research communications
and Hirshfeld surface analysis of 2-{[(4-iodophenyl)imino]methyl}-4-nitrophenol
aPG Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, Samsun, Turkey, cDepartment of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, 202002, UP, India, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Samsun, Turkey, and eDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com
The title compound, C13H9IN2O3, was synthesized by a condensation reaction between 2-hydroxy-5-nitrobenzaldehyde and 4-iodoaniline, and crystallizes in the orthorhombic Pna21. The 4-iodobenzene ring is inclined to the phenol ring by a dihedral angle of 39.1 (2)°. The configuration about the C=N double bond is E. The features C—H⋯O hydrogen-bonding interactions. A Hirshfeld surface analysis of the indicates that the most important contributions for the packing arrangement are O⋯H/H⋯O (26.9%) and H⋯H (22.0%) interactions.
Keywords: crystal structure; salicylaldehyde derivative; 4-iodoaniline; 2-hydroxy-5-nitrobenzaldehyde; hydrogen bonding.
CCDC reference: 1922980
1. Chemical context
Over the past 25 years, extensive research has been directed towards the synthesis and use of Schiff base compounds in organic and inorganic chemistry as they have important medicinal and pharmaceutical applications. These compounds exhibit biological activities, including antibacterial, antifungal, anticancer and herbicidal properties (Desai et al., 2001; Singh & Dash, 1988; Karia & Parsania, 1999). They may also show useful photochromic properties, leading to applications in various fields such as the measurement and control of radiation intensities in imaging systems and optical computers, electronics, optoelectronics and photonics (Iwan et al., 2007). derived from 2-hydroxy-5-nitrobenzaldehyde are widely used either as materials or as intermediates in explosives, dyestuffs, pesticides and organic synthesis (Yan et al., 2006). Intramolecular hydrogen-atom transfer (tautomerism) from the o-hydroxy group to the imine-N atom is of prime importance with respect to the solvato-, thermo- and photochromic properties of o-hydroxy (Filarowski, 2005; Hadjoudis & Mavridis 2004). Such proton-exchanging materials can be utilized for the design of various molecular electronic devices (Alarcón et al., 1999). The present work is a part of an ongoing structural study of and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2018), fluorescence sensors (Faizi et al., 2016; Mukherjee et al., 2018; Kumar et al., 2017; 2018) and non-linear optical properties (Faizi et al., 2020). We report herein the synthesis (from 2-hydroxy-5-nitrobenzaldehyde and 4-iodoaniline) and of the title compound (I), along with the findings of a Hirshfeld surface analysis.
2. Structural commentary
The molecular structure of compound (I) is shown in Fig. 1. An intramolecular O—H⋯N hydrogen bond is observed (Table 1 and Fig. 1). This is a relatively common feature in analogous imine–phenol compounds (see Database survey section). The imine group displays a C8—C7—N1—C4 torsion angle of 174.5 (6)°. The 4-iodobenzene ring (C1–C6) is inclined by a dihedral angle of 39.1 (2)° to the phenol ring (C8–C13), which renders the molecule non-planar. The configuration of the C7=N1 bond of this Schiff base is E, and the intramolecular O1—H1⋯N1 hydrogen bond forms an S(6) ring motif (Fig. 1 and Table 1). The 4-nitro group is slightly tilted away from co-planarity with the benzene ring to which it is attached [O2—N2—C10—C9 = −7.4 (10)° and O3—N2—C10—C11= −7.4 (10)°]. The C13—O1 distance [1.330 (7) Å] is close to normal for values reported for single C—O bonds in and salicylideneamines (Ozeryanskii et al., 2006). The N1=C7 bond is short at 1.264 (8) Å, indicative of double-bond character, while the long C7—C8 bond [1.444 (8) Å] implies a single bond. All these data support the existence of the phenol–imine tautomer for (I) in its crystalline state. These features are similar to those observed in related 4-dimethylamino-N-salicylideneanilines (Filipenko et al., 1983; Aldoshin et al., 1984; Wozniak et al., 1995; Pizzala et al., 2000). The C—N, C=N and C—C bond lengths are normal and close to the values observed in related structures (Faizi et al., 2017a,b).
3. Supramolecular features
In the crystal packing of (I), the most important intermolecular interactions are weak C7—H7⋯O2i [symmetry code: (i) 1 − x, 1 − y, − + z] hydrogen bonds between screw-related molecules, which form helical chains propagating along the crystallographic screw axis parallel to c (Fig. 2, Table 1). The shortest intermolecular contact involving the iodine is 3.351 (5) Å, between glide-related molecules, I1⋯O1ii [symmetry code: (ii) x + , − y, −1 + z)], which makes a zigzag tape motif (Fig. 3). There are no other significant intermolecular interactions present in the crystal. The Hirshfeld surface analysis confirms the role of the C—H⋯O interactions in the packing arrangement.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal packing of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (i.e., in close contact) or longer than the van der Waals radii sum, respectively (Venkatesan et al., 2016). The two-dimensional finger print plots are depicted in Fig. 5. The O⋯H/H⋯O (26.9%) interactions form the majority of contacts, with H⋯H (22.0%) interactions representing the next highest contribution. The percentage contributions of other interactions are: I⋯H/H⋯I (16.3%), C⋯H/H⋯C (10.5%), C⋯C (8.7%), O⋯C/C⋯O (4.7%), N⋯C/C⋯N (3.8%), I⋯C/C⋯I (2.3%), H⋯N/N⋯H (1.4%), I⋯O/O⋯I (2.0%), I⋯N/N⋯I (0.6%), I⋯I (0.5%), O⋯N/N⋯O (0.2%), N⋯N (0.1%) and O⋯O (0.1%).
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave 26 hits for the (E)-2-{[(4-iodophenyl)imino]methyl}-phenol fragment. Of these 26, the most similar to (I), are as follows. In p-iodo-N-(p-cyanobenzylidene)aniline (LALMEQ; Ojala et al., 1999), the OH group is absent and the NO2 group is replaced by a cyano group. In (E)-5-(diethylamino)-2-[(4-iodophenylimino)methyl]phenol (VEFPED; Kaştaş et al., 2012), the NO2 is replaced by an N,N diethyl group. In N-(3,5-di-tert-butylsalicylidene)-4-iodobenzene; (MILFET; Spangenberg et al., 2007), the NO2 group is absent but a pair of tBu groups occupy the 3,5 positions of the salicylidene group. In 2-{[(4-iodophenyl)imino]methyl}-6-methoxyphenol (SEDBIP; Carletta, et al., 2017), the NO2 group is absent and a methoxy group is ortho to the hydroxyl. Lastly, in N-(2-cyanobenzylidene)-4-iodoaniline (XOXKIF; Ojala et al., 1999) the NO2 is absent and the OH is replaced by cyano. All these compounds have an E configuration about the C=N bond and form the S(6) ring motif.
6. Synthesis and crystallization
The title compound was synthesized by condensation of 2-hydroxy-5-nitrobenzaldehyde (11.0 mg, 0.066 mmol) and 4-iodoaniline (14.4 mg, 0.066 mmol) in ethanol (15 ml). After the mixture had refluxed for about 15 h, the orange product was washed with ether and dried at room temperature (yield 60%, m.p. 484–486 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.
7. Refinement
Crystal data, data collection and structure . The OH hydrogen atoms and the C-bound H atoms were included in calculated positions and allowed to ride on the parent atoms: O—H = 0.82 Å, C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1922980
https://doi.org/10.1107/S2056989020008191/pk2635sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020008191/pk2635Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020008191/pk2635Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-SHAPE (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), XP in SHELXTL (Sheldrick, 2008).C13H9IN2O3 | Dx = 1.884 Mg m−3 |
Mr = 368.12 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 25449 reflections |
a = 12.8022 (4) Å | θ = 1.7–29.9° |
b = 24.4556 (9) Å | µ = 2.47 mm−1 |
c = 4.1459 (1) Å | T = 296 K |
V = 1298.02 (7) Å3 | Prism, colorless |
Z = 4 | 0.42 × 0.34 × 0.21 mm |
F(000) = 712 |
STOE IPDS 2 diffractometer | 2508 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2231 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.084 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 1.8° |
rotation method scans | h = −15→15 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −30→30 |
Tmin = 0.944, Tmax = 0.981 | l = −5→4 |
15403 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0632P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.81 e Å−3 |
2508 reflections | Δρmin = −0.25 e Å−3 |
173 parameters | Absolute structure: Flack x determined using 814 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.00 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.50544 (3) | 0.16672 (2) | −0.1482 (5) | 0.06914 (19) | |
O1 | 0.1141 (3) | 0.43513 (17) | 0.4285 (13) | 0.0721 (13) | |
H1 | 0.148899 | 0.407604 | 0.393280 | 0.108* | |
N1 | 0.2784 (3) | 0.37325 (18) | 0.4176 (13) | 0.0605 (13) | |
C8 | 0.2751 (4) | 0.4584 (2) | 0.6892 (16) | 0.0575 (13) | |
C1 | 0.4310 (5) | 0.2352 (2) | 0.0459 (14) | 0.0578 (12) | |
C9 | 0.3293 (4) | 0.4960 (2) | 0.875 (2) | 0.0614 (12) | |
H9 | 0.397472 | 0.488588 | 0.939016 | 0.074* | |
C13 | 0.1701 (4) | 0.4702 (2) | 0.6025 (17) | 0.0564 (12) | |
C11 | 0.1808 (4) | 0.5566 (2) | 0.870 (2) | 0.0688 (15) | |
H11 | 0.151047 | 0.589917 | 0.926484 | 0.083* | |
C6 | 0.3291 (5) | 0.2321 (2) | 0.1458 (18) | 0.0689 (16) | |
H6 | 0.293084 | 0.199177 | 0.130244 | 0.083* | |
C10 | 0.2824 (4) | 0.5444 (2) | 0.9636 (16) | 0.0618 (15) | |
O3 | 0.3034 (5) | 0.6282 (2) | 1.207 (2) | 0.120 (3) | |
N2 | 0.3421 (4) | 0.5833 (2) | 1.1596 (16) | 0.0751 (16) | |
C7 | 0.3254 (4) | 0.4086 (2) | 0.5862 (18) | 0.0592 (12) | |
H7 | 0.394439 | 0.402274 | 0.645609 | 0.071* | |
C3 | 0.4358 (5) | 0.3296 (2) | 0.1943 (18) | 0.0654 (15) | |
H3 | 0.472183 | 0.362411 | 0.211171 | 0.079* | |
C12 | 0.1245 (4) | 0.5192 (3) | 0.6944 (17) | 0.0655 (15) | |
H12 | 0.055800 | 0.526809 | 0.636953 | 0.079* | |
C2 | 0.4847 (4) | 0.2839 (3) | 0.067 (2) | 0.0679 (16) | |
H2 | 0.553487 | 0.286056 | −0.003196 | 0.082* | |
C4 | 0.3331 (4) | 0.3266 (2) | 0.2959 (17) | 0.0575 (15) | |
C5 | 0.2798 (4) | 0.2777 (2) | 0.2694 (15) | 0.0660 (18) | |
H5 | 0.210481 | 0.275532 | 0.335185 | 0.079* | |
O2 | 0.4261 (4) | 0.5694 (2) | 1.2640 (15) | 0.0946 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0821 (3) | 0.0597 (3) | 0.0656 (3) | 0.01321 (13) | −0.0044 (3) | −0.0083 (2) |
O1 | 0.0590 (19) | 0.063 (2) | 0.094 (4) | 0.0028 (16) | −0.007 (2) | −0.007 (2) |
N1 | 0.061 (2) | 0.051 (2) | 0.069 (4) | 0.0033 (17) | −0.004 (2) | 0.002 (2) |
C8 | 0.054 (3) | 0.052 (3) | 0.066 (4) | 0.002 (2) | 0.007 (3) | 0.004 (2) |
C1 | 0.071 (3) | 0.049 (3) | 0.054 (3) | 0.009 (2) | −0.006 (3) | 0.002 (2) |
C9 | 0.054 (2) | 0.060 (3) | 0.070 (4) | 0.0001 (18) | −0.001 (4) | −0.001 (3) |
C13 | 0.056 (3) | 0.049 (3) | 0.064 (3) | 0.001 (2) | 0.004 (3) | 0.003 (3) |
C11 | 0.067 (3) | 0.058 (3) | 0.081 (4) | 0.007 (2) | 0.022 (4) | 0.000 (4) |
C6 | 0.070 (3) | 0.054 (3) | 0.083 (5) | −0.002 (2) | −0.006 (3) | −0.007 (3) |
C10 | 0.064 (3) | 0.056 (3) | 0.066 (4) | −0.006 (2) | 0.010 (2) | −0.001 (2) |
O3 | 0.111 (4) | 0.077 (3) | 0.171 (8) | 0.001 (3) | −0.007 (4) | −0.049 (4) |
N2 | 0.074 (3) | 0.066 (3) | 0.085 (5) | −0.015 (2) | 0.014 (3) | −0.015 (3) |
C7 | 0.057 (3) | 0.052 (3) | 0.068 (3) | 0.004 (2) | −0.001 (3) | 0.008 (3) |
C3 | 0.068 (3) | 0.049 (3) | 0.079 (4) | −0.004 (2) | 0.001 (3) | −0.004 (2) |
C12 | 0.054 (3) | 0.061 (3) | 0.081 (4) | 0.006 (2) | 0.003 (3) | −0.001 (3) |
C2 | 0.059 (3) | 0.069 (4) | 0.075 (5) | 0.002 (2) | 0.005 (3) | 0.003 (4) |
C4 | 0.062 (2) | 0.046 (2) | 0.064 (5) | 0.0059 (19) | −0.005 (3) | 0.002 (2) |
C5 | 0.060 (3) | 0.060 (3) | 0.078 (5) | 0.003 (2) | −0.003 (3) | −0.005 (3) |
O2 | 0.072 (2) | 0.088 (3) | 0.124 (6) | −0.012 (2) | −0.008 (3) | −0.028 (3) |
I1—C1 | 2.089 (5) | C11—H11 | 0.9300 |
O1—C13 | 1.330 (7) | C6—C5 | 1.381 (8) |
O1—H1 | 0.8200 | C6—H6 | 0.9300 |
N1—C7 | 1.264 (8) | C10—N2 | 1.466 (8) |
N1—C4 | 1.430 (7) | O3—N2 | 1.220 (8) |
C8—C9 | 1.385 (9) | N2—O2 | 1.208 (8) |
C8—C13 | 1.421 (7) | C7—H7 | 0.9300 |
C8—C7 | 1.444 (8) | C3—C4 | 1.383 (8) |
C1—C6 | 1.371 (9) | C3—C2 | 1.385 (10) |
C1—C2 | 1.377 (9) | C3—H3 | 0.9300 |
C9—C10 | 1.377 (7) | C12—H12 | 0.9300 |
C9—H9 | 0.9300 | C2—H2 | 0.9300 |
C13—C12 | 1.388 (8) | C4—C5 | 1.381 (8) |
C11—C12 | 1.373 (10) | C5—H5 | 0.9300 |
C11—C10 | 1.389 (9) | ||
C13—O1—H1 | 109.5 | C11—C10—N2 | 120.2 (5) |
C7—N1—C4 | 120.5 (5) | O2—N2—O3 | 123.8 (6) |
C9—C8—C13 | 118.7 (5) | O2—N2—C10 | 118.8 (5) |
C9—C8—C7 | 120.1 (5) | O3—N2—C10 | 117.4 (6) |
C13—C8—C7 | 121.2 (5) | N1—C7—C8 | 121.9 (5) |
C6—C1—C2 | 120.2 (6) | N1—C7—H7 | 119.1 |
C6—C1—I1 | 120.4 (4) | C8—C7—H7 | 119.1 |
C2—C1—I1 | 119.4 (4) | C4—C3—C2 | 120.2 (5) |
C10—C9—C8 | 120.0 (5) | C4—C3—H3 | 119.9 |
C10—C9—H9 | 120.0 | C2—C3—H3 | 119.9 |
C8—C9—H9 | 120.0 | C11—C12—C13 | 120.0 (5) |
O1—C13—C12 | 118.6 (5) | C11—C12—H12 | 120.0 |
O1—C13—C8 | 121.1 (5) | C13—C12—H12 | 120.0 |
C12—C13—C8 | 120.2 (5) | C1—C2—C3 | 119.8 (6) |
C12—C11—C10 | 119.8 (5) | C1—C2—H2 | 120.1 |
C12—C11—H11 | 120.1 | C3—C2—H2 | 120.1 |
C10—C11—H11 | 120.1 | C5—C4—C3 | 119.4 (5) |
C1—C6—C5 | 120.1 (6) | C5—C4—N1 | 118.5 (5) |
C1—C6—H6 | 119.9 | C3—C4—N1 | 122.1 (5) |
C5—C6—H6 | 119.9 | C6—C5—C4 | 120.2 (5) |
C9—C10—C11 | 121.2 (6) | C6—C5—H5 | 119.9 |
C9—C10—N2 | 118.6 (5) | C4—C5—H5 | 119.9 |
C13—C8—C9—C10 | −1.8 (10) | C4—N1—C7—C8 | 174.5 (6) |
C7—C8—C9—C10 | 177.8 (7) | C9—C8—C7—N1 | 179.8 (6) |
C9—C8—C13—O1 | −179.1 (6) | C13—C8—C7—N1 | −0.5 (10) |
C7—C8—C13—O1 | 1.3 (9) | C10—C11—C12—C13 | −1.9 (11) |
C9—C8—C13—C12 | 2.0 (9) | O1—C13—C12—C11 | −179.1 (7) |
C7—C8—C13—C12 | −177.7 (6) | C8—C13—C12—C11 | −0.1 (10) |
C2—C1—C6—C5 | −0.2 (10) | C6—C1—C2—C3 | 0.9 (11) |
I1—C1—C6—C5 | −179.0 (5) | I1—C1—C2—C3 | 179.7 (6) |
C8—C9—C10—C11 | −0.1 (10) | C4—C3—C2—C1 | −0.7 (12) |
C8—C9—C10—N2 | −179.9 (6) | C2—C3—C4—C5 | 0.0 (11) |
C12—C11—C10—C9 | 2.1 (11) | C2—C3—C4—N1 | −177.7 (7) |
C12—C11—C10—N2 | −178.2 (7) | C7—N1—C4—C5 | 146.2 (7) |
C9—C10—N2—O2 | −7.4 (10) | C7—N1—C4—C3 | −36.1 (10) |
C11—C10—N2—O2 | 172.8 (7) | C1—C6—C5—C4 | −0.6 (10) |
C9—C10—N2—O3 | 172.4 (7) | C3—C4—C5—C6 | 0.7 (10) |
C11—C10—N2—O3 | −7.4 (10) | N1—C4—C5—C6 | 178.5 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.86 | 2.591 (6) | 148 |
C7—H7···O2i | 0.93 | 2.45 | 3.309 (8) | 154 |
Symmetry code: (i) −x+1, −y+1, z−1/2. |
Acknowledgements
The authors are grateful to the Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, India, for providing laboratory facilities.
Funding information
The authors thank the Faculty of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen for financial support. Funding for this research was provided by astart-up grant from the University Grants Commission (India).
References
Alarcón, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233–240. Web of Science CrossRef Google Scholar
Aldoshin, S. M., Atovmyan, L. O. & Ponomarev, V. I. (1984). Khim. Fiz. 3, 787–791. CAS Google Scholar
Carletta, A., Spinelli, F., d'Agostino, S., Ventura, B., Chierotti, M. R., Gobetto, R., Wouters, J. & Grepioni, F. (2017). Chem. Eur. J. 23, 5317–5329. CSD CrossRef CAS PubMed Google Scholar
Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90. CrossRef CAS Google Scholar
Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38–40. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464. Web of Science CSD CrossRef CAS Google Scholar
Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96–98. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039–464. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filarowski, A. (2005). J. Phys. Org. Chem. 18, 686–698. Web of Science CrossRef CAS Google Scholar
Filipenko, O. S., Ponomarev, V. I., Bolotin, B. M. & Atovmyan, L. O. (1983). Kristallografiya, 28, 889–895. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588. Web of Science PubMed CAS Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041. Web of Science CrossRef PubMed Google Scholar
Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995. CAS Google Scholar
Kaştaş, G., Albayrak, C., Odabaşoğlu, M. & Frank, R. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 94, 200–204. PubMed Google Scholar
Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899. Web of Science CrossRef CAS Google Scholar
Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21. Web of Science CSD CrossRef CAS Google Scholar
Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796. CAS Google Scholar
Ojala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (1999). J. Chem. Crystallogr. 29, 27–32. Web of Science CSD CrossRef CAS Google Scholar
Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790. Web of Science CSD CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spangenberg, A., Sliwa, M., Métivier, R., Dagnélie, R., Brosseau, A., Nakatani, K., Pansu, R. & Malfant, I. (2007). J. Phys. Org. Chem. 20, 992–997. CSD CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Wozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7–85. CSD CrossRef Google Scholar
Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141–148. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.