PPh3)] (REDNEU) and [(OC)2Fe(μ-dppm){μ-C(=O)C(p-C6H4CF3)=C(H)}Pt(PPh3)] (PIXLAL), and 98.8 (3) to 104.95 (10)° for P3—Pt—C1 in [(OC)2Fe(μ-dppm){μ-C(=O)C(H)=C(H)}Pt(PPh3)] (FEYBAM) and [(OC)2Fe(μ-dppm){μ-C(=O)C(o,p-C6H3F2)=C(H)}Pt(PPh3)] (PIXKUE) (Fontaine et al., 1988; Jourdain et al., 2006, 2013). The of the dithioether p-TolSCH2C≡CCH2STol-p (MULHUZ) was reported by Aly et al. (2014). After complexation and a coupling reaction with a CO ligand, the C1—C2 bond is considerably longer [1.407 (6) vs 1.266 (5) Å] as a result of the conversion to an olefinic moiety, σ-bound to Pt and η2-coordinated to Fe. The alkyne bending angles are disparate [C1—C2—C4 = 126.2 (4), C2—C1—C12 = 119.6 (4)°] as well as the C1—C12 and C2—C4 distances [d(C1—C12) = 1.483 (6), d(C2—C4) = 1.511 (5) Å]. Compared to 1,4-bis(p-tolylthio)but-2-yne, the C—S bonds are also considerably elongated [d(C4—S1 = 1.830 (4), d(C12—S2) = 1.808 (4), d(C5—S1) = 1.782 (5), d(C13—S2) = 1.771 (4) vs 1.685 (2) and 1.714 (2) Å] but they fit well with those encountered in the dimetallatetrahedrane [Co2{μ-C2(CH2SMe)2Mo(CO)4}(μ-dppm)(CO)4] [d(C—S = 1.827 (4), 1.833 (4),1.790 (5) and 1.819 (5) Å; JIHMUI10; Gelling et al., 1993].
3. Supramolecular features
In the crystal, the individual molecules are linked by weak intermolecular interactions; for example a contact between O3′′⋯H39 [d = 2.49 Å and C3′′—O3′′⋯H39 = 138°; symmetry code: (′′) −x + 1, −y + 1, −z + 1] occurs (Fig. 3, Table 2. A second, yet still weaker intermolecular interaction of 2.67 Å is observed between the O1′⋯H15 [symmetry code: (′) x, –y + , z − ] atoms of two adjacent molecules. In addition there is an intramolecular contact between O3⋯H34A (d = 2.62 Å and C3—O3⋯H34A = 125°). Furthermore, there are also several loose intermolecular C—H⋯π interactions present; for example a contact between C43—H43 and the midpoint of the C13=C14 double bond [d(H43⋯midpoint) = 2.73 Å and C—H⋯midpoint = 157°] of a tolyl ring attached to S2, as well as between C62—H62 and the C23—C24—C25 atoms of a phenyl ring [d(H62⋯centroid) = 2.64 Å and C—H⋯centroid = 148°] attached at P1. However, since all hydrogen atoms were not refined freely, a more accurate discussion of the bond lengths and angle is not appropriate.
4. Database survey
Other examples of crystallographically characterized dimetallacyclopentenone complexes are Fe2Cp2(CO)(μ-CO){μ-CH=C(Ph)C(=O)} (DAHTAJ; Boni et al., 2011), Fe2Cp*2(CO)(μ-CO){μ-C(C≡CH)=CHC(=O)] (JUZHIV; Akita et al., 1993), Fe2(CO)5(μ-dppm){μ-C(=O)CH=CH} (GACWIQ10; Knox et al., 1995), Fe2(CO)5(μ-dppm){μ-C(=O)C(Ph)=CH} (PIHMOI; Hitchcock et al., 1993), Fe2Cp2(CO)(μ-CO){μ-C(COR)=C(Me)C(=O)} (R = Ph, Bu) (SIZNUK, SIZPAS; Wong et al., 1991), Fe2{(η-C5H4)2SiMe2}(CO)2(μ-CO){μ-C(Ph)=C(H)C(=O)} (ZUZGIK; McKee et al., 1994), Ru2(CO)4(μ-dppm)2{μ-C(=O)C(CO2Me)=C(CO2Me)} (JITZAN; Johnson & Gladfelter, 1991), Ru2(CO)4(μ-dppm)2{μ-CH=CHC(=O)} (LIFYUU; Mirza et al., 1994), Ru2(η-C5HMe4)2(CO)(μ-CO){μ-C(=O)C(R)=C(R)} (R = Et, Me) (NEMVOS, NEMVUY; Horiuchi et al., 2012), Rh2Cp2(CO)4{μ-C(CF3)=C(CF3)C(=O)} (TFPNRH; Dickson et al., 1981), Re2Cp*2(CO)2{μ-CH=C{C(=CH2)CH3}C(=O)} (WEZKIV; Casey et al., 1994). A rare example of a heterodinuclear combination is CpFe{μ-C(=O)C(CMe2OH)=CH}(μ-CO)Ru(CO)Cp* (FEHGOP; Dennett et al., 2005). We are also aware of OsRu(CO)8{μ-HC=CHC(=O)} (Kiel et al., 2000), but for the latter compound no structural data are available.
5. Synthesis and crystallization
[(OC)3Fe(μ-CO)(μ-dppm)Pt(PPh3)] (200 mg, 0.2 mmol) was treated with an excess of 1,4-bis(p-tolylthio)but-2-yne (100 mg, 0.4 mmol) in toluene (5 mL). The solution was stirred at 363 K for 6h. The reaction mixture was filtered, and all volatiles removed under reduced pressure. The brown residue was redissolved in a minimum of toluene. Orange–yellow crystals were isolated by layering with heptane (152 mg, 76% yield).
Calculated for C64H55FeO3P3PtS2 (1279.18 g mol−1): C, 60.05; H, 4.36. Found: C, 59.80; H, 4.21. 1H NMR: δ 2.21 (s, 3H, CH3), 2.28 (s, 3H, CH3), 3.67 (br, 2H, CH2), 3.97(br, 2H, CH2), 4.53 (br, 2H, PCH2P, 2JPtH = 41), 6.45–7.85 (m, 43H, Ph). 31P{1H} NMR: δ 6.8 (d, Pdppm Pt, 2JPP = 57, 2 + 3JPP = 5, 1JPtP = 2543), 32.7 (d, PPPh3 Pt, 3JPP = 32, 2 + 3JPP = 5, 1JPtP = 3506), 63.4 (dd, Pdppm Fe, 2JPP = 57, 3JPP = 32, 1JPtP = 135). IR(toluene): 1966, 1918s ν(CO), 1696m ν(C=O).
6. Refinement
Crystal data, data collection and structure . All of the hydrogen atoms were placed in geometrically calculated positions and each was assigned a fixed isotropic displacement parameter based on a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 3Supporting information
CCDC reference: 1996804
https://doi.org/10.1107/S2056989020007859/pk2630sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007859/pk2630Isup3.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[FePt(C19H18OS2)(C18H15P)(C25H22P2)(CO)2] | F(000) = 2576 |
Mr = 1280.05 | Dx = 1.541 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0071 (6) Å | Cell parameters from 9511 reflections |
b = 36.1737 (15) Å | θ = 2.7–28.7° |
c = 13.6980 (6) Å | µ = 3.01 mm−1 |
β = 111.970 (5)° | T = 293 K |
V = 5517.5 (5) Å3 | Plate, yellow |
Z = 4 | 0.23 × 0.15 × 0.05 mm |
Agilent Technologies Xcalibur, Sapphire3 diffractometer | 10566 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 8245 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 16.0560 pixels mm-1 | θmax = 25.8°, θmin = 2.2° |
ω scans | h = −11→14 |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) | k = −44→41 |
Tmin = 0.837, Tmax = 1.000 | l = −16→16 |
47863 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0274P)2 + 0.5475P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.005 |
10566 reflections | Δρmax = 1.12 e Å−3 |
669 parameters | Δρmin = −0.64 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Crystal structure determination of compound 1 was accomplished on an Oxford diffraction Xcalibur S Diffractometer. Suitable crystals of 1 were covered with an inert oil (perfluoropolyalkylether and used for X-ray crystal structure determination. Graphite monochromated Mo-Kα radiation (λ = 0.71073?Å) was used. The processing and finalization of the crystal structure was done with the program Olex2 (Dolomanov, 2009). The crystal structures were solved by intrinsic phasing (SHELXT; Sheldrick, 2015a) and refined against F2 with the full-matrix least-squares method (SHELXL; Sheldrick, 2015b). A multi-scan absorption correction using the CrysAlis RED program (Oxford Diffraction, 2010) was employed. The non-hydrogen atoms were refined anisotropically. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.33424 (2) | 0.62472 (2) | 0.31155 (2) | 0.01386 (6) | |
Fe1 | 0.52875 (5) | 0.66228 (2) | 0.35654 (4) | 0.01541 (14) | |
S1 | 0.51458 (12) | 0.61606 (4) | 0.02018 (9) | 0.0335 (3) | |
S2 | 0.19884 (11) | 0.69548 (4) | 0.12684 (8) | 0.0242 (3) | |
P1 | 0.60180 (10) | 0.64353 (3) | 0.52099 (8) | 0.0160 (3) | |
P2 | 0.36370 (10) | 0.60649 (3) | 0.47912 (8) | 0.0136 (2) | |
P3 | 0.16428 (10) | 0.59290 (3) | 0.21914 (8) | 0.0166 (3) | |
O1 | 0.3898 (3) | 0.72834 (9) | 0.3663 (2) | 0.0305 (8) | |
O2 | 0.7452 (3) | 0.70095 (9) | 0.3644 (3) | 0.0331 (8) | |
O3 | 0.6059 (3) | 0.58365 (9) | 0.3412 (2) | 0.0226 (7) | |
C1 | 0.3927 (4) | 0.64918 (12) | 0.2048 (3) | 0.0167 (10) | |
C2 | 0.5040 (4) | 0.63378 (12) | 0.2148 (3) | 0.0184 (10) | |
C3 | 0.5576 (4) | 0.61346 (14) | 0.3138 (3) | 0.0199 (11) | |
C4 | 0.5728 (4) | 0.64158 (13) | 0.1445 (3) | 0.0214 (10) | |
H4A | 0.656425 | 0.635059 | 0.181663 | 0.026* | |
H4B | 0.569106 | 0.667854 | 0.129478 | 0.026* | |
C5 | 0.5750 (4) | 0.57103 (14) | 0.0594 (3) | 0.0284 (12) | |
C6 | 0.5322 (5) | 0.54791 (15) | 0.1179 (4) | 0.0356 (13) | |
H6 | 0.469522 | 0.555719 | 0.137208 | 0.043* | |
C7 | 0.5815 (5) | 0.51369 (15) | 0.1475 (4) | 0.0413 (15) | |
H7 | 0.552057 | 0.498782 | 0.187748 | 0.050* | |
C8 | 0.6741 (5) | 0.50038 (15) | 0.1194 (4) | 0.0398 (14) | |
C9 | 0.7145 (5) | 0.52324 (16) | 0.0597 (4) | 0.0436 (15) | |
H9 | 0.775600 | 0.514984 | 0.038988 | 0.052* | |
C10 | 0.6673 (5) | 0.55811 (16) | 0.0295 (4) | 0.0364 (14) | |
H10 | 0.696839 | 0.572966 | −0.010742 | 0.044* | |
C11 | 0.7276 (6) | 0.46250 (16) | 0.1544 (5) | 0.065 (2) | |
H11A | 0.743383 | 0.459346 | 0.227930 | 0.097* | |
H11B | 0.801292 | 0.460237 | 0.142632 | 0.097* | |
H11C | 0.672116 | 0.443892 | 0.114692 | 0.097* | |
C12 | 0.3296 (4) | 0.67416 (13) | 0.1153 (3) | 0.0208 (11) | |
H12A | 0.305131 | 0.660195 | 0.050210 | 0.025* | |
H12B | 0.384620 | 0.693322 | 0.112025 | 0.025* | |
C13 | 0.1237 (4) | 0.71380 (13) | −0.0009 (3) | 0.0213 (11) | |
C14 | 0.1814 (4) | 0.72895 (13) | −0.0630 (3) | 0.0256 (11) | |
H14 | 0.264781 | 0.728200 | −0.039538 | 0.031* | |
C15 | 0.1159 (4) | 0.74513 (14) | −0.1592 (3) | 0.0299 (12) | |
H15 | 0.156559 | 0.755564 | −0.198448 | 0.036* | |
C16 | −0.0078 (4) | 0.74615 (13) | −0.1983 (3) | 0.0264 (11) | |
C17 | −0.0649 (4) | 0.73051 (14) | −0.1363 (3) | 0.0286 (12) | |
H17 | −0.148331 | 0.730799 | −0.160551 | 0.034* | |
C18 | −0.0010 (4) | 0.71470 (13) | −0.0406 (3) | 0.0252 (11) | |
H18 | −0.041978 | 0.704399 | −0.001440 | 0.030* | |
C19 | −0.0794 (5) | 0.76391 (16) | −0.3034 (4) | 0.0428 (15) | |
H19A | −0.047412 | 0.787999 | −0.306543 | 0.064* | |
H19B | −0.161883 | 0.766129 | −0.310870 | 0.064* | |
H19C | −0.074281 | 0.748835 | −0.359219 | 0.064* | |
C20 | 0.6604 (4) | 0.68613 (13) | 0.3621 (3) | 0.0230 (11) | |
C21 | 0.4445 (4) | 0.70239 (13) | 0.3626 (3) | 0.0199 (10) | |
C22 | 0.7607 (4) | 0.62972 (13) | 0.5705 (3) | 0.0176 (10) | |
C23 | 0.8454 (4) | 0.65829 (14) | 0.5896 (3) | 0.0246 (11) | |
H23 | 0.820210 | 0.682797 | 0.581983 | 0.030* | |
C24 | 0.9660 (4) | 0.65016 (16) | 0.6197 (3) | 0.0326 (13) | |
H24 | 1.021532 | 0.669251 | 0.632344 | 0.039* | |
C25 | 1.0048 (4) | 0.61401 (16) | 0.6313 (3) | 0.0324 (14) | |
H25 | 1.085863 | 0.608652 | 0.649885 | 0.039* | |
C26 | 0.9219 (4) | 0.58565 (15) | 0.6149 (3) | 0.0315 (13) | |
H26 | 0.947659 | 0.561191 | 0.624560 | 0.038* | |
C27 | 0.8012 (4) | 0.59378 (13) | 0.5841 (3) | 0.0234 (11) | |
H27 | 0.746189 | 0.574587 | 0.572385 | 0.028* | |
C28 | 0.6025 (4) | 0.67405 (13) | 0.6288 (3) | 0.0198 (10) | |
C29 | 0.5891 (5) | 0.71186 (14) | 0.6141 (4) | 0.0324 (13) | |
H29 | 0.581547 | 0.721995 | 0.549531 | 0.039* | |
C30 | 0.5869 (5) | 0.73480 (15) | 0.6941 (4) | 0.0423 (15) | |
H30 | 0.577689 | 0.760181 | 0.683252 | 0.051* | |
C31 | 0.5983 (5) | 0.71993 (16) | 0.7901 (4) | 0.0358 (13) | |
H31 | 0.595101 | 0.735182 | 0.843640 | 0.043* | |
C32 | 0.6144 (5) | 0.68300 (15) | 0.8061 (4) | 0.0344 (13) | |
H32 | 0.623800 | 0.673087 | 0.871411 | 0.041* | |
C33 | 0.6168 (4) | 0.65998 (13) | 0.7268 (3) | 0.0250 (11) | |
H33 | 0.628129 | 0.634720 | 0.739143 | 0.030* | |
C34 | 0.5268 (4) | 0.60132 (12) | 0.5404 (3) | 0.0150 (10) | |
H34A | 0.552067 | 0.580369 | 0.509554 | 0.018* | |
H34B | 0.549824 | 0.596640 | 0.615122 | 0.018* | |
C35 | 0.3097 (4) | 0.56202 (12) | 0.5064 (3) | 0.0160 (10) | |
C36 | 0.1925 (4) | 0.55998 (13) | 0.5041 (3) | 0.0218 (11) | |
H36 | 0.144301 | 0.580982 | 0.488889 | 0.026* | |
C37 | 0.1481 (5) | 0.52697 (14) | 0.5244 (3) | 0.0289 (12) | |
H37 | 0.069837 | 0.525755 | 0.522178 | 0.035* | |
C38 | 0.2195 (5) | 0.49550 (14) | 0.5482 (4) | 0.0326 (13) | |
H38 | 0.189317 | 0.473274 | 0.561975 | 0.039* | |
C39 | 0.3353 (5) | 0.49742 (13) | 0.5512 (3) | 0.0283 (12) | |
H39 | 0.383817 | 0.476506 | 0.567991 | 0.034* | |
C40 | 0.3792 (4) | 0.53025 (13) | 0.5296 (3) | 0.0216 (11) | |
H40 | 0.457018 | 0.531125 | 0.530449 | 0.026* | |
C41 | 0.3264 (4) | 0.63622 (12) | 0.5696 (3) | 0.0173 (10) | |
C42 | 0.2880 (4) | 0.67210 (13) | 0.5430 (3) | 0.0237 (11) | |
H42 | 0.276531 | 0.680940 | 0.476120 | 0.028* | |
C43 | 0.2662 (5) | 0.69537 (14) | 0.6159 (4) | 0.0348 (13) | |
H43 | 0.240436 | 0.719544 | 0.597655 | 0.042* | |
C44 | 0.2831 (4) | 0.68214 (15) | 0.7138 (4) | 0.0334 (13) | |
H44 | 0.269937 | 0.697685 | 0.762477 | 0.040* | |
C45 | 0.3193 (4) | 0.64629 (15) | 0.7419 (3) | 0.0295 (12) | |
H45 | 0.328276 | 0.637497 | 0.808180 | 0.035* | |
C46 | 0.3421 (4) | 0.62350 (13) | 0.6706 (3) | 0.0203 (10) | |
H46 | 0.368134 | 0.599408 | 0.689833 | 0.024* | |
C47 | 0.1854 (4) | 0.54327 (12) | 0.2099 (3) | 0.0190 (10) | |
C48 | 0.0931 (4) | 0.52009 (13) | 0.1484 (3) | 0.0258 (11) | |
H48 | 0.018084 | 0.530064 | 0.109826 | 0.031* | |
C49 | 0.1112 (5) | 0.48275 (14) | 0.1440 (4) | 0.0328 (13) | |
H49 | 0.047654 | 0.467587 | 0.104805 | 0.039* | |
C50 | 0.2232 (5) | 0.46751 (15) | 0.1974 (4) | 0.0367 (14) | |
H50 | 0.234927 | 0.442181 | 0.194608 | 0.044* | |
C51 | 0.3172 (5) | 0.49003 (15) | 0.2546 (4) | 0.0359 (13) | |
H51 | 0.393402 | 0.480116 | 0.288828 | 0.043* | |
C52 | 0.2979 (4) | 0.52767 (13) | 0.2611 (3) | 0.0227 (11) | |
H52 | 0.361714 | 0.542713 | 0.300490 | 0.027* | |
C53 | 0.0484 (4) | 0.60009 (13) | 0.2734 (3) | 0.0186 (10) | |
C54 | 0.0450 (4) | 0.63486 (13) | 0.3149 (3) | 0.0231 (11) | |
H54 | 0.102310 | 0.652383 | 0.316344 | 0.028* | |
C55 | −0.0423 (4) | 0.64388 (14) | 0.3541 (3) | 0.0281 (12) | |
H55 | −0.043485 | 0.667238 | 0.382068 | 0.034* | |
C56 | −0.1277 (4) | 0.61781 (14) | 0.3515 (3) | 0.0294 (12) | |
H56 | −0.185895 | 0.623613 | 0.378580 | 0.035* | |
C57 | −0.1272 (4) | 0.58350 (14) | 0.3091 (3) | 0.0256 (12) | |
H57 | −0.186297 | 0.566375 | 0.305649 | 0.031* | |
C58 | −0.0381 (4) | 0.57431 (14) | 0.2713 (3) | 0.0235 (11) | |
H58 | −0.036596 | 0.550782 | 0.244489 | 0.028* | |
C59 | 0.0822 (4) | 0.60429 (12) | 0.0805 (3) | 0.0188 (10) | |
C60 | −0.0369 (4) | 0.61515 (12) | 0.0426 (3) | 0.0223 (11) | |
H60 | −0.077921 | 0.616660 | 0.088156 | 0.027* | |
C61 | −0.0950 (4) | 0.62378 (14) | −0.0626 (3) | 0.0298 (12) | |
H61 | −0.175186 | 0.630961 | −0.087322 | 0.036* | |
C62 | −0.0358 (5) | 0.62189 (14) | −0.1314 (3) | 0.0312 (12) | |
H62 | −0.074977 | 0.628004 | −0.201958 | 0.037* | |
C63 | 0.0821 (5) | 0.61082 (14) | −0.0938 (3) | 0.0299 (12) | |
H63 | 0.122595 | 0.609225 | −0.139794 | 0.036* | |
C64 | 0.1415 (4) | 0.60201 (13) | 0.0108 (3) | 0.0244 (11) | |
H64 | 0.221358 | 0.594538 | 0.034901 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01128 (9) | 0.01589 (10) | 0.01397 (8) | −0.00082 (8) | 0.00420 (7) | 0.00141 (7) |
Fe1 | 0.0129 (3) | 0.0159 (4) | 0.0171 (3) | −0.0014 (3) | 0.0053 (3) | 0.0025 (3) |
S1 | 0.0380 (8) | 0.0434 (9) | 0.0191 (6) | 0.0099 (7) | 0.0109 (6) | 0.0031 (6) |
S2 | 0.0228 (7) | 0.0292 (7) | 0.0210 (6) | 0.0072 (6) | 0.0087 (5) | 0.0055 (5) |
P1 | 0.0125 (6) | 0.0177 (7) | 0.0162 (5) | −0.0015 (5) | 0.0035 (5) | 0.0004 (5) |
P2 | 0.0119 (6) | 0.0134 (6) | 0.0149 (5) | 0.0001 (5) | 0.0043 (5) | 0.0015 (5) |
P3 | 0.0129 (6) | 0.0200 (7) | 0.0159 (5) | −0.0013 (5) | 0.0043 (5) | −0.0010 (5) |
O1 | 0.026 (2) | 0.026 (2) | 0.038 (2) | 0.0081 (17) | 0.0105 (17) | −0.0009 (16) |
O2 | 0.017 (2) | 0.032 (2) | 0.051 (2) | −0.0051 (17) | 0.0128 (17) | 0.0101 (17) |
O3 | 0.0226 (19) | 0.0190 (19) | 0.0261 (17) | 0.0048 (15) | 0.0091 (15) | 0.0030 (14) |
C1 | 0.018 (3) | 0.015 (3) | 0.016 (2) | −0.004 (2) | 0.0038 (19) | 0.0017 (18) |
C2 | 0.021 (3) | 0.017 (3) | 0.018 (2) | −0.003 (2) | 0.009 (2) | −0.0023 (19) |
C3 | 0.012 (2) | 0.027 (3) | 0.022 (2) | −0.003 (2) | 0.008 (2) | −0.003 (2) |
C4 | 0.023 (3) | 0.019 (3) | 0.022 (2) | −0.001 (2) | 0.008 (2) | 0.000 (2) |
C5 | 0.028 (3) | 0.036 (3) | 0.018 (2) | −0.001 (2) | 0.006 (2) | −0.009 (2) |
C6 | 0.036 (3) | 0.046 (4) | 0.029 (3) | −0.002 (3) | 0.016 (3) | −0.005 (3) |
C7 | 0.063 (4) | 0.029 (3) | 0.030 (3) | −0.006 (3) | 0.016 (3) | −0.002 (2) |
C8 | 0.045 (4) | 0.032 (4) | 0.032 (3) | 0.002 (3) | 0.002 (3) | −0.010 (3) |
C9 | 0.036 (4) | 0.045 (4) | 0.050 (3) | 0.006 (3) | 0.016 (3) | −0.013 (3) |
C10 | 0.034 (3) | 0.044 (4) | 0.034 (3) | −0.007 (3) | 0.017 (3) | −0.009 (3) |
C11 | 0.082 (5) | 0.040 (4) | 0.062 (4) | 0.020 (4) | 0.015 (4) | −0.003 (3) |
C12 | 0.014 (3) | 0.026 (3) | 0.023 (2) | −0.002 (2) | 0.008 (2) | 0.003 (2) |
C13 | 0.019 (3) | 0.024 (3) | 0.019 (2) | 0.001 (2) | 0.004 (2) | 0.002 (2) |
C14 | 0.016 (3) | 0.036 (3) | 0.023 (2) | 0.004 (2) | 0.005 (2) | 0.007 (2) |
C15 | 0.026 (3) | 0.042 (3) | 0.023 (3) | 0.001 (3) | 0.011 (2) | 0.005 (2) |
C16 | 0.026 (3) | 0.027 (3) | 0.025 (3) | 0.002 (2) | 0.007 (2) | 0.000 (2) |
C17 | 0.015 (3) | 0.033 (3) | 0.032 (3) | 0.003 (2) | 0.004 (2) | 0.001 (2) |
C18 | 0.019 (3) | 0.031 (3) | 0.026 (3) | 0.002 (2) | 0.010 (2) | 0.004 (2) |
C19 | 0.035 (3) | 0.054 (4) | 0.034 (3) | 0.004 (3) | 0.006 (3) | 0.011 (3) |
C20 | 0.020 (3) | 0.022 (3) | 0.026 (2) | 0.005 (2) | 0.007 (2) | 0.004 (2) |
C21 | 0.016 (3) | 0.021 (3) | 0.021 (2) | −0.003 (2) | 0.006 (2) | 0.003 (2) |
C22 | 0.009 (2) | 0.027 (3) | 0.015 (2) | 0.002 (2) | 0.0027 (18) | 0.0000 (19) |
C23 | 0.020 (3) | 0.033 (3) | 0.020 (2) | −0.001 (2) | 0.006 (2) | 0.000 (2) |
C24 | 0.017 (3) | 0.056 (4) | 0.022 (3) | −0.014 (3) | 0.006 (2) | −0.002 (3) |
C25 | 0.010 (3) | 0.066 (4) | 0.021 (2) | 0.002 (3) | 0.005 (2) | −0.006 (3) |
C26 | 0.020 (3) | 0.040 (3) | 0.030 (3) | 0.011 (3) | 0.005 (2) | −0.011 (2) |
C27 | 0.021 (3) | 0.028 (3) | 0.019 (2) | 0.005 (2) | 0.005 (2) | −0.003 (2) |
C28 | 0.013 (2) | 0.019 (3) | 0.023 (2) | 0.000 (2) | 0.002 (2) | −0.004 (2) |
C29 | 0.035 (3) | 0.024 (3) | 0.026 (3) | −0.001 (2) | −0.003 (2) | −0.006 (2) |
C30 | 0.041 (4) | 0.025 (3) | 0.046 (3) | 0.006 (3) | 0.001 (3) | −0.011 (3) |
C31 | 0.027 (3) | 0.042 (4) | 0.038 (3) | 0.000 (3) | 0.012 (2) | −0.021 (3) |
C32 | 0.032 (3) | 0.043 (4) | 0.031 (3) | −0.011 (3) | 0.016 (2) | −0.010 (3) |
C33 | 0.030 (3) | 0.018 (3) | 0.028 (3) | −0.001 (2) | 0.011 (2) | −0.003 (2) |
C34 | 0.015 (2) | 0.016 (3) | 0.012 (2) | 0.002 (2) | 0.0037 (18) | 0.0012 (18) |
C35 | 0.019 (3) | 0.017 (3) | 0.010 (2) | −0.002 (2) | 0.0045 (19) | 0.0010 (18) |
C36 | 0.021 (3) | 0.021 (3) | 0.020 (2) | −0.002 (2) | 0.004 (2) | 0.000 (2) |
C37 | 0.028 (3) | 0.032 (3) | 0.029 (3) | −0.013 (3) | 0.013 (2) | −0.006 (2) |
C38 | 0.048 (4) | 0.019 (3) | 0.034 (3) | −0.017 (3) | 0.018 (3) | −0.001 (2) |
C39 | 0.038 (3) | 0.016 (3) | 0.029 (3) | 0.005 (2) | 0.010 (2) | 0.000 (2) |
C40 | 0.021 (3) | 0.022 (3) | 0.022 (2) | 0.000 (2) | 0.008 (2) | 0.003 (2) |
C41 | 0.011 (2) | 0.018 (3) | 0.023 (2) | −0.005 (2) | 0.0069 (19) | −0.0025 (19) |
C42 | 0.027 (3) | 0.021 (3) | 0.027 (2) | 0.000 (2) | 0.015 (2) | −0.001 (2) |
C43 | 0.039 (3) | 0.020 (3) | 0.052 (3) | 0.003 (3) | 0.025 (3) | −0.006 (3) |
C44 | 0.026 (3) | 0.044 (4) | 0.036 (3) | −0.009 (3) | 0.017 (2) | −0.022 (3) |
C45 | 0.025 (3) | 0.044 (4) | 0.021 (2) | −0.003 (3) | 0.010 (2) | −0.004 (2) |
C46 | 0.015 (2) | 0.022 (3) | 0.023 (2) | −0.004 (2) | 0.0062 (19) | −0.001 (2) |
C47 | 0.022 (3) | 0.019 (3) | 0.019 (2) | 0.000 (2) | 0.010 (2) | 0.0020 (19) |
C48 | 0.021 (3) | 0.027 (3) | 0.027 (3) | −0.004 (2) | 0.006 (2) | −0.004 (2) |
C49 | 0.037 (3) | 0.027 (3) | 0.030 (3) | −0.012 (3) | 0.008 (3) | −0.007 (2) |
C50 | 0.057 (4) | 0.021 (3) | 0.031 (3) | 0.001 (3) | 0.016 (3) | 0.000 (2) |
C51 | 0.035 (3) | 0.033 (3) | 0.035 (3) | 0.008 (3) | 0.008 (3) | 0.004 (3) |
C52 | 0.026 (3) | 0.017 (3) | 0.022 (2) | −0.004 (2) | 0.005 (2) | −0.005 (2) |
C53 | 0.013 (3) | 0.027 (3) | 0.014 (2) | −0.002 (2) | 0.0023 (19) | 0.0020 (19) |
C54 | 0.016 (3) | 0.028 (3) | 0.023 (2) | 0.001 (2) | 0.005 (2) | 0.003 (2) |
C55 | 0.026 (3) | 0.032 (3) | 0.029 (3) | 0.009 (3) | 0.014 (2) | 0.001 (2) |
C56 | 0.020 (3) | 0.046 (4) | 0.025 (2) | 0.006 (3) | 0.011 (2) | 0.005 (2) |
C57 | 0.014 (3) | 0.036 (3) | 0.025 (2) | 0.000 (2) | 0.006 (2) | 0.010 (2) |
C58 | 0.017 (3) | 0.033 (3) | 0.020 (2) | −0.004 (2) | 0.005 (2) | 0.002 (2) |
C59 | 0.016 (3) | 0.019 (3) | 0.018 (2) | −0.003 (2) | 0.0011 (19) | −0.0021 (19) |
C60 | 0.018 (3) | 0.027 (3) | 0.022 (2) | 0.006 (2) | 0.008 (2) | 0.007 (2) |
C61 | 0.020 (3) | 0.036 (3) | 0.024 (2) | 0.007 (2) | −0.002 (2) | −0.001 (2) |
C62 | 0.034 (3) | 0.037 (3) | 0.015 (2) | 0.001 (3) | 0.001 (2) | 0.001 (2) |
C63 | 0.036 (3) | 0.040 (3) | 0.017 (2) | 0.001 (3) | 0.014 (2) | −0.001 (2) |
C64 | 0.016 (3) | 0.034 (3) | 0.022 (2) | 0.001 (2) | 0.005 (2) | −0.002 (2) |
Pt1—Fe1 | 2.5697 (6) | C26—C27 | 1.382 (6) |
Pt1—P2 | 2.2850 (10) | C27—H27 | 0.9300 |
Pt1—P3 | 2.2714 (12) | C28—C29 | 1.383 (6) |
Pt1—C1 | 2.045 (4) | C28—C33 | 1.385 (6) |
Fe1—P1 | 2.1966 (12) | C29—H29 | 0.9300 |
Fe1—C1 | 2.162 (4) | C29—C30 | 1.383 (6) |
Fe1—C2 | 2.119 (4) | C30—H30 | 0.9300 |
Fe1—C3 | 1.932 (5) | C30—C31 | 1.379 (7) |
Fe1—C20 | 1.777 (5) | C31—H31 | 0.9300 |
Fe1—C21 | 1.789 (5) | C31—C32 | 1.356 (7) |
S1—C4 | 1.830 (4) | C32—H32 | 0.9300 |
S1—C5 | 1.782 (5) | C32—C33 | 1.378 (6) |
S2—C12 | 1.808 (4) | C33—H33 | 0.9300 |
S2—C13 | 1.771 (4) | C34—H34A | 0.9700 |
P1—C22 | 1.839 (4) | C34—H34B | 0.9700 |
P1—C28 | 1.841 (4) | C35—C36 | 1.399 (6) |
P1—C34 | 1.842 (4) | C35—C40 | 1.385 (6) |
P2—C34 | 1.829 (4) | C36—H36 | 0.9300 |
P2—C35 | 1.824 (4) | C36—C37 | 1.378 (6) |
P2—C41 | 1.819 (4) | C37—H37 | 0.9300 |
P3—C47 | 1.824 (5) | C37—C38 | 1.388 (7) |
P3—C53 | 1.824 (4) | C38—H38 | 0.9300 |
P3—C59 | 1.830 (4) | C38—C39 | 1.376 (7) |
O1—C21 | 1.157 (5) | C39—H39 | 0.9300 |
O2—C20 | 1.141 (5) | C39—C40 | 1.377 (6) |
O3—C3 | 1.216 (5) | C40—H40 | 0.9300 |
C1—C2 | 1.407 (6) | C41—C42 | 1.380 (6) |
C1—C12 | 1.483 (6) | C41—C46 | 1.402 (6) |
C2—C3 | 1.464 (6) | C42—H42 | 0.9300 |
C2—C4 | 1.511 (5) | C42—C43 | 1.404 (6) |
C4—H4A | 0.9700 | C43—H43 | 0.9300 |
C4—H4B | 0.9700 | C43—C44 | 1.366 (6) |
C5—C6 | 1.384 (6) | C44—H44 | 0.9300 |
C5—C10 | 1.397 (6) | C44—C45 | 1.376 (7) |
C6—H6 | 0.9300 | C45—H45 | 0.9300 |
C6—C7 | 1.367 (7) | C45—C46 | 1.381 (6) |
C7—H7 | 0.9300 | C46—H46 | 0.9300 |
C7—C8 | 1.392 (7) | C47—C48 | 1.394 (6) |
C8—C9 | 1.373 (7) | C47—C52 | 1.388 (6) |
C8—C11 | 1.513 (7) | C48—H48 | 0.9300 |
C9—H9 | 0.9300 | C48—C49 | 1.373 (7) |
C9—C10 | 1.381 (7) | C49—H49 | 0.9300 |
C10—H10 | 0.9300 | C49—C50 | 1.382 (7) |
C11—H11A | 0.9600 | C50—H50 | 0.9300 |
C11—H11B | 0.9600 | C50—C51 | 1.374 (7) |
C11—H11C | 0.9600 | C51—H51 | 0.9300 |
C12—H12A | 0.9700 | C51—C52 | 1.389 (6) |
C12—H12B | 0.9700 | C52—H52 | 0.9300 |
C13—C14 | 1.394 (6) | C53—C54 | 1.387 (6) |
C13—C18 | 1.390 (6) | C53—C58 | 1.389 (6) |
C14—H14 | 0.9300 | C54—H54 | 0.9300 |
C14—C15 | 1.387 (6) | C54—C55 | 1.384 (6) |
C15—H15 | 0.9300 | C55—H55 | 0.9300 |
C15—C16 | 1.378 (6) | C55—C56 | 1.383 (7) |
C16—C17 | 1.395 (6) | C56—H56 | 0.9300 |
C16—C19 | 1.516 (6) | C56—C57 | 1.371 (7) |
C17—H17 | 0.9300 | C57—H57 | 0.9300 |
C17—C18 | 1.373 (6) | C57—C58 | 1.391 (6) |
C18—H18 | 0.9300 | C58—H58 | 0.9300 |
C19—H19A | 0.9600 | C59—C60 | 1.383 (6) |
C19—H19B | 0.9600 | C59—C64 | 1.390 (6) |
C19—H19C | 0.9600 | C60—H60 | 0.9300 |
C22—C23 | 1.404 (6) | C60—C61 | 1.382 (6) |
C22—C27 | 1.376 (6) | C61—H61 | 0.9300 |
C23—H23 | 0.9300 | C61—C62 | 1.378 (6) |
C23—C24 | 1.381 (6) | C62—H62 | 0.9300 |
C24—H24 | 0.9300 | C62—C63 | 1.372 (7) |
C24—C25 | 1.377 (7) | C63—H63 | 0.9300 |
C25—H25 | 0.9300 | C63—C64 | 1.379 (6) |
C25—C26 | 1.388 (7) | C64—H64 | 0.9300 |
C26—H26 | 0.9300 | ||
P2—Pt1—Fe1 | 97.26 (3) | C24—C23—C22 | 120.3 (5) |
P3—Pt1—Fe1 | 161.46 (3) | C24—C23—H23 | 119.9 |
P3—Pt1—P2 | 100.53 (4) | C23—C24—H24 | 119.7 |
C1—Pt1—Fe1 | 54.44 (12) | C25—C24—C23 | 120.5 (5) |
C1—Pt1—P2 | 151.36 (12) | C25—C24—H24 | 119.7 |
C1—Pt1—P3 | 107.33 (12) | C24—C25—H25 | 120.2 |
P1—Fe1—Pt1 | 93.50 (4) | C24—C25—C26 | 119.5 (5) |
C1—Fe1—Pt1 | 50.30 (11) | C26—C25—H25 | 120.2 |
C1—Fe1—P1 | 141.85 (12) | C25—C26—H26 | 120.0 |
C2—Fe1—Pt1 | 73.72 (12) | C27—C26—C25 | 119.9 (5) |
C2—Fe1—P1 | 130.91 (13) | C27—C26—H26 | 120.0 |
C2—Fe1—C1 | 38.35 (16) | C22—C27—C26 | 121.3 (5) |
C3—Fe1—Pt1 | 72.18 (13) | C22—C27—H27 | 119.3 |
C3—Fe1—P1 | 88.88 (13) | C26—C27—H27 | 119.3 |
C3—Fe1—C1 | 70.43 (18) | C29—C28—P1 | 120.7 (3) |
C3—Fe1—C2 | 42.03 (17) | C29—C28—C33 | 118.0 (4) |
C20—Fe1—Pt1 | 168.78 (14) | C33—C28—P1 | 121.2 (4) |
C20—Fe1—P1 | 95.66 (14) | C28—C29—H29 | 119.5 |
C20—Fe1—C1 | 119.19 (18) | C28—C29—C30 | 120.9 (5) |
C20—Fe1—C2 | 95.33 (18) | C30—C29—H29 | 119.5 |
C20—Fe1—C3 | 101.5 (2) | C29—C30—H30 | 120.1 |
C20—Fe1—C21 | 96.5 (2) | C31—C30—C29 | 119.8 (5) |
C21—Fe1—Pt1 | 87.76 (14) | C31—C30—H30 | 120.1 |
C21—Fe1—P1 | 102.63 (13) | C30—C31—H31 | 120.1 |
C21—Fe1—C1 | 89.16 (18) | C32—C31—C30 | 119.8 (5) |
C21—Fe1—C2 | 123.33 (18) | C32—C31—H31 | 120.1 |
C21—Fe1—C3 | 157.6 (2) | C31—C32—H32 | 119.6 |
C5—S1—C4 | 102.1 (2) | C31—C32—C33 | 120.7 (5) |
C13—S2—C12 | 102.2 (2) | C33—C32—H32 | 119.6 |
C22—P1—Fe1 | 115.03 (13) | C28—C33—H33 | 119.6 |
C22—P1—C28 | 100.05 (19) | C32—C33—C28 | 120.7 (5) |
C22—P1—C34 | 102.6 (2) | C32—C33—H33 | 119.6 |
C28—P1—Fe1 | 121.17 (15) | P1—C34—H34A | 109.6 |
C28—P1—C34 | 103.71 (19) | P1—C34—H34B | 109.6 |
C34—P1—Fe1 | 112.02 (13) | P2—C34—P1 | 110.3 (2) |
C34—P2—Pt1 | 103.14 (13) | P2—C34—H34A | 109.6 |
C35—P2—Pt1 | 121.79 (13) | P2—C34—H34B | 109.6 |
C35—P2—C34 | 102.5 (2) | H34A—C34—H34B | 108.1 |
C41—P2—Pt1 | 121.93 (15) | C36—C35—P2 | 118.3 (3) |
C41—P2—C34 | 103.99 (19) | C40—C35—P2 | 123.3 (3) |
C41—P2—C35 | 100.66 (19) | C40—C35—C36 | 118.5 (4) |
C47—P3—Pt1 | 114.72 (15) | C35—C36—H36 | 119.9 |
C47—P3—C53 | 108.4 (2) | C37—C36—C35 | 120.2 (5) |
C47—P3—C59 | 100.6 (2) | C37—C36—H36 | 119.9 |
C53—P3—Pt1 | 111.32 (15) | C36—C37—H37 | 119.8 |
C53—P3—C59 | 101.2 (2) | C36—C37—C38 | 120.4 (5) |
C59—P3—Pt1 | 119.15 (15) | C38—C37—H37 | 119.8 |
Pt1—C1—Fe1 | 75.25 (13) | C37—C38—H38 | 120.2 |
C2—C1—Pt1 | 109.1 (3) | C39—C38—C37 | 119.6 (5) |
C2—C1—Fe1 | 69.2 (2) | C39—C38—H38 | 120.2 |
C2—C1—C12 | 119.6 (4) | C38—C39—H39 | 120.0 |
C12—C1—Pt1 | 130.5 (3) | C38—C39—C40 | 120.1 (5) |
C12—C1—Fe1 | 129.0 (3) | C40—C39—H39 | 120.0 |
C1—C2—Fe1 | 72.5 (2) | C35—C40—H40 | 119.4 |
C1—C2—C3 | 111.2 (4) | C39—C40—C35 | 121.2 (4) |
C1—C2—C4 | 126.2 (4) | C39—C40—H40 | 119.4 |
C3—C2—Fe1 | 62.1 (2) | C42—C41—P2 | 121.3 (3) |
C3—C2—C4 | 121.9 (4) | C42—C41—C46 | 118.5 (4) |
C4—C2—Fe1 | 124.8 (3) | C46—C41—P2 | 120.1 (3) |
O3—C3—Fe1 | 146.8 (3) | C41—C42—H42 | 119.7 |
O3—C3—C2 | 136.5 (4) | C41—C42—C43 | 120.6 (4) |
C2—C3—Fe1 | 75.8 (3) | C43—C42—H42 | 119.7 |
S1—C4—H4A | 109.0 | C42—C43—H43 | 120.3 |
S1—C4—H4B | 109.0 | C44—C43—C42 | 119.3 (5) |
C2—C4—S1 | 112.9 (3) | C44—C43—H43 | 120.3 |
C2—C4—H4A | 109.0 | C43—C44—H44 | 119.3 |
C2—C4—H4B | 109.0 | C43—C44—C45 | 121.3 (4) |
H4A—C4—H4B | 107.8 | C45—C44—H44 | 119.3 |
C6—C5—S1 | 121.9 (4) | C44—C45—H45 | 120.3 |
C6—C5—C10 | 118.4 (5) | C44—C45—C46 | 119.4 (4) |
C10—C5—S1 | 119.7 (4) | C46—C45—H45 | 120.3 |
C5—C6—H6 | 119.8 | C41—C46—H46 | 119.6 |
C7—C6—C5 | 120.4 (5) | C45—C46—C41 | 120.8 (4) |
C7—C6—H6 | 119.8 | C45—C46—H46 | 119.6 |
C6—C7—H7 | 118.9 | C48—C47—P3 | 122.3 (4) |
C6—C7—C8 | 122.2 (5) | C52—C47—P3 | 120.0 (3) |
C8—C7—H7 | 118.9 | C52—C47—C48 | 117.7 (4) |
C7—C8—C11 | 121.0 (5) | C47—C48—H48 | 119.5 |
C9—C8—C7 | 116.9 (5) | C49—C48—C47 | 121.0 (5) |
C9—C8—C11 | 122.1 (5) | C49—C48—H48 | 119.5 |
C8—C9—H9 | 118.9 | C48—C49—H49 | 119.8 |
C8—C9—C10 | 122.2 (5) | C48—C49—C50 | 120.5 (5) |
C10—C9—H9 | 118.9 | C50—C49—H49 | 119.8 |
C5—C10—H10 | 120.0 | C49—C50—H50 | 120.2 |
C9—C10—C5 | 119.9 (5) | C51—C50—C49 | 119.6 (5) |
C9—C10—H10 | 120.0 | C51—C50—H50 | 120.2 |
C8—C11—H11A | 109.5 | C50—C51—H51 | 120.1 |
C8—C11—H11B | 109.5 | C50—C51—C52 | 119.8 (5) |
C8—C11—H11C | 109.5 | C52—C51—H51 | 120.1 |
H11A—C11—H11B | 109.5 | C47—C52—C51 | 121.3 (4) |
H11A—C11—H11C | 109.5 | C47—C52—H52 | 119.3 |
H11B—C11—H11C | 109.5 | C51—C52—H52 | 119.3 |
S2—C12—H12A | 109.1 | C54—C53—P3 | 116.1 (3) |
S2—C12—H12B | 109.1 | C54—C53—C58 | 118.7 (4) |
C1—C12—S2 | 112.3 (3) | C58—C53—P3 | 125.1 (4) |
C1—C12—H12A | 109.1 | C53—C54—H54 | 119.5 |
C1—C12—H12B | 109.1 | C55—C54—C53 | 121.0 (5) |
H12A—C12—H12B | 107.9 | C55—C54—H54 | 119.5 |
C14—C13—S2 | 124.4 (4) | C54—C55—H55 | 120.3 |
C18—C13—S2 | 118.1 (3) | C56—C55—C54 | 119.4 (5) |
C18—C13—C14 | 117.5 (4) | C56—C55—H55 | 120.3 |
C13—C14—H14 | 119.6 | C55—C56—H56 | 119.8 |
C15—C14—C13 | 120.7 (4) | C57—C56—C55 | 120.5 (4) |
C15—C14—H14 | 119.6 | C57—C56—H56 | 119.8 |
C14—C15—H15 | 119.1 | C56—C57—H57 | 120.0 |
C16—C15—C14 | 121.7 (4) | C56—C57—C58 | 120.0 (5) |
C16—C15—H15 | 119.1 | C58—C57—H57 | 120.0 |
C15—C16—C17 | 117.2 (4) | C53—C58—C57 | 120.4 (5) |
C15—C16—C19 | 121.7 (4) | C53—C58—H58 | 119.8 |
C17—C16—C19 | 121.1 (5) | C57—C58—H58 | 119.8 |
C16—C17—H17 | 119.2 | C60—C59—P3 | 122.2 (3) |
C18—C17—C16 | 121.6 (5) | C60—C59—C64 | 118.9 (4) |
C18—C17—H17 | 119.2 | C64—C59—P3 | 118.9 (3) |
C13—C18—H18 | 119.4 | C59—C60—H60 | 119.9 |
C17—C18—C13 | 121.2 (4) | C61—C60—C59 | 120.2 (4) |
C17—C18—H18 | 119.4 | C61—C60—H60 | 119.9 |
C16—C19—H19A | 109.5 | C60—C61—H61 | 119.6 |
C16—C19—H19B | 109.5 | C62—C61—C60 | 120.9 (5) |
C16—C19—H19C | 109.5 | C62—C61—H61 | 119.6 |
H19A—C19—H19B | 109.5 | C61—C62—H62 | 120.6 |
H19A—C19—H19C | 109.5 | C63—C62—C61 | 118.8 (4) |
H19B—C19—H19C | 109.5 | C63—C62—H62 | 120.6 |
O2—C20—Fe1 | 178.7 (4) | C62—C63—H63 | 119.4 |
O1—C21—Fe1 | 179.9 (5) | C62—C63—C64 | 121.1 (4) |
C23—C22—P1 | 116.6 (4) | C64—C63—H63 | 119.4 |
C27—C22—P1 | 124.9 (4) | C59—C64—H64 | 119.9 |
C27—C22—C23 | 118.4 (4) | C63—C64—C59 | 120.1 (4) |
C22—C23—H23 | 119.9 | C63—C64—H64 | 119.9 |
Pt1—P2—C34—P1 | 52.0 (2) | C22—P1—C28—C29 | 109.4 (4) |
Pt1—P2—C35—C36 | −87.5 (3) | C22—P1—C28—C33 | −70.4 (4) |
Pt1—P2—C35—C40 | 92.7 (4) | C22—P1—C34—P2 | −172.0 (2) |
Pt1—P2—C41—C42 | −5.3 (4) | C22—C23—C24—C25 | 0.1 (6) |
Pt1—P2—C41—C46 | 177.8 (3) | C23—C22—C27—C26 | −0.6 (6) |
Pt1—P3—C47—C48 | −174.1 (3) | C23—C24—C25—C26 | −1.6 (7) |
Pt1—P3—C47—C52 | 2.6 (4) | C24—C25—C26—C27 | 2.0 (7) |
Pt1—P3—C53—C54 | 34.5 (4) | C25—C26—C27—C22 | −0.9 (7) |
Pt1—P3—C53—C58 | −148.9 (3) | C27—C22—C23—C24 | 1.0 (6) |
Pt1—P3—C59—C60 | −122.1 (4) | C28—P1—C22—C23 | −58.9 (3) |
Pt1—P3—C59—C64 | 57.8 (4) | C28—P1—C22—C27 | 124.9 (4) |
Pt1—C1—C2—Fe1 | −65.2 (2) | C28—P1—C34—P2 | 84.2 (2) |
Pt1—C1—C2—C3 | −15.6 (4) | C28—C29—C30—C31 | 0.1 (8) |
Pt1—C1—C2—C4 | 174.2 (3) | C29—C28—C33—C32 | 1.8 (7) |
Pt1—C1—C12—S2 | 18.9 (5) | C29—C30—C31—C32 | 1.4 (8) |
Fe1—P1—C22—C23 | 72.6 (3) | C30—C31—C32—C33 | −1.4 (8) |
Fe1—P1—C22—C27 | −103.6 (3) | C31—C32—C33—C28 | −0.2 (8) |
Fe1—P1—C28—C29 | −18.2 (5) | C33—C28—C29—C30 | −1.7 (7) |
Fe1—P1—C28—C33 | 162.1 (3) | C34—P1—C22—C23 | −165.5 (3) |
Fe1—P1—C34—P2 | −48.1 (2) | C34—P1—C22—C27 | 18.3 (4) |
Fe1—C1—C2—C3 | 49.6 (3) | C34—P1—C28—C29 | −144.9 (4) |
Fe1—C1—C2—C4 | −120.6 (4) | C34—P1—C28—C33 | 35.3 (4) |
Fe1—C1—C12—S2 | −86.2 (4) | C34—P2—C35—C36 | 158.2 (3) |
Fe1—C2—C3—O3 | −170.8 (6) | C34—P2—C35—C40 | −21.6 (4) |
Fe1—C2—C4—S1 | −172.3 (2) | C34—P2—C41—C42 | 110.2 (4) |
S1—C5—C6—C7 | −179.4 (4) | C34—P2—C41—C46 | −66.6 (4) |
S1—C5—C10—C9 | 180.0 (4) | C35—P2—C34—P1 | 179.29 (19) |
S2—C13—C14—C15 | −175.3 (4) | C35—P2—C41—C42 | −143.8 (4) |
S2—C13—C18—C17 | 176.1 (4) | C35—P2—C41—C46 | 39.3 (4) |
P1—C22—C23—C24 | −175.4 (3) | C35—C36—C37—C38 | 0.6 (6) |
P1—C22—C27—C26 | 175.5 (3) | C36—C35—C40—C39 | −0.8 (6) |
P1—C28—C29—C30 | 178.5 (4) | C36—C37—C38—C39 | −0.1 (7) |
P1—C28—C33—C32 | −178.5 (4) | C37—C38—C39—C40 | −0.8 (7) |
P2—C35—C36—C37 | −179.9 (3) | C38—C39—C40—C35 | 1.3 (7) |
P2—C35—C40—C39 | 179.0 (3) | C40—C35—C36—C37 | −0.1 (6) |
P2—C41—C42—C43 | −176.3 (4) | C41—P2—C34—P1 | −76.2 (2) |
P2—C41—C46—C45 | 177.1 (3) | C41—P2—C35—C36 | 51.1 (3) |
P3—C47—C48—C49 | −179.2 (3) | C41—P2—C35—C40 | −128.7 (4) |
P3—C47—C52—C51 | −179.3 (3) | C41—C42—C43—C44 | −0.1 (7) |
P3—C53—C54—C55 | 177.3 (3) | C42—C41—C46—C45 | 0.2 (7) |
P3—C53—C58—C57 | −175.9 (3) | C42—C43—C44—C45 | −1.1 (8) |
P3—C59—C60—C61 | 179.5 (4) | C43—C44—C45—C46 | 1.8 (7) |
P3—C59—C64—C63 | −179.3 (4) | C44—C45—C46—C41 | −1.3 (7) |
C1—C2—C3—Fe1 | −55.2 (3) | C46—C41—C42—C43 | 0.5 (7) |
C1—C2—C3—O3 | 134.0 (6) | C47—P3—C53—C54 | 161.5 (3) |
C1—C2—C4—S1 | −79.3 (5) | C47—P3—C53—C58 | −21.8 (4) |
C2—C1—C12—S2 | −172.5 (3) | C47—P3—C59—C60 | 111.6 (4) |
C3—C2—C4—S1 | 111.4 (4) | C47—P3—C59—C64 | −68.5 (4) |
C4—S1—C5—C6 | 72.5 (4) | C47—C48—C49—C50 | −2.6 (7) |
C4—S1—C5—C10 | −108.5 (4) | C48—C47—C52—C51 | −2.3 (6) |
C4—C2—C3—Fe1 | 115.5 (4) | C48—C49—C50—C51 | −0.5 (7) |
C4—C2—C3—O3 | −55.3 (8) | C49—C50—C51—C52 | 2.1 (7) |
C5—S1—C4—C2 | −78.1 (4) | C50—C51—C52—C47 | −0.6 (7) |
C5—C6—C7—C8 | −1.0 (8) | C52—C47—C48—C49 | 3.9 (6) |
C6—C5—C10—C9 | −0.9 (7) | C53—P3—C47—C48 | 60.8 (4) |
C6—C7—C8—C9 | −0.2 (8) | C53—P3—C47—C52 | −122.4 (3) |
C6—C7—C8—C11 | 179.4 (5) | C53—P3—C59—C60 | 0.3 (4) |
C7—C8—C9—C10 | 0.8 (8) | C53—P3—C59—C64 | −179.9 (4) |
C8—C9—C10—C5 | −0.3 (8) | C53—C54—C55—C56 | −0.3 (7) |
C10—C5—C6—C7 | 1.6 (7) | C54—C53—C58—C57 | 0.7 (6) |
C11—C8—C9—C10 | −178.7 (5) | C54—C55—C56—C57 | −0.9 (7) |
C12—S2—C13—C14 | −36.3 (5) | C55—C56—C57—C58 | 1.9 (7) |
C12—S2—C13—C18 | 146.7 (4) | C56—C57—C58—C53 | −1.9 (7) |
C12—C1—C2—Fe1 | 124.0 (4) | C58—C53—C54—C55 | 0.4 (6) |
C12—C1—C2—C3 | 173.6 (4) | C59—P3—C47—C48 | −44.9 (4) |
C12—C1—C2—C4 | 3.3 (7) | C59—P3—C47—C52 | 131.8 (3) |
C13—S2—C12—C1 | −166.4 (3) | C59—P3—C53—C54 | −93.2 (3) |
C13—C14—C15—C16 | −1.5 (8) | C59—P3—C53—C58 | 83.5 (4) |
C14—C13—C18—C17 | −1.1 (7) | C59—C60—C61—C62 | −0.3 (8) |
C14—C15—C16—C17 | 0.6 (7) | C60—C59—C64—C63 | 0.6 (7) |
C14—C15—C16—C19 | 179.8 (5) | C60—C61—C62—C63 | 0.8 (8) |
C15—C16—C17—C18 | −0.1 (7) | C61—C62—C63—C64 | −0.6 (8) |
C16—C17—C18—C13 | 0.4 (8) | C62—C63—C64—C59 | −0.1 (8) |
C18—C13—C14—C15 | 1.7 (7) | C64—C59—C60—C61 | −0.4 (7) |
C19—C16—C17—C18 | −179.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O1i | 0.93 | 2.67 | 3.316 (6) | 128 |
C34—H34A···O3 | 0.97 | 2.62 | 3.271 (5) | 125 |
C39—H39···O3ii | 0.93 | 2.49 | 3.239 (6) | 138 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1. |
Funding information
We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support. LB thanks the Fonds der Chemischen Industrie (FCI) for a doctoral fellowship.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Akabori, S., Kumagai, T., Shirahige, T., Sato, S., Kawazoe, K., Tamura, C. & Sato, M. (1987). Organometallics, 6, 526–531. CSD CrossRef CAS Web of Science Google Scholar
Akita, M., Sugimoto, S., Terada, M. & Moro-oka, Y. (1993). J. Organomet. Chem. 447, 103–106. CSD CrossRef CAS Web of Science Google Scholar
Aly, S. M., Pam, A., Khatyr, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Bauer, J. O., Strohmann, C. & Harvey, P. D. (2014). J. Inorg. Organomet. Polym. 24, 190–200. Web of Science CSD CrossRef CAS Google Scholar
Amouri, H., Da Silva, C., Malézieux, B., Andrés, R., Vaissermann, J. & Gruselle, M. (2000). Inorg. Chem. 39, 5053–5058. Web of Science CSD CrossRef PubMed Google Scholar
Bai, S.-Q., Hoi Ka Wong, I., Zhang, N., Lin Ke, K., Lin, M., Young, D. J. & Hor, T. S. A. (2018). Dalton Trans. 47, 16292–16298. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bennett, S. C., Gelling, A. & Went, M. J. (1992). J. Organomet. Chem. 439, 189–199. CrossRef CAS Web of Science Google Scholar
Boni, A., Funaioli, T., Marchetti, F., Pampaloni, G., Pinzino, C. & Zacchini, S. (2011). J. Organomet. Chem. 696, 3551–3556. CAS Google Scholar
Bonnot, A., Knorr, M., Strohmann, C., Golz, C., Fortin, D. & Harvey, P. D. (2015). J. Inorg. Organomet. Polym. 25, 480–494. Web of Science CSD CrossRef CAS Google Scholar
Braunstein, P., Knorr, M., DeCian, A. & Fischer, J. (1995). Organometallics, 14, 1302–1309. CSD CrossRef CAS Google Scholar
Brieger, L., Jourdain, I., Knorr, M. & Strohmann, C. (2019). Acta Cryst. E75, 1902–1906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Casey, C. P., Ha, Y. & Powell, D. R. (1994). J. Am. Chem. Soc. 116, 3424–3428. CSD CrossRef CAS Web of Science Google Scholar
Dennett, J. N. L., Knox, S. A. R., Anderson, K. M., Charmant, J. P. H. & Orpen, A. G. (2005). Dalton Trans. pp. 63–73. Web of Science CSD CrossRef Google Scholar
Dickson, R. S., Gatehouse, B. M., Nesbit, M. C. & Pain, G. N. (1981). J. Organomet. Chem. 215, 97–109. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Everhardus, R. H. & Brandsma, L. (1978). Synthesis, pp. 359. Google Scholar
Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741–750. CSD CrossRef Web of Science Google Scholar
Gelling, A., Went, M. J. & Povey, D. C. (1993). J. Organomet. Chem. 455, 203–210. CSD CrossRef CAS Web of Science Google Scholar
Hitchcock, P. B., Madden, T. J. & Nixon, J. F. (1993). J. Organomet. Chem. 463, 155–162. CSD CrossRef CAS Web of Science Google Scholar
Horiuchi, S., Murase, T. & Fujita, M. (2012). Angew. Chem. Int. Ed. 51, 12029–12031. Web of Science CSD CrossRef CAS Google Scholar
Johnson, K. A. & Gladfelter, W. L. (1991). J. Am. Chem. Soc. 113, 5097–5099. CSD CrossRef CAS Web of Science Google Scholar
Jourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343–5359. Web of Science CSD CrossRef CAS Google Scholar
Jourdain, I., Vieille-Petit, L., Clément, S., Knorr, M., Villafañe, F. & Strohmann, C. (2006). Inorg. Chem. Commun. 9, 127–131. Web of Science CSD CrossRef CAS Google Scholar
Kiel, G.-Y., Zhang, Z., Takats, J. & Jordan, R. B. (2000). Organometallics, 19, 2766–2776. Web of Science CrossRef CAS Google Scholar
Knorr, M., Guyon, F., Khatyr, A., Däschlein, C., Strohmann, C., Aly, S. M., Abd-El-Aziz, A. S., Fortin, D. & Harvey, P. D. (2009). Dalton Trans. pp. 948–955. Web of Science CSD CrossRef Google Scholar
Knorr, M. & Jourdain, I. (2017). Coord. Chem. Rev. 350, 217–247. Web of Science CrossRef CAS Google Scholar
Knox, S. A. R., Lloyd, B. R., Morton, D. A. V., Orpen, A. G., Turner, M. L. & Hogarth, G. (1995). Polyhedron, 14, 2723–2743. CSD CrossRef CAS Web of Science Google Scholar
Levanova, E. P., Vakhrina, V. S., Grabel'nykh, V. A., Rozentsveig, I. B., Russavskaya, N. V., Albanov, A. I., Klyba, L. V. & Korchevin, N. A. (2015). Russ. Chem. Bull. 64, 2083–2089. Web of Science CrossRef CAS Google Scholar
McKee, S. D., Krause, J. A., Lunder, D. M. & Bursten, B. E. (1994). J. Coord. Chem. 32, 249–259. CSD CrossRef CAS Web of Science Google Scholar
Mirza, H. A., Vittal, J. J. & Puddephatt, R. J. (1994). Organometallics, 13, 3063–3067. CSD CrossRef CAS Web of Science Google Scholar
Pourcelot, G. & Cadiot, P. (1966). Bull. Soc. Chim. Fr. 9, 3024–3033. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wong, A., Pawlick, R. V., Thomas, C. G., Leon, D. R. & Liu, L.-K. (1991). Organometallics, 10, 530–532. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.