research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-{[(E)-4-(hept­yl­oxy)benzyl­­idene]amino}-N-(naphthalen-2-yl)-1,3-thia­zol-2-amine

CROSSMARK_Color_square_no_text.svg

aSalahaddin University, College of Science, Department of Chemistry, Erbil, Iraq, bSalahaddin University, College of Education, Department of Chemistry, Erbil, Iraq, and cKoya University, Faculty of Science and Health, Department of Chemistry, Koya, Iraq
*Correspondence e-mail: ropak.shekhmohamad@su.edu.krd, wali.hmd@koyauniversity.org

Edited by S. Parkin, University of Kentucky, USA (Received 18 May 2020; accepted 11 June 2020; online 16 June 2020)

In the title compound, C27H28N2OS, the naphthalene unit is planar to within 0.015 (2) Å and makes a dihedral angle of 14.24 (16)° with the thia­zole ring. The anisole ring is inclined to the thia­zole ring by a dihedral angle of 13.18 (23)°. The torsion angle between the heptyl chain and the anisole ring is 61.1 (4)°. These dihedral and torsion angles render the mol­ecule non-planar. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming zigzag chains that propagate parallel to the b axis. The roles of the various inter­molecular inter­actions in the crystal packing were clarified by Hirshfeld surface analysis; the most important contributions are from H⋯H (51.5%) and C⋯H/H⋯C (31.8%) contacts.

1. Chemical context

Schiff bases, i.e. compounds containing the azomethine group (–CH=N– or >C=N–), are important because of their physiological and pharmacological properties. They are typically synthesized by the condensation of primary amines and active carbonyl groups. The pharmacological activities of Schiff bases include anti-bacterial, anti-fungal, anti-cancer and anti-viral properties (Wang et al., 2001[Wang, M., Wang, L.-F., Li, Y.-Z., Li, Q.-X., Xu, Z.-D. & Qu, D.-M. (2001). Transit. Met. Chem. 26, 307-310.]; Yadav & Singh, 2001[Yadav, L. & Singh, S. (2001). Indian J. Chem. 40B, 440-442.]).

[Scheme 1]

One of the most important scaffolds in drug design and heterocyclic chemistry is thia­zole, which is widely found in various pharmacologically active substances and in some naturally occurring compounds (Ayati et al., 2015[Ayati, A., Emami, S., Asadipour, A., Shafiee, A. & Foroumadi, A. (2015). Eur. J. Med. Chem. 97, 699-718.]). Various thia­zole-bearing compounds have shown activities such as anti-bacterial, anti-fungal, anti-inflammatory, anti-hypertensive, anti-HIV, anti-tumor, anti-filarial, anti-convulsant, herbicidal, insecticidal, schistosomicidal and anthelmintic (Bharti et al., 2010[Bharti, S., Nath, G., Tilak, R. & Singh, S. (2010). Eur. J. Med. Chem. 45, 651-660.]). The synthesis of thia­zole derivatives by various methods and their biological evaluation have been described by several researchers and the thia­zole nucleus has therefore attracted a lot of inter­est for the development of pharmacologically active compounds (Breslow, 1958[Breslow, R. (1958). J. Am. Chem. Soc. 80, 3719-3726.]). In our studies, a new Schiff base, 4-{[(E)-4-(hept­yloxy)benzyl­idene]amino}-N-(naphthalen-2-yl)-1,3-thia­zol-2-amine, was obtained in crystalline form from the reaction of 2-amino-4-(2-naphth­yl)thia­zole with 4-N-(hept­yloxy)benzaldehyde. We report here the synthesis and the crystal and mol­ecular structures of the title compound, including a Hirshfeld surface analysis to assess the relative importance of the various inter­molecular inter­actions on the crystal packing.

2. Structural commentary

The asymmetric unit of the title compound contains one mol­ecule (Fig. 1[link]). The naphthalene unit makes a dihedral angle of 14.24 (16)° with the thia­zole ring. The anisole ring is inclined to the thia­zole ring by a dihedral angle of 13.18 (22)°. The heptyl chain attached to O1 is twisted out of this plane with the O1—C21—C22–C23 torsion angle being 61.1 (4)°. In the thia­zole ring, the C11—N1 [1.373 (4) Å] and C13—N1 [1.298 (4) Å] distances indicate substantial electronic delocalization (Table 1[link]).

Table 1
Selected bond lengths (Å)

S1—C12 1.674 (4) N1—C13 1.298 (4)
S1—C13 1.719 (4) N1—C11 1.373 (4)
O1—C18 1.345 (4) N2—C14 1.275 (4)
O1—C21 1.434 (4) N2—C13 1.377 (4)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, the most important inter­molecular contacts are C—H⋯π inter­actions, which link screw-related mol­ecules via C4—H4⋯Cg3i [symmetry code: (i) −x, y + [{1\over 2}], −z + [{3\over 2}]), forming zigzag chains that extend parallel to the b axis (Fig. 2[link] and Table 2[link]). The distance of between the carbon atom C4 and the centroid (Cg3i) of the adjacent C5-C10 ring is 3.522 (4) Å.

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg3i 0.93 2.85 3.522 (4) 130
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing of the title compound. The C—H⋯π(ring) inter­actions are indicated by dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-1-(4-(hept­yloxy)phen­yl)-N-(4-(naphthalen-2-yl)thia­zol-2-yl)methanimine fragment revealed three hits. These structures are 4-(pyren-1-yl)-1,3-thia­zol-2-amine (pyrene thia­zole conjugate, PTC), C19H12N2S (SOPREW; Mahapatra et al., 2014[Mahapatra, A. K., Mondal, S., Maiti, K., Manna, S. K., Maji, R., Mandal, D., Mandal, S., Goswami, S., Quah, C. K. & Fun, H.-K. (2014). RSC Adv. 4, 56605-56614.]), 2-amino-4-(2-naphth­yl)-1,3-thia­zolium bromide, C13H11N2S+·Br (XUNKOG; Lynch et al., 2002[Lynch, D. E., McClenaghan, I., Light, M. E. & Coles, S. J. (2002). Cryst. Eng. 5, 123-136.]) and (E)-4-(4-chloro­phen­yl)-N-(1,3-benzodioxol-5-yl­methyl­ene)-5-(1H-1,2,4-triazol-1-yl)-1,3-thia­zol-2-amine, C19H12ClN5O2S (XAZJUE; Shao et al., 2006[Shao, L., Zhang, Q., Zhou, X. & Fang, J.-X. (2006). Acta Cryst. E62, o334-o335.]). In XUNKOG, the mol­ecules are connected to each other via N—H⋯Br hydrogen bonds while in XAZJUE, they are linked by a weak C—H⋯O hydrogen bond. In SOPREW, the two pyrene thia­zole conjugate mol­ecules are connected into symmetrical homodimers by pairs of N—H⋯N hydrogen bonds.

5. Hirshfeld surface analysis

To investigate the inter­molecular inter­actions, Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and fingerprint plots were generated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.]). Hirshfeld surface analysis depicts inter­molecular inter­actions by different colours, representing short or long contacts, which reflect the relative strength of the inter­action. The generated Hirshfeld surface mapped over dnorm is shown in Fig. 3[link]a where the red spots correspond to the C—H⋯π(ring) close contacts (Table 2[link]). The three-dimensional Hirshfeld surface plotted over electrostatic potential shows donor (red) and acceptor (blue) regions (Fig. 3[link]b). The crystal packing is dominated by H⋯H contacts, representing van der Waals inter­actions (51.5% contribution to the surface), followed by C⋯H/H⋯C and S⋯H/H⋯S inter­actions, which contribute 31.8% and 7%, respectively (Fig. 4[link]).

[Figure 3]
Figure 3
The Hirshfeld surfaces of the title compound mapped over (a) dnorm, and (b) electrostatic potential.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots, showing the relative contribution of the atom-pair inter­actions to the Hirshfeld surface.

6. Synthesis and crystallization

The title compound was prepared by adding 4-N-(hept­yloxy)benzaldehyde (0.1947 g, 0.885 mmol) dropwise to a constantly stirring solution of 2-amino-4-(2-naphth­yl)thia­zole (0.2 g, 0.885 mmol) in 1-propanol (10 ml). The reaction was catalysed by NaOH (0.1 g) and was stirred for 3 h in a water bath at 278–283 K. The reaction was monitored with thin-layer chromatography (TLC) using a 3:7 ratio of ethyl acetate to n-hexane (Rf = 0.775). The precipitate was filtered, washed with 1-propanol, and dried. The resulting solid was further purified by recrystallization from ethanol and diethyl ether. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (yield 81.7%, m.p. 387.5–389.5 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were placed in idealized positions and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other C-bound H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C27H28N2OS
Mr 428.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 22.927 (4), 5.9315 (6), 17.191 (2)
β (°) 97.734 (12)
V3) 2316.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.49 × 0.24 × 0.11
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.955, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 10986, 4068, 2000
Rint 0.063
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.155, 0.92
No. of reflections 4068
No. of parameters 281
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.17
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

4-{[(E)-4-(Heptyloxy)benzylidene]amino}-N-(naphthalen-2-yl)-1,3-thiazol-2-amine top
Crystal data top
C27H28N2OSF(000) = 912
Mr = 428.57Dx = 1.229 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.927 (4) ÅCell parameters from 9222 reflections
b = 5.9315 (6) Åθ = 1.4–27.7°
c = 17.191 (2) ŵ = 0.16 mm1
β = 97.734 (12)°T = 296 K
V = 2316.6 (5) Å3Stick, yellow
Z = 40.49 × 0.24 × 0.11 mm
Data collection top
Stoe IPDS 2
diffractometer
4068 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2000 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.063
Detector resolution: 6.67 pixels mm-1θmax = 25.1°, θmin = 2.4°
rotation method scansh = 2427
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 77
Tmin = 0.955, Tmax = 0.982l = 2020
10986 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0697P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
4068 reflectionsΔρmax = 0.23 e Å3
281 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22633 (5)0.01514 (16)0.57256 (6)0.1138 (4)
O10.34973 (11)0.7781 (4)0.18878 (14)0.1090 (7)
N10.17508 (13)0.3977 (5)0.56495 (16)0.0951 (8)
N20.23575 (14)0.3219 (5)0.46375 (17)0.1016 (8)
C60.09218 (14)0.4575 (5)0.81098 (19)0.0907 (9)
C70.12144 (15)0.3353 (5)0.7578 (2)0.0922 (9)
H70.1382360.1970330.7733800.111*
C180.31570 (16)0.7233 (6)0.24384 (19)0.0942 (9)
C80.12605 (15)0.4127 (5)0.68404 (19)0.0893 (9)
C130.20898 (16)0.2713 (6)0.52869 (19)0.0957 (9)
C150.25439 (16)0.5758 (6)0.36278 (18)0.0911 (9)
C90.09865 (16)0.6188 (6)0.6604 (2)0.0983 (10)
H90.1003240.6716000.6097690.118*
C160.29941 (17)0.4482 (6)0.33942 (19)0.1012 (10)
H160.3090490.3106120.3637810.121*
C50.06665 (15)0.6676 (6)0.7867 (2)0.0957 (9)
C190.27062 (16)0.8513 (6)0.2650 (2)0.0987 (10)
H190.2604710.9866130.2393580.118*
C110.16110 (15)0.2922 (5)0.63110 (19)0.0905 (9)
C170.32949 (17)0.5193 (6)0.28215 (19)0.1011 (10)
H170.3599090.4312460.2679050.121*
C200.24043 (16)0.7789 (6)0.3243 (2)0.1000 (10)
H200.2101850.8671890.3388830.120*
C100.07004 (16)0.7411 (6)0.7095 (2)0.1021 (10)
H100.0522520.8762630.6921550.123*
C10.08963 (16)0.3841 (7)0.8886 (2)0.1035 (10)
H10.1056440.2452130.9050320.124*
C140.22370 (16)0.5061 (6)0.42680 (19)0.0977 (9)
H140.1942600.5982840.4415160.117*
C120.18554 (17)0.0833 (6)0.6429 (2)0.1043 (10)
H120.1801950.0099210.6848120.125*
C40.04009 (17)0.7950 (7)0.8408 (2)0.1113 (11)
H40.0230350.9331430.8256620.134*
C230.37841 (18)0.7782 (7)0.0293 (2)0.1100 (11)
H23A0.3856420.6453910.0621310.132*
H23B0.3400380.7609010.0015700.132*
C210.33361 (18)0.9678 (6)0.1388 (2)0.1106 (11)
H21A0.3342331.1047560.1697330.133*
H21B0.2942310.9475540.1110730.133*
C250.42596 (19)0.5902 (7)0.0784 (2)0.1155 (12)
H25A0.4320210.4552430.0464930.139*
H25B0.3880340.5762250.1106810.139*
C240.42408 (18)0.7903 (7)0.0250 (2)0.1128 (11)
H24A0.4623750.8065630.0061870.135*
H24B0.4170520.9246630.0570460.135*
C20.06433 (18)0.5126 (8)0.9391 (2)0.1156 (11)
H20.0637440.4635550.9903210.139*
C220.37726 (19)0.9836 (7)0.0817 (2)0.1149 (11)
H22A0.4161861.0051540.1105970.138*
H22B0.3681551.1153650.0488340.138*
C260.4728 (2)0.6016 (8)0.1311 (2)0.1277 (14)
H26A0.5107490.6152540.0987310.153*
H26B0.4668440.7369620.1627800.153*
C30.0389 (2)0.7194 (8)0.9150 (3)0.1247 (13)
H30.0210190.8060700.9501830.150*
C270.4750 (2)0.4030 (8)0.1848 (3)0.1497 (17)
H27A0.4388550.3946200.2201610.225*
H27B0.4800190.2671500.1542730.225*
H27C0.5073610.4201610.2143500.225*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1338 (8)0.0960 (6)0.1147 (7)0.0124 (6)0.0282 (6)0.0065 (5)
O10.1105 (17)0.1179 (17)0.1008 (15)0.0099 (14)0.0219 (14)0.0124 (14)
N10.101 (2)0.0915 (16)0.0922 (17)0.0001 (15)0.0123 (15)0.0032 (15)
N20.117 (2)0.0974 (19)0.0913 (17)0.0022 (17)0.0169 (16)0.0002 (16)
C60.085 (2)0.091 (2)0.094 (2)0.0032 (17)0.0068 (17)0.0021 (18)
C70.095 (2)0.0804 (19)0.099 (2)0.0006 (17)0.0065 (19)0.0057 (17)
C180.096 (2)0.102 (2)0.0839 (19)0.000 (2)0.0095 (18)0.0011 (19)
C80.088 (2)0.0826 (19)0.097 (2)0.0055 (16)0.0109 (18)0.0054 (17)
C130.096 (2)0.101 (2)0.089 (2)0.0075 (19)0.0092 (19)0.0060 (19)
C150.096 (2)0.091 (2)0.0856 (19)0.0002 (18)0.0093 (17)0.0069 (17)
C90.098 (2)0.093 (2)0.103 (2)0.0053 (19)0.012 (2)0.0107 (19)
C160.121 (3)0.090 (2)0.092 (2)0.009 (2)0.013 (2)0.0028 (18)
C50.087 (2)0.091 (2)0.109 (3)0.0041 (18)0.0102 (19)0.0008 (19)
C190.104 (3)0.094 (2)0.098 (2)0.007 (2)0.014 (2)0.0085 (18)
C110.093 (2)0.085 (2)0.092 (2)0.0088 (18)0.0082 (18)0.0037 (17)
C170.113 (3)0.097 (2)0.095 (2)0.016 (2)0.018 (2)0.001 (2)
C200.101 (2)0.096 (2)0.102 (2)0.0135 (19)0.014 (2)0.003 (2)
C100.100 (2)0.085 (2)0.120 (3)0.0019 (18)0.015 (2)0.010 (2)
C10.103 (3)0.110 (2)0.098 (2)0.005 (2)0.014 (2)0.005 (2)
C140.103 (2)0.096 (2)0.093 (2)0.002 (2)0.0103 (19)0.005 (2)
C120.116 (3)0.091 (2)0.106 (2)0.001 (2)0.012 (2)0.0129 (18)
C40.110 (3)0.103 (2)0.121 (3)0.006 (2)0.015 (2)0.005 (2)
C230.109 (3)0.117 (3)0.104 (2)0.009 (2)0.014 (2)0.011 (2)
C210.122 (3)0.102 (2)0.107 (2)0.001 (2)0.015 (2)0.008 (2)
C250.120 (3)0.126 (3)0.100 (2)0.006 (2)0.015 (2)0.009 (2)
C240.113 (3)0.126 (3)0.100 (2)0.011 (2)0.017 (2)0.015 (2)
C20.112 (3)0.133 (3)0.101 (2)0.008 (3)0.013 (2)0.001 (3)
C220.121 (3)0.114 (3)0.112 (2)0.010 (2)0.023 (2)0.015 (2)
C260.137 (4)0.142 (3)0.107 (3)0.009 (3)0.026 (3)0.003 (3)
C30.128 (3)0.128 (3)0.122 (3)0.013 (3)0.030 (3)0.017 (3)
C270.173 (5)0.157 (4)0.121 (3)0.002 (3)0.029 (3)0.014 (3)
Geometric parameters (Å, º) top
S1—C121.674 (4)C10—H100.9300
S1—C131.719 (4)C1—C21.343 (5)
O1—C181.345 (4)C1—H10.9300
O1—C211.434 (4)C14—H140.9300
N1—C131.298 (4)C12—H120.9300
N1—C111.373 (4)C4—C31.356 (5)
N2—C141.275 (4)C4—H40.9300
N2—C131.377 (4)C23—C241.495 (5)
C6—C71.406 (4)C23—C221.517 (5)
C6—C11.413 (4)C23—H23A0.9700
C6—C51.416 (5)C23—H23B0.9700
C7—C81.366 (4)C21—C221.497 (5)
C7—H70.9300C21—H21A0.9700
C18—C191.370 (5)C21—H21B0.9700
C18—C171.394 (5)C25—C261.497 (5)
C8—C91.409 (5)C25—C241.505 (5)
C8—C111.477 (4)C25—H25A0.9700
C15—C161.382 (5)C25—H25B0.9700
C15—C201.391 (5)C24—H24A0.9700
C15—C141.444 (5)C24—H24B0.9700
C9—C101.349 (4)C2—C31.397 (6)
C9—H90.9300C2—H20.9300
C16—C171.344 (5)C22—H22A0.9700
C16—H160.9300C22—H22B0.9700
C5—C41.400 (5)C26—C271.502 (6)
C5—C101.409 (5)C26—H26A0.9700
C19—C201.376 (4)C26—H26B0.9700
C19—H190.9300C3—H30.9300
C11—C121.364 (5)C27—H27A0.9600
C17—H170.9300C27—H27B0.9600
C20—H200.9300C27—H27C0.9600
C12—S1—C1389.11 (18)C11—C12—H12124.1
C18—O1—C21119.0 (3)S1—C12—H12124.1
C13—N1—C11110.8 (3)C3—C4—C5120.8 (4)
C14—N2—C13120.0 (3)C3—C4—H4119.6
C7—C6—C1122.7 (3)C5—C4—H4119.6
C7—C6—C5118.5 (3)C24—C23—C22113.7 (3)
C1—C6—C5118.8 (3)C24—C23—H23A108.8
C8—C7—C6122.3 (3)C22—C23—H23A108.8
C8—C7—H7118.9C24—C23—H23B108.8
C6—C7—H7118.9C22—C23—H23B108.8
O1—C18—C19125.6 (3)H23A—C23—H23B107.7
O1—C18—C17115.2 (3)O1—C21—C22107.5 (3)
C19—C18—C17119.1 (3)O1—C21—H21A110.2
C7—C8—C9118.2 (3)C22—C21—H21A110.2
C7—C8—C11121.7 (3)O1—C21—H21B110.2
C9—C8—C11120.0 (3)C22—C21—H21B110.2
N1—C13—N2128.6 (3)H21A—C21—H21B108.5
N1—C13—S1114.7 (2)C26—C25—C24114.6 (3)
N2—C13—S1116.5 (3)C26—C25—H25A108.6
C16—C15—C20118.0 (3)C24—C25—H25A108.6
C16—C15—C14121.6 (3)C26—C25—H25B108.6
C20—C15—C14120.4 (3)C24—C25—H25B108.6
C10—C9—C8121.4 (3)H25A—C25—H25B107.6
C10—C9—H9119.3C23—C24—C25115.0 (3)
C8—C9—H9119.3C23—C24—H24A108.5
C17—C16—C15121.2 (3)C25—C24—H24A108.5
C17—C16—H16119.4C23—C24—H24B108.5
C15—C16—H16119.4C25—C24—H24B108.5
C4—C5—C10122.9 (3)H24A—C24—H24B107.5
C4—C5—C6118.6 (3)C1—C2—C3120.4 (4)
C10—C5—C6118.5 (3)C1—C2—H2119.8
C18—C19—C20119.7 (3)C3—C2—H2119.8
C18—C19—H19120.1C21—C22—C23113.9 (3)
C20—C19—H19120.1C21—C22—H22A108.8
C12—C11—N1113.6 (3)C23—C22—H22A108.8
C12—C11—C8126.5 (3)C21—C22—H22B108.8
N1—C11—C8119.8 (3)C23—C22—H22B108.8
C16—C17—C18120.8 (3)H22A—C22—H22B107.7
C16—C17—H17119.6C25—C26—C27115.0 (4)
C18—C17—H17119.6C25—C26—H26A108.5
C19—C20—C15121.1 (3)C27—C26—H26A108.5
C19—C20—H20119.5C25—C26—H26B108.5
C15—C20—H20119.5C27—C26—H26B108.5
C9—C10—C5121.1 (3)H26A—C26—H26B107.5
C9—C10—H10119.5C4—C3—C2120.6 (4)
C5—C10—H10119.5C4—C3—H3119.7
C2—C1—C6120.7 (4)C2—C3—H3119.7
C2—C1—H1119.6C26—C27—H27A109.5
C6—C1—H1119.6C26—C27—H27B109.5
N2—C14—C15122.0 (3)H27A—C27—H27B109.5
N2—C14—H14119.0C26—C27—H27C109.5
C15—C14—H14119.0H27A—C27—H27C109.5
C11—C12—S1111.8 (3)H27B—C27—H27C109.5
C1—C6—C7—C8176.9 (3)C15—C16—C17—C180.8 (5)
C5—C6—C7—C80.1 (5)O1—C18—C17—C16178.7 (3)
C21—O1—C18—C199.9 (5)C19—C18—C17—C160.3 (5)
C21—O1—C18—C17171.2 (3)C18—C19—C20—C150.8 (5)
C6—C7—C8—C92.1 (5)C16—C15—C20—C190.3 (5)
C6—C7—C8—C11174.8 (3)C14—C15—C20—C19177.8 (3)
C11—N1—C13—N2175.0 (3)C8—C9—C10—C50.2 (5)
C11—N1—C13—S10.1 (4)C4—C5—C10—C9176.6 (4)
C14—N2—C13—N17.2 (6)C6—C5—C10—C92.3 (5)
C14—N2—C13—S1178.0 (3)C7—C6—C1—C2175.9 (4)
C12—S1—C13—N10.2 (3)C5—C6—C1—C21.1 (5)
C12—S1—C13—N2175.8 (3)C13—N2—C14—C15174.4 (3)
C7—C8—C9—C102.0 (5)C16—C15—C14—N21.4 (5)
C11—C8—C9—C10175.0 (3)C20—C15—C14—N2179.4 (3)
C20—C15—C16—C171.0 (5)N1—C11—C12—S10.2 (4)
C14—C15—C16—C17177.0 (3)C8—C11—C12—S1175.5 (3)
C7—C6—C5—C4176.8 (3)C13—S1—C12—C110.2 (3)
C1—C6—C5—C40.3 (5)C10—C5—C4—C3178.7 (4)
C7—C6—C5—C102.1 (5)C6—C5—C4—C30.2 (5)
C1—C6—C5—C10179.2 (3)C18—O1—C21—C22177.7 (3)
O1—C18—C19—C20177.8 (3)C22—C23—C24—C25179.3 (3)
C17—C18—C19—C201.1 (5)C26—C25—C24—C23178.5 (3)
C13—N1—C11—C120.1 (4)C6—C1—C2—C31.4 (6)
C13—N1—C11—C8176.0 (3)O1—C21—C22—C2361.1 (4)
C7—C8—C11—C129.5 (5)C24—C23—C22—C21177.2 (3)
C9—C8—C11—C12173.7 (4)C24—C25—C26—C27179.8 (4)
C7—C8—C11—N1166.1 (3)C5—C4—C3—C20.1 (6)
C9—C8—C11—N110.8 (5)C1—C2—C3—C40.9 (6)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3i0.932.853.522 (4)130
Symmetry code: (i) x, y+1/2, z+3/2.
 

Funding information

This study was supported by Ondokuz Mayıs University under Project No. PYO·FEN.1906.19.001.

References

First citationAyati, A., Emami, S., Asadipour, A., Shafiee, A. & Foroumadi, A. (2015). Eur. J. Med. Chem. 97, 699–718.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBharti, S., Nath, G., Tilak, R. & Singh, S. (2010). Eur. J. Med. Chem. 45, 651–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBreslow, R. (1958). J. Am. Chem. Soc. 80, 3719–3726.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLynch, D. E., McClenaghan, I., Light, M. E. & Coles, S. J. (2002). Cryst. Eng. 5, 123–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahapatra, A. K., Mondal, S., Maiti, K., Manna, S. K., Maji, R., Mandal, D., Mandal, S., Goswami, S., Quah, C. K. & Fun, H.-K. (2014). RSC Adv. 4, 56605–56614.  Web of Science CSD CrossRef CAS Google Scholar
First citationShao, L., Zhang, Q., Zhou, X. & Fang, J.-X. (2006). Acta Cryst. E62, o334–o335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWang, M., Wang, L.-F., Li, Y.-Z., Li, Q.-X., Xu, Z.-D. & Qu, D.-M. (2001). Transit. Met. Chem. 26, 307–310.  Web of Science CrossRef CAS Google Scholar
First citationYadav, L. & Singh, S. (2001). Indian J. Chem. 40B, 440–442.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds