research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures, Hirshfeld surface analyses and energy frameworks of two hexa­thia­pyrazino­phane regioisomers; 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane and 2,5,8,11,14,17-hexa­thia-[9.9](2,5,3,6)-pyrazino­phane

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by S. Parkin, University of Kentucky, USA (Received 19 May 2020; accepted 25 May 2020; online 2 June 2020)

The title thia­pyrazino­phanes, 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane, C16H24N2S6, (I), and 2,5,8,11,14,17-hexa­thia-[9.9](2,5,3,6)-pyrazino­phane, C16H24N2S6, (II), are regioisomers; m-bis L1 and p-bis L1, respectively. Both compounds have a central tetra-2,3,5,6-methyl­ene­pyrazine unit with two –S—CH2—CH2—S—CH2—CH2—S– chains, linking the methyl­ene C atoms at positions 2 and 6 and 3 and 5 on the pyrazine ring of I, but linking the methyl­ene C atoms at positions 2 and 5 and 3 and 6 on the pyrazine ring of II. Both compounds crystallize with half a mol­ecule in the asymmetric unit. The whole mol­ecule of I is generated by inversion symmetry, with the pyrazine ring being located about a center of symmetry. The whole mol­ecule of II is generated by twofold rotation symmetry, with the pyrazine N atoms being located on the twofold rotation axis. In compound I, there are pairs of intra­molecular C—H⋯S contacts present, but none in compound II. In the crystal of I, there are no significant inter­molecular inter­actions present, while in the crystal of II, mol­ecules are linked by pairs of C—H⋯S hydrogen bonds, forming corrugated layers lying parallel the ac plane. The Hirshfeld surfaces and the energy frameworks of the two regioisomers indicate little difference in the inter­atomic contacts, which are dominated by dispersion forces.

1. Chemical context

Ligands with mixed hard and soft binding characters, such as O, N and S donor atoms, are known to display diverse coordination modes by binding selectively to metal centres giving rise to unusual coordination geometries (Kim et al., 2018[Kim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Jung, J. H., Habata, Y. & Lee, S. S. (2018). Cryst. Growth Des. 18, 2424-2431.]; Klinga et al., 1994[Klinga, M., Kivekäs, R., Almajano, M. P., Escriche, L. & Casabó, J. F. (1994). Z. Kristallogr. Cryst. Mater. 209, 560-561.]; Lockhart et al., 1992[Lockhart, J. C., Mousley, D. P., Hill, M. N. S., Tomkinson, N. P., Teixidor, F., Almajano, M. P., Escriche, L., Casabó, J. F., Sillanpää, R. & Kivekäs, R. (1992). J. Chem. Soc. Dalton Trans. pp. 2889-2897.]). Three regioisomers, o, m and p, of a bis-dioxadi­thia-benzeno­phane (L, O4S4) have been reported on by the group of Shim Sung Lee (Kim et al., 2018[Kim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Jung, J. H., Habata, Y. & Lee, S. S. (2018). Cryst. Growth Des. 18, 2424-2431.]). The structures of a number of metal complexes have also been described; for example, both o-bis L and m-bis L form one-dimensional coordination polymers with AgPF6 (Siewe et al., 2014[Siewe, A. D., Kim, J.-Y., Kim, S., Park, I.-H. & Lee, S. S. (2014). Inorg. Chem. 53, 393-398.]), while with lead(II) perchlorate a binuclear complex was obtained with o-bis L and a one-dimensional coordination polymer with m-bis L (Kim et al., 2018[Kim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Jung, J. H., Habata, Y. & Lee, S. S. (2018). Cryst. Growth Des. 18, 2424-2431.]). In all four complexes the metal atoms coordinate to both the O and S atoms.

The title compounds, I and II, are new NxSy (x = 2, y = 2, 4 or 6) thia­pyrazino­phane ligands designed for the formation of coordination polymers (Assoumatine, 1999[Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.]). We have recently reported on the crystal structures of two thia­pyrazino­phanes; the N2S4 ligand 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine (L2) and the N2S2 ligand 5,7-di­hydro-1H,3H-dithieno[3,4-b:3′,4′-e]pyrazine (L3) (Assoumatine & Stoeckli-Evans, 2020a[Assoumatine, T. & Stoeckli-Evans, H. (2020a). Acta Cryst. E76, 539-546.]). On reaction of both L2 and L3 with AgNO3, two-dimensional coordination polymers were formed, with the silver(I) atoms coordinating to the S atoms only (Assoumatine & Stoeckli-Evans, 2020a[Assoumatine, T. & Stoeckli-Evans, H. (2020a). Acta Cryst. E76, 539-546.]). On reaction of L2 with CuI, a two-dimensional coordination polymer was formed with the ligand coordinating via the S atoms only (Assoumatine & Stoeckli-Evans, 2020b[Assoumatine, T. & Stoeckli-Evans, H. (2020b). IUCrData, 5, x200467.]). On reaction of L3 with CuI, a three-dimensional coordination polymer was formed with the ligand coordinating via both the N and S atoms (Assoumatine & Stoeckli-Evans, 2020c[Assoumatine, T. & Stoeckli-Evans, H. (2020c). IUCrData, 5, x200401.]). Ligand L3 was also shown to form one-dimensional coordination polymers with CuCl2 and CuBr2 (Assoumatine & Stoeckli-Evans, 2020d[Assoumatine, T. & Stoeckli-Evans, H. (2020d). Private communications (deposition numbers 1988248 and 1988249). CCDC, Cambridge, England.]), with the ligand coordinating via the N atoms only.

[Scheme 1]

The coordination chemistry of the title compound m-bis L1 (I), an N2S6 thia­pyrazino­phane, has also been studied and shown to form a binuclear complex with CuBr2 and a two-dimensional coordination polymer with CuI (Assoumatine & Stoeckli-Evans, 2020e[Assoumatine, T. & Stoeckli-Evans, H. (2020e). Acta Cryst. E76, 984-989.]). In both cases, the ligand coordinates to both the N and S atoms. Herein, we report on and compare the crystal structures, the Hirshfeld surfaces and the energy frameworks of the regioisomers m-bis L1 (I) and p-bis L1 (II).

2. Structural commentary

The title thia­pyrazino­phanes, 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane (I) and 2,5,8,11,14,17-hexa­thia-[9.9](2,5,3,6)-pyrazino­phane (II), are regioisomers; m-bis L1 and p-bis L1, respectively. Both compounds crystallize with half a mol­ecule in the asymmetric unit. The whole mol­ecule of I is generated by inversion symmetry, with the pyrazine ring being located about a center of symmetry (Fig. 1[link]). The whole mol­ecule of II is generated by twofold rotation symmetry, with the pyrazine N atoms, N1 and N2, being located on the twofold rotation axis (Fig. 2[link]). Both compounds have a central rigid tetra-2,3,5,6-methyl­ene pyrazine unit with two –S—CH2—CH2—S—CH2—CH2—S– chains linking the methyl­ene C atoms C3 and C8 [and C3i and C8i; symmetry code: (i) −x, −y, −z + 1] on the pyrazine ring of I (Fig. 1[link]), and linking the methyl­ene C atoms C3 and C8i [C3i and C8; here symmetry code: (i) −x + 2, y, −z + [{3\over 2}]] on the pyrazine ring of II (Fig. 2[link]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of compound I, the regioisomer m-bis L1, with atom labelling for the asymmetric unit [symmetry code: (i) −x, −y, −z + 1]. Displacement ellipsoids are drawn at the 50% probability level. For clarity, the minor components of the disordered atoms in the chains have been omitted.
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound II, the regioisomer p-bis L1, with atom labelling for the asymmetric unit [symmetry code: (i) −x + 2, y, −z + [{3\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level.

In I there are intra­molecular C—H⋯S contacts present (Table 1[link]) but none in the mol­ecule of II. The pyrazine ring in I is planar (r.m.s. deviation = 0.003 Å), while in II it has a flat twist-boat conformation [puckering parameters: amplitude Q = 0.1158 (15) Å, θ = 90.0 (7)°, φ = 270.0 (6)°; r.m.s. deviation = 0.067 Å). In I atoms C4 and C5 of the –S—CH2—CH2—S—CH2—CH2—S– chain are disordered over two positions. They were refined with a fixed occupancy ratio (C4A:C4B and C5A:C5B) of 0.85:0.15.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯S3i 0.98 2.77 3.524 (3) 134
Symmetry code: (i) -x, -y, -z+1.

3. Supra­molecular features

In the crystal of I, mol­ecules pack in layers that lie parallel to the (10[\overline{1}]) plane, as shown in Fig. 3[link]. In the crystal of II, mol­ecules are linked by C—H⋯S hydrogen bonds, forming corrugated layers that lie parallel to the ac plane (Table 2[link] and Fig. 4[link]). There are no significant inter-layer inter­actions present in the crystals of either compound.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯S3i 0.98 2.83 3.581 (2) 134
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of I. For clarity, the minor components of the disordered atoms in the chains and the H atoms have been omitted.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of II, with the C—H⋯S hydrogen bonds (Table 2[link]) shown as dashed lines.

4. Hirshfeld surface analyses, two-dimensional fingerprint plots and energy frameworks for I (m-bis L1) and II (p-bis L1).

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), the associated two-dimensional fingerprint plots and the calculation of the energy frameworks (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) were performed with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]), following the protocol of Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The energy frameworks are represented by cylinders joining the centroids of mol­ecular pairs using red, green and blue colour codes for the Eelect (electrostatic potential forces), Edisp (dispersion forces) and Etotal (total energy) energy components, respectively. The radius of the cylinder is proportional to the magnitude of the inter­action energy.

A summary of the short inter­atomic contacts in I (m-bis L1) and II (p-bis L1) is given in Table 3[link]. The Hirshfeld surfaces of I and II mapped over dnorm, are given in Fig. 5[link]a and b, respectively. The faint red spots indicate that short contacts are significant in the crystal packing of both compounds.

Table 3
Table 3[link]. Short inter­atomic contactsa (Å) for I (m-bis L1) and II (p-bis L1)

Atom1⋯Atom2 Length Length − VdW Symm. op. 1 Symm. op. 2
I        
S1⋯S1 3.3938 (11) −0.206 x, −y, 1 − z −1 + x, y, z
S3⋯S1 3.5135 (11) −0.086 x, y, z −1 + x, y, z
H3A⋯S2 2.969 −0.031 x, −y, 1 − z [{1\over 2}] + x, −[{1\over 2}] − y, −[{1\over 2}] + z
H8A⋯S1 3.007 0.007 x, y, z −1 + x, y, z
H6A⋯H7A 2.415 0.015 x, −y, 1 − z x, y, −1 + z
H4A2⋯H5A2 2.487 0.087 x, −y, 1 − z [{1\over 2}] + x, −[{1\over 2}] − y, −[{1\over 2}] + z
         
II        
H4A⋯S3 2.828 −0.172 −1 + x, y, z [{3\over 2}] + x, [{1\over 2}] − y, 1 − z
C3⋯H7A 2.842 −0.058 1 − x, y, [{3\over 2}] − z [{1\over 2}] − x, −[{1\over 2}] + y, z
H3A⋯H7A 2.345 −0.055 1 − x, y, [{3\over 2}] − z [{1\over 2}] − x, −[{1\over 2}] + y, z
N1⋯H7A 2.700 −0.050 −1 + x, y, z [{1\over 2}] − x, −[{1\over 2}] + y, z
S1⋯S3 3.6360 (6) 0.036 −1 + x, y, z [{3\over 2}] + x, [{1\over 2}] − y, 1 − z
H8B⋯H8B 2.444 0.044 −1 + x, y, z 1 − x, 1 − y, 1 − z
S3⋯H5A 3.072 0.072 −1 + x, y, z 1 − x, 1 − y, 1 − z
C1⋯H7A 2.976 0.076 1 − x, y, [{3\over 2}] − z [{1\over 2}] − x, −[{1\over 2}] + y, z
C4⋯S3 3.5806 (16) 0.081 −1 + x, y, z [{3\over 2}] + x, [{1\over 2}] − y, 1 − z
Note: (a) Values were calculated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).
[Figure 5]
Figure 5
(a) The Hirshfeld surface of I, mapped over dnorm in the colour range −0.1136 to 1.0310 a.u., (b) the Hirshfeld surface of II, mapped over dnorm in the colour range −0.0862 to 1.1988 a.u.

The Hirshfeld surfaces mapped over the calculated electrostatic potential for I and II, given in Fig. 6[link]a and b, respectively, are very similar. The red and blue regions represent negative and positive electrostatic potentials, respectively. The red regions around the sulfur atoms indicate their participation in the C—H⋯S contacts (see Table 3[link]).

[Figure 6]
Figure 6
(a) The Hirshfeld surface of I, mapped over the calculated electrostatic potential in the range −0.0488 to +0.0302 atomic units, (b) the Hirshfeld surface of II, mapped over the calculated electrostatic potential in the range −0.0393 to +0.0283 atomic units. (The red and blue regions represent negative and positive electrostatic potentials, respectively.)

The full two-dimensional fingerprint plots for I and II are given in Fig. 7[link]. The principal inter­atomic inter­actions for I (Fig. 7[link]a) are delineated into H⋯H at 56.9%, S⋯H/H⋯S at 33.1%, N⋯H/H⋯N at 4.0% and S⋯S at 4.0% contacts. These values are very similar to those for II where the principal inter­atomic inter­actions (Fig. 7[link]b) are delineated into H⋯H at 58.4%, S⋯H/H⋯S at 34.6%, N⋯H/H⋯N at 3.3%, and S⋯S at 3.3% contacts.

[Figure 7]
Figure 7
(a) The full two-dimensional fingerprint plot for I, and the fingerprint plots delineated into H⋯H, S⋯H/H⋯S, N⋯H/H⋯N and S⋯S contacts, (b) the full two-dimensional fingerprint plot for II, and the fingerprint plots delineated into H⋯H, S⋯H/H⋯S, N⋯H/H⋯N and S⋯S contacts.

For both I and II the inter­atomic contacts are dominated by dispersion forces, as can be seen when comparing the electrostatic potential (Eelect) and dispersion (Edisp) energy frameworks in Fig. 8[link]a and b, respectively. The energy frameworks (Fig. 8[link]) were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 6 Å about a central mol­ecule, and were obtained using the wave function calculated at the HF/3-21G level theory.

[Figure 8]
Figure 8
(a) The energy frameworks for I viewed down the b-axis direction, (b) the energy frameworks for II viewed down the c-axis direction: comprising, Eelect (electrostatic potential forces), Edisp (dispersion forces) and Etotal (total energy) for a cluster about a reference mol­ecule.

5. Database survey

A search of the Cambridge Structural Database (Version 5.41, last update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for benzene analogues of L1 gave no hits for either m-bis or p-bis hexa­thia­benzeno­phanes. However, the structure of the o-bis hexa­thia­benzeno­phane has been reported; 2,5,8,17,20,23-hexa­thia­(9)(1,2)(9)(4,5)cyclo­phane (CSD refcode YESNEP: Loeb & Shimizu, 1994[Loeb, S. J. & Shimizu, G. K. H. (1994). Can. J. Chem. 72, 1728-1734.]). There are also reports of the structures of two polymorphs of the o-mono tri­thia­benzeno­phane, 2,5,8-tri­thia­(9)-o-benzeno­phane (POCPAY: Klinga et al., 1994[Klinga, M., Kivekäs, R., Almajano, M. P., Escriche, L. & Casabó, J. F. (1994). Z. Kristallogr. Cryst. Mater. 209, 560-561.]; VEYNIW01: Lockhart et al., 1992[Lockhart, J. C., Mousley, D. P., Hill, M. N. S., Tomkinson, N. P., Teixidor, F., Almajano, M. P., Escriche, L., Casabó, J. F., Sillanpää, R. & Kivekäs, R. (1992). J. Chem. Soc. Dalton Trans. pp. 2889-2897.]) and that of the m-mono tri­thia­benzeno­phane, 2,5,8-tri­thia­(9)-m-benzeno­phane (VEYNES: De Groot & Loeb, 1990[De Groot, B. & Loeb, S. J. (1990). Inorg. Chem. 29, 4084-4090.]). The coordination chemistry of all three compounds has been studied, especially that of YESNEP (o-bis hexa­thia­benzeno­phane). Binuclear complexes were obtained with copper(II) salts and AgBF4 (Loeb & Shimizu, 1991[Loeb, S. J. & Shimizu, G. K. H. (1991). J. Chem. Soc. Chem. Commun. pp. 1119-1121.]; 1993[Loeb, S. J. & Shimizu, G. K. H. (1993). Inorg. Chem. 32, 1001-1006.]), with all six S atoms involved in coordination.

6. Synthesis and crystallization

Synthesis of 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane (I): A 500 ml three-necked flask was equipped with a reflux condenser, a 50 ml addition funnel, and a magnetic stirring bar. The entire system was purged and kept under an atmosphere of nitro­gen using vacuum line techniques. KOH (0.62 g, 11 mmol) was dissolved in a solution of MeOH/CH2Cl2 (250 ml, 1/1 v/v) in the flask. To this well-stirred mixture was added slowly and dropwise through the addition funnel, a solution of 1 g (2.21 mmol) of 2,3,5,6-tetra­kis(bromo­meth­yl)pyrazine (Ferigo et al., 1994[Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549-1554.]; Assoumatine & Stoeckli-Evans, 2014[Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51-53.]) and bis-(2-mercaptoeth­yl)sulfide (0.6 ml, 4.42 mmol, 95%) dissolved in CH2Cl2 (25 ml), at a rate of ca 10 ml h−1. The mixture was stirred for a further 20 h. The reaction mixture was taken to dryness on a rotary evaporator. The residue was extracted into CH2Cl2 (300 ml), washed with water (3 × 30 ml), dried over anhydrous MgSO4, filtered and then evaporated to dryness. The resultant yellowish solid was chromatographed over deactivated silica gel using CH2Cl2 as eluent. The main eluted fraction was evaporated to give a white solid, which was dried under vacuum to obtain 0.42 g (43% yield) of pure L1 (m.p. 581–584 K, with decomposition). Slow evaporation of a CHCl3 solution of L1 gave colourless rod-like crystals of I, the m-bis L1 regioisomer, after ca one month. 1H NMR (CDCl3, 400 MHz): δ = 4.17 (s, 8H, Pz-CH2-S), 2.73–2.49 (m, 16H, S–CH2–CH2–S) ppm. 13C NMR (CDCl3, 100 MHz): δ = 149.55, 32.12, 32.08, 30.85 ppm. Analysis for C16H24N2S6 (Mr = 436.78 g mol−1). Calculated (%): C 44.00, H 5.55, N 6.42, S 44.13. Found (%): C 43.48, H 5.25, N 6.40, S 44.34. MS (EI, 70 eV), m/z: 436 ([M+]. IR (KBr disc, cm−1): ν = 2930 s, 1423 vs, 1397 vs, 1189 s, 795 ms, 760 ms, 689 ms, 482 ms.

Synthesis of 2,5,8,11,14,17-hexa­thia-[9.9](2,5,3,6)-pyrazino­phane (II)[link]: Pale-yellow block-like crystals of compound II were obtained unexpectedly during a complexation reaction of L1 with ZnI2 (Assoumatine, 1999[Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.]). It is difficult to imagine that the complexation reaction resulted in the transformation of m-bis L1 (I) into p-bis L1 (II). We believe it is more likely that the latter was obtained in small qu­anti­ties during the various syntheses of L1 and was present in the main eluted fraction used subsequently for the complexation reaction. There are no analytical or spectroscopic data available for this compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.98 Å with Uiso(H) = 1.2Ueq(C). In I atoms C4 and C5 of the –CH2—S—CH2—CH2—S—CH2—CH2—S—CH2– chain are disordered over two positions. They were refined with a fixed occupancy ratio (C4A:C4B and C5A:C5B) of 0.85:0.15.

Table 4
Experimental details

  I II
Crystal data
Chemical formula C16H24N2S6 C16H24N2S6
Mr 436.73 436.73
Crystal system, space group Monoclinic, P21/n Orthorhombic, Pbcn
Temperature (K) 223 223
a, b, c (Å) 9.4078 (7), 9.2511 (7), 11.6953 (8) 12.2613 (8), 9.9564 (6), 16.2828 (12)
α, β, γ (°) 90, 105.722 (8), 90 90, 90, 90
V3) 979.79 (13) 1987.8 (2)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.70 0.69
Crystal size (mm) 0.40 × 0.15 × 0.15 0.25 × 0.20 × 0.10
 
Data collection
Diffractometer Stoe IPDS 1 Stoe IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.964, 1.000 0.915, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7493, 1812, 1469 12271, 1927, 1521
Rint 0.030 0.033
(sin θ/λ)max−1) 0.613 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.03 0.025, 0.064, 0.97
No. of reflections 1812 1927
No. of parameters 127 110
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −0.35 0.27, −0.19
Computer programs: EXPOSE, CELL (Stoe & Cie, 1998[Stoe & Cie (1998). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]) and INTEGRATE (Stoe & Cie, 1998[Stoe & Cie (1998). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Intensity data were measured using a STOE IPDS-1 one-circle diffractometer. For the monoclinic system often only 93% of the Ewald sphere is accessible, which explains why the B alert diffrn_reflns_laue_measured_fraction_full value low at 0.957 for compound I is given. This involves 76 random reflections out of the expected 1765 for the IUCr cutoff limit of sin θ/λ = 0.60 for I.

Supporting information


Computing details top

For both structures, data collection: EXPOSE (Stoe & Cie, 1998); cell refinement: CELL (Stoe & Cie, 1998); data reduction: INTEGRATE (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane (I) top
Crystal data top
C16H24N2S6F(000) = 460
Mr = 436.73Dx = 1.480 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4078 (7) ÅCell parameters from 5000 reflections
b = 9.2511 (7) Åθ = 2.9–25.8°
c = 11.6953 (8) ŵ = 0.70 mm1
β = 105.722 (8)°T = 223 K
V = 979.79 (13) Å3Rod, colourless
Z = 20.40 × 0.15 × 0.15 mm
Data collection top
STOE IPDS 1
diffractometer
1812 independent reflections
Radiation source: fine-focus sealed tube1469 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.030
φ rotation scansθmax = 25.8°, θmin = 2.9°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 1111
Tmin = 0.964, Tmax = 1.000k = 1111
7493 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0489P)2 + 1.0972P]
where P = (Fo2 + 2Fc2)/3
1812 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.43465 (7)0.06030 (10)0.61310 (7)0.0448 (2)
S20.29210 (9)0.05009 (10)0.94357 (7)0.0506 (3)
S30.18897 (9)0.04529 (10)0.76708 (7)0.0455 (2)
N10.0478 (2)0.1229 (2)0.56726 (18)0.0282 (5)
C10.1307 (3)0.0623 (3)0.5033 (2)0.0275 (5)
C20.0828 (3)0.0624 (3)0.5644 (2)0.0273 (5)
C30.2743 (3)0.1366 (3)0.5079 (3)0.0364 (6)
H3A0.2658850.2384860.5280880.044*
H3B0.2902360.1332820.4285470.044*
C4A0.3996 (4)0.1160 (4)0.7527 (3)0.0361 (8)0.85
H4A10.4909070.1538030.8062590.043*0.85
H4A20.3258850.1934630.7373910.043*0.85
C5A0.3448 (4)0.0092 (4)0.8112 (3)0.0366 (8)0.85
H5A10.4225340.0826000.8337740.044*0.85
H5A20.2593640.0532040.7547620.044*0.85
C4B0.373 (2)0.010 (2)0.7494 (17)0.032 (4)0.15
H4B10.2729780.0514400.7242570.039*0.15
H4B20.4409730.0837170.7931230.039*0.15
C5B0.375 (2)0.122 (2)0.823 (2)0.038 (4)0.15
H5B10.3153710.1993320.7776470.045*0.15
H5B20.4765080.1564170.8571250.045*0.15
C60.1059 (3)0.1134 (3)0.8751 (3)0.0405 (7)
H6A0.0721220.1719310.9324600.049*
H6B0.1064320.1750410.8070710.049*
C70.0005 (4)0.0096 (3)0.8340 (2)0.0413 (7)
H7A0.0029920.0722640.9020970.050*
H7B0.0345890.0669090.7760440.050*
C80.1725 (3)0.1385 (3)0.6345 (2)0.0349 (6)
H8A0.2719750.1545820.5823730.042*
H8B0.1282400.2335730.6579570.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0174 (3)0.0797 (6)0.0381 (4)0.0007 (3)0.0089 (3)0.0106 (4)
S20.0430 (5)0.0790 (6)0.0271 (4)0.0006 (4)0.0050 (3)0.0023 (4)
S30.0354 (4)0.0713 (6)0.0365 (4)0.0095 (4)0.0212 (3)0.0040 (4)
N10.0184 (10)0.0387 (12)0.0281 (10)0.0012 (9)0.0071 (9)0.0016 (9)
C10.0159 (11)0.0415 (14)0.0254 (12)0.0008 (10)0.0059 (10)0.0052 (10)
C20.0177 (11)0.0415 (14)0.0234 (12)0.0025 (10)0.0066 (9)0.0041 (10)
C30.0209 (12)0.0500 (17)0.0405 (15)0.0066 (11)0.0120 (12)0.0037 (13)
C4A0.0294 (17)0.043 (2)0.0362 (19)0.0055 (14)0.0089 (16)0.0103 (15)
C5A0.036 (2)0.037 (2)0.035 (2)0.0039 (14)0.0060 (17)0.0004 (16)
C4B0.022 (10)0.050 (13)0.020 (9)0.005 (8)0.002 (8)0.004 (8)
C5B0.034 (11)0.036 (11)0.045 (12)0.002 (8)0.014 (10)0.011 (9)
C60.0411 (16)0.0496 (18)0.0337 (14)0.0030 (13)0.0153 (13)0.0045 (12)
C70.0492 (18)0.0459 (16)0.0306 (14)0.0032 (14)0.0138 (13)0.0029 (12)
C80.0222 (12)0.0481 (16)0.0369 (14)0.0031 (11)0.0126 (11)0.0026 (12)
Geometric parameters (Å, º) top
S1—C31.811 (3)C4A—H4A10.9800
S1—C4A1.825 (4)C4A—H4A20.9800
S1—C4B1.95 (2)C5A—H5A10.9800
S2—C61.814 (3)C5A—H5A20.9800
S2—C5A1.833 (4)C4B—C5B1.49 (3)
S2—C5B1.90 (2)C4B—H4B10.9800
S3—C71.815 (3)C4B—H4B20.9800
S3—C81.817 (3)C5B—H5B10.9800
N1—C11.341 (3)C5B—H5B20.9800
N1—C21.342 (3)C6—C71.500 (4)
C1—C2i1.402 (4)C6—H6A0.9800
C1—C31.504 (3)C6—H6B0.9800
C2—C81.501 (4)C7—H7A0.9800
C3—H3A0.9800C7—H7B0.9800
C3—H3B0.9800C8—H8A0.9800
C4A—C5A1.505 (5)C8—H8B0.9800
C3—S1—C4A100.29 (15)C5B—C4B—S1103.8 (15)
C3—S1—C4B107.8 (6)C5B—C4B—H4B1111.0
C6—S2—C5A100.00 (15)S1—C4B—H4B1111.0
C6—S2—C5B95.9 (6)C5B—C4B—H4B2111.0
C7—S3—C8101.53 (13)S1—C4B—H4B2111.0
C1—N1—C2118.6 (2)H4B1—C4B—H4B2109.0
N1—C1—C2i120.8 (2)C4B—C5B—S2101.5 (15)
N1—C1—C3116.2 (2)C4B—C5B—H5B1111.5
C2i—C1—C3123.0 (2)S2—C5B—H5B1111.5
N1—C2—C1i120.6 (2)C4B—C5B—H5B2111.5
N1—C2—C8115.9 (2)S2—C5B—H5B2111.5
C1i—C2—C8123.5 (2)H5B1—C5B—H5B2109.3
C1—C3—S1114.9 (2)C7—C6—S2111.8 (2)
C1—C3—H3A108.5C7—C6—H6A109.3
S1—C3—H3A108.5S2—C6—H6A109.3
C1—C3—H3B108.5C7—C6—H6B109.3
S1—C3—H3B108.5S2—C6—H6B109.3
H3A—C3—H3B107.5H6A—C6—H6B107.9
C5A—C4A—S1110.9 (3)C6—C7—S3114.4 (2)
C5A—C4A—H4A1109.5C6—C7—H7A108.7
S1—C4A—H4A1109.5S3—C7—H7A108.7
C5A—C4A—H4A2109.5C6—C7—H7B108.7
S1—C4A—H4A2109.5S3—C7—H7B108.7
H4A1—C4A—H4A2108.0H7A—C7—H7B107.6
C4A—C5A—S2111.0 (3)C2—C8—S3115.73 (19)
C4A—C5A—H5A1109.4C2—C8—H8A108.3
S2—C5A—H5A1109.4S3—C8—H8A108.3
C4A—C5A—H5A2109.4C2—C8—H8B108.3
S2—C5A—H5A2109.4S3—C8—H8B108.3
H5A1—C5A—H5A2108.0H8A—C8—H8B107.4
C2—N1—C1—C2i0.6 (4)C6—S2—C5A—C4A83.6 (3)
C2—N1—C1—C3178.7 (2)S1—C4B—C5B—S2173.4 (8)
C1—N1—C2—C1i0.6 (4)C5A—S2—C6—C773.8 (2)
C1—N1—C2—C8177.9 (2)C5B—S2—C6—C7112.7 (6)
N1—C1—C3—S197.1 (2)S2—C6—C7—S3178.84 (15)
C2i—C1—C3—S183.5 (3)C8—S3—C7—C665.5 (2)
C4A—S1—C3—C170.9 (2)N1—C2—C8—S3109.9 (2)
C4B—S1—C3—C133.9 (7)C1i—C2—C8—S371.6 (3)
C3—S1—C4A—C5A103.8 (3)C7—S3—C8—C245.9 (2)
S1—C4A—C5A—S2174.34 (17)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···S3i0.982.773.524 (3)134
Symmetry code: (i) x, y, z+1.
2,5,8,11,14,17-Hexathia-[9.9](2,5,3,6)-pyrazinophane (II) top
Crystal data top
C16H24N2S6Dx = 1.459 Mg m3
Mr = 436.73Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 5000 reflections
a = 12.2613 (8) Åθ = 2.5–25.9°
b = 9.9564 (6) ŵ = 0.69 mm1
c = 16.2828 (12) ÅT = 223 K
V = 1987.8 (2) Å3Block, pale yellow
Z = 40.25 × 0.20 × 0.10 mm
F(000) = 920
Data collection top
STOE IPDS 1
diffractometer
1927 independent reflections
Radiation source: fine-focus sealed tube1521 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.033
φ rotation scansθmax = 25.9°, θmin = 2.5°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 1514
Tmin = 0.915, Tmax = 1.000k = 1210
12271 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
1927 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.92584 (3)0.20291 (5)0.52666 (2)0.03769 (13)
S20.62939 (3)0.32039 (5)0.66508 (3)0.04190 (13)
S31.22003 (4)0.45569 (5)0.60156 (2)0.04264 (14)
N11.0000000.18412 (17)0.7500000.0261 (4)
N21.0000000.46125 (17)0.7500000.0281 (4)
C11.01977 (11)0.25255 (15)0.68044 (9)0.0251 (3)
C21.02875 (11)0.39270 (15)0.68267 (9)0.0265 (3)
C31.03062 (13)0.16999 (18)0.60363 (9)0.0332 (4)
H3A1.0279150.0746910.6185480.040*
H3B1.1022680.1874400.5791900.040*
C40.80303 (13)0.19184 (16)0.58900 (9)0.0314 (3)
H4A0.7506560.1319630.5620500.038*
H4B0.8214270.1528290.6424920.038*
C50.75070 (14)0.32828 (17)0.60188 (9)0.0337 (4)
H5A0.7315760.3665220.5483180.040*
H5B0.8037290.3884150.6278720.040*
C60.69013 (14)0.31977 (17)0.76694 (10)0.0375 (4)
H6A0.6363070.2868380.8066170.045*
H6B0.7521120.2576250.7673920.045*
C70.72885 (13)0.45755 (16)0.79340 (9)0.0329 (4)
H7A0.6682920.5214400.7893060.039*
H7B0.7868700.4878180.7563660.039*
C81.07313 (13)0.47543 (17)0.61355 (9)0.0353 (4)
H8A1.0564880.5702610.6236940.042*
H8B1.0369240.4491130.5623590.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0380 (2)0.0540 (3)0.02104 (19)0.0029 (2)0.00241 (16)0.00421 (16)
S20.0272 (2)0.0514 (3)0.0471 (3)0.0005 (2)0.00419 (18)0.0071 (2)
S30.0389 (2)0.0636 (3)0.0254 (2)0.0117 (2)0.00714 (17)0.00324 (19)
N10.0227 (8)0.0281 (9)0.0274 (9)0.0000.0039 (7)0.000
N20.0274 (9)0.0291 (10)0.0277 (9)0.0000.0043 (7)0.000
C10.0192 (7)0.0322 (8)0.0239 (7)0.0024 (6)0.0018 (5)0.0003 (6)
C20.0235 (7)0.0318 (8)0.0244 (7)0.0009 (6)0.0038 (6)0.0030 (6)
C30.0311 (8)0.0405 (9)0.0280 (8)0.0049 (7)0.0021 (6)0.0058 (7)
C40.0341 (8)0.0313 (9)0.0288 (8)0.0015 (7)0.0050 (6)0.0020 (6)
C50.0379 (8)0.0338 (9)0.0294 (8)0.0011 (7)0.0045 (7)0.0004 (7)
C60.0362 (9)0.0393 (9)0.0369 (8)0.0005 (8)0.0056 (7)0.0040 (7)
C70.0322 (8)0.0357 (9)0.0307 (8)0.0094 (7)0.0019 (7)0.0002 (7)
C80.0387 (9)0.0398 (9)0.0273 (8)0.0036 (7)0.0011 (7)0.0076 (7)
Geometric parameters (Å, º) top
S1—C41.8193 (17)C3—H3B0.9800
S1—C31.8245 (16)C4—C51.517 (2)
S2—C51.8104 (17)C4—H4A0.9800
S2—C61.8182 (17)C4—H4B0.9800
S3—C7i1.8218 (16)C5—H5A0.9800
S3—C81.8224 (17)C5—H5B0.9800
N1—C11.3438 (17)C6—C71.514 (2)
N1—C1i1.3438 (17)C6—H6A0.9800
N2—C21.3387 (17)C6—H6B0.9800
N2—C2i1.3388 (17)C7—H7A0.9800
C1—C21.400 (2)C7—H7B0.9800
C1—C31.503 (2)C8—H8A0.9800
C2—C81.497 (2)C8—H8B0.9800
C3—H3A0.9800
C4—S1—C3100.87 (7)C4—C5—H5A109.0
C5—S2—C6100.49 (7)S2—C5—H5A109.0
C7i—S3—C8103.79 (7)C4—C5—H5B109.0
C1—N1—C1i119.07 (18)S2—C5—H5B109.0
C2—N2—C2i118.69 (18)H5A—C5—H5B107.8
N1—C1—C2119.85 (14)C7—C6—S2112.64 (11)
N1—C1—C3116.11 (14)C7—C6—H6A109.1
C2—C1—C3124.04 (14)S2—C6—H6A109.1
N2—C2—C1120.57 (14)C7—C6—H6B109.1
N2—C2—C8115.52 (14)S2—C6—H6B109.1
C1—C2—C8123.88 (14)H6A—C6—H6B107.8
C1—C3—S1114.28 (11)C6—C7—S3i111.45 (11)
C1—C3—H3A108.7C6—C7—H7A109.3
S1—C3—H3A108.7S3i—C7—H7A109.3
C1—C3—H3B108.7C6—C7—H7B109.3
S1—C3—H3B108.7S3i—C7—H7B109.3
H3A—C3—H3B107.6H7A—C7—H7B108.0
C5—C4—S1111.90 (11)C2—C8—S3112.36 (11)
C5—C4—H4A109.2C2—C8—H8A109.1
S1—C4—H4A109.2S3—C8—H8A109.1
C5—C4—H4B109.2C2—C8—H8B109.1
S1—C4—H4B109.2S3—C8—H8B109.1
H4A—C4—H4B107.9H8A—C8—H8B107.9
C4—C5—S2112.78 (12)
C1i—N1—C1—C25.44 (9)C4—S1—C3—C149.44 (14)
C1i—N1—C1—C3174.39 (14)C3—S1—C4—C5108.79 (12)
C2i—N2—C2—C15.52 (9)S1—C4—C5—S2179.11 (8)
C2i—N2—C2—C8172.62 (14)C6—S2—C5—C482.34 (13)
N1—C1—C2—N211.29 (19)C5—S2—C6—C776.92 (13)
C3—C1—C2—N2168.54 (12)S2—C6—C7—S3i175.79 (8)
N1—C1—C2—C8166.69 (12)N2—C2—C8—S3106.65 (12)
C3—C1—C2—C813.5 (2)C1—C2—C8—S371.42 (17)
N1—C1—C3—S1116.25 (12)C7i—S3—C8—C242.15 (14)
C2—C1—C3—S163.58 (18)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S3ii0.982.833.581 (2)134
Symmetry code: (ii) x1/2, y+1/2, z+1.
Table 3. Short interatomic contactsa (Å) for I (m-bis L1) and II (p-bis L1) top
Atom1···Atom2LengthLength-VdWSymm. op. 1Symm. op. 2
I
S1···S13.3938 (11)-0.206-x, -y, 1 - z-1 + x, y, z
S3···S13.5135 (11)-0.086x, y, z-1 + x, y, z
H3A···S22.969-0.031-x, -y, 1 - z-1/2 + x, -1/2 - y, -1/2 + z
H8A···S13.0070.007x, y, z-1 + x, y, z
H6A···H7A2.4150.015-x, -y, 1-zx, y, -1 + z
H4A2···H5A22.4870.087-x, -y, 1-z-1/2 + x, -1/2 - y, -1/2 + z
II
H4A···S32.828-0.172-1 + x, y, z-3/2 + x, 1/2 - y, 1 - z
C3···H7A2.842-0.0581 - x, y, 3/2 - z1/2 - x, -1/2 + y, z
H3A···H7A2.345-0.0551 - x, y, 3/2 - z1/2 - x, -1/2 + y, z
N1···H7A2.700-0.050-1 + x, y, z1/2 - x, -1/2 + y, z
S1···S33.6360 (6)0.036-1 + x, y, z-3/2 + x, 1/2 - y, 1 - z
H8B···H8B2.4440.044-1 + x, y, z1 - x, 1 - y, 1 - z
S3···H5A3.0720.072-1 + x, y, z1 - x, 1 - y, 1 - z
C1···H7A2.9760.0761 - x, y, 3/2 - z1/2 - x, -1/2 + y, z
C4···S33.5806 (16)0.081-1 + x, y, z-3/2 + x, 1/2 - y, 1 - z
Note: (a) Values were calculated using Mercury (Macrae et al., 2020).
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel.

References

First citationAssoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020a). Acta Cryst. E76, 539–546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020b). IUCrData, 5, x200467.  Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020c). IUCrData, 5, x200401.  Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020d). Private communications (deposition numbers 1988248 and 1988249). CCDC, Cambridge, England.  Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020e). Acta Cryst. E76, 984–989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDe Groot, B. & Loeb, S. J. (1990). Inorg. Chem. 29, 4084–4090.  CSD CrossRef CAS Web of Science Google Scholar
First citationFerigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Jung, J. H., Habata, Y. & Lee, S. S. (2018). Cryst. Growth Des. 18, 2424–2431.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlinga, M., Kivekäs, R., Almajano, M. P., Escriche, L. & Casabó, J. F. (1994). Z. Kristallogr. Cryst. Mater. 209, 560–561.  CrossRef CAS Web of Science Google Scholar
First citationLockhart, J. C., Mousley, D. P., Hill, M. N. S., Tomkinson, N. P., Teixidor, F., Almajano, M. P., Escriche, L., Casabó, J. F., Sillanpää, R. & Kivekäs, R. (1992). J. Chem. Soc. Dalton Trans. pp. 2889–2897.  CSD CrossRef Web of Science Google Scholar
First citationLoeb, S. J. & Shimizu, G. K. H. (1991). J. Chem. Soc. Chem. Commun. pp. 1119–1121.  CrossRef Web of Science Google Scholar
First citationLoeb, S. J. & Shimizu, G. K. H. (1993). Inorg. Chem. 32, 1001–1006.  CSD CrossRef CAS Web of Science Google Scholar
First citationLoeb, S. J. & Shimizu, G. K. H. (1994). Can. J. Chem. 72, 1728–1734.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiewe, A. D., Kim, J.-Y., Kim, S., Park, I.-H. & Lee, S. S. (2014). Inorg. Chem. 53, 393–398.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1998). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds