research communications
Crystal structures of [(μ2-L1)dibromidodicopper(II)] dibromide and poly[[(μ2-L1)diiodidodicopper(I)]-di-μ-iodido-dicopper(I)], where L1 is 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane
aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The reaction of the hexathiapyrazinophane ligand, 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane (L1), with copper(II) dibromide led to the formation of a binuclear complex, [μ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide, [Cu2Br2(C16H24N2S6)]Br2, (I). The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. The ligand coordinates to the copper(II) atom in a bis-tetradentate manner and the copper atom has a fivefold NS3Br coordination environment with a distorted shape. The reaction of ligand L1 with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer, poly[[μ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-μ-iodido-tetracopper(I)], [Cu4I4(C16H24N2S6)]n, (II). The binuclear unit possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The Cu2I2 unit is also located about an inversion center. The two independent copper(I) atoms are both fourfold coordinate. That coordinating to the ligand L1 in a bis-tridentate manner has an NS2I coordination environment and an irregular shape, while the second copper(I) atom, where L1 coordinates in a bis-monodentate manner, has an SI3 coordination environment with an almost perfect tetrahedral geometry. In the crystal of I, the cations and Br− anions are linked by a number of C—H⋯S and C—H⋯Br hydrogen bonds, forming a supramolecular network. In the crystal of II, the two-dimensional coordination polymers lie parallel to the ab plane and there are no significant inter-layer contacts present.
1. Chemical context
Tetrasubstituted pyrazines are interesting ligands for the formation of multi-dimensional coordination polymers and metal-organic frameworks: for example, tetra-2-pyridylpyrazine (Ouellette et al., 2004; Nawrot et al., 2015) and pyrazinetetracarboxylic acid (Masci & Thuéry, 2008; Zhang et al., 2014). In recent years a new ligand, 2,3,5,6-(4-carboxyl-tetraphenyl)pyrazine, has been used successfully to form a number of metal–organic frameworks (Wang et al., 2019).
A number of such ligands involving Npyrazine and S coordination sites have been synthesized and their coordination behaviour with transition metals investigated (Assoumatine, 1999). The title ligand, L1 (Assoumatine & Stoeckli-Evans, 2020a), is the third in a series of pyrazinethiophane ligands that have been shown to form chains, networks and frameworks with copper halides (Assoumatine, 1999), especially with CuI. For example, ligand L2, 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine, when reacted with CuI formed a two-dimensional coordination polymer, poly[[μ4-3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine]di-iodido-dicopper(I)] (Fig. 1a; Assoumatine & Stoeckli-Evans, 2020b). Ligand L3, 5,7-dihydro-1H,3H-dithieno[3,4-b:30,40-e]pyrazine, when reacted with CuI formed a three-dimensional coordination polymer, poly[(μ4-5,7-dihydro-1H,3H-dithieno[3,4-b:3′,4′-e]pyrazine-κ4N:N′:S:S′)tetra-μ3-iodidotetracopper] (Fig. 1b; Assoumatine & Stoeckli-Evans, 2020c). Interestingly, in compound CuI-L2 the copper atom does not coordinate to the pyrazine N atom, whereas in compound CuI-L3 one of the two independent copper atoms does coordinate to the pyrazine N atom. Herein, we report on the results of the reactions of ligand L1 with CuBr2 and CuI, where in both cases the pyrazine N atom is involved in coordination to the copper(II) and copper(I) atoms, respectively.
2. Structural commentary
The reaction of the hexathiapyrazinophane ligand, 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane (L1), with copper(II) dibromide led to the formation of a binuclear complex, [(μ2-L1)dibromodo dicopper(II)] dibromide, (I); see Fig. 2. The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. Selected bond distances and angles are given in Table 1. The ligand coordinates to the copper(II) atoms in a bis-tetradentate manner. The symmetry related Cu atoms have a fivefold NS3Br coordination environment with a distorted shape, as indicated by the fivefold index parameter τ5 of 0.38 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal–pyramidal coordination sphere; Addison et al., 1984). There are four five-membered chelate rings; Cu1/N1/C2/C3/S1 and Cu1/N1/C1/C8/S3 which are inclined by ca 90° to chelate rings Cu1/S1/C4/C5/S2 and Cu1/S2/C6/C7/S3 (Fig. 2).
|
Reaction of L1 with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer, poly-[(μ2-L1)diiodidodicopper(I)di(μ-iodido)dicopper(I)], (II); see Fig. 3. The binuclear complex possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The Cu2I2 unit is also located about an inversion center. Selected bond distances and angles are given in Table 2. The two independent copper(I) atoms, Cu1 and Cu2, are both fourfold coordinate. Atom Cu1 coordinates to the ligand L1 in a tridentate fashion and has an NS2I coordination environment. The fourfold index parameter τ4 is 0.77 indicating a very irregular shape (τ4 = 1 for a perfect tetrahedral environment, 0 for a perfect square-planar environment and 0.85 for a perfect trigonal–pyramidal environment; Yang et al., 2007). There are three chelate rings, two of which are five-membered (Cu1/N1/C2/C3/S1 and Cu1/S1/C4/C5/S2) and one eight-membered (Cu1/N1/C1/C8/S3/C7/C6/S2). The second copper(I) atom, Cu2, coordinates to L1 in a monodentate fashion and has an SI3 environment with an almost perfect tetrahedral geometry; here the fourfold index parameter τ4 is 0.91.
The Cu1—N1 bond lengths in the two complexes, 2.046 (6) Å in I and 2.095 (10) Å in II, are significantly different (Linden, 2020). They have a difference of 0.049 (12) Å so differ by 4.1σ (i.e., 0.049 Å = 0.012 Å × 4.1). In I, the bond length Cu1—S2 of 2.455 (2) Å is significantly longer than bond lengths Cu1—S1 [2.346 (2) Å] and Cu1—S3 [2.333 (2) Å]. In II, bond lengths Cu1—S1 and Cu1—S2, involving the five-membered chelate rings, viz. 2.342 (4) and 2.331 (4) Å, respectively, are similar to those in I, while bond length Cu2—S3 [2.359 (4) Å] is only slightly longer. The bridging Cu2—Cu2i distance in the Cu2I2 unit in II is 2.663 (4) Å (Table 2), considerably shorter than the same distance observed in complex CuI-L2 [2.776 (1) Å] [Fig. 1a; Assoumatine & Stoeckli-Evans, 2020b].
3. Supramolecular features
In the crystal of I, the cations are linked by pairs of C6—H6B⋯S1i hydrogen bonds to form chains along the a-axis direction. Chains are also formed along the b-axis direction via C5—H5A⋯S3ii hydrogen bonds (Table 3). These interactions result in the formation of a supramolecular network that lies parallel to the ab plane (Fig. 4). There are also a large number of C—H⋯Br contacts present involving the anion, Br2−, strengthening the supramolecular network (Fig. 5 and Table 3). There are no significant inter-layer contacts present in the crystal.
|
In the crystal of II, the two-dimensional coordination polymers lie parallel to the (001) plane, as shown in Fig. 6. There are no significant inter-layer contacts present in the crystal (Fig. 7).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016) for tri- or hexa-thiabenzenophane ligands gave only three hits. They include the trithiabenzenophane ligand, 2,5,8-trithia(9)-m-benzenophane (CSD refcode VEYNES; Groot & Loeb, 1990), and a palladium and a silver complex of the same ligand, viz. dichloro[2,5,8-trithia(9)-m-benzenophane]palladium(II) (KOMNOP; Groot et al., 1991), a mononuclear complex, and poly[[2,5,8-trithia(9)-m-cyclophane-S,S′,S′′]silver(I) trifluoromethylsulfonate acetonitrile solvate] (ZIDPEH; Casabo et al., 1995), a two-dimensional coordination polymer. In KOMNOP, the ligand coordinates in a bidentate manner. The palladium(II) atom is fourfold S2Cl2 coordinate with a square-planar environment (index parameter τ4 is 0.04), In ZIDPEH, the ligand coordinates in a bridging μ3-monodentate manner. The silver(I) atom is fivefold NOS3 coordinate with an irregular shape (index parameter τ5 is 0.56).
A search for benzenophane ligands similar to L2 and L3 gave zero hits for L2 and ten hits for L3. The latter compounds have been compared in a recent article (Assoumatine & Stoeckli-Evans, 2020d), which also describes the syntheses and crystal structures of both L2 and L3.
5. Synthesis and crystallization
The synthesis and L1), have been reported (Assoumatine & Stoeckli-Evans, 2020a).
of the ligand 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane (Synthesis of complex [(μ2-L1)dibromodo dicopper(II)] dibromide (I): A solution of L1 (15 mg, 0.03 mmol) in CHCl3 (10 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of CuBr2 (7 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least 3 weeks, whereupon brown crystals of complex I were isolated in the buffer zone.
Synthesis of complex poly-[(μ2-L1)diiodido-dicopper(I)-di(μ-iodido)-dicopper(I)] (II): A solution of L1 (15 mg, 0.03 mmol) in CH2Cl2 (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. A solution of CuI (6 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed under an atmosphere of nitrogen and left in the dark at room temperature for at least 3 weeks, whereupon small orange crystals of complex II were isolated in the buffer zone.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were included in calculated positions and treated as riding on their parent atoms: C—H = 0.98 Å for I and 0.97 Å for II, with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 4
|
Intensity data were measured using a STOE IPDS-1 one-circle diffractometer. For the triclinic system often only 93% of the I and II are given. This involves 145 random reflections out of the expected 2336 for the IUCr cutoff limit of sin θ/λ = 0.60 for I, and 155 random reflections out of the expected 2600 reflections for II. The residual electron-density peaks are approximately 1Å from the halogen atoms in both structures.
is accessible, which explains why the alerts diffrn_reflns_laue_measured_fraction_full value (0.94) below minimum (0.95) for both compoundsSupporting information
https://doi.org/10.1107/S2056989020007161/pk2634sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007161/pk2634Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020007161/pk2634IIsup3.hkl
For both structures, data collection: EXPOSE in IPDS-I (Stoe & Cie, 1997); cell
CELL in IPDS-I (Stoe & Cie, 1997); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).[Cu2Br2(C16H24N2S6)]Br2 | Z = 1 |
Mr = 883.45 | F(000) = 428 |
Triclinic, P1 | Dx = 2.264 Mg m−3 |
a = 7.2090 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.1422 (8) Å | Cell parameters from 5000 reflections |
c = 12.3904 (14) Å | θ = 2.7–25.8° |
α = 71.842 (12)° | µ = 8.30 mm−1 |
β = 74.702 (12)° | T = 223 K |
γ = 72.694 (12)° | Plate, brown |
V = 647.93 (13) Å3 | 0.20 × 0.20 × 0.03 mm |
STOE IPDS 1 diffractometer | 2320 independent reflections |
Radiation source: fine-focus sealed tube | 1843 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.076 |
φ rotation scans | θmax = 25.8°, θmin = 2.7° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −8→8 |
Tmin = 0.421, Tmax = 1.000 | k = −9→9 |
5057 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.1019P)2] where P = (Fo2 + 2Fc2)/3 |
2320 reflections | (Δ/σ)max < 0.001 |
106 parameters | Δρmax = 1.65 e Å−3 |
0 restraints | Δρmin = −1.67 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.19307 (12) | 0.19827 (12) | 0.45400 (7) | 0.0328 (3) | |
Cu1 | 0.38840 (13) | 0.35871 (11) | 0.29477 (7) | 0.0163 (3) | |
S1 | 0.1670 (3) | 0.6379 (2) | 0.28528 (15) | 0.0215 (4) | |
S2 | 0.6115 (3) | 0.4639 (2) | 0.36310 (15) | 0.0197 (4) | |
S3 | 0.6481 (3) | 0.1120 (2) | 0.27313 (15) | 0.0175 (4) | |
N1 | 0.4546 (9) | 0.4439 (7) | 0.1184 (5) | 0.0156 (7) | |
C1 | 0.5922 (11) | 0.3381 (9) | 0.0573 (6) | 0.0156 (7) | |
C2 | 0.3618 (10) | 0.6046 (9) | 0.0628 (6) | 0.0156 (7) | |
C3 | 0.2054 (11) | 0.7229 (9) | 0.1295 (6) | 0.0202 (16) | |
H3A | 0.080095 | 0.744824 | 0.104611 | 0.024* | |
H3B | 0.240502 | 0.837592 | 0.109580 | 0.024* | |
C4 | 0.3042 (11) | 0.7561 (10) | 0.3270 (6) | 0.0213 (9) | |
H4A | 0.262709 | 0.883424 | 0.290981 | 0.026* | |
H4B | 0.267942 | 0.739951 | 0.411020 | 0.026* | |
C5 | 0.5303 (11) | 0.6978 (9) | 0.2940 (6) | 0.0156 (7) | |
H5A | 0.592228 | 0.768345 | 0.318918 | 0.019* | |
H5B | 0.570091 | 0.717761 | 0.209820 | 0.019* | |
C6 | 0.8280 (12) | 0.3836 (9) | 0.2624 (6) | 0.0213 (9) | |
H6A | 0.808898 | 0.438922 | 0.182395 | 0.026* | |
H6B | 0.945536 | 0.410333 | 0.272072 | 0.026* | |
C7 | 0.8506 (11) | 0.1809 (9) | 0.2918 (7) | 0.0223 (16) | |
H7A | 0.867485 | 0.130400 | 0.372431 | 0.027* | |
H7B | 0.971846 | 0.130109 | 0.243159 | 0.027* | |
C8 | 0.6904 (12) | 0.1574 (9) | 0.1173 (6) | 0.0213 (9) | |
H8A | 0.833237 | 0.139237 | 0.087755 | 0.026* | |
H8B | 0.644904 | 0.070380 | 0.097392 | 0.026* | |
Br2 | 0.21653 (11) | 0.20772 (10) | 0.02398 (7) | 0.0267 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0270 (5) | 0.0335 (5) | 0.0267 (5) | −0.0116 (4) | −0.0043 (3) | 0.0114 (3) |
Cu1 | 0.0194 (5) | 0.0085 (5) | 0.0194 (5) | −0.0036 (4) | −0.0032 (4) | −0.0013 (3) |
S1 | 0.0215 (10) | 0.0172 (10) | 0.0201 (9) | 0.0018 (8) | −0.0013 (7) | −0.0053 (7) |
S2 | 0.0281 (10) | 0.0115 (9) | 0.0223 (9) | −0.0028 (8) | −0.0095 (8) | −0.0060 (7) |
S3 | 0.0270 (10) | 0.0051 (8) | 0.0195 (8) | −0.0025 (8) | −0.0085 (7) | 0.0005 (6) |
N1 | 0.0223 (18) | 0.0065 (15) | 0.0219 (16) | −0.0034 (14) | −0.0088 (13) | −0.0053 (12) |
C1 | 0.0223 (18) | 0.0065 (15) | 0.0219 (16) | −0.0034 (14) | −0.0088 (13) | −0.0053 (12) |
C2 | 0.0223 (18) | 0.0065 (15) | 0.0219 (16) | −0.0034 (14) | −0.0088 (13) | −0.0053 (12) |
C3 | 0.029 (4) | 0.012 (4) | 0.014 (3) | 0.008 (3) | −0.007 (3) | −0.006 (3) |
C4 | 0.031 (3) | 0.011 (2) | 0.022 (2) | −0.002 (2) | −0.0101 (19) | −0.0047 (17) |
C5 | 0.0223 (18) | 0.0065 (15) | 0.0219 (16) | −0.0034 (14) | −0.0088 (13) | −0.0053 (12) |
C6 | 0.031 (3) | 0.011 (2) | 0.022 (2) | −0.002 (2) | −0.0101 (19) | −0.0047 (17) |
C7 | 0.024 (4) | 0.011 (4) | 0.035 (4) | 0.002 (3) | −0.020 (3) | −0.004 (3) |
C8 | 0.031 (3) | 0.011 (2) | 0.022 (2) | −0.002 (2) | −0.0101 (19) | −0.0047 (17) |
Br2 | 0.0247 (4) | 0.0210 (4) | 0.0385 (5) | −0.0073 (4) | −0.0041 (3) | −0.0127 (3) |
Cu1—N1 | 2.046 (6) | C2—C3 | 1.497 (9) |
Cu1—S1 | 2.346 (2) | C3—H3A | 0.9800 |
Cu1—S2 | 2.4549 (18) | C3—H3B | 0.9800 |
Cu1—S3 | 2.333 (2) | C4—C5 | 1.536 (10) |
Cu1—Br1 | 2.3672 (11) | C4—H4A | 0.9800 |
S1—C3 | 1.811 (7) | C4—H4B | 0.9800 |
S1—C4 | 1.822 (7) | C5—H5A | 0.9800 |
S2—C6 | 1.815 (8) | C5—H5B | 0.9800 |
S2—C5 | 1.814 (7) | C6—C7 | 1.542 (9) |
S3—C7 | 1.802 (7) | C6—H6A | 0.9800 |
S3—C8 | 1.808 (7) | C6—H6B | 0.9800 |
N1—C1 | 1.342 (9) | C7—H7A | 0.9800 |
N1—C2 | 1.340 (9) | C7—H7B | 0.9800 |
C1—C2i | 1.394 (10) | C8—H8A | 0.9800 |
C1—C8 | 1.482 (11) | C8—H8B | 0.9800 |
N1—Cu1—S1 | 85.26 (18) | S1—C3—H3B | 108.4 |
N1—Cu1—S3 | 85.38 (18) | H3A—C3—H3B | 107.5 |
S3—Cu1—S1 | 168.54 (7) | C5—C4—S1 | 115.1 (5) |
N1—Cu1—Br1 | 145.45 (15) | C5—C4—H4A | 108.5 |
S1—Cu1—Br1 | 96.48 (6) | S1—C4—H4A | 108.5 |
S3—Cu1—Br1 | 94.97 (6) | C5—C4—H4B | 108.5 |
N1—Cu1—S2 | 104.48 (15) | S1—C4—H4B | 108.5 |
S1—Cu1—S2 | 88.79 (7) | H4A—C4—H4B | 107.5 |
S3—Cu1—S2 | 87.17 (7) | C4—C5—S2 | 109.4 (4) |
Br1—Cu1—S2 | 110.05 (6) | C4—C5—H5A | 109.8 |
C3—S1—C4 | 102.4 (3) | S2—C5—H5A | 109.8 |
C3—S1—Cu1 | 98.5 (2) | C4—C5—H5B | 109.8 |
C4—S1—Cu1 | 101.4 (3) | S2—C5—H5B | 109.8 |
C6—S2—C5 | 104.4 (3) | H5A—C5—H5B | 108.3 |
C6—S2—Cu1 | 93.8 (2) | C7—C6—S2 | 105.4 (5) |
C5—S2—Cu1 | 96.5 (2) | C7—C6—H6A | 110.7 |
C7—S3—C8 | 100.9 (4) | S2—C6—H6A | 110.7 |
C7—S3—Cu1 | 101.0 (2) | C7—C6—H6B | 110.7 |
C8—S3—Cu1 | 97.8 (3) | S2—C6—H6B | 110.7 |
C1—N1—C2 | 119.4 (6) | H6A—C6—H6B | 108.8 |
C1—N1—Cu1 | 119.9 (5) | C6—C7—S3 | 115.5 (5) |
C2—N1—Cu1 | 120.7 (5) | C6—C7—H7A | 108.4 |
N1—C1—C2i | 120.2 (7) | S3—C7—H7A | 108.4 |
N1—C1—C8 | 119.9 (6) | C6—C7—H7B | 108.4 |
C2i—C1—C8 | 119.9 (6) | S3—C7—H7B | 108.4 |
N1—C2—C1i | 120.4 (6) | H7A—C7—H7B | 107.5 |
N1—C2—C3 | 120.1 (6) | C1—C8—S3 | 115.4 (5) |
C1i—C2—C3 | 119.5 (7) | C1—C8—H8A | 108.4 |
C2—C3—S1 | 115.3 (5) | S3—C8—H8A | 108.4 |
C2—C3—H3A | 108.4 | C1—C8—H8B | 108.4 |
S1—C3—H3A | 108.4 | S3—C8—H8B | 108.4 |
C2—C3—H3B | 108.4 | H8A—C8—H8B | 107.5 |
C2—N1—C1—C2i | 0.2 (10) | Cu1—S1—C4—C5 | 30.4 (6) |
Cu1—N1—C1—C2i | −179.9 (4) | S1—C4—C5—S2 | −59.9 (6) |
C2—N1—C1—C8 | −177.6 (5) | C6—S2—C5—C4 | 148.0 (5) |
Cu1—N1—C1—C8 | 2.3 (8) | Cu1—S2—C5—C4 | 52.4 (4) |
C1—N1—C2—C1i | −0.2 (10) | C5—S2—C6—C7 | −158.1 (5) |
Cu1—N1—C2—C1i | 179.9 (4) | Cu1—S2—C6—C7 | −60.3 (5) |
C1—N1—C2—C3 | 178.9 (6) | S2—C6—C7—S3 | 62.3 (6) |
Cu1—N1—C2—C3 | −1.0 (8) | C8—S3—C7—C6 | 74.9 (6) |
N1—C2—C3—S1 | 3.6 (8) | Cu1—S3—C7—C6 | −25.4 (6) |
C1i—C2—C3—S1 | −177.3 (5) | N1—C1—C8—S3 | −11.6 (8) |
C4—S1—C3—C2 | 99.9 (5) | C2i—C1—C8—S3 | 170.6 (5) |
Cu1—S1—C3—C2 | −3.8 (5) | C7—S3—C8—C1 | −89.9 (6) |
C3—S1—C4—C5 | −71.0 (6) | Cu1—S3—C8—C1 | 13.0 (5) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···S1ii | 0.98 | 2.85 | 3.753 (9) | 154 |
C5—H5A···S3iii | 0.98 | 2.81 | 3.634 (8) | 143 |
C3—H3A···Br2iv | 0.98 | 2.86 | 3.814 (8) | 165 |
C3—H3B···Br2iii | 0.98 | 2.83 | 3.770 (7) | 160 |
C5—H5B···Br2i | 0.98 | 2.87 | 3.821 (7) | 164 |
C7—H7B···Br2ii | 0.98 | 2.82 | 3.646 (8) | 142 |
C8—H8A···Br2ii | 0.98 | 2.84 | 3.769 (9) | 159 |
C8—H8B···Br2v | 0.98 | 2.89 | 3.713 (7) | 142 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) −x, −y+1, −z; (v) −x+1, −y, −z. |
[Cu4I4(C16H24N2S6)] | Z = 1 |
Mr = 1198.49 | F(000) = 558 |
Triclinic, P1 | Dx = 2.777 Mg m−3 |
a = 7.7713 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.9456 (9) Å | Cell parameters from 4652 reflections |
c = 11.2464 (14) Å | θ = 2.0–25.8° |
α = 106.839 (13)° | µ = 7.69 mm−1 |
β = 104.644 (13)° | T = 293 K |
γ = 93.412 (12)° | Plate, orange |
V = 716.53 (15) Å3 | 0.30 × 0.20 × 0.05 mm |
STOE IPDS 1 diffractometer | 2505 independent reflections |
Radiation source: fine-focus sealed tube | 1698 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.100 |
φ rotation scans | θmax = 25.5°, θmin = 2.4° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −9→9 |
Tmin = 0.435, Tmax = 1.000 | k = −10→10 |
5260 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.183 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.110P)2] where P = (Fo2 + 2Fc2)/3 |
2505 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 2.25 e Å−3 |
0 restraints | Δρmin = −2.58 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.73534 (12) | 0.70224 (11) | 0.11663 (9) | 0.0396 (3) | |
I2 | 0.34990 (12) | 0.56223 (11) | 0.29340 (9) | 0.0370 (3) | |
Cu1 | 1.2404 (2) | 0.2890 (2) | 0.28830 (16) | 0.0332 (4) | |
Cu2 | 0.5027 (2) | 0.4653 (2) | 0.10778 (18) | 0.0415 (5) | |
S1 | 1.3999 (4) | 0.0851 (4) | 0.3255 (3) | 0.0326 (8) | |
S2 | 1.1079 (5) | 0.2923 (4) | 0.4531 (3) | 0.0349 (8) | |
S3 | 0.6749 (4) | 0.2663 (4) | 0.1450 (3) | 0.0296 (7) | |
N1 | 1.0914 (12) | 0.1189 (12) | 0.1149 (10) | 0.025 (2) | |
C1 | 0.9371 (16) | 0.1373 (15) | 0.0368 (12) | 0.0238 (18) | |
C2 | 1.1538 (15) | −0.0213 (15) | 0.0762 (11) | 0.0238 (18) | |
C3 | 1.3271 (19) | −0.0448 (18) | 0.1606 (13) | 0.038 (3) | |
H3A | 1.421167 | −0.033142 | 0.120089 | 0.046* | |
H3B | 1.314897 | −0.152610 | 0.162526 | 0.046* | |
C4 | 1.2385 (17) | 0.0077 (18) | 0.3947 (13) | 0.035 (3) | |
H4A | 1.126049 | −0.037376 | 0.327911 | 0.042* | |
H4B | 1.284935 | −0.075140 | 0.427765 | 0.042* | |
C5 | 1.206 (2) | 0.1374 (18) | 0.5023 (14) | 0.039 (2) | |
H5A | 1.319763 | 0.181893 | 0.567821 | 0.047* | |
H5B | 1.127970 | 0.092387 | 0.541897 | 0.047* | |
C6 | 0.8751 (19) | 0.2106 (18) | 0.3709 (14) | 0.039 (2) | |
H6A | 0.868179 | 0.113955 | 0.301594 | 0.047* | |
H6B | 0.817806 | 0.185297 | 0.431304 | 0.047* | |
C7 | 0.7789 (16) | 0.3263 (16) | 0.3162 (12) | 0.030 (2) | |
H7A | 0.864140 | 0.420800 | 0.338968 | 0.036* | |
H7B | 0.686666 | 0.355435 | 0.359299 | 0.036* | |
C8 | 0.8623 (16) | 0.2892 (16) | 0.0814 (13) | 0.030 (2) | |
H8A | 0.824277 | 0.329504 | 0.008985 | 0.036* | |
H8B | 0.956964 | 0.366690 | 0.147795 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0407 (5) | 0.0292 (6) | 0.0494 (6) | 0.0003 (4) | 0.0136 (4) | 0.0134 (4) |
I2 | 0.0437 (5) | 0.0156 (5) | 0.0585 (6) | 0.0031 (4) | 0.0271 (4) | 0.0110 (4) |
Cu1 | 0.0348 (8) | 0.0176 (10) | 0.0487 (10) | 0.0019 (7) | 0.0144 (7) | 0.0110 (7) |
Cu2 | 0.0424 (10) | 0.0387 (12) | 0.0546 (12) | 0.0177 (8) | 0.0220 (8) | 0.0219 (9) |
S1 | 0.0277 (15) | 0.030 (2) | 0.0386 (18) | 0.0065 (13) | 0.0051 (13) | 0.0109 (15) |
S2 | 0.0374 (17) | 0.025 (2) | 0.042 (2) | 0.0028 (14) | 0.0146 (14) | 0.0084 (15) |
S3 | 0.0284 (15) | 0.0216 (19) | 0.045 (2) | 0.0109 (13) | 0.0161 (14) | 0.0138 (14) |
N1 | 0.025 (5) | 0.013 (6) | 0.042 (6) | 0.005 (4) | 0.017 (5) | 0.009 (4) |
C1 | 0.029 (4) | 0.014 (5) | 0.031 (5) | 0.007 (3) | 0.011 (4) | 0.009 (3) |
C2 | 0.029 (4) | 0.014 (5) | 0.031 (5) | 0.007 (3) | 0.011 (4) | 0.009 (3) |
C3 | 0.052 (8) | 0.022 (8) | 0.038 (8) | 0.021 (6) | 0.014 (6) | 0.002 (6) |
C4 | 0.030 (6) | 0.038 (9) | 0.046 (8) | 0.005 (6) | 0.012 (6) | 0.028 (7) |
C5 | 0.050 (6) | 0.027 (6) | 0.044 (6) | 0.005 (5) | 0.012 (5) | 0.018 (5) |
C6 | 0.050 (6) | 0.027 (6) | 0.044 (6) | 0.005 (5) | 0.012 (5) | 0.018 (5) |
C7 | 0.029 (5) | 0.024 (6) | 0.042 (5) | 0.013 (4) | 0.018 (4) | 0.011 (4) |
C8 | 0.029 (5) | 0.024 (6) | 0.042 (5) | 0.013 (4) | 0.018 (4) | 0.011 (4) |
Cu1—N1 | 2.095 (10) | C1—C2iii | 1.373 (17) |
Cu1—S1 | 2.342 (4) | C1—C8 | 1.511 (18) |
Cu1—S2 | 2.331 (4) | C2—C3 | 1.504 (19) |
Cu1—I2i | 2.5193 (18) | C3—H3A | 0.9700 |
Cu2—S3 | 2.359 (4) | C3—H3B | 0.9700 |
Cu2—I1 | 2.665 (2) | C4—C5 | 1.50 (2) |
Cu2—I2 | 2.6166 (19) | C4—H4A | 0.9700 |
I1—Cu2ii | 2.675 (2) | C4—H4B | 0.9700 |
Cu2—Cu2ii | 2.663 (4) | C5—H5A | 0.9700 |
S1—C3 | 1.803 (13) | C5—H5B | 0.9700 |
S1—C4 | 1.834 (13) | C6—C7 | 1.50 (2) |
S2—C5 | 1.779 (16) | C6—H6A | 0.9700 |
S2—C6 | 1.808 (14) | C6—H6B | 0.9700 |
S3—C7 | 1.793 (13) | C7—H7A | 0.9700 |
S3—C8 | 1.803 (12) | C7—H7B | 0.9700 |
N1—C1 | 1.346 (16) | C8—H8A | 0.9700 |
N1—C2 | 1.364 (16) | C8—H8B | 0.9700 |
N1—Cu1—S2 | 110.2 (3) | C2—C3—S1 | 116.7 (10) |
N1—Cu1—S1 | 85.3 (3) | C2—C3—H3A | 108.1 |
S2—Cu1—S1 | 91.74 (14) | S1—C3—H3A | 108.1 |
N1—Cu1—I2i | 121.1 (3) | C2—C3—H3B | 108.1 |
S2—Cu1—I2i | 112.48 (12) | S1—C3—H3B | 108.1 |
S1—Cu1—I2i | 130.61 (10) | H3A—C3—H3B | 107.3 |
S3—Cu2—I2 | 109.54 (11) | C5—C4—S1 | 110.1 (10) |
S3—Cu2—I1 | 105.86 (10) | C5—C4—H4A | 109.6 |
I2—Cu2—I1 | 109.04 (8) | S1—C4—H4A | 109.6 |
S3—Cu2—I1ii | 99.22 (11) | C5—C4—H4B | 109.6 |
I2—Cu2—I1ii | 112.01 (7) | S1—C4—H4B | 109.6 |
I1—Cu2—I1ii | 120.18 (7) | H4A—C4—H4B | 108.2 |
Cu2—I1—Cu2ii | 59.82 (7) | C4—C5—S2 | 114.4 (10) |
Cu1iv—I2—Cu2 | 94.93 (7) | C4—C5—H5A | 108.7 |
Cu2ii—Cu2—I1 | 60.27 (7) | S2—C5—H5A | 108.7 |
Cu2ii—Cu2—I1ii | 59.91 (7) | C4—C5—H5B | 108.7 |
S3—Cu2—Cu2ii | 115.75 (13) | S2—C5—H5B | 108.7 |
I2—Cu2—Cu2ii | 134.68 (11) | H5A—C5—H5B | 107.6 |
C3—S1—C4 | 100.9 (7) | C7—C6—S2 | 110.2 (10) |
C3—S1—Cu1 | 96.4 (5) | C7—C6—H6A | 109.6 |
C4—S1—Cu1 | 94.5 (5) | S2—C6—H6A | 109.6 |
C5—S2—C6 | 104.7 (7) | C7—C6—H6B | 109.6 |
C5—S2—Cu1 | 98.8 (5) | S2—C6—H6B | 109.6 |
C6—S2—Cu1 | 105.0 (5) | H6A—C6—H6B | 108.1 |
C7—S3—C8 | 102.8 (6) | C6—C7—S3 | 117.8 (10) |
C7—S3—Cu2 | 106.0 (4) | C6—C7—H7A | 107.9 |
C8—S3—Cu2 | 105.2 (5) | S3—C7—H7A | 107.9 |
C1—N1—C2 | 116.6 (10) | C6—C7—H7B | 107.9 |
C1—N1—Cu1 | 124.9 (9) | S3—C7—H7B | 107.9 |
C2—N1—Cu1 | 118.5 (8) | H7A—C7—H7B | 107.2 |
N1—C1—C2iii | 122.1 (12) | C1—C8—S3 | 113.2 (9) |
N1—C1—C8 | 117.1 (11) | C1—C8—H8A | 108.9 |
C2iii—C1—C8 | 120.8 (11) | S3—C8—H8A | 108.9 |
N1—C2—C1iii | 121.3 (11) | C1—C8—H8B | 108.9 |
N1—C2—C3 | 117.9 (11) | S3—C8—H8B | 108.9 |
C1iii—C2—C3 | 120.7 (12) | H8A—C8—H8B | 107.7 |
C2—N1—C1—C2iii | 0.0 (19) | Cu1—S1—C4—C5 | −52.9 (10) |
Cu1—N1—C1—C2iii | 179.6 (9) | S1—C4—C5—S2 | 62.8 (12) |
C2—N1—C1—C8 | 177.4 (10) | C6—S2—C5—C4 | 74.9 (11) |
Cu1—N1—C1—C8 | −3.0 (15) | Cu1—S2—C5—C4 | −33.3 (10) |
C1—N1—C2—C1iii | 0.0 (19) | C5—S2—C6—C7 | −176.2 (10) |
Cu1—N1—C2—C1iii | −179.6 (9) | Cu1—S2—C6—C7 | −72.6 (10) |
C1—N1—C2—C3 | 179.3 (11) | S2—C6—C7—S3 | 121.3 (9) |
Cu1—N1—C2—C3 | −0.3 (15) | C8—S3—C7—C6 | −78.8 (11) |
N1—C2—C3—S1 | 18.3 (17) | Cu2—S3—C7—C6 | 171.0 (9) |
C1iii—C2—C3—S1 | −162.3 (10) | N1—C1—C8—S3 | −103.2 (11) |
C4—S1—C3—C2 | 72.6 (13) | C2iii—C1—C8—S3 | 74.2 (14) |
Cu1—S1—C3—C2 | −23.2 (12) | C7—S3—C8—C1 | 96.8 (10) |
C3—S1—C4—C5 | −150.3 (10) | Cu2—S3—C8—C1 | −152.4 (8) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z; (iii) −x+2, −y, −z; (iv) x−1, y, z. |
Acknowledgements
HSE is grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel .
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland. Google Scholar
Assoumatine, T. & Stoeckli-Evans, H. (2020a). Acta Cryst. E76, 977–983. CrossRef IUCr Journals Google Scholar
Assoumatine, T. & Stoeckli-Evans, H. (2020b). IUCrData, 5, x200467. Google Scholar
Assoumatine, T. & Stoeckli-Evans, H. (2020c). IUCrData, 5, x200401. Google Scholar
Assoumatine, T. & Stoeckli-Evans, H. (2020d). Acta Cryst. E76, 539–546. Web of Science CSD CrossRef IUCr Journals Google Scholar
Casabo, J., Flor, T., Hill, M. N. S., Jenkins, H. A., Lockhart, J. C., Loeb, S. J., Romero, I. & Teixidor, F. (1995). Inorg. Chem. 34, 5410–5415. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Groot, B. de, Hanan, G. S. & Loeb, S. J. (1991). Inorg. Chem. 30, 4644–4647. Google Scholar
Groot, B. de & Loeb, S. J. (1990). Inorg. Chem. 29, 4084–4090. Google Scholar
Linden, A. (2020). Acta Cryst. E76, 765–775. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Masci, B. & Thuéry, P. (2008). Cryst. Growth Des. 8, 1689–1696. Web of Science CSD CrossRef CAS Google Scholar
Nawrot, I., Machura, B. & Kruszynski, R. (2015). CrystEngComm, 17, 830–845. Web of Science CSD CrossRef CAS Google Scholar
Ouellette, W., Burkholder, E., Manzar, S., Bewley, L., Rarig, R. S. & Zubieta, J. (2004). Solid State Sci. 6, 77–84. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (1997). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Wang, T., Huang, K., Peng, M., Li, X., Han, D., Jing, L. & Qin, D. (2019). CrystEngComm, 21, 494–501. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, F., Yan, P., Li, H., Zou, X., Hou, G. & Li, G. (2014). Dalton Trans. 43, 12574–12581. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.