research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of [(μ2-L1)di­bromidodicopper(II)] dibromide and poly[[(μ2-L1)di­iodido­dicopper(I)]-di-μ-iodido-dicopper(I)], where L1 is 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by S. Parkin, University of Kentucky, USA (Received 20 May 2020; accepted 27 May 2020; online 2 June 2020)

The reaction of the hexa­thia­pyrazino­phane ligand, 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane (L1), with copper(II) dibromide led to the formation of a binuclear complex, [μ2-2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane]bis­[bromi­docopper(II)] dibromide, [Cu2Br2(C16H24N2S6)]Br2, (I). The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. The ligand coordinates to the copper(II) atom in a bis-tetra­dentate manner and the copper atom has a fivefold NS3Br coordination environment with a distorted shape. The reaction of ligand L1 with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer, poly[[μ2-2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane]tetra-μ-iodido-tetra­copper(I)], [Cu4I4(C16H24N2S6)]n, (II). The binuclear unit possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The Cu2I2 unit is also located about an inversion center. The two independent copper(I) atoms are both fourfold coordinate. That coordinating to the ligand L1 in a bis-tridentate manner has an NS2I coordination environment and an irregular shape, while the second copper(I) atom, where L1 coordinates in a bis-monodentate manner, has an SI3 coordination environment with an almost perfect tetra­hedral geometry. In the crystal of I, the cations and Br anions are linked by a number of C—H⋯S and C—H⋯Br hydrogen bonds, forming a supra­molecular network. In the crystal of II, the two-dimensional coordination polymers lie parallel to the ab plane and there are no significant inter-layer contacts present.

1. Chemical context

Tetra­substituted pyrazines are inter­esting ligands for the formation of multi-dimensional coordination polymers and metal-organic frameworks: for example, tetra-2-pyridyl­pyrazine (Ouellette et al., 2004[Ouellette, W., Burkholder, E., Manzar, S., Bewley, L., Rarig, R. S. & Zubieta, J. (2004). Solid State Sci. 6, 77-84.]; Nawrot et al., 2015[Nawrot, I., Machura, B. & Kruszynski, R. (2015). CrystEngComm, 17, 830-845.]) and pyrazine­tetra­carb­oxy­lic acid (Masci & Thuéry, 2008[Masci, B. & Thuéry, P. (2008). Cryst. Growth Des. 8, 1689-1696.]; Zhang et al., 2014[Zhang, F., Yan, P., Li, H., Zou, X., Hou, G. & Li, G. (2014). Dalton Trans. 43, 12574-12581.]). In recent years a new ligand, 2,3,5,6-(4-carboxyl-tetra­phen­yl)pyrazine, has been used successfully to form a number of metal–organic frameworks (Wang et al., 2019[Wang, T., Huang, K., Peng, M., Li, X., Han, D., Jing, L. & Qin, D. (2019). CrystEngComm, 21, 494-501.]).

A number of such ligands involving Npyrazine and S coordin­ation sites have been synthesized and their coordination behaviour with transition metals investigated (Assoumatine, 1999[Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.]). The title ligand, L1 (Assoumatine & Stoeckli-Evans, 2020a[Assoumatine, T. & Stoeckli-Evans, H. (2020a). Acta Cryst. E76, 977-983.]), is the third in a series of pyrazine­thio­phane ligands that have been shown to form chains, networks and frameworks with copper halides (Assoumatine, 1999[Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.]), especially with CuI. For example, ligand L2, 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine, when reacted with CuI formed a two-dimensional coordination polymer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine]­di-iodido-­dicopper(I)] (Fig. 1[link]a; Assoumatine & Stoeckli-Evans, 2020b[Assoumatine, T. & Stoeckli-Evans, H. (2020b). IUCrData, 5, x200467.]). Ligand L3, 5,7-di­hydro-1H,3H-dithieno[3,4-b:30,40-e]pyrazine, when reacted with CuI formed a three-dimensional coordination polymer, poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3′,4′-e]pyrazine-κ4N:N′:S:S′)tetra-μ3-iodido­tetra­copper] (Fig. 1[link]b; Assoumatine & Stoeckli-Evans, 2020c[Assoumatine, T. & Stoeckli-Evans, H. (2020c). IUCrData, 5, x200401.]). Inter­estingly, in compound CuI-L2 the copper atom does not coordinate to the pyrazine N atom, whereas in compound CuI-L3 one of the two independent copper atoms does coordinate to the pyrazine N atom. Herein, we report on the results of the reactions of ligand L1 with CuBr2 and CuI, where in both cases the pyrazine N atom is involved in coordination to the copper(II) and copper(I) atoms, respectively.

[Scheme 1]
[Scheme 2]
[Figure 1]
Figure 1
Chemical drawings of the complexes involving CuI and ligands L2 and L3.

2. Structural commentary

The reaction of the hexa­thia­pyrazino­phane ligand, 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane (L1), with copper(II) dibromide led to the formation of a binuclear complex, [(μ2-L1)di­bromodo dicopper(II)] dibromide, (I); see Fig. 2[link]. The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. Selected bond distances and angles are given in Table 1[link]. The ligand coordinates to the copper(II) atoms in a bis-tetra­dentate manner. The symmetry related Cu atoms have a fivefold NS3Br coordination environment with a distorted shape, as indicated by the fivefold index parameter τ5 of 0.38 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal–pyramidal coordination sphere; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). There are four five-membered chelate rings; Cu1/N1/C2/C3/S1 and Cu1/N1/C1/C8/S3 which are inclined by ca 90° to chelate rings Cu1/S1/C4/C5/S2 and Cu1/S2/C6/C7/S3 (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °) for I[link]

Cu1—N1 2.046 (6) Cu1—S3 2.333 (2)
Cu1—S1 2.346 (2) Cu1—Br1 2.3672 (11)
Cu1—S2 2.4549 (18)    
       
N1—Cu1—S1 85.26 (18) S3—Cu1—Br1 94.97 (6)
N1—Cu1—S3 85.38 (18) N1—Cu1—S2 104.48 (15)
S3—Cu1—S1 168.54 (7) S1—Cu1—S2 88.79 (7)
N1—Cu1—Br1 145.45 (15) S3—Cu1—S2 87.17 (7)
S1—Cu1—Br1 96.48 (6) Br1—Cu1—S2 110.05 (6)
[Figure 2]
Figure 2
A view of the mol­ecular structure of complex I, with atom labelling for the asymmetric unit; symmetry code: (i) −x + 1, −y + 1, −z. Displacement ellipsoids are drawn at the 50% probability level.

Reaction of L1 with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer, poly-[(μ2-L1)di­iodido­dicopper(I)di(μ-iodido)­dicopper(I)], (II); see Fig. 3[link]. The binuclear complex possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The Cu2I2 unit is also located about an inversion center. Selected bond distances and angles are given in Table 2[link]. The two independent copper(I) atoms, Cu1 and Cu2, are both fourfold coordinate. Atom Cu1 coordinates to the ligand L1 in a tridentate fashion and has an NS2I coordination environment. The fourfold index parameter τ4 is 0.77 indicating a very irregular shape (τ4 = 1 for a perfect tetra­hedral environment, 0 for a perfect square-planar environment and 0.85 for a perfect trigonal–pyramidal environment; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). There are three chelate rings, two of which are five-membered (Cu1/N1/C2/C3/S1 and Cu1/S1/C4/C5/S2) and one eight-membered (Cu1/N1/C1/C8/S3/C7/C6/S2). The second copper(I) atom, Cu2, coordinates to L1 in a monodentate fashion and has an SI3 environment with an almost perfect tetra­hedral geometry; here the fourfold index parameter τ4 is 0.91.

Table 2
Selected geometric parameters (Å, °) for II[link]

Cu1—N1 2.095 (10) Cu2—I1 2.665 (2)
Cu1—S1 2.342 (4) Cu2—I2 2.6166 (19)
Cu1—S2 2.331 (4) I1—Cu2ii 2.675 (2)
Cu1—I2i 2.5193 (18) Cu2—Cu2ii 2.663 (4)
Cu2—S3 2.359 (4)    
       
N1—Cu1—S2 110.2 (3) S3—Cu2—I1ii 99.22 (11)
N1—Cu1—S1 85.3 (3) I2—Cu2—I1ii 112.01 (7)
S2—Cu1—S1 91.74 (14) I1—Cu2—I1ii 120.18 (7)
N1—Cu1—I2i 121.1 (3) Cu2—I1—Cu2ii 59.82 (7)
S2—Cu1—I2i 112.48 (12) Cu1iii—I2—Cu2 94.93 (7)
S1—Cu1—I2i 130.61 (10) Cu2ii—Cu2—I1 60.27 (7)
S3—Cu2—I2 109.54 (11) Cu2ii—Cu2—I1ii 59.91 (7)
S3—Cu2—I1 105.86 (10) S3—Cu2—Cu2ii 115.75 (13)
I2—Cu2—I1 109.04 (8) I2—Cu2—Cu2ii 134.68 (11)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) x-1, y, z.
[Figure 3]
Figure 3
A view of the mol­ecular structure of complex II, with atom labelling for the asymmetric unit; symmetry codes: (i) x + 1, y, z; (ii) −x + 1, −y + 1, −z; (iii) x − 1, y, z. Displacement ellipsoids are drawn at the 50% probability level. (Atom Cu1 is green, while atom Cu2 is orange.)

The Cu1—N1 bond lengths in the two complexes, 2.046 (6) Å in I and 2.095 (10) Å in II, are significantly different (Linden, 2020[Linden, A. (2020). Acta Cryst. E76, 765-775.]). They have a difference of 0.049 (12) Å so differ by 4.1σ (i.e., 0.049 Å = 0.012 Å × 4.1). In I, the bond length Cu1—S2 of 2.455 (2) Å is significantly longer than bond lengths Cu1—S1 [2.346 (2) Å] and Cu1—S3 [2.333 (2) Å]. In II, bond lengths Cu1—S1 and Cu1—S2, involving the five-membered chelate rings, viz. 2.342 (4) and 2.331 (4) Å, respectively, are similar to those in I, while bond length Cu2—S3 [2.359 (4) Å] is only slightly longer. The bridging Cu2—Cu2i distance in the Cu2I2 unit in II is 2.663 (4) Å (Table 2[link]), considerably shorter than the same distance observed in complex CuI-L2 [2.776 (1) Å] [Fig. 1[link]a; Assoumatine & Stoeckli-Evans, 2020b[Assoumatine, T. & Stoeckli-Evans, H. (2020b). IUCrData, 5, x200467.]].

3. Supra­molecular features

In the crystal of I, the cations are linked by pairs of C6—H6B⋯S1i hydrogen bonds to form chains along the a-axis direction. Chains are also formed along the b-axis direction via C5—H5A⋯S3ii hydrogen bonds (Table 3[link]). These inter­actions result in the formation of a supra­molecular network that lies parallel to the ab plane (Fig. 4[link]). There are also a large number of C—H⋯Br contacts present involving the anion, Br2, strengthening the supra­molecular network (Fig. 5[link] and Table 3[link]). There are no significant inter-layer contacts present in the crystal.

Table 3
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯S1i 0.98 2.85 3.753 (9) 154
C5—H5A⋯S3ii 0.98 2.81 3.634 (8) 143
C3—H3A⋯Br2iii 0.98 2.86 3.814 (8) 165
C3—H3B⋯Br2ii 0.98 2.83 3.770 (7) 160
C5—H5B⋯Br2iv 0.98 2.87 3.821 (7) 164
C7—H7B⋯Br2i 0.98 2.82 3.646 (8) 142
C8—H8A⋯Br2i 0.98 2.84 3.769 (9) 159
C8—H8B⋯Br2v 0.98 2.89 3.713 (7) 142
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) -x, -y+1, -z; (iv) -x+1, -y+1, -z; (v) -x+1, -y, -z.
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of I. The C—H⋯S hydrogen bonds are shown as dashed lines (see Table 3[link]). For clarity, the Br anion and the H atoms not involved in these inter­molecular inter­actions have been omitted.
[Figure 5]
Figure 5
A view along the b axis of the crystal packing of I. The C—H⋯S and C—H⋯Br hydrogen bonds (Table 3[link]) are shown as dashed lines (see Table 3[link]). For clarity, only the H atoms involved in these inter­molecular inter­actions have been included.

In the crystal of II, the two-dimensional coordination polymers lie parallel to the (001) plane, as shown in Fig. 6[link]. There are no significant inter-layer contacts present in the crystal (Fig. 7[link]).

[Figure 6]
Figure 6
A view along the c axis of the two-dimensional structure of complex II. For clarity, H atoms have been omitted.
[Figure 7]
Figure 7
A view along the a axis of the crystal packing of complex II. For clarity, H atoms have been omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for tri- or hexa-thia­benzeno­phane ligands gave only three hits. They include the tri­thia­benzeno­phane ligand, 2,5,8-tri­thia­(9)-m-benzeno­phane (CSD refcode VEYNES; Groot & Loeb, 1990[Groot, B. de & Loeb, S. J. (1990). Inorg. Chem. 29, 4084-4090.]), and a palladium and a silver complex of the same ligand, viz. di­chloro­[2,5,8-tri­thia­(9)-m-benzeno­phane]palladium(II) (KOMNOP; Groot et al., 1991[Groot, B. de, Hanan, G. S. & Loeb, S. J. (1991). Inorg. Chem. 30, 4644-4647.]), a mononuclear complex, and poly[[2,5,8-tri­thia­(9)-m-cyclo­phane-S,S′,S′′]silver(I) tri­fluoro­methyl­sulfonate aceto­nitrile solvate] (ZIDPEH; Casabo et al., 1995[Casabo, J., Flor, T., Hill, M. N. S., Jenkins, H. A., Lockhart, J. C., Loeb, S. J., Romero, I. & Teixidor, F. (1995). Inorg. Chem. 34, 5410-5415.]), a two-dimensional coordination polymer. In KOMNOP, the ligand coordinates in a bidentate manner. The palladium(II) atom is fourfold S2Cl2 coordinate with a square-planar environment (index parameter τ4 is 0.04), In ZIDPEH, the ligand coordinates in a bridging μ3-monodentate manner. The silver(I) atom is fivefold NOS3 coordinate with an irregular shape (index parameter τ5 is 0.56).

A search for benzeno­phane ligands similar to L2 and L3 gave zero hits for L2 and ten hits for L3. The latter compounds have been compared in a recent article (Assoumatine & Stoeckli-Evans, 2020d[Assoumatine, T. & Stoeckli-Evans, H. (2020d). Acta Cryst. E76, 539-546.]), which also describes the syntheses and crystal structures of both L2 and L3.

5. Synthesis and crystallization

The synthesis and crystal structure of the ligand 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane (L1), have been reported (Assoumatine & Stoeckli-Evans, 2020a[Assoumatine, T. & Stoeckli-Evans, H. (2020a). Acta Cryst. E76, 977-983.]).

Synthesis of complex [(μ2-L1)di­bromodo dicopper(II)] dibromide (I)[link]: A solution of L1 (15 mg, 0.03 mmol) in CHCl3 (10 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of CuBr2 (7 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least 3 weeks, whereupon brown crystals of complex I were isolated in the buffer zone.

Synthesis of complex poly-[(μ2-L1)di­iodido-dicopper(I)-di(μ-iodido)-dicopper(I)] (II)[link]: A solution of L1 (15 mg, 0.03 mmol) in CH2Cl2 (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. A solution of CuI (6 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed under an atmosphere of nitro­gen and left in the dark at room temperature for at least 3 weeks, whereupon small orange crystals of complex II were isolated in the buffer zone.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The C-bound H atoms were included in calculated positions and treated as riding on their parent atoms: C—H = 0.98 Å for I and 0.97 Å for II, with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

  I II
Crystal data
Chemical formula [Cu2Br2(C16H24N2S6)]Br2 [Cu4I4(C16H24N2S6)]
Mr 883.45 1198.49
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 223 293
a, b, c (Å) 7.2090 (7), 8.1422 (8), 12.3904 (14) 7.7713 (8), 8.9456 (9), 11.2464 (14)
α, β, γ (°) 71.842 (12), 74.702 (12), 72.694 (12) 106.839 (13), 104.644 (13), 93.412 (12)
V3) 647.93 (13) 716.53 (15)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 8.30 7.69
Crystal size (mm) 0.20 × 0.20 × 0.03 0.30 × 0.20 × 0.05
 
Data collection
Diffractometer Stoe IPDS 1 Stoe IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.421, 1.000 0.435, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5057, 2320, 1843 5260, 2505, 1698
Rint 0.076 0.100
(sin θ/λ)max−1) 0.613 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.153, 1.01 0.070, 0.183, 0.95
No. of reflections 2320 2505
No. of parameters 106 127
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.65, −1.67 2.25, −2.58
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 1997[Stoe & Cie (1997). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Intensity data were measured using a STOE IPDS-1 one-circle diffractometer. For the triclinic system often only 93% of the Ewald sphere is accessible, which explains why the alerts diffrn_reflns_laue_measured_fraction_full value (0.94) below minimum (0.95) for both compounds I and II are given. This involves 145 random reflections out of the expected 2336 for the IUCr cutoff limit of sin θ/λ = 0.60 for I, and 155 random reflections out of the expected 2600 reflections for II. The residual electron-density peaks are approximately 1Å from the halogen atoms in both structures.

Supporting information


Computing details top

For both structures, data collection: EXPOSE in IPDS-I (Stoe & Cie, 1997); cell refinement: CELL in IPDS-I (Stoe & Cie, 1997); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) top
Crystal data top
[Cu2Br2(C16H24N2S6)]Br2Z = 1
Mr = 883.45F(000) = 428
Triclinic, P1Dx = 2.264 Mg m3
a = 7.2090 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1422 (8) ÅCell parameters from 5000 reflections
c = 12.3904 (14) Åθ = 2.7–25.8°
α = 71.842 (12)°µ = 8.30 mm1
β = 74.702 (12)°T = 223 K
γ = 72.694 (12)°Plate, brown
V = 647.93 (13) Å30.20 × 0.20 × 0.03 mm
Data collection top
STOE IPDS 1
diffractometer
2320 independent reflections
Radiation source: fine-focus sealed tube1843 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.076
φ rotation scansθmax = 25.8°, θmin = 2.7°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 88
Tmin = 0.421, Tmax = 1.000k = 99
5057 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1019P)2]
where P = (Fo2 + 2Fc2)/3
2320 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 1.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19307 (12)0.19827 (12)0.45400 (7)0.0328 (3)
Cu10.38840 (13)0.35871 (11)0.29477 (7)0.0163 (3)
S10.1670 (3)0.6379 (2)0.28528 (15)0.0215 (4)
S20.6115 (3)0.4639 (2)0.36310 (15)0.0197 (4)
S30.6481 (3)0.1120 (2)0.27313 (15)0.0175 (4)
N10.4546 (9)0.4439 (7)0.1184 (5)0.0156 (7)
C10.5922 (11)0.3381 (9)0.0573 (6)0.0156 (7)
C20.3618 (10)0.6046 (9)0.0628 (6)0.0156 (7)
C30.2054 (11)0.7229 (9)0.1295 (6)0.0202 (16)
H3A0.0800950.7448240.1046110.024*
H3B0.2405020.8375920.1095800.024*
C40.3042 (11)0.7561 (10)0.3270 (6)0.0213 (9)
H4A0.2627090.8834240.2909810.026*
H4B0.2679420.7399510.4110200.026*
C50.5303 (11)0.6978 (9)0.2940 (6)0.0156 (7)
H5A0.5922280.7683450.3189180.019*
H5B0.5700910.7177610.2098200.019*
C60.8280 (12)0.3836 (9)0.2624 (6)0.0213 (9)
H6A0.8088980.4389220.1823950.026*
H6B0.9455360.4103330.2720720.026*
C70.8506 (11)0.1809 (9)0.2918 (7)0.0223 (16)
H7A0.8674850.1304000.3724310.027*
H7B0.9718460.1301090.2431590.027*
C80.6904 (12)0.1574 (9)0.1173 (6)0.0213 (9)
H8A0.8332370.1392370.0877550.026*
H8B0.6449040.0703800.0973920.026*
Br20.21653 (11)0.20772 (10)0.02398 (7)0.0267 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0270 (5)0.0335 (5)0.0267 (5)0.0116 (4)0.0043 (3)0.0114 (3)
Cu10.0194 (5)0.0085 (5)0.0194 (5)0.0036 (4)0.0032 (4)0.0013 (3)
S10.0215 (10)0.0172 (10)0.0201 (9)0.0018 (8)0.0013 (7)0.0053 (7)
S20.0281 (10)0.0115 (9)0.0223 (9)0.0028 (8)0.0095 (8)0.0060 (7)
S30.0270 (10)0.0051 (8)0.0195 (8)0.0025 (8)0.0085 (7)0.0005 (6)
N10.0223 (18)0.0065 (15)0.0219 (16)0.0034 (14)0.0088 (13)0.0053 (12)
C10.0223 (18)0.0065 (15)0.0219 (16)0.0034 (14)0.0088 (13)0.0053 (12)
C20.0223 (18)0.0065 (15)0.0219 (16)0.0034 (14)0.0088 (13)0.0053 (12)
C30.029 (4)0.012 (4)0.014 (3)0.008 (3)0.007 (3)0.006 (3)
C40.031 (3)0.011 (2)0.022 (2)0.002 (2)0.0101 (19)0.0047 (17)
C50.0223 (18)0.0065 (15)0.0219 (16)0.0034 (14)0.0088 (13)0.0053 (12)
C60.031 (3)0.011 (2)0.022 (2)0.002 (2)0.0101 (19)0.0047 (17)
C70.024 (4)0.011 (4)0.035 (4)0.002 (3)0.020 (3)0.004 (3)
C80.031 (3)0.011 (2)0.022 (2)0.002 (2)0.0101 (19)0.0047 (17)
Br20.0247 (4)0.0210 (4)0.0385 (5)0.0073 (4)0.0041 (3)0.0127 (3)
Geometric parameters (Å, º) top
Cu1—N12.046 (6)C2—C31.497 (9)
Cu1—S12.346 (2)C3—H3A0.9800
Cu1—S22.4549 (18)C3—H3B0.9800
Cu1—S32.333 (2)C4—C51.536 (10)
Cu1—Br12.3672 (11)C4—H4A0.9800
S1—C31.811 (7)C4—H4B0.9800
S1—C41.822 (7)C5—H5A0.9800
S2—C61.815 (8)C5—H5B0.9800
S2—C51.814 (7)C6—C71.542 (9)
S3—C71.802 (7)C6—H6A0.9800
S3—C81.808 (7)C6—H6B0.9800
N1—C11.342 (9)C7—H7A0.9800
N1—C21.340 (9)C7—H7B0.9800
C1—C2i1.394 (10)C8—H8A0.9800
C1—C81.482 (11)C8—H8B0.9800
N1—Cu1—S185.26 (18)S1—C3—H3B108.4
N1—Cu1—S385.38 (18)H3A—C3—H3B107.5
S3—Cu1—S1168.54 (7)C5—C4—S1115.1 (5)
N1—Cu1—Br1145.45 (15)C5—C4—H4A108.5
S1—Cu1—Br196.48 (6)S1—C4—H4A108.5
S3—Cu1—Br194.97 (6)C5—C4—H4B108.5
N1—Cu1—S2104.48 (15)S1—C4—H4B108.5
S1—Cu1—S288.79 (7)H4A—C4—H4B107.5
S3—Cu1—S287.17 (7)C4—C5—S2109.4 (4)
Br1—Cu1—S2110.05 (6)C4—C5—H5A109.8
C3—S1—C4102.4 (3)S2—C5—H5A109.8
C3—S1—Cu198.5 (2)C4—C5—H5B109.8
C4—S1—Cu1101.4 (3)S2—C5—H5B109.8
C6—S2—C5104.4 (3)H5A—C5—H5B108.3
C6—S2—Cu193.8 (2)C7—C6—S2105.4 (5)
C5—S2—Cu196.5 (2)C7—C6—H6A110.7
C7—S3—C8100.9 (4)S2—C6—H6A110.7
C7—S3—Cu1101.0 (2)C7—C6—H6B110.7
C8—S3—Cu197.8 (3)S2—C6—H6B110.7
C1—N1—C2119.4 (6)H6A—C6—H6B108.8
C1—N1—Cu1119.9 (5)C6—C7—S3115.5 (5)
C2—N1—Cu1120.7 (5)C6—C7—H7A108.4
N1—C1—C2i120.2 (7)S3—C7—H7A108.4
N1—C1—C8119.9 (6)C6—C7—H7B108.4
C2i—C1—C8119.9 (6)S3—C7—H7B108.4
N1—C2—C1i120.4 (6)H7A—C7—H7B107.5
N1—C2—C3120.1 (6)C1—C8—S3115.4 (5)
C1i—C2—C3119.5 (7)C1—C8—H8A108.4
C2—C3—S1115.3 (5)S3—C8—H8A108.4
C2—C3—H3A108.4C1—C8—H8B108.4
S1—C3—H3A108.4S3—C8—H8B108.4
C2—C3—H3B108.4H8A—C8—H8B107.5
C2—N1—C1—C2i0.2 (10)Cu1—S1—C4—C530.4 (6)
Cu1—N1—C1—C2i179.9 (4)S1—C4—C5—S259.9 (6)
C2—N1—C1—C8177.6 (5)C6—S2—C5—C4148.0 (5)
Cu1—N1—C1—C82.3 (8)Cu1—S2—C5—C452.4 (4)
C1—N1—C2—C1i0.2 (10)C5—S2—C6—C7158.1 (5)
Cu1—N1—C2—C1i179.9 (4)Cu1—S2—C6—C760.3 (5)
C1—N1—C2—C3178.9 (6)S2—C6—C7—S362.3 (6)
Cu1—N1—C2—C31.0 (8)C8—S3—C7—C674.9 (6)
N1—C2—C3—S13.6 (8)Cu1—S3—C7—C625.4 (6)
C1i—C2—C3—S1177.3 (5)N1—C1—C8—S311.6 (8)
C4—S1—C3—C299.9 (5)C2i—C1—C8—S3170.6 (5)
Cu1—S1—C3—C23.8 (5)C7—S3—C8—C189.9 (6)
C3—S1—C4—C571.0 (6)Cu1—S3—C8—C113.0 (5)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···S1ii0.982.853.753 (9)154
C5—H5A···S3iii0.982.813.634 (8)143
C3—H3A···Br2iv0.982.863.814 (8)165
C3—H3B···Br2iii0.982.833.770 (7)160
C5—H5B···Br2i0.982.873.821 (7)164
C7—H7B···Br2ii0.982.823.646 (8)142
C8—H8A···Br2ii0.982.843.769 (9)159
C8—H8B···Br2v0.982.893.713 (7)142
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x, y+1, z; (v) x+1, y, z.
Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) top
Crystal data top
[Cu4I4(C16H24N2S6)]Z = 1
Mr = 1198.49F(000) = 558
Triclinic, P1Dx = 2.777 Mg m3
a = 7.7713 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9456 (9) ÅCell parameters from 4652 reflections
c = 11.2464 (14) Åθ = 2.0–25.8°
α = 106.839 (13)°µ = 7.69 mm1
β = 104.644 (13)°T = 293 K
γ = 93.412 (12)°Plate, orange
V = 716.53 (15) Å30.30 × 0.20 × 0.05 mm
Data collection top
STOE IPDS 1
diffractometer
2505 independent reflections
Radiation source: fine-focus sealed tube1698 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.100
φ rotation scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 99
Tmin = 0.435, Tmax = 1.000k = 1010
5260 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.110P)2]
where P = (Fo2 + 2Fc2)/3
2505 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 2.25 e Å3
0 restraintsΔρmin = 2.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.73534 (12)0.70224 (11)0.11663 (9)0.0396 (3)
I20.34990 (12)0.56223 (11)0.29340 (9)0.0370 (3)
Cu11.2404 (2)0.2890 (2)0.28830 (16)0.0332 (4)
Cu20.5027 (2)0.4653 (2)0.10778 (18)0.0415 (5)
S11.3999 (4)0.0851 (4)0.3255 (3)0.0326 (8)
S21.1079 (5)0.2923 (4)0.4531 (3)0.0349 (8)
S30.6749 (4)0.2663 (4)0.1450 (3)0.0296 (7)
N11.0914 (12)0.1189 (12)0.1149 (10)0.025 (2)
C10.9371 (16)0.1373 (15)0.0368 (12)0.0238 (18)
C21.1538 (15)0.0213 (15)0.0762 (11)0.0238 (18)
C31.3271 (19)0.0448 (18)0.1606 (13)0.038 (3)
H3A1.4211670.0331420.1200890.046*
H3B1.3148970.1526100.1625260.046*
C41.2385 (17)0.0077 (18)0.3947 (13)0.035 (3)
H4A1.1260490.0373760.3279110.042*
H4B1.2849350.0751400.4277650.042*
C51.206 (2)0.1374 (18)0.5023 (14)0.039 (2)
H5A1.3197630.1818930.5678210.047*
H5B1.1279700.0923870.5418970.047*
C60.8751 (19)0.2106 (18)0.3709 (14)0.039 (2)
H6A0.8681790.1139550.3015940.047*
H6B0.8178060.1852970.4313040.047*
C70.7789 (16)0.3263 (16)0.3162 (12)0.030 (2)
H7A0.8641400.4208000.3389680.036*
H7B0.6866660.3554350.3592990.036*
C80.8623 (16)0.2892 (16)0.0814 (13)0.030 (2)
H8A0.8242770.3295040.0089850.036*
H8B0.9569640.3666900.1477950.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0407 (5)0.0292 (6)0.0494 (6)0.0003 (4)0.0136 (4)0.0134 (4)
I20.0437 (5)0.0156 (5)0.0585 (6)0.0031 (4)0.0271 (4)0.0110 (4)
Cu10.0348 (8)0.0176 (10)0.0487 (10)0.0019 (7)0.0144 (7)0.0110 (7)
Cu20.0424 (10)0.0387 (12)0.0546 (12)0.0177 (8)0.0220 (8)0.0219 (9)
S10.0277 (15)0.030 (2)0.0386 (18)0.0065 (13)0.0051 (13)0.0109 (15)
S20.0374 (17)0.025 (2)0.042 (2)0.0028 (14)0.0146 (14)0.0084 (15)
S30.0284 (15)0.0216 (19)0.045 (2)0.0109 (13)0.0161 (14)0.0138 (14)
N10.025 (5)0.013 (6)0.042 (6)0.005 (4)0.017 (5)0.009 (4)
C10.029 (4)0.014 (5)0.031 (5)0.007 (3)0.011 (4)0.009 (3)
C20.029 (4)0.014 (5)0.031 (5)0.007 (3)0.011 (4)0.009 (3)
C30.052 (8)0.022 (8)0.038 (8)0.021 (6)0.014 (6)0.002 (6)
C40.030 (6)0.038 (9)0.046 (8)0.005 (6)0.012 (6)0.028 (7)
C50.050 (6)0.027 (6)0.044 (6)0.005 (5)0.012 (5)0.018 (5)
C60.050 (6)0.027 (6)0.044 (6)0.005 (5)0.012 (5)0.018 (5)
C70.029 (5)0.024 (6)0.042 (5)0.013 (4)0.018 (4)0.011 (4)
C80.029 (5)0.024 (6)0.042 (5)0.013 (4)0.018 (4)0.011 (4)
Geometric parameters (Å, º) top
Cu1—N12.095 (10)C1—C2iii1.373 (17)
Cu1—S12.342 (4)C1—C81.511 (18)
Cu1—S22.331 (4)C2—C31.504 (19)
Cu1—I2i2.5193 (18)C3—H3A0.9700
Cu2—S32.359 (4)C3—H3B0.9700
Cu2—I12.665 (2)C4—C51.50 (2)
Cu2—I22.6166 (19)C4—H4A0.9700
I1—Cu2ii2.675 (2)C4—H4B0.9700
Cu2—Cu2ii2.663 (4)C5—H5A0.9700
S1—C31.803 (13)C5—H5B0.9700
S1—C41.834 (13)C6—C71.50 (2)
S2—C51.779 (16)C6—H6A0.9700
S2—C61.808 (14)C6—H6B0.9700
S3—C71.793 (13)C7—H7A0.9700
S3—C81.803 (12)C7—H7B0.9700
N1—C11.346 (16)C8—H8A0.9700
N1—C21.364 (16)C8—H8B0.9700
N1—Cu1—S2110.2 (3)C2—C3—S1116.7 (10)
N1—Cu1—S185.3 (3)C2—C3—H3A108.1
S2—Cu1—S191.74 (14)S1—C3—H3A108.1
N1—Cu1—I2i121.1 (3)C2—C3—H3B108.1
S2—Cu1—I2i112.48 (12)S1—C3—H3B108.1
S1—Cu1—I2i130.61 (10)H3A—C3—H3B107.3
S3—Cu2—I2109.54 (11)C5—C4—S1110.1 (10)
S3—Cu2—I1105.86 (10)C5—C4—H4A109.6
I2—Cu2—I1109.04 (8)S1—C4—H4A109.6
S3—Cu2—I1ii99.22 (11)C5—C4—H4B109.6
I2—Cu2—I1ii112.01 (7)S1—C4—H4B109.6
I1—Cu2—I1ii120.18 (7)H4A—C4—H4B108.2
Cu2—I1—Cu2ii59.82 (7)C4—C5—S2114.4 (10)
Cu1iv—I2—Cu294.93 (7)C4—C5—H5A108.7
Cu2ii—Cu2—I160.27 (7)S2—C5—H5A108.7
Cu2ii—Cu2—I1ii59.91 (7)C4—C5—H5B108.7
S3—Cu2—Cu2ii115.75 (13)S2—C5—H5B108.7
I2—Cu2—Cu2ii134.68 (11)H5A—C5—H5B107.6
C3—S1—C4100.9 (7)C7—C6—S2110.2 (10)
C3—S1—Cu196.4 (5)C7—C6—H6A109.6
C4—S1—Cu194.5 (5)S2—C6—H6A109.6
C5—S2—C6104.7 (7)C7—C6—H6B109.6
C5—S2—Cu198.8 (5)S2—C6—H6B109.6
C6—S2—Cu1105.0 (5)H6A—C6—H6B108.1
C7—S3—C8102.8 (6)C6—C7—S3117.8 (10)
C7—S3—Cu2106.0 (4)C6—C7—H7A107.9
C8—S3—Cu2105.2 (5)S3—C7—H7A107.9
C1—N1—C2116.6 (10)C6—C7—H7B107.9
C1—N1—Cu1124.9 (9)S3—C7—H7B107.9
C2—N1—Cu1118.5 (8)H7A—C7—H7B107.2
N1—C1—C2iii122.1 (12)C1—C8—S3113.2 (9)
N1—C1—C8117.1 (11)C1—C8—H8A108.9
C2iii—C1—C8120.8 (11)S3—C8—H8A108.9
N1—C2—C1iii121.3 (11)C1—C8—H8B108.9
N1—C2—C3117.9 (11)S3—C8—H8B108.9
C1iii—C2—C3120.7 (12)H8A—C8—H8B107.7
C2—N1—C1—C2iii0.0 (19)Cu1—S1—C4—C552.9 (10)
Cu1—N1—C1—C2iii179.6 (9)S1—C4—C5—S262.8 (12)
C2—N1—C1—C8177.4 (10)C6—S2—C5—C474.9 (11)
Cu1—N1—C1—C83.0 (15)Cu1—S2—C5—C433.3 (10)
C1—N1—C2—C1iii0.0 (19)C5—S2—C6—C7176.2 (10)
Cu1—N1—C2—C1iii179.6 (9)Cu1—S2—C6—C772.6 (10)
C1—N1—C2—C3179.3 (11)S2—C6—C7—S3121.3 (9)
Cu1—N1—C2—C30.3 (15)C8—S3—C7—C678.8 (11)
N1—C2—C3—S118.3 (17)Cu2—S3—C7—C6171.0 (9)
C1iii—C2—C3—S1162.3 (10)N1—C1—C8—S3103.2 (11)
C4—S1—C3—C272.6 (13)C2iii—C1—C8—S374.2 (14)
Cu1—S1—C3—C223.2 (12)C7—S3—C8—C196.8 (10)
C3—S1—C4—C5150.3 (10)Cu2—S3—C8—C1152.4 (8)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+2, y, z; (iv) x1, y, z.
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel .

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAssoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020a). Acta Cryst. E76, 977–983.  CrossRef IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020b). IUCrData, 5, x200467.  Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020c). IUCrData, 5, x200401.  Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020d). Acta Cryst. E76, 539–546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCasabo, J., Flor, T., Hill, M. N. S., Jenkins, H. A., Lockhart, J. C., Loeb, S. J., Romero, I. & Teixidor, F. (1995). Inorg. Chem. 34, 5410–5415.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroot, B. de, Hanan, G. S. & Loeb, S. J. (1991). Inorg. Chem. 30, 4644–4647.  Google Scholar
First citationGroot, B. de & Loeb, S. J. (1990). Inorg. Chem. 29, 4084–4090.  Google Scholar
First citationLinden, A. (2020). Acta Cryst. E76, 765–775.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMasci, B. & Thuéry, P. (2008). Cryst. Growth Des. 8, 1689–1696.  Web of Science CSD CrossRef CAS Google Scholar
First citationNawrot, I., Machura, B. & Kruszynski, R. (2015). CrystEngComm, 17, 830–845.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuellette, W., Burkholder, E., Manzar, S., Bewley, L., Rarig, R. S. & Zubieta, J. (2004). Solid State Sci. 6, 77–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1997). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWang, T., Huang, K., Peng, M., Li, X., Han, D., Jing, L. & Qin, D. (2019). CrystEngComm, 21, 494–501.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, F., Yan, P., Li, H., Zou, X., Hou, G. & Li, G. (2014). Dalton Trans. 43, 12574–12581.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds