research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {μ2-1,2-bis­­[(4-methyl­phenyl­sulfan­yl]-3-oxoprop-1-ene-1,3-di­yl-1:2κ2C3:C1}dicarbon­yl-1κ2C-[μ2-methyl­enebis(di­phenyl­phos­phane)-1:2κ2P:P′](tri­phenyl­phosphane-2κP)iron­platinum(FePt), [(OC)2Fe(μ-dppm){μ-C(=O)C(4-MeC6H4SCH2)=CCH2SC6H4Me-4}Pt(PPh3)]

CROSSMARK_Color_square_no_text.svg

aCentre D'Etude et de Recherche de Djibouti, Djibouti, bInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France, and cInstitute for Inorganic Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by S. Parkin, University of Kentucky, USA (Received 15 May 2020; accepted 10 June 2020; online 16 June 2020)

The title compound, [FePt(C19H18OS2)(C18H15P)(C25H22P2)(CO)2], 1, [(OC)2Fe(μ-dppm)(μ-C(=O)C(CH2SC6H4Me-4)=CCH2SC6H4Me-4)Pt(PPh3)], represents the first example of a diphosphane-bridged heterobimetallic Fe—Pt dimetalla­cyclo­pentenone complex resulting from a bimetallic activation of metal-coordinated carbonyl ligand with an inter­nal alkyne, namely 1,4-bis­(p-tolyl­thio)­but-2-yne. The bridging μ2-C(=O)C(CH2SC6H4Me-4)=CCH2SC6H4Me-4 unit (stemming from a carbon–carbon coupling reaction between CO and the triple bond of the alkyne di­thio­ether) forms a five-membered dimetalla­cyclo­pentenone ring, in which the C=C bond is π-coordinated to the Fe center. The latter is connected to the Pt center through a short metal–metal bond of 2.5697 (6) Å.

1. Chemical context

Acetyl­enic di­thio­ether ligands of type RSCH2C≡CCH2SR (R = aryl, alk­yl) have in recent years not only attracted attention as reactive building blocks for further organic transformations (Pourcelot & Cadiot, 1966[Pourcelot, G. & Cadiot, P. (1966). Bull. Soc. Chim. Fr. 9, 3024-3033.]; Everhardus & Brandsma; 1978[Everhardus, R. H. & Brandsma, L. (1978). Synthesis, pp. 359.]; Levanova et al., 2015[Levanova, E. P., Vakhrina, V. S., Grabel'nykh, V. A., Rozentsveig, I. B., Russavskaya, N. V., Albanov, A. I., Klyba, L. V. & Korchevin, N. A. (2015). Russ. Chem. Bull. 64, 2083-2089.]) but also as promising ligands for coordination chemistry because of their dytopic character, allowing both coordination to soft metal centers through dative M←S bonding and π-bonding via the acetyl­enic triple bond. In this context, we have explored in a series of several papers the coordination of this ligand family to CuX salts in a self-assembly process to discrete mol­ecular compounds, mono- and bidimensional coordination polymers and three-dimensional MOFs. For example, treatment of CuI with PhSCH2C≡CCH2SPh afforded a three-dimensional network incorporating Cu6(μ3-I) hexa­gonal prisms as connection nodes (Knorr et al., 2009[Knorr, M., Guyon, F., Khatyr, A., Däschlein, C., Strohmann, C., Aly, S. M., Abd-El-Aziz, A. S., Fortin, D. & Harvey, P. D. (2009). Dalton Trans. pp. 948-955.]; Bai et al., 2018[Bai, S.-Q., Hoi Ka Wong, I., Zhang, N., Lin Ke, K., Lin, M., Young, D. J. & Hor, T. S. A. (2018). Dalton Trans. 47, 16292-16298.]). In contrast, reaction of BzSCH2C≡CCH2SBz (Bz = benz­yl) with both CuI and CuBr provided simple isostructural dinuclear zero-dimensional complexes [{Cu(μ2-X)2Cu}(μ-BzSCH2C≡CCH2SBz)2] (X = I, Br). A far more original material resulted from coordination to CuCl, yielding a luminescent 2D material [{Cu2(μ2-Cl)(μ3-Cl)}(μ-BzSCH2C≡CCH2SBz)]n, in which the layers are assembled both by dative Cu—S thio­ether bonds and organometallic Cu-π–acetyl­enic inter­actions via the triple bond of the ligand. Furthermore, the CuI centers are inter­connected through μ2- and μ3-bound chloro ligands. Treatment of CuI with the isomeric p-TolSCH2C≡CCH2STol-p (Tol = C6H4-p-Me) ligand led to the formation of a 2D network [{Cu4(μ3-I)4}(μ-TolSCH2C≡CCH2STol)2]n with closed cubane-type clusters as SBUs (Secondary Building Units), whilst with CuBr the 1D [{Cu(μ2-Br)2Cu}(μ-TolSCH2C≡CCH2STol)2]n coordination polymer was generated (Aly et al., 2014[Aly, S. M., Pam, A., Khatyr, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Bauer, J. O., Strohmann, C. & Harvey, P. D. (2014). J. Inorg. Organomet. Polym. 24, 190-200.]; Bonnot et al., 2015[Bonnot, A., Knorr, M., Strohmann, C., Golz, C., Fortin, D. & Harvey, P. D. (2015). J. Inorg. Organomet. Polym. 25, 480-494.]). An alternative approach to combining a metallic scaffold with RSCH2C≡CCH2SR-type ligands has been developed by Went and coworkers, who post-functionalized dicobalta­tetra­hedrane complexes [Co2(μ-HOCH2C≡CCH2OH)(CO)6] in the presence of HBF4·OEt2 and various thiols RSH to obtain [Co2(μ-RSCH2C≡CCH2SR)(CO)6] and [Co2(μ-RSCH2C≡CCH2SR)(μ-dppm)(CO)4] [dppm = bis­(di­phenyl­phosphino)methane], respectively. Similar treatment of [Mo2(μ-HOCH2C≡CCH2OH)(CO)4Cp2] with EtSH yielded [Mo2(μ-EtSCH2C≡CCH2SEt)(CO)4Cp2]. These former Co–Co thio­ether complexes were then employed as metalloligands to coordinate further metal fragments such as [Cu(MeCN)4]PF6, AgBF4 and [Mo(CO)4(norbornadiene)] (Bennett, et al., 1992[Bennett, S. C., Gelling, A. & Went, M. J. (1992). J. Organomet. Chem. 439, 189-199.]; Gelling et al., 1993[Gelling, A., Went, M. J. & Povey, D. C. (1993). J. Organomet. Chem. 455, 203-210.]). Related dicationic salts such as [(Co2(CO)6)2-μ,η2,η2-(Me2S—CH2C≡CCH2SMe2)][BF4]2 have also been described (Amouri et al., 2000[Amouri, H., Da Silva, C., Malézieux, B., Andrés, R., Vaissermann, J. & Gruselle, M. (2000). Inorg. Chem. 39, 5053-5058.]). We and Shaw's group have demonstrated that upon treatment of the μ-carbonyl complex [(OC)3Fe(μ-dppm)(μ-CO)Pt(PPh3)] with ArC≡CH (Ar = Ph, p-Tol, 2,4,5-tri­methyl­phenyl, p-C6H4F, 2,4-C6H3F2, p-C6H4CF3), dimetalla­cyclo­pentone complexes are formed, stemming from carbon–carbon coupling reactions between CO and the terminal alkyne (Fontaine et al., 1988[Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741-750.]; Jourdain et al., 2013[Jourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343-5359.]; Knorr & Jourdain, 2017[Knorr, M. & Jourdain, I. (2017). Coord. Chem. Rev. 350, 217-247.]; Brieger et al., 2019[Brieger, L., Jourdain, I., Knorr, M. & Strohmann, C. (2019). Acta Cryst. E75, 1902-1906.]). The first step involves the formation of a kinetic isomer [(OC)2Fe(μ-dppm){μ-C(=O)C(H)=C(Ar)}Pt(PPh3)], which then evolves to the thermodynamic one [(OC)2Fe(μ-dppm){μ-C(=O)C(Ar)=C(H)}Pt(PPh3)]. We were now intrigued as to whether this route may be extended to inter­nal alkynes RC≡CR, which are in general less reactive than terminal ones. We therefore probed the possibility of coupling [(OC)3Fe(μ-dppm)(μ-CO)Pt(PPh3)] with p-TolSCH2C≡CCH2STol-p in hot toluene as solvent and succeeded in isolating the targeted dimetalla­cyclo­pentone [(OC)2Fe(μ-dppm)(μ-C(=O)C(4-MeC6H4SCH2)=CCH2SC6H4Me-4)Pt(PPh3)] (1) as a stable crystalline product according to the reaction scheme shown in Fig. 1[link]. With this title compound 1 in hand, we now have the possibility of coordinating other metal fragments in upcoming studies, for example [Mo(CO)4(norbornadiene)] or ReBr(CO)5 in a chelating manner using the two adjacent thio­ether arms or of constructing coordination networks incorporating complex 1 as an organometallic building block by coordination of CuX or AgI salts on the S-donor sites (see above).

[Scheme 1]
[Figure 1]
Figure 1
The reaction scheme for the synthesis of 1.

2. Structural commentary

The heterobimetallic compound 1 crystallizes in the monoclinic crystal system, space group P21/c. The mol­ecular structure is depicted in Fig. 2[link] and selected bond lengths and angles are given in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Pt1—Fe1 2.5697 (6) Fe1—C2 2.119 (4)
Pt1—P2 2.2850 (10) Fe1—C3 1.932 (5)
Pt1—P3 2.2714 (12) Fe1—C20 1.777 (5)
Pt1—C1 2.045 (4) Fe1—C21 1.789 (5)
Fe1—P1 2.1966 (12) O3—C3 1.216 (5)
Fe1—C1 2.162 (4) C1—C2 1.407 (6)
       
P2—Pt1—Fe1 97.26 (3) C1—Fe1—C2 38.35 (16)
P3—Pt1—Fe1 161.46 (3) C20—Fe1—P1 95.66 (14)
P3—Pt1—P2 100.53 (4) C21—Fe1—P1 102.63 (13)
C1—Pt1—Fe1 54.44 (12) C3—Fe1—P1 88.88 (13)
C1—Pt1—P2 151.36 (12) C1—Fe1—P1 141.85 (12)
C1—Pt1—P3 107.33 (12) C2—Fe1—P1 130.91 (13)
Pt1—C1—Fe1 75.25 (13) C20—Fe1—Pt1 168.78 (14)
C20—Fe1—C3 101.5 (2) C21—Fe1—Pt1 87.76 (14)
C20—Fe1—C21 96.5 (2) C2—Fe1—Pt1 73.72 (12)
C21—Fe1—C3 157.6 (2) C1—Fe1—Pt1 50.30 (11)
C20—Fe1—C1 119.19 (18) C3—Fe1—Pt1 72.18 (13)
C21—Fe1—C1 89.16 (18) P1—Fe1—Pt1 93.50 (4)
C3—Fe1—C1 70.43 (18) C2—C1—Pt1 109.1 (3)
C20—Fe1—C2 95.33 (18) C2—C1—Fe1 69.2 (2)
[Figure 2]
Figure 2
The mol­ecular structure of the title complex 1, with atom labeling. Displacement ellipsoids are drawn at the 30% probability level.

The Fe—Pt bond [2.5697 (6) Å] is spanned by a dppm ligand and bridged by the C(=O)C(R)=C(R) (R = 4-MeC6H4SCH2) unit resulting from the carbon–carbon coupling reaction between CO and the alkyne. This value, which is less than 2.6 Å, is in the usual range for FePt(dppm)–dimetalla­cyclo­pentenone complexes. Note that extreme Fe—Pt distances are reported for the μ-carbene [(OC)3Fe{μ-C(Et)OSi(OMe)3}(μ-dppm)Pt(PPh3)] [d(Fe—Pt) = 2.5062 (9) Å; YOTCIT; Braunstein et al., 1995[Braunstein, P., Knorr, M., DeCian, A. & Fischer, J. (1995). Organometallics, 14, 1302-1309.]] and [Fe(η5-C5H4S)2Pt(PPh3)] [d(Fe—Pt = 2.935 (2) Å; FENCUW; Akabori et al., 1987[Akabori, S., Kumagai, T., Shirahige, T., Sato, S., Kawazoe, K., Tamura, C. & Sato, M. (1987). Organometallics, 6, 526-531.]]. Coupling of an inter­nal alkyne does not affect the structural features of the [FeC(=O)C(R)=C(R)Pt] motif significantly with respect to carbon–carbon coupling with a terminal alkyne. The relevant bond lengths and angles are very similar to those of other Fe—Pt structures published by Fontaine et al. (1988[Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741-750.]) and our group (see above). The presence of a bulky substituent on the C1 atom bound to platinum implies a significant reduction of the P3—Pt—P2 angle [100.53 (4)°] concomitant with an increasing value of the angle P3—Pt—C1 of 107.33 (12)°. In related compounds described previously in the literature, these P3—Pt—P2 angles usually lie in the range 103.93 (8) to 106.63 (3)°, as exemplified by [(OC)2Fe(μ-dppm){μ-C(=O)C{(CH2)3CCH}=C(H)}Pt(PPh3)] (REDNEU) and [(OC)2Fe(μ-dppm){μ-C(=O)C(p-C6H4CF3)=C(H)}Pt(PPh3)] (PIXLAL), and 98.8 (3) to 104.95 (10)° for P3—Pt—C1 in [(OC)2Fe(μ-dppm){μ-C(=O)C(H)=C(H)}Pt(PPh3)] (FEYBAM) and [(OC)2Fe(μ-dppm){μ-C(=O)C(o,p-C6H3F2)=C(H)}Pt(PPh3)] (PIX­KUE) (Fontaine et al., 1988[Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741-750.]; Jourdain et al., 2006[Jourdain, I., Vieille-Petit, L., Clément, S., Knorr, M., Villafañe, F. & Strohmann, C. (2006). Inorg. Chem. Commun. 9, 127-131.], 2013[Jourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343-5359.]). The crystal structure of the di­thio­ether p-TolSCH2C≡CCH2STol-p (MULHUZ) was reported by Aly et al. (2014[Aly, S. M., Pam, A., Khatyr, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Bauer, J. O., Strohmann, C. & Harvey, P. D. (2014). J. Inorg. Organomet. Polym. 24, 190-200.]). After complexation and a coupling reaction with a CO ligand, the C1—C2 bond is considerably longer [1.407 (6) vs 1.266 (5) Å] as a result of the conversion to an olefinic moiety, σ-bound to Pt and η2-coordinated to Fe. The alkyne bending angles are disparate [C1—C2—C4 = 126.2 (4), C2—C1—C12 = 119.6 (4)°] as well as the C1—C12 and C2—C4 distances [d(C1—C12) = 1.483 (6), d(C2—C4) = 1.511 (5) Å]. Compared to 1,4-bis­(p-tolyl­thio)­but-2-yne, the C—S bonds are also considerably elongated [d(C4—S1 = 1.830 (4), d(C12—S2) = 1.808 (4), d(C5—S1) = 1.782 (5), d(C13—S2) = 1.771 (4) vs 1.685 (2) and 1.714 (2) Å] but they fit well with those encountered in the dimetalla­tetra­hedrane [Co2{μ-C2(CH2SMe)2Mo(CO)4}(μ-dppm)(CO)4] [d(C—S = 1.827 (4), 1.833 (4),1.790 (5) and 1.819 (5) Å; JIHMUI10; Gelling et al., 1993[Gelling, A., Went, M. J. & Povey, D. C. (1993). J. Organomet. Chem. 455, 203-210.]].

3. Supra­molecular features

In the crystal, the individual mol­ecules are linked by weak inter­molecular inter­actions; for example a contact between O3′′⋯H39 [d = 2.49 Å and C3′′—O3′′⋯H39 = 138°; symmetry code: (′′) −x + 1, −y + 1, −z + 1] occurs (Fig. 3[link], Table 2[link]. A second, yet still weaker inter­molecular inter­action of 2.67 Å is observed between the O1′⋯H15 [symmetry code: (′) x, –y + [{3\over 2}], z − [{1\over 2}]] atoms of two adjacent mol­ecules. In addition there is an intra­molecular contact between O3⋯H34A (d = 2.62 Å and C3—O3⋯H34A = 125°). Furthermore, there are also several loose inter­molecular C—H⋯π inter­actions present; for example a contact between C43—H43 and the midpoint of the C13=C14 double bond [d(H43⋯midpoint) = 2.73 Å and C—H⋯midpoint = 157°] of a tolyl ring attached to S2, as well as between C62—H62 and the C23—C24—C25 atoms of a phenyl ring [d(H62⋯centroid) = 2.64 Å and C—H⋯centroid = 148°] attached at P1. However, since all hydrogen atoms were not refined freely, a more accurate discussion of the bond lengths and angle is not appropriate.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.67 3.316 (6) 128
C34—H34A⋯O3 0.97 2.62 3.271 (5) 125
C39—H39⋯O3ii 0.93 2.49 3.239 (6) 138
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds (Table 2[link]) are shown as dashed lines.

4. Database survey

Other examples of crystallographically characterized dimetalla­cyclo­pentenone complexes are Fe2Cp2(CO)(μ-CO){μ-CH=C(Ph)C(=O)} (DAHTAJ; Boni et al., 2011[Boni, A., Funaioli, T., Marchetti, F., Pampaloni, G., Pinzino, C. & Zacchini, S. (2011). J. Organomet. Chem. 696, 3551-3556.]), Fe2Cp*2(CO)(μ-CO){μ-C(C≡CH)=CHC(=O)] (JUZHIV; Akita et al., 1993[Akita, M., Sugimoto, S., Terada, M. & Moro-oka, Y. (1993). J. Organomet. Chem. 447, 103-106.]), Fe2(CO)5(μ-dppm){μ-C(=O)CH=CH} (GACWIQ10; Knox et al., 1995[Knox, S. A. R., Lloyd, B. R., Morton, D. A. V., Orpen, A. G., Turner, M. L. & Hogarth, G. (1995). Polyhedron, 14, 2723-2743.]), Fe2(CO)5(μ-dppm){μ-C(=O)C(Ph)=CH} (PIHMOI; Hitchcock et al., 1993[Hitchcock, P. B., Madden, T. J. & Nixon, J. F. (1993). J. Organomet. Chem. 463, 155-162.]), Fe2Cp2(CO)(μ-CO){μ-C(COR)=C(Me)C(=O)} (R = Ph, Bu) (SIZNUK, SIZPAS; Wong et al., 1991[Wong, A., Pawlick, R. V., Thomas, C. G., Leon, D. R. & Liu, L.-K. (1991). Organometallics, 10, 530-532.]), Fe2{(η-C5H4)2SiMe2}(CO)2(μ-CO){μ-C(Ph)=C(H)C(=O)} (ZUZGIK; McKee et al., 1994[McKee, S. D., Krause, J. A., Lunder, D. M. & Bursten, B. E. (1994). J. Coord. Chem. 32, 249-259.]), Ru2(CO)4(μ-dppm)2{μ-C(=O)C(CO2Me)=C(CO2Me)} (JITZAN; Johnson & Gladfelter, 1991[Johnson, K. A. & Gladfelter, W. L. (1991). J. Am. Chem. Soc. 113, 5097-5099.]), Ru2(CO)4(μ-dppm)2{μ-CH=CHC(=O)} (LIFYUU; Mirza et al., 1994[Mirza, H. A., Vittal, J. J. & Puddephatt, R. J. (1994). Organometallics, 13, 3063-3067.]), Ru2(η-C5HMe4)2(CO)(μ-CO){μ-C(=O)C(R)=C(R)} (R = Et, Me) (NEMVOS, NEMVUY; Horiuchi et al., 2012[Horiuchi, S., Murase, T. & Fujita, M. (2012). Angew. Chem. Int. Ed. 51, 12029-12031.]), Rh2Cp2(CO)4{μ-C(CF3)=C(CF3)C(=O)} (TFPNRH; Dickson et al., 1981[Dickson, R. S., Gatehouse, B. M., Nesbit, M. C. & Pain, G. N. (1981). J. Organomet. Chem. 215, 97-109.]), Re2Cp*2(CO)2{μ-CH=C{C(=CH2)CH3}C(=O)} (WEZKIV; Casey et al., 1994[Casey, C. P., Ha, Y. & Powell, D. R. (1994). J. Am. Chem. Soc. 116, 3424-3428.]). A rare example of a heterodinuclear combination is CpFe{μ-C(=O)C(CMe2OH)=CH}(μ-CO)Ru(CO)Cp* (FEHGOP; Dennett et al., 2005[Dennett, J. N. L., Knox, S. A. R., Anderson, K. M., Charmant, J. P. H. & Orpen, A. G. (2005). Dalton Trans. pp. 63-73.]). We are also aware of OsRu(CO)8{μ-HC=CHC(=O)} (Kiel et al., 2000[Kiel, G.-Y., Zhang, Z., Takats, J. & Jordan, R. B. (2000). Organometallics, 19, 2766-2776.]), but for the latter compound no structural data are available.

5. Synthesis and crystallization

[(OC)3Fe(μ-CO)(μ-dppm)Pt(PPh3)] (200 mg, 0.2 mmol) was treated with an excess of 1,4-bis­(p-tolyl­thio)­but-2-yne (100 mg, 0.4 mmol) in toluene (5 mL). The solution was stirred at 363 K for 6h. The reaction mixture was filtered, and all volatiles removed under reduced pressure. The brown residue was redissolved in a minimum of toluene. Orange–yellow crystals were isolated by layering with heptane (152 mg, 76% yield).

Calculated for C64H55FeO3P3PtS2 (1279.18 g mol−1): C, 60.05; H, 4.36. Found: C, 59.80; H, 4.21. 1H NMR: δ 2.21 (s, 3H, CH3), 2.28 (s, 3H, CH3), 3.67 (br, 2H, CH2), 3.97(br, 2H, CH2), 4.53 (br, 2H, PCH2P, 2JPtH = 41), 6.45–7.85 (m, 43H, Ph). 31P{1H} NMR: δ 6.8 (d, Pdppm Pt, 2JPP = 57, 2 + 3JPP = 5, 1JPtP = 2543), 32.7 (d, PPPh3 Pt, 3JPP = 32, 2 + 3JPP = 5, 1JPtP = 3506), 63.4 (dd, Pdppm Fe, 2JPP = 57, 3JPP = 32, 1JPtP = 135). IR(toluene): 1966, 1918s ν(CO), 1696m ν(C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All of the hydrogen atoms were placed in geometrically calculated positions and each was assigned a fixed isotropic displacement parameter based on a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [FePt(C19H18OS2)(C18H15P)(C25H22P2)(CO)2]
Mr 1280.05
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.0071 (6), 36.1737 (15), 13.6980 (6)
β (°) 111.970 (5)
V3) 5517.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.01
Crystal size (mm) 0.23 × 0.15 × 0.05
 
Data collection
Diffractometer Agilent Technologies Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.837, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 47863, 10566, 8245
Rint 0.071
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.076, 1.03
No. of reflections 10566
No. of parameters 669
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.64
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-1,2-Bis[(4-methylphenylsulfanyl]-3-oxoprop-1-ene-1,3-diyl-1:2C3:C1}dicarbonyl-1κ2C-[µ2-methylenebis(diphenylphosphane)-1:2κ2P:P'](triphenylphosphane-2κP)ironplatinum(FePt) top
Crystal data top
[FePt(C19H18OS2)(C18H15P)(C25H22P2)(CO)2]F(000) = 2576
Mr = 1280.05Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.0071 (6) ÅCell parameters from 9511 reflections
b = 36.1737 (15) Åθ = 2.7–28.7°
c = 13.6980 (6) ŵ = 3.01 mm1
β = 111.970 (5)°T = 293 K
V = 5517.5 (5) Å3Plate, yellow
Z = 40.23 × 0.15 × 0.05 mm
Data collection top
Agilent Technologies Xcalibur, Sapphire3
diffractometer
10566 independent reflections
Radiation source: Enhance (Mo) X-ray Source8245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 16.0560 pixels mm-1θmax = 25.8°, θmin = 2.2°
ω scansh = 1114
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
k = 4441
Tmin = 0.837, Tmax = 1.000l = 1616
47863 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.5475P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.005
10566 reflectionsΔρmax = 1.12 e Å3
669 parametersΔρmin = 0.64 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystal structure determination of compound 1 was accomplished on an Oxford diffraction Xcalibur S Diffractometer. Suitable crystals of 1 were covered with an inert oil (perfluoropolyalkylether and used for X-ray crystal structure determination. Graphite monochromated Mo-Kα radiation (λ = 0.71073?Å) was used. The processing and finalization of the crystal structure was done with the program Olex2 (Dolomanov, 2009). The crystal structures were solved by intrinsic phasing (SHELXT; Sheldrick, 2015a) and refined against F2 with the full-matrix least-squares method (SHELXL; Sheldrick, 2015b). A multi-scan absorption correction using the CrysAlis RED program (Oxford Diffraction, 2010) was employed. The non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.33424 (2)0.62472 (2)0.31155 (2)0.01386 (6)
Fe10.52875 (5)0.66228 (2)0.35654 (4)0.01541 (14)
S10.51458 (12)0.61606 (4)0.02018 (9)0.0335 (3)
S20.19884 (11)0.69548 (4)0.12684 (8)0.0242 (3)
P10.60180 (10)0.64353 (3)0.52099 (8)0.0160 (3)
P20.36370 (10)0.60649 (3)0.47912 (8)0.0136 (2)
P30.16428 (10)0.59290 (3)0.21914 (8)0.0166 (3)
O10.3898 (3)0.72834 (9)0.3663 (2)0.0305 (8)
O20.7452 (3)0.70095 (9)0.3644 (3)0.0331 (8)
O30.6059 (3)0.58365 (9)0.3412 (2)0.0226 (7)
C10.3927 (4)0.64918 (12)0.2048 (3)0.0167 (10)
C20.5040 (4)0.63378 (12)0.2148 (3)0.0184 (10)
C30.5576 (4)0.61346 (14)0.3138 (3)0.0199 (11)
C40.5728 (4)0.64158 (13)0.1445 (3)0.0214 (10)
H4A0.6564250.6350590.1816630.026*
H4B0.5691060.6678540.1294780.026*
C50.5750 (4)0.57103 (14)0.0594 (3)0.0284 (12)
C60.5322 (5)0.54791 (15)0.1179 (4)0.0356 (13)
H60.4695220.5557190.1372080.043*
C70.5815 (5)0.51369 (15)0.1475 (4)0.0413 (15)
H70.5520570.4987820.1877480.050*
C80.6741 (5)0.50038 (15)0.1194 (4)0.0398 (14)
C90.7145 (5)0.52324 (16)0.0597 (4)0.0436 (15)
H90.7756000.5149840.0389880.052*
C100.6673 (5)0.55811 (16)0.0295 (4)0.0364 (14)
H100.6968390.5729660.0107420.044*
C110.7276 (6)0.46250 (16)0.1544 (5)0.065 (2)
H11A0.7433830.4593460.2279300.097*
H11B0.8012920.4602370.1426320.097*
H11C0.6721160.4438920.1146920.097*
C120.3296 (4)0.67416 (13)0.1153 (3)0.0208 (11)
H12A0.3051310.6601950.0502100.025*
H12B0.3846200.6933220.1120250.025*
C130.1237 (4)0.71380 (13)0.0009 (3)0.0213 (11)
C140.1814 (4)0.72895 (13)0.0630 (3)0.0256 (11)
H140.2647810.7282000.0395380.031*
C150.1159 (4)0.74513 (14)0.1592 (3)0.0299 (12)
H150.1565590.7555640.1984480.036*
C160.0078 (4)0.74615 (13)0.1983 (3)0.0264 (11)
C170.0649 (4)0.73051 (14)0.1363 (3)0.0286 (12)
H170.1483310.7307990.1605510.034*
C180.0010 (4)0.71470 (13)0.0406 (3)0.0252 (11)
H180.0419780.7043990.0014400.030*
C190.0794 (5)0.76391 (16)0.3034 (4)0.0428 (15)
H19A0.0474120.7879990.3065430.064*
H19B0.1618830.7661290.3108700.064*
H19C0.0742810.7488350.3592190.064*
C200.6604 (4)0.68613 (13)0.3621 (3)0.0230 (11)
C210.4445 (4)0.70239 (13)0.3626 (3)0.0199 (10)
C220.7607 (4)0.62972 (13)0.5705 (3)0.0176 (10)
C230.8454 (4)0.65829 (14)0.5896 (3)0.0246 (11)
H230.8202100.6827970.5819830.030*
C240.9660 (4)0.65016 (16)0.6197 (3)0.0326 (13)
H241.0215320.6692510.6323440.039*
C251.0048 (4)0.61401 (16)0.6313 (3)0.0324 (14)
H251.0858630.6086520.6498850.039*
C260.9219 (4)0.58565 (15)0.6149 (3)0.0315 (13)
H260.9476590.5611910.6245600.038*
C270.8012 (4)0.59378 (13)0.5841 (3)0.0234 (11)
H270.7461890.5745870.5723850.028*
C280.6025 (4)0.67405 (13)0.6288 (3)0.0198 (10)
C290.5891 (5)0.71186 (14)0.6141 (4)0.0324 (13)
H290.5815470.7219950.5495310.039*
C300.5869 (5)0.73480 (15)0.6941 (4)0.0423 (15)
H300.5776890.7601810.6832520.051*
C310.5983 (5)0.71993 (16)0.7901 (4)0.0358 (13)
H310.5951010.7351820.8436400.043*
C320.6144 (5)0.68300 (15)0.8061 (4)0.0344 (13)
H320.6238000.6730870.8714110.041*
C330.6168 (4)0.65998 (13)0.7268 (3)0.0250 (11)
H330.6281290.6347200.7391430.030*
C340.5268 (4)0.60132 (12)0.5404 (3)0.0150 (10)
H34A0.5520670.5803690.5095540.018*
H34B0.5498240.5966400.6151220.018*
C350.3097 (4)0.56202 (12)0.5064 (3)0.0160 (10)
C360.1925 (4)0.55998 (13)0.5041 (3)0.0218 (11)
H360.1443010.5809820.4888890.026*
C370.1481 (5)0.52697 (14)0.5244 (3)0.0289 (12)
H370.0698370.5257550.5221780.035*
C380.2195 (5)0.49550 (14)0.5482 (4)0.0326 (13)
H380.1893170.4732740.5619750.039*
C390.3353 (5)0.49742 (13)0.5512 (3)0.0283 (12)
H390.3838170.4765060.5679910.034*
C400.3792 (4)0.53025 (13)0.5296 (3)0.0216 (11)
H400.4570180.5311250.5304490.026*
C410.3264 (4)0.63622 (12)0.5696 (3)0.0173 (10)
C420.2880 (4)0.67210 (13)0.5430 (3)0.0237 (11)
H420.2765310.6809400.4761200.028*
C430.2662 (5)0.69537 (14)0.6159 (4)0.0348 (13)
H430.2404360.7195440.5976550.042*
C440.2831 (4)0.68214 (15)0.7138 (4)0.0334 (13)
H440.2699370.6976850.7624770.040*
C450.3193 (4)0.64629 (15)0.7419 (3)0.0295 (12)
H450.3282760.6374970.8081800.035*
C460.3421 (4)0.62350 (13)0.6706 (3)0.0203 (10)
H460.3681340.5994080.6898330.024*
C470.1854 (4)0.54327 (12)0.2099 (3)0.0190 (10)
C480.0931 (4)0.52009 (13)0.1484 (3)0.0258 (11)
H480.0180840.5300640.1098260.031*
C490.1112 (5)0.48275 (14)0.1440 (4)0.0328 (13)
H490.0476540.4675870.1048050.039*
C500.2232 (5)0.46751 (15)0.1974 (4)0.0367 (14)
H500.2349270.4421810.1946080.044*
C510.3172 (5)0.49003 (15)0.2546 (4)0.0359 (13)
H510.3934020.4801160.2888280.043*
C520.2979 (4)0.52767 (13)0.2611 (3)0.0227 (11)
H520.3617140.5427130.3004900.027*
C530.0484 (4)0.60009 (13)0.2734 (3)0.0186 (10)
C540.0450 (4)0.63486 (13)0.3149 (3)0.0231 (11)
H540.1023100.6523830.3163440.028*
C550.0423 (4)0.64388 (14)0.3541 (3)0.0281 (12)
H550.0434850.6672380.3820680.034*
C560.1277 (4)0.61781 (14)0.3515 (3)0.0294 (12)
H560.1858950.6236130.3785800.035*
C570.1272 (4)0.58350 (14)0.3091 (3)0.0256 (12)
H570.1862970.5663750.3056490.031*
C580.0381 (4)0.57431 (14)0.2713 (3)0.0235 (11)
H580.0365960.5507820.2444890.028*
C590.0822 (4)0.60429 (12)0.0805 (3)0.0188 (10)
C600.0369 (4)0.61515 (12)0.0426 (3)0.0223 (11)
H600.0779210.6166600.0881560.027*
C610.0950 (4)0.62378 (14)0.0626 (3)0.0298 (12)
H610.1751860.6309610.0873220.036*
C620.0358 (5)0.62189 (14)0.1314 (3)0.0312 (12)
H620.0749770.6280040.2019580.037*
C630.0821 (5)0.61082 (14)0.0938 (3)0.0299 (12)
H630.1225950.6092250.1397940.036*
C640.1415 (4)0.60201 (13)0.0108 (3)0.0244 (11)
H640.2213580.5945380.0349010.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01128 (9)0.01589 (10)0.01397 (8)0.00082 (8)0.00420 (7)0.00141 (7)
Fe10.0129 (3)0.0159 (4)0.0171 (3)0.0014 (3)0.0053 (3)0.0025 (3)
S10.0380 (8)0.0434 (9)0.0191 (6)0.0099 (7)0.0109 (6)0.0031 (6)
S20.0228 (7)0.0292 (7)0.0210 (6)0.0072 (6)0.0087 (5)0.0055 (5)
P10.0125 (6)0.0177 (7)0.0162 (5)0.0015 (5)0.0035 (5)0.0004 (5)
P20.0119 (6)0.0134 (6)0.0149 (5)0.0001 (5)0.0043 (5)0.0015 (5)
P30.0129 (6)0.0200 (7)0.0159 (5)0.0013 (5)0.0043 (5)0.0010 (5)
O10.026 (2)0.026 (2)0.038 (2)0.0081 (17)0.0105 (17)0.0009 (16)
O20.017 (2)0.032 (2)0.051 (2)0.0051 (17)0.0128 (17)0.0101 (17)
O30.0226 (19)0.0190 (19)0.0261 (17)0.0048 (15)0.0091 (15)0.0030 (14)
C10.018 (3)0.015 (3)0.016 (2)0.004 (2)0.0038 (19)0.0017 (18)
C20.021 (3)0.017 (3)0.018 (2)0.003 (2)0.009 (2)0.0023 (19)
C30.012 (2)0.027 (3)0.022 (2)0.003 (2)0.008 (2)0.003 (2)
C40.023 (3)0.019 (3)0.022 (2)0.001 (2)0.008 (2)0.000 (2)
C50.028 (3)0.036 (3)0.018 (2)0.001 (2)0.006 (2)0.009 (2)
C60.036 (3)0.046 (4)0.029 (3)0.002 (3)0.016 (3)0.005 (3)
C70.063 (4)0.029 (3)0.030 (3)0.006 (3)0.016 (3)0.002 (2)
C80.045 (4)0.032 (4)0.032 (3)0.002 (3)0.002 (3)0.010 (3)
C90.036 (4)0.045 (4)0.050 (3)0.006 (3)0.016 (3)0.013 (3)
C100.034 (3)0.044 (4)0.034 (3)0.007 (3)0.017 (3)0.009 (3)
C110.082 (5)0.040 (4)0.062 (4)0.020 (4)0.015 (4)0.003 (3)
C120.014 (3)0.026 (3)0.023 (2)0.002 (2)0.008 (2)0.003 (2)
C130.019 (3)0.024 (3)0.019 (2)0.001 (2)0.004 (2)0.002 (2)
C140.016 (3)0.036 (3)0.023 (2)0.004 (2)0.005 (2)0.007 (2)
C150.026 (3)0.042 (3)0.023 (3)0.001 (3)0.011 (2)0.005 (2)
C160.026 (3)0.027 (3)0.025 (3)0.002 (2)0.007 (2)0.000 (2)
C170.015 (3)0.033 (3)0.032 (3)0.003 (2)0.004 (2)0.001 (2)
C180.019 (3)0.031 (3)0.026 (3)0.002 (2)0.010 (2)0.004 (2)
C190.035 (3)0.054 (4)0.034 (3)0.004 (3)0.006 (3)0.011 (3)
C200.020 (3)0.022 (3)0.026 (2)0.005 (2)0.007 (2)0.004 (2)
C210.016 (3)0.021 (3)0.021 (2)0.003 (2)0.006 (2)0.003 (2)
C220.009 (2)0.027 (3)0.015 (2)0.002 (2)0.0027 (18)0.0000 (19)
C230.020 (3)0.033 (3)0.020 (2)0.001 (2)0.006 (2)0.000 (2)
C240.017 (3)0.056 (4)0.022 (3)0.014 (3)0.006 (2)0.002 (3)
C250.010 (3)0.066 (4)0.021 (2)0.002 (3)0.005 (2)0.006 (3)
C260.020 (3)0.040 (3)0.030 (3)0.011 (3)0.005 (2)0.011 (2)
C270.021 (3)0.028 (3)0.019 (2)0.005 (2)0.005 (2)0.003 (2)
C280.013 (2)0.019 (3)0.023 (2)0.000 (2)0.002 (2)0.004 (2)
C290.035 (3)0.024 (3)0.026 (3)0.001 (2)0.003 (2)0.006 (2)
C300.041 (4)0.025 (3)0.046 (3)0.006 (3)0.001 (3)0.011 (3)
C310.027 (3)0.042 (4)0.038 (3)0.000 (3)0.012 (2)0.021 (3)
C320.032 (3)0.043 (4)0.031 (3)0.011 (3)0.016 (2)0.010 (3)
C330.030 (3)0.018 (3)0.028 (3)0.001 (2)0.011 (2)0.003 (2)
C340.015 (2)0.016 (3)0.012 (2)0.002 (2)0.0037 (18)0.0012 (18)
C350.019 (3)0.017 (3)0.010 (2)0.002 (2)0.0045 (19)0.0010 (18)
C360.021 (3)0.021 (3)0.020 (2)0.002 (2)0.004 (2)0.000 (2)
C370.028 (3)0.032 (3)0.029 (3)0.013 (3)0.013 (2)0.006 (2)
C380.048 (4)0.019 (3)0.034 (3)0.017 (3)0.018 (3)0.001 (2)
C390.038 (3)0.016 (3)0.029 (3)0.005 (2)0.010 (2)0.000 (2)
C400.021 (3)0.022 (3)0.022 (2)0.000 (2)0.008 (2)0.003 (2)
C410.011 (2)0.018 (3)0.023 (2)0.005 (2)0.0069 (19)0.0025 (19)
C420.027 (3)0.021 (3)0.027 (2)0.000 (2)0.015 (2)0.001 (2)
C430.039 (3)0.020 (3)0.052 (3)0.003 (3)0.025 (3)0.006 (3)
C440.026 (3)0.044 (4)0.036 (3)0.009 (3)0.017 (2)0.022 (3)
C450.025 (3)0.044 (4)0.021 (2)0.003 (3)0.010 (2)0.004 (2)
C460.015 (2)0.022 (3)0.023 (2)0.004 (2)0.0062 (19)0.001 (2)
C470.022 (3)0.019 (3)0.019 (2)0.000 (2)0.010 (2)0.0020 (19)
C480.021 (3)0.027 (3)0.027 (3)0.004 (2)0.006 (2)0.004 (2)
C490.037 (3)0.027 (3)0.030 (3)0.012 (3)0.008 (3)0.007 (2)
C500.057 (4)0.021 (3)0.031 (3)0.001 (3)0.016 (3)0.000 (2)
C510.035 (3)0.033 (3)0.035 (3)0.008 (3)0.008 (3)0.004 (3)
C520.026 (3)0.017 (3)0.022 (2)0.004 (2)0.005 (2)0.005 (2)
C530.013 (3)0.027 (3)0.014 (2)0.002 (2)0.0023 (19)0.0020 (19)
C540.016 (3)0.028 (3)0.023 (2)0.001 (2)0.005 (2)0.003 (2)
C550.026 (3)0.032 (3)0.029 (3)0.009 (3)0.014 (2)0.001 (2)
C560.020 (3)0.046 (4)0.025 (2)0.006 (3)0.011 (2)0.005 (2)
C570.014 (3)0.036 (3)0.025 (2)0.000 (2)0.006 (2)0.010 (2)
C580.017 (3)0.033 (3)0.020 (2)0.004 (2)0.005 (2)0.002 (2)
C590.016 (3)0.019 (3)0.018 (2)0.003 (2)0.0011 (19)0.0021 (19)
C600.018 (3)0.027 (3)0.022 (2)0.006 (2)0.008 (2)0.007 (2)
C610.020 (3)0.036 (3)0.024 (2)0.007 (2)0.002 (2)0.001 (2)
C620.034 (3)0.037 (3)0.015 (2)0.001 (3)0.001 (2)0.001 (2)
C630.036 (3)0.040 (3)0.017 (2)0.001 (3)0.014 (2)0.001 (2)
C640.016 (3)0.034 (3)0.022 (2)0.001 (2)0.005 (2)0.002 (2)
Geometric parameters (Å, º) top
Pt1—Fe12.5697 (6)C26—C271.382 (6)
Pt1—P22.2850 (10)C27—H270.9300
Pt1—P32.2714 (12)C28—C291.383 (6)
Pt1—C12.045 (4)C28—C331.385 (6)
Fe1—P12.1966 (12)C29—H290.9300
Fe1—C12.162 (4)C29—C301.383 (6)
Fe1—C22.119 (4)C30—H300.9300
Fe1—C31.932 (5)C30—C311.379 (7)
Fe1—C201.777 (5)C31—H310.9300
Fe1—C211.789 (5)C31—C321.356 (7)
S1—C41.830 (4)C32—H320.9300
S1—C51.782 (5)C32—C331.378 (6)
S2—C121.808 (4)C33—H330.9300
S2—C131.771 (4)C34—H34A0.9700
P1—C221.839 (4)C34—H34B0.9700
P1—C281.841 (4)C35—C361.399 (6)
P1—C341.842 (4)C35—C401.385 (6)
P2—C341.829 (4)C36—H360.9300
P2—C351.824 (4)C36—C371.378 (6)
P2—C411.819 (4)C37—H370.9300
P3—C471.824 (5)C37—C381.388 (7)
P3—C531.824 (4)C38—H380.9300
P3—C591.830 (4)C38—C391.376 (7)
O1—C211.157 (5)C39—H390.9300
O2—C201.141 (5)C39—C401.377 (6)
O3—C31.216 (5)C40—H400.9300
C1—C21.407 (6)C41—C421.380 (6)
C1—C121.483 (6)C41—C461.402 (6)
C2—C31.464 (6)C42—H420.9300
C2—C41.511 (5)C42—C431.404 (6)
C4—H4A0.9700C43—H430.9300
C4—H4B0.9700C43—C441.366 (6)
C5—C61.384 (6)C44—H440.9300
C5—C101.397 (6)C44—C451.376 (7)
C6—H60.9300C45—H450.9300
C6—C71.367 (7)C45—C461.381 (6)
C7—H70.9300C46—H460.9300
C7—C81.392 (7)C47—C481.394 (6)
C8—C91.373 (7)C47—C521.388 (6)
C8—C111.513 (7)C48—H480.9300
C9—H90.9300C48—C491.373 (7)
C9—C101.381 (7)C49—H490.9300
C10—H100.9300C49—C501.382 (7)
C11—H11A0.9600C50—H500.9300
C11—H11B0.9600C50—C511.374 (7)
C11—H11C0.9600C51—H510.9300
C12—H12A0.9700C51—C521.389 (6)
C12—H12B0.9700C52—H520.9300
C13—C141.394 (6)C53—C541.387 (6)
C13—C181.390 (6)C53—C581.389 (6)
C14—H140.9300C54—H540.9300
C14—C151.387 (6)C54—C551.384 (6)
C15—H150.9300C55—H550.9300
C15—C161.378 (6)C55—C561.383 (7)
C16—C171.395 (6)C56—H560.9300
C16—C191.516 (6)C56—C571.371 (7)
C17—H170.9300C57—H570.9300
C17—C181.373 (6)C57—C581.391 (6)
C18—H180.9300C58—H580.9300
C19—H19A0.9600C59—C601.383 (6)
C19—H19B0.9600C59—C641.390 (6)
C19—H19C0.9600C60—H600.9300
C22—C231.404 (6)C60—C611.382 (6)
C22—C271.376 (6)C61—H610.9300
C23—H230.9300C61—C621.378 (6)
C23—C241.381 (6)C62—H620.9300
C24—H240.9300C62—C631.372 (7)
C24—C251.377 (7)C63—H630.9300
C25—H250.9300C63—C641.379 (6)
C25—C261.388 (7)C64—H640.9300
C26—H260.9300
P2—Pt1—Fe197.26 (3)C24—C23—C22120.3 (5)
P3—Pt1—Fe1161.46 (3)C24—C23—H23119.9
P3—Pt1—P2100.53 (4)C23—C24—H24119.7
C1—Pt1—Fe154.44 (12)C25—C24—C23120.5 (5)
C1—Pt1—P2151.36 (12)C25—C24—H24119.7
C1—Pt1—P3107.33 (12)C24—C25—H25120.2
P1—Fe1—Pt193.50 (4)C24—C25—C26119.5 (5)
C1—Fe1—Pt150.30 (11)C26—C25—H25120.2
C1—Fe1—P1141.85 (12)C25—C26—H26120.0
C2—Fe1—Pt173.72 (12)C27—C26—C25119.9 (5)
C2—Fe1—P1130.91 (13)C27—C26—H26120.0
C2—Fe1—C138.35 (16)C22—C27—C26121.3 (5)
C3—Fe1—Pt172.18 (13)C22—C27—H27119.3
C3—Fe1—P188.88 (13)C26—C27—H27119.3
C3—Fe1—C170.43 (18)C29—C28—P1120.7 (3)
C3—Fe1—C242.03 (17)C29—C28—C33118.0 (4)
C20—Fe1—Pt1168.78 (14)C33—C28—P1121.2 (4)
C20—Fe1—P195.66 (14)C28—C29—H29119.5
C20—Fe1—C1119.19 (18)C28—C29—C30120.9 (5)
C20—Fe1—C295.33 (18)C30—C29—H29119.5
C20—Fe1—C3101.5 (2)C29—C30—H30120.1
C20—Fe1—C2196.5 (2)C31—C30—C29119.8 (5)
C21—Fe1—Pt187.76 (14)C31—C30—H30120.1
C21—Fe1—P1102.63 (13)C30—C31—H31120.1
C21—Fe1—C189.16 (18)C32—C31—C30119.8 (5)
C21—Fe1—C2123.33 (18)C32—C31—H31120.1
C21—Fe1—C3157.6 (2)C31—C32—H32119.6
C5—S1—C4102.1 (2)C31—C32—C33120.7 (5)
C13—S2—C12102.2 (2)C33—C32—H32119.6
C22—P1—Fe1115.03 (13)C28—C33—H33119.6
C22—P1—C28100.05 (19)C32—C33—C28120.7 (5)
C22—P1—C34102.6 (2)C32—C33—H33119.6
C28—P1—Fe1121.17 (15)P1—C34—H34A109.6
C28—P1—C34103.71 (19)P1—C34—H34B109.6
C34—P1—Fe1112.02 (13)P2—C34—P1110.3 (2)
C34—P2—Pt1103.14 (13)P2—C34—H34A109.6
C35—P2—Pt1121.79 (13)P2—C34—H34B109.6
C35—P2—C34102.5 (2)H34A—C34—H34B108.1
C41—P2—Pt1121.93 (15)C36—C35—P2118.3 (3)
C41—P2—C34103.99 (19)C40—C35—P2123.3 (3)
C41—P2—C35100.66 (19)C40—C35—C36118.5 (4)
C47—P3—Pt1114.72 (15)C35—C36—H36119.9
C47—P3—C53108.4 (2)C37—C36—C35120.2 (5)
C47—P3—C59100.6 (2)C37—C36—H36119.9
C53—P3—Pt1111.32 (15)C36—C37—H37119.8
C53—P3—C59101.2 (2)C36—C37—C38120.4 (5)
C59—P3—Pt1119.15 (15)C38—C37—H37119.8
Pt1—C1—Fe175.25 (13)C37—C38—H38120.2
C2—C1—Pt1109.1 (3)C39—C38—C37119.6 (5)
C2—C1—Fe169.2 (2)C39—C38—H38120.2
C2—C1—C12119.6 (4)C38—C39—H39120.0
C12—C1—Pt1130.5 (3)C38—C39—C40120.1 (5)
C12—C1—Fe1129.0 (3)C40—C39—H39120.0
C1—C2—Fe172.5 (2)C35—C40—H40119.4
C1—C2—C3111.2 (4)C39—C40—C35121.2 (4)
C1—C2—C4126.2 (4)C39—C40—H40119.4
C3—C2—Fe162.1 (2)C42—C41—P2121.3 (3)
C3—C2—C4121.9 (4)C42—C41—C46118.5 (4)
C4—C2—Fe1124.8 (3)C46—C41—P2120.1 (3)
O3—C3—Fe1146.8 (3)C41—C42—H42119.7
O3—C3—C2136.5 (4)C41—C42—C43120.6 (4)
C2—C3—Fe175.8 (3)C43—C42—H42119.7
S1—C4—H4A109.0C42—C43—H43120.3
S1—C4—H4B109.0C44—C43—C42119.3 (5)
C2—C4—S1112.9 (3)C44—C43—H43120.3
C2—C4—H4A109.0C43—C44—H44119.3
C2—C4—H4B109.0C43—C44—C45121.3 (4)
H4A—C4—H4B107.8C45—C44—H44119.3
C6—C5—S1121.9 (4)C44—C45—H45120.3
C6—C5—C10118.4 (5)C44—C45—C46119.4 (4)
C10—C5—S1119.7 (4)C46—C45—H45120.3
C5—C6—H6119.8C41—C46—H46119.6
C7—C6—C5120.4 (5)C45—C46—C41120.8 (4)
C7—C6—H6119.8C45—C46—H46119.6
C6—C7—H7118.9C48—C47—P3122.3 (4)
C6—C7—C8122.2 (5)C52—C47—P3120.0 (3)
C8—C7—H7118.9C52—C47—C48117.7 (4)
C7—C8—C11121.0 (5)C47—C48—H48119.5
C9—C8—C7116.9 (5)C49—C48—C47121.0 (5)
C9—C8—C11122.1 (5)C49—C48—H48119.5
C8—C9—H9118.9C48—C49—H49119.8
C8—C9—C10122.2 (5)C48—C49—C50120.5 (5)
C10—C9—H9118.9C50—C49—H49119.8
C5—C10—H10120.0C49—C50—H50120.2
C9—C10—C5119.9 (5)C51—C50—C49119.6 (5)
C9—C10—H10120.0C51—C50—H50120.2
C8—C11—H11A109.5C50—C51—H51120.1
C8—C11—H11B109.5C50—C51—C52119.8 (5)
C8—C11—H11C109.5C52—C51—H51120.1
H11A—C11—H11B109.5C47—C52—C51121.3 (4)
H11A—C11—H11C109.5C47—C52—H52119.3
H11B—C11—H11C109.5C51—C52—H52119.3
S2—C12—H12A109.1C54—C53—P3116.1 (3)
S2—C12—H12B109.1C54—C53—C58118.7 (4)
C1—C12—S2112.3 (3)C58—C53—P3125.1 (4)
C1—C12—H12A109.1C53—C54—H54119.5
C1—C12—H12B109.1C55—C54—C53121.0 (5)
H12A—C12—H12B107.9C55—C54—H54119.5
C14—C13—S2124.4 (4)C54—C55—H55120.3
C18—C13—S2118.1 (3)C56—C55—C54119.4 (5)
C18—C13—C14117.5 (4)C56—C55—H55120.3
C13—C14—H14119.6C55—C56—H56119.8
C15—C14—C13120.7 (4)C57—C56—C55120.5 (4)
C15—C14—H14119.6C57—C56—H56119.8
C14—C15—H15119.1C56—C57—H57120.0
C16—C15—C14121.7 (4)C56—C57—C58120.0 (5)
C16—C15—H15119.1C58—C57—H57120.0
C15—C16—C17117.2 (4)C53—C58—C57120.4 (5)
C15—C16—C19121.7 (4)C53—C58—H58119.8
C17—C16—C19121.1 (5)C57—C58—H58119.8
C16—C17—H17119.2C60—C59—P3122.2 (3)
C18—C17—C16121.6 (5)C60—C59—C64118.9 (4)
C18—C17—H17119.2C64—C59—P3118.9 (3)
C13—C18—H18119.4C59—C60—H60119.9
C17—C18—C13121.2 (4)C61—C60—C59120.2 (4)
C17—C18—H18119.4C61—C60—H60119.9
C16—C19—H19A109.5C60—C61—H61119.6
C16—C19—H19B109.5C62—C61—C60120.9 (5)
C16—C19—H19C109.5C62—C61—H61119.6
H19A—C19—H19B109.5C61—C62—H62120.6
H19A—C19—H19C109.5C63—C62—C61118.8 (4)
H19B—C19—H19C109.5C63—C62—H62120.6
O2—C20—Fe1178.7 (4)C62—C63—H63119.4
O1—C21—Fe1179.9 (5)C62—C63—C64121.1 (4)
C23—C22—P1116.6 (4)C64—C63—H63119.4
C27—C22—P1124.9 (4)C59—C64—H64119.9
C27—C22—C23118.4 (4)C63—C64—C59120.1 (4)
C22—C23—H23119.9C63—C64—H64119.9
Pt1—P2—C34—P152.0 (2)C22—P1—C28—C29109.4 (4)
Pt1—P2—C35—C3687.5 (3)C22—P1—C28—C3370.4 (4)
Pt1—P2—C35—C4092.7 (4)C22—P1—C34—P2172.0 (2)
Pt1—P2—C41—C425.3 (4)C22—C23—C24—C250.1 (6)
Pt1—P2—C41—C46177.8 (3)C23—C22—C27—C260.6 (6)
Pt1—P3—C47—C48174.1 (3)C23—C24—C25—C261.6 (7)
Pt1—P3—C47—C522.6 (4)C24—C25—C26—C272.0 (7)
Pt1—P3—C53—C5434.5 (4)C25—C26—C27—C220.9 (7)
Pt1—P3—C53—C58148.9 (3)C27—C22—C23—C241.0 (6)
Pt1—P3—C59—C60122.1 (4)C28—P1—C22—C2358.9 (3)
Pt1—P3—C59—C6457.8 (4)C28—P1—C22—C27124.9 (4)
Pt1—C1—C2—Fe165.2 (2)C28—P1—C34—P284.2 (2)
Pt1—C1—C2—C315.6 (4)C28—C29—C30—C310.1 (8)
Pt1—C1—C2—C4174.2 (3)C29—C28—C33—C321.8 (7)
Pt1—C1—C12—S218.9 (5)C29—C30—C31—C321.4 (8)
Fe1—P1—C22—C2372.6 (3)C30—C31—C32—C331.4 (8)
Fe1—P1—C22—C27103.6 (3)C31—C32—C33—C280.2 (8)
Fe1—P1—C28—C2918.2 (5)C33—C28—C29—C301.7 (7)
Fe1—P1—C28—C33162.1 (3)C34—P1—C22—C23165.5 (3)
Fe1—P1—C34—P248.1 (2)C34—P1—C22—C2718.3 (4)
Fe1—C1—C2—C349.6 (3)C34—P1—C28—C29144.9 (4)
Fe1—C1—C2—C4120.6 (4)C34—P1—C28—C3335.3 (4)
Fe1—C1—C12—S286.2 (4)C34—P2—C35—C36158.2 (3)
Fe1—C2—C3—O3170.8 (6)C34—P2—C35—C4021.6 (4)
Fe1—C2—C4—S1172.3 (2)C34—P2—C41—C42110.2 (4)
S1—C5—C6—C7179.4 (4)C34—P2—C41—C4666.6 (4)
S1—C5—C10—C9180.0 (4)C35—P2—C34—P1179.29 (19)
S2—C13—C14—C15175.3 (4)C35—P2—C41—C42143.8 (4)
S2—C13—C18—C17176.1 (4)C35—P2—C41—C4639.3 (4)
P1—C22—C23—C24175.4 (3)C35—C36—C37—C380.6 (6)
P1—C22—C27—C26175.5 (3)C36—C35—C40—C390.8 (6)
P1—C28—C29—C30178.5 (4)C36—C37—C38—C390.1 (7)
P1—C28—C33—C32178.5 (4)C37—C38—C39—C400.8 (7)
P2—C35—C36—C37179.9 (3)C38—C39—C40—C351.3 (7)
P2—C35—C40—C39179.0 (3)C40—C35—C36—C370.1 (6)
P2—C41—C42—C43176.3 (4)C41—P2—C34—P176.2 (2)
P2—C41—C46—C45177.1 (3)C41—P2—C35—C3651.1 (3)
P3—C47—C48—C49179.2 (3)C41—P2—C35—C40128.7 (4)
P3—C47—C52—C51179.3 (3)C41—C42—C43—C440.1 (7)
P3—C53—C54—C55177.3 (3)C42—C41—C46—C450.2 (7)
P3—C53—C58—C57175.9 (3)C42—C43—C44—C451.1 (8)
P3—C59—C60—C61179.5 (4)C43—C44—C45—C461.8 (7)
P3—C59—C64—C63179.3 (4)C44—C45—C46—C411.3 (7)
C1—C2—C3—Fe155.2 (3)C46—C41—C42—C430.5 (7)
C1—C2—C3—O3134.0 (6)C47—P3—C53—C54161.5 (3)
C1—C2—C4—S179.3 (5)C47—P3—C53—C5821.8 (4)
C2—C1—C12—S2172.5 (3)C47—P3—C59—C60111.6 (4)
C3—C2—C4—S1111.4 (4)C47—P3—C59—C6468.5 (4)
C4—S1—C5—C672.5 (4)C47—C48—C49—C502.6 (7)
C4—S1—C5—C10108.5 (4)C48—C47—C52—C512.3 (6)
C4—C2—C3—Fe1115.5 (4)C48—C49—C50—C510.5 (7)
C4—C2—C3—O355.3 (8)C49—C50—C51—C522.1 (7)
C5—S1—C4—C278.1 (4)C50—C51—C52—C470.6 (7)
C5—C6—C7—C81.0 (8)C52—C47—C48—C493.9 (6)
C6—C5—C10—C90.9 (7)C53—P3—C47—C4860.8 (4)
C6—C7—C8—C90.2 (8)C53—P3—C47—C52122.4 (3)
C6—C7—C8—C11179.4 (5)C53—P3—C59—C600.3 (4)
C7—C8—C9—C100.8 (8)C53—P3—C59—C64179.9 (4)
C8—C9—C10—C50.3 (8)C53—C54—C55—C560.3 (7)
C10—C5—C6—C71.6 (7)C54—C53—C58—C570.7 (6)
C11—C8—C9—C10178.7 (5)C54—C55—C56—C570.9 (7)
C12—S2—C13—C1436.3 (5)C55—C56—C57—C581.9 (7)
C12—S2—C13—C18146.7 (4)C56—C57—C58—C531.9 (7)
C12—C1—C2—Fe1124.0 (4)C58—C53—C54—C550.4 (6)
C12—C1—C2—C3173.6 (4)C59—P3—C47—C4844.9 (4)
C12—C1—C2—C43.3 (7)C59—P3—C47—C52131.8 (3)
C13—S2—C12—C1166.4 (3)C59—P3—C53—C5493.2 (3)
C13—C14—C15—C161.5 (8)C59—P3—C53—C5883.5 (4)
C14—C13—C18—C171.1 (7)C59—C60—C61—C620.3 (8)
C14—C15—C16—C170.6 (7)C60—C59—C64—C630.6 (7)
C14—C15—C16—C19179.8 (5)C60—C61—C62—C630.8 (8)
C15—C16—C17—C180.1 (7)C61—C62—C63—C640.6 (8)
C16—C17—C18—C130.4 (8)C62—C63—C64—C590.1 (8)
C18—C13—C14—C151.7 (7)C64—C59—C60—C610.4 (7)
C19—C16—C17—C18179.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.673.316 (6)128
C34—H34A···O30.972.623.271 (5)125
C39—H39···O3ii0.932.493.239 (6)138
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1.
 

Funding information

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support. LB thanks the Fonds der Chemischen Industrie (FCI) for a doctoral fellowship.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAkabori, S., Kumagai, T., Shirahige, T., Sato, S., Kawazoe, K., Tamura, C. & Sato, M. (1987). Organometallics, 6, 526–531.  CSD CrossRef CAS Web of Science Google Scholar
First citationAkita, M., Sugimoto, S., Terada, M. & Moro-oka, Y. (1993). J. Organomet. Chem. 447, 103–106.  CSD CrossRef CAS Web of Science Google Scholar
First citationAly, S. M., Pam, A., Khatyr, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Bauer, J. O., Strohmann, C. & Harvey, P. D. (2014). J. Inorg. Organomet. Polym. 24, 190–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmouri, H., Da Silva, C., Malézieux, B., Andrés, R., Vaissermann, J. & Gruselle, M. (2000). Inorg. Chem. 39, 5053–5058.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBai, S.-Q., Hoi Ka Wong, I., Zhang, N., Lin Ke, K., Lin, M., Young, D. J. & Hor, T. S. A. (2018). Dalton Trans. 47, 16292–16298.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBennett, S. C., Gelling, A. & Went, M. J. (1992). J. Organomet. Chem. 439, 189–199.  CrossRef CAS Web of Science Google Scholar
First citationBoni, A., Funaioli, T., Marchetti, F., Pampaloni, G., Pinzino, C. & Zacchini, S. (2011). J. Organomet. Chem. 696, 3551–3556.  CAS Google Scholar
First citationBonnot, A., Knorr, M., Strohmann, C., Golz, C., Fortin, D. & Harvey, P. D. (2015). J. Inorg. Organomet. Polym. 25, 480–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraunstein, P., Knorr, M., DeCian, A. & Fischer, J. (1995). Organometallics, 14, 1302–1309.  CSD CrossRef CAS Google Scholar
First citationBrieger, L., Jourdain, I., Knorr, M. & Strohmann, C. (2019). Acta Cryst. E75, 1902–1906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCasey, C. P., Ha, Y. & Powell, D. R. (1994). J. Am. Chem. Soc. 116, 3424–3428.  CSD CrossRef CAS Web of Science Google Scholar
First citationDennett, J. N. L., Knox, S. A. R., Anderson, K. M., Charmant, J. P. H. & Orpen, A. G. (2005). Dalton Trans. pp. 63–73.  Web of Science CSD CrossRef Google Scholar
First citationDickson, R. S., Gatehouse, B. M., Nesbit, M. C. & Pain, G. N. (1981). J. Organomet. Chem. 215, 97–109.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEverhardus, R. H. & Brandsma, L. (1978). Synthesis, pp. 359.  Google Scholar
First citationFontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741–750.  CSD CrossRef Web of Science Google Scholar
First citationGelling, A., Went, M. J. & Povey, D. C. (1993). J. Organomet. Chem. 455, 203–210.  CSD CrossRef CAS Web of Science Google Scholar
First citationHitchcock, P. B., Madden, T. J. & Nixon, J. F. (1993). J. Organomet. Chem. 463, 155–162.  CSD CrossRef CAS Web of Science Google Scholar
First citationHoriuchi, S., Murase, T. & Fujita, M. (2012). Angew. Chem. Int. Ed. 51, 12029–12031.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, K. A. & Gladfelter, W. L. (1991). J. Am. Chem. Soc. 113, 5097–5099.  CSD CrossRef CAS Web of Science Google Scholar
First citationJourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343–5359.  Web of Science CSD CrossRef CAS Google Scholar
First citationJourdain, I., Vieille-Petit, L., Clément, S., Knorr, M., Villafañe, F. & Strohmann, C. (2006). Inorg. Chem. Commun. 9, 127–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationKiel, G.-Y., Zhang, Z., Takats, J. & Jordan, R. B. (2000). Organometallics, 19, 2766–2776.  Web of Science CrossRef CAS Google Scholar
First citationKnorr, M., Guyon, F., Khatyr, A., Däschlein, C., Strohmann, C., Aly, S. M., Abd-El-Aziz, A. S., Fortin, D. & Harvey, P. D. (2009). Dalton Trans. pp. 948–955.  Web of Science CSD CrossRef Google Scholar
First citationKnorr, M. & Jourdain, I. (2017). Coord. Chem. Rev. 350, 217–247.  Web of Science CrossRef CAS Google Scholar
First citationKnox, S. A. R., Lloyd, B. R., Morton, D. A. V., Orpen, A. G., Turner, M. L. & Hogarth, G. (1995). Polyhedron, 14, 2723–2743.  CSD CrossRef CAS Web of Science Google Scholar
First citationLevanova, E. P., Vakhrina, V. S., Grabel'nykh, V. A., Rozentsveig, I. B., Russavskaya, N. V., Albanov, A. I., Klyba, L. V. & Korchevin, N. A. (2015). Russ. Chem. Bull. 64, 2083–2089.  Web of Science CrossRef CAS Google Scholar
First citationMcKee, S. D., Krause, J. A., Lunder, D. M. & Bursten, B. E. (1994). J. Coord. Chem. 32, 249–259.  CSD CrossRef CAS Web of Science Google Scholar
First citationMirza, H. A., Vittal, J. J. & Puddephatt, R. J. (1994). Organometallics, 13, 3063–3067.  CSD CrossRef CAS Web of Science Google Scholar
First citationPourcelot, G. & Cadiot, P. (1966). Bull. Soc. Chim. Fr. 9, 3024–3033.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWong, A., Pawlick, R. V., Thomas, C. G., Leon, D. R. & Liu, L.-K. (1991). Organometallics, 10, 530–532.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds