research communications
Crystallographic and spectroscopic characterization of racemic Mosher's Acid
aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu
The title compound, C10H9F3O3, represents the structure of racemic Mosher's Acid (systematic name: 3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid), a carboxylic acid that when resolved can be employed as a chiral derivatizing agent. The compound contains a carboxylic acid group, a methoxy group and a trifluoromethyl substituent on an asymmetric benzylic carbon atom. The two independent molecules in the form a non-centrosymmetric homochiral dimer via intermolecularly hydrogen-bonded head-to-tail dimers with graph-set notation R22(8) and donor–acceptor hydrogen-bonding distances of 2.6616 (13) and 2.6801 (13) Å.
CCDC reference: 2011722
1. Chemical context
The title compound, α-methoxy-α-trifluoromethylphenylacetic acid, or 3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid, MTPA (I) is commonly known as Mosher's Acid. Mosher's Acid is an aromatic compound in which an asymmetric benzylic carbon atom is specifically substituted with a carboxylic acid group, a methoxy group and a trifluoromethyl substituent. When resolved and in its acid chloride form, it has been shown to be useful as a chiral derivatizing agent (CDA) with natural organic compounds (Cimmino et al., 2017). Originally, Mosher's Acid chloride was used to convert a mixture of enantiomers of or into diastereomeric or respectively, in order to analyze the quantities of each enantiomer present within the sample by NMR (Dale et al., 1969), and also to elucidate the absolute stereochemistry of the starting material (Allen et al., 2008). Mosher's Acid has recently been used in NMR studies of the ring flip in the atrane cages of Group 14 metallatranes, where as an axial substituent it forces the Δ- and Λ-isomers to become diastereomeric (Glowacki et al., 2019). The synthesis of Mosher's Acid reported in early work converted phenyl trifluoromethyl ketone to α-trifluoromethylphenylacetonitrile with sodium cyanide and methyl sulfate followed by treatment with concentrated sulfuric acid to obtain the acid (Dale et al., 1969). More recently, Mosher's Acid was obtained by treatment of phenyl trifluoromethyl ketone with trimethylsilyl trichloroacetate followed by hydrolysis (Goldberg & Alper, 1992).
2. Structural commentary
The molecular structure of the title compound (Fig. 1) reveals that there are two independent molecules in the Each consists of a mono-substituted benzene ring including a methoxy group, a trifluoromethyl group, and a carboxylic acid on the asymmetric benzylic carbon atom. The molecules show slightly different conformations, specifically in regard to the disposition of the methoxy group. In the molecule with asymmetric carbon C11, the methoxy group is canted away from the phenyl ring, with a C15—C11—O3—C14 torsional angle of −175.55 (12)°. In the other molecule, the methoxy group is bent in, with a C25—C21—O6—C24 torsional angle of −51.12 (15)°.
3. Supramolecular features
Although the material is racemic, two independent molecules of the same , Fig. 2), with graph-set notation (8) and donor–acceptor hydrogen-bonding distances of 2.6616 (13) and 2.6801 (13) Å. The dimers further pack together via van der Waals interactions without any other notable intermolecular interactions such as π-stacking or fluorine–fluorine contacts less than the sum of the van der Waals radii. The hydrogen-bonded dimers stack along the crystallographic b-axis direction (Fig. 3).
are observed to hydrogen bond together into pairwise dimers (Table 1
|
4. Database survey
The Cambridge Structural Database (Version 5.40, update of March 2020; Groom et al., 2016) contains no structures of racemic or resolved Mosher's Acid itself. However, there are numerous structures of its carboxylate salts, and one example (UTUHUN) of the neutral acid co-crystallized with an imidazole (Tydlitát et al., 2010). In this example, the bond lengths about the asymmetric carbon atom are similar to those observed in (I), with C—CO2H = 1.547 (5), C—CF3 = 1.538 (6), C—CAr 1.519 (5) and C—OCH3 1.419 (5) Å, while the disposition of the methoxy group with a torsional angle of 170.02° is most similar to the unique molecule in (I) with asymmetric carbon atom C11.
5. Synthesis and crystallization
Racemic 3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid (99%) was purchased from Aldrich Chemical Company, USA, and was used as received.
6. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model with C—H = 0.95 and and 0.98 Å and Uiso(H) = 1.2 and 1.5 × Ueq(C) of the aryl and methyl C atoms, respectively. The positions of the carboxylic acid hydrogen atoms were found in the difference map and the atom refined semi-freely using a distance restraint d(O—H) = 0.84 Å, and Uiso(H) = 1.2 × Ueq(O).
details are summarized in Table 27. Analytical data
1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 3.57 (s, 3 H, OCH3), 7.42–7.46 (m, 3 H, CarylH), 7.57–7.61 (m, 2 H, CarylH), 9.8 (br s, 1 H, OH). 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 55.56 (s, CH3), 84.38 (q, JC–F = 28 Hz, C), 125.94 (q, JC–F = 292 Hz, CF3), 127.39 (s, CarylH), 128.68 (s, CarylH), 130.01 (s, CarylH), 131.08 (s, Caryl), 170.90 (s, COOH). IR (Thermo Nicolet iS50, ATR, cm−1): (3700–2700 v br, O—H str), 3069 (m, Caryl—H str), 2955 (m, Calkyl—H str), 2852 (m), 2642 (w), 1733 (v s, C=O str), 1499 (m), 1453 (m), 1408 (m), 1271 (s), 1170 (s), 1124 (s), 1082 (m), 1013 (s), 987 (m), 959 (m), 919 (w), 765 (m), 704 (s). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 248 amu, corresponding to the methyl ester of (I), prepared from the parent carboxylic acid using a literature procedure (Di Raddo, 1993).
Supporting information
CCDC reference: 2011722
https://doi.org/10.1107/S2056989020008403/pk2638sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020008403/pk2638Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020008403/pk2638Isup3.cml
Data collection: APEX2 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).C10H9F3O3 | F(000) = 960 |
Mr = 234.17 | Dx = 1.561 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5916 (6) Å | Cell parameters from 9803 reflections |
b = 9.2081 (5) Å | θ = 2.4–30.5° |
c = 20.9930 (12) Å | µ = 0.15 mm−1 |
β = 103.304 (1)° | T = 125 K |
V = 1992.47 (19) Å3 | Plate, colourless |
Z = 8 | 0.20 × 0.10 × 0.04 mm |
Bruker APEXII CCD diffractometer | 6071 independent reflections |
Radiation source: fine-focus sealed tube | 4730 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.5°, θmin = 2.0° |
φ and ω scans | h = −14→15 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −13→13 |
Tmin = 0.92, Tmax = 0.99 | l = −29→29 |
48631 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: mixed |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0566P)2 + 0.9577P] where P = (Fo2 + 2Fc2)/3 |
6071 reflections | (Δ/σ)max = 0.001 |
295 parameters | Δρmax = 0.52 e Å−3 |
2 restraints | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.66861 (9) | 0.65463 (11) | 0.90225 (4) | 0.0310 (2) | |
F2 | 0.78633 (9) | 0.79358 (9) | 0.85702 (4) | 0.02649 (19) | |
F3 | 0.77343 (8) | 0.56483 (9) | 0.83505 (4) | 0.02457 (18) | |
F4 | 0.67911 (9) | 0.90363 (10) | 0.39138 (4) | 0.02474 (19) | |
F5 | 0.64920 (9) | 1.02517 (9) | 0.47416 (4) | 0.02539 (19) | |
F6 | 0.53035 (8) | 0.83795 (9) | 0.43956 (4) | 0.02290 (18) | |
O1 | 0.73476 (9) | 0.72153 (11) | 0.71987 (4) | 0.0206 (2) | |
O2 | 0.53551 (10) | 0.81547 (11) | 0.68469 (5) | 0.0228 (2) | |
H2 | 0.5616 (18) | 0.826 (2) | 0.6504 (8) | 0.027* | |
O3 | 0.50381 (10) | 0.81283 (10) | 0.80889 (5) | 0.0220 (2) | |
O4 | 0.61388 (9) | 0.82629 (11) | 0.57308 (4) | 0.0203 (2) | |
O5 | 0.82345 (10) | 0.77145 (12) | 0.61218 (4) | 0.0223 (2) | |
H5 | 0.7946 (17) | 0.768 (2) | 0.6476 (8) | 0.027* | |
O6 | 0.86887 (9) | 0.86103 (11) | 0.49365 (5) | 0.02027 (19) | |
C11 | 0.58366 (12) | 0.70712 (14) | 0.79025 (6) | 0.0156 (2) | |
C12 | 0.62748 (12) | 0.75076 (14) | 0.72772 (6) | 0.0160 (2) | |
C13 | 0.70474 (14) | 0.67975 (15) | 0.84652 (6) | 0.0200 (3) | |
C14 | 0.55428 (17) | 0.95805 (16) | 0.81927 (9) | 0.0327 (4) | |
H14A | 0.48967 | 1.021062 | 0.831998 | 0.049* | |
H14B | 0.633739 | 0.957455 | 0.854131 | 0.049* | |
H14C | 0.573821 | 0.994618 | 0.778763 | 0.049* | |
C15 | 0.50551 (12) | 0.56621 (14) | 0.77695 (6) | 0.0162 (2) | |
C16 | 0.53654 (13) | 0.46020 (15) | 0.73582 (6) | 0.0201 (3) | |
H16A | 0.606416 | 0.475458 | 0.715198 | 0.024* | |
C17 | 0.46551 (14) | 0.33204 (15) | 0.72487 (7) | 0.0233 (3) | |
H17A | 0.487688 | 0.259446 | 0.697185 | 0.028* | |
C18 | 0.36257 (14) | 0.30976 (16) | 0.75412 (7) | 0.0242 (3) | |
H18A | 0.313193 | 0.222815 | 0.745973 | 0.029* | |
C19 | 0.33183 (14) | 0.41489 (16) | 0.79538 (7) | 0.0252 (3) | |
H19A | 0.261129 | 0.399788 | 0.815431 | 0.03* | |
C21 | 0.75080 (12) | 0.79338 (13) | 0.49629 (6) | 0.0151 (2) | |
C22 | 0.72168 (12) | 0.80054 (13) | 0.56506 (6) | 0.0156 (2) | |
C23 | 0.65022 (13) | 0.89092 (14) | 0.45034 (6) | 0.0179 (2) | |
C24 | 0.98907 (14) | 0.78807 (18) | 0.52184 (7) | 0.0269 (3) | |
H24A | 1.062021 | 0.848282 | 0.5162 | 0.04* | |
H24B | 0.995428 | 0.771765 | 0.5686 | 0.04* | |
H24C | 0.991539 | 0.694539 | 0.499883 | 0.04* | |
C25 | 0.73698 (12) | 0.63648 (13) | 0.47147 (6) | 0.0153 (2) | |
C26 | 0.67573 (13) | 0.53083 (14) | 0.50129 (6) | 0.0196 (3) | |
H26A | 0.644077 | 0.555168 | 0.538757 | 0.023* | |
C27 | 0.66064 (14) | 0.39003 (15) | 0.47659 (7) | 0.0222 (3) | |
H27A | 0.619756 | 0.318353 | 0.497469 | 0.027* | |
C28 | 0.70527 (14) | 0.35458 (15) | 0.42156 (7) | 0.0219 (3) | |
H28A | 0.694419 | 0.258779 | 0.404374 | 0.026* | |
C29 | 0.76578 (15) | 0.45913 (16) | 0.39162 (7) | 0.0247 (3) | |
H29A | 0.795872 | 0.434781 | 0.353697 | 0.03* | |
C110 | 0.40383 (14) | 0.54225 (15) | 0.80757 (7) | 0.0215 (3) | |
H11A | 0.383727 | 0.612817 | 0.836736 | 0.026* | |
C210 | 0.78286 (14) | 0.59938 (15) | 0.41660 (6) | 0.0214 (3) | |
H21A | 0.825871 | 0.669937 | 0.396217 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0344 (5) | 0.0445 (6) | 0.0150 (4) | −0.0067 (4) | 0.0075 (3) | 0.0032 (4) |
F2 | 0.0266 (4) | 0.0270 (4) | 0.0238 (4) | −0.0092 (3) | 0.0017 (3) | −0.0027 (3) |
F3 | 0.0221 (4) | 0.0232 (4) | 0.0259 (4) | 0.0044 (3) | 0.0003 (3) | 0.0043 (3) |
F4 | 0.0308 (5) | 0.0269 (4) | 0.0178 (4) | 0.0027 (3) | 0.0083 (3) | 0.0078 (3) |
F5 | 0.0328 (5) | 0.0140 (4) | 0.0289 (4) | 0.0045 (3) | 0.0061 (3) | 0.0008 (3) |
F6 | 0.0177 (4) | 0.0272 (4) | 0.0223 (4) | 0.0008 (3) | 0.0016 (3) | 0.0033 (3) |
O1 | 0.0169 (4) | 0.0271 (5) | 0.0185 (4) | 0.0023 (4) | 0.0056 (3) | 0.0041 (4) |
O2 | 0.0204 (5) | 0.0294 (5) | 0.0193 (4) | 0.0058 (4) | 0.0057 (4) | 0.0072 (4) |
O3 | 0.0250 (5) | 0.0146 (4) | 0.0304 (5) | 0.0009 (4) | 0.0148 (4) | −0.0024 (4) |
O4 | 0.0195 (5) | 0.0246 (5) | 0.0174 (4) | 0.0030 (4) | 0.0054 (3) | 0.0005 (3) |
O5 | 0.0193 (5) | 0.0323 (5) | 0.0151 (4) | 0.0048 (4) | 0.0036 (3) | 0.0025 (4) |
O6 | 0.0173 (4) | 0.0193 (5) | 0.0251 (5) | −0.0033 (4) | 0.0065 (4) | 0.0023 (4) |
C11 | 0.0163 (6) | 0.0154 (5) | 0.0162 (5) | 0.0012 (4) | 0.0062 (4) | 0.0000 (4) |
C12 | 0.0168 (6) | 0.0147 (5) | 0.0167 (5) | −0.0004 (4) | 0.0045 (4) | 0.0005 (4) |
C13 | 0.0230 (6) | 0.0206 (6) | 0.0165 (5) | −0.0035 (5) | 0.0048 (5) | 0.0000 (5) |
C14 | 0.0373 (9) | 0.0156 (7) | 0.0504 (10) | −0.0018 (6) | 0.0212 (7) | −0.0051 (6) |
C15 | 0.0161 (6) | 0.0148 (6) | 0.0174 (5) | 0.0006 (4) | 0.0031 (4) | 0.0019 (4) |
C16 | 0.0195 (6) | 0.0203 (6) | 0.0213 (6) | −0.0008 (5) | 0.0065 (5) | −0.0026 (5) |
C17 | 0.0258 (7) | 0.0191 (6) | 0.0237 (6) | −0.0009 (5) | 0.0031 (5) | −0.0043 (5) |
C18 | 0.0239 (7) | 0.0192 (6) | 0.0269 (7) | −0.0045 (5) | 0.0010 (5) | 0.0025 (5) |
C19 | 0.0242 (7) | 0.0240 (7) | 0.0295 (7) | −0.0037 (5) | 0.0107 (5) | 0.0045 (5) |
C21 | 0.0154 (6) | 0.0145 (5) | 0.0160 (5) | −0.0006 (4) | 0.0047 (4) | 0.0011 (4) |
C22 | 0.0189 (6) | 0.0123 (5) | 0.0156 (5) | −0.0012 (4) | 0.0038 (4) | −0.0001 (4) |
C23 | 0.0217 (6) | 0.0155 (6) | 0.0169 (5) | 0.0003 (5) | 0.0055 (5) | 0.0019 (4) |
C24 | 0.0164 (6) | 0.0348 (8) | 0.0296 (7) | −0.0006 (6) | 0.0052 (5) | 0.0022 (6) |
C25 | 0.0157 (5) | 0.0145 (5) | 0.0160 (5) | 0.0008 (4) | 0.0039 (4) | 0.0008 (4) |
C26 | 0.0231 (6) | 0.0170 (6) | 0.0207 (6) | −0.0015 (5) | 0.0094 (5) | −0.0002 (5) |
C27 | 0.0251 (7) | 0.0162 (6) | 0.0267 (6) | −0.0037 (5) | 0.0085 (5) | 0.0002 (5) |
C28 | 0.0235 (7) | 0.0166 (6) | 0.0245 (6) | 0.0008 (5) | 0.0033 (5) | −0.0035 (5) |
C29 | 0.0333 (8) | 0.0216 (7) | 0.0216 (6) | 0.0020 (6) | 0.0110 (6) | −0.0031 (5) |
C110 | 0.0235 (7) | 0.0184 (6) | 0.0250 (6) | 0.0001 (5) | 0.0109 (5) | 0.0016 (5) |
C210 | 0.0281 (7) | 0.0187 (6) | 0.0199 (6) | −0.0002 (5) | 0.0108 (5) | 0.0018 (5) |
F1—C13 | 1.3323 (15) | C16—H16A | 0.95 |
F2—C13 | 1.3440 (16) | C17—C18 | 1.384 (2) |
F3—C13 | 1.3370 (16) | C17—H17A | 0.95 |
F4—C23 | 1.3467 (14) | C18—C19 | 1.387 (2) |
F5—C23 | 1.3345 (15) | C18—H18A | 0.95 |
F6—C23 | 1.3300 (16) | C19—C110 | 1.390 (2) |
O1—C12 | 1.2152 (16) | C19—H19A | 0.95 |
O2—C12 | 1.3095 (15) | C21—C25 | 1.5313 (17) |
O2—H2 | 0.834 (14) | C21—C22 | 1.5456 (17) |
O3—C11 | 1.4029 (15) | C21—C23 | 1.5489 (18) |
O3—C14 | 1.4380 (18) | C24—H24A | 0.98 |
O4—C22 | 1.2152 (16) | C24—H24B | 0.98 |
O5—C22 | 1.3120 (15) | C24—H24C | 0.98 |
O5—H5 | 0.866 (14) | C25—C210 | 1.3920 (17) |
O6—C21 | 1.4096 (15) | C25—C26 | 1.3951 (17) |
O6—C24 | 1.4407 (17) | C26—C27 | 1.3918 (19) |
C11—C15 | 1.5298 (18) | C26—H26A | 0.95 |
C11—C12 | 1.5430 (17) | C27—C28 | 1.3842 (19) |
C11—C13 | 1.5511 (19) | C27—H27A | 0.95 |
C14—H14A | 0.98 | C28—C29 | 1.385 (2) |
C14—H14B | 0.98 | C28—H28A | 0.95 |
C14—H14C | 0.98 | C29—C210 | 1.3899 (19) |
C15—C16 | 1.3918 (18) | C29—H29A | 0.95 |
C15—C110 | 1.3929 (18) | C110—H11A | 0.95 |
C16—C17 | 1.3899 (19) | C210—H21A | 0.95 |
C12—O2—H2 | 107.7 (13) | O6—C21—C22 | 112.79 (10) |
C11—O3—C14 | 117.42 (11) | C25—C21—C22 | 109.51 (10) |
C22—O5—H5 | 105.2 (12) | O6—C21—C23 | 102.04 (10) |
C21—O6—C24 | 119.07 (10) | C25—C21—C23 | 109.69 (10) |
O3—C11—C15 | 107.68 (10) | C22—C21—C23 | 107.49 (10) |
O3—C11—C12 | 112.04 (10) | O4—C22—O5 | 124.79 (11) |
C15—C11—C12 | 108.76 (10) | O4—C22—C21 | 122.24 (11) |
O3—C11—C13 | 110.26 (10) | O5—C22—C21 | 112.93 (11) |
C15—C11—C13 | 108.60 (10) | F6—C23—F5 | 108.29 (11) |
C12—C11—C13 | 109.41 (10) | F6—C23—F4 | 106.58 (10) |
O1—C12—O2 | 125.28 (11) | F5—C23—F4 | 106.68 (10) |
O1—C12—C11 | 122.09 (11) | F6—C23—C21 | 112.71 (10) |
O2—C12—C11 | 112.57 (11) | F5—C23—C21 | 111.56 (10) |
F1—C13—F3 | 107.39 (11) | F4—C23—C21 | 110.71 (10) |
F1—C13—F2 | 107.16 (10) | O6—C24—H24A | 109.5 |
F3—C13—F2 | 106.91 (11) | O6—C24—H24B | 109.5 |
F1—C13—C11 | 110.04 (11) | H24A—C24—H24B | 109.5 |
F3—C13—C11 | 112.35 (10) | O6—C24—H24C | 109.5 |
F2—C13—C11 | 112.70 (11) | H24A—C24—H24C | 109.5 |
O3—C14—H14A | 109.5 | H24B—C24—H24C | 109.5 |
O3—C14—H14B | 109.5 | C210—C25—C26 | 119.15 (12) |
H14A—C14—H14B | 109.5 | C210—C25—C21 | 119.27 (11) |
O3—C14—H14C | 109.5 | C26—C25—C21 | 121.55 (11) |
H14A—C14—H14C | 109.5 | C27—C26—C25 | 120.52 (12) |
H14B—C14—H14C | 109.5 | C27—C26—H26A | 119.7 |
C16—C15—C110 | 119.55 (12) | C25—C26—H26A | 119.7 |
C16—C15—C11 | 120.87 (11) | C28—C27—C26 | 119.91 (13) |
C110—C15—C11 | 119.57 (11) | C28—C27—H27A | 120.0 |
C17—C16—C15 | 120.14 (12) | C26—C27—H27A | 120.0 |
C17—C16—H16A | 119.9 | C27—C28—C29 | 119.83 (13) |
C15—C16—H16A | 119.9 | C27—C28—H28A | 120.1 |
C18—C17—C16 | 120.26 (13) | C29—C28—H28A | 120.1 |
C18—C17—H17A | 119.9 | C28—C29—C210 | 120.55 (12) |
C16—C17—H17A | 119.9 | C28—C29—H29A | 119.7 |
C17—C18—C19 | 119.71 (13) | C210—C29—H29A | 119.7 |
C17—C18—H18A | 120.1 | C19—C110—C15 | 119.89 (13) |
C19—C18—H18A | 120.1 | C19—C110—H11A | 120.1 |
C18—C19—C110 | 120.41 (13) | C15—C110—H11A | 120.1 |
C18—C19—H19A | 119.8 | C29—C210—C25 | 120.03 (12) |
C110—C19—H19A | 119.8 | C29—C210—H21A | 120.0 |
O6—C21—C25 | 114.82 (10) | C25—C210—H21A | 120.0 |
C14—O3—C11—C15 | −175.55 (12) | O6—C21—C22—O4 | 138.38 (12) |
C14—O3—C11—C12 | −55.99 (16) | C25—C21—C22—O4 | −92.42 (14) |
C14—O3—C11—C13 | 66.12 (15) | C23—C21—C22—O4 | 26.69 (16) |
O3—C11—C12—O1 | 143.91 (12) | O6—C21—C22—O5 | −43.73 (14) |
C15—C11—C12—O1 | −97.17 (14) | C25—C21—C22—O5 | 85.47 (13) |
C13—C11—C12—O1 | 21.32 (17) | C23—C21—C22—O5 | −155.42 (11) |
O3—C11—C12—O2 | −38.72 (15) | O6—C21—C23—F6 | 173.14 (10) |
C15—C11—C12—O2 | 80.20 (13) | C25—C21—C23—F6 | 50.98 (13) |
C13—C11—C12—O2 | −161.31 (11) | C22—C21—C23—F6 | −68.02 (13) |
O3—C11—C13—F1 | 50.84 (14) | O6—C21—C23—F5 | −64.78 (12) |
C15—C11—C13—F1 | −66.92 (13) | C25—C21—C23—F5 | 173.06 (10) |
C12—C11—C13—F1 | 174.49 (10) | C22—C21—C23—F5 | 54.07 (13) |
O3—C11—C13—F3 | 170.44 (10) | O6—C21—C23—F4 | 53.86 (12) |
C15—C11—C13—F3 | 52.68 (13) | C25—C21—C23—F4 | −68.29 (13) |
C12—C11—C13—F3 | −65.90 (13) | C22—C21—C23—F4 | 172.71 (10) |
O3—C11—C13—F2 | −68.70 (13) | O6—C21—C25—C210 | −39.48 (16) |
C15—C11—C13—F2 | 173.53 (10) | C22—C21—C25—C210 | −167.56 (12) |
C12—C11—C13—F2 | 54.95 (14) | C23—C21—C25—C210 | 74.70 (15) |
O3—C11—C15—C16 | 156.05 (12) | O6—C21—C25—C26 | 142.61 (12) |
C12—C11—C15—C16 | 34.43 (16) | C22—C21—C25—C26 | 14.53 (16) |
C13—C11—C15—C16 | −84.56 (14) | C23—C21—C25—C26 | −103.21 (13) |
O3—C11—C15—C110 | −25.42 (16) | C210—C25—C26—C27 | 0.0 (2) |
C12—C11—C15—C110 | −147.04 (12) | C21—C25—C26—C27 | 177.94 (12) |
C13—C11—C15—C110 | 93.96 (14) | C25—C26—C27—C28 | −0.8 (2) |
C110—C15—C16—C17 | 0.7 (2) | C26—C27—C28—C29 | 0.5 (2) |
C11—C15—C16—C17 | 179.24 (12) | C27—C28—C29—C210 | 0.4 (2) |
C15—C16—C17—C18 | 0.8 (2) | C18—C19—C110—C15 | 1.6 (2) |
C16—C17—C18—C19 | −1.1 (2) | C16—C15—C110—C19 | −1.9 (2) |
C17—C18—C19—C110 | −0.1 (2) | C11—C15—C110—C19 | 179.57 (12) |
C24—O6—C21—C25 | −51.12 (15) | C28—C29—C210—C25 | −1.1 (2) |
C24—O6—C21—C22 | 75.29 (14) | C26—C25—C210—C29 | 0.9 (2) |
C24—O6—C21—C23 | −169.69 (11) | C21—C25—C210—C29 | −177.05 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O4 | 0.83 (1) | 1.83 (1) | 2.6616 (13) | 173 (2) |
O5—H5···O1 | 0.87 (1) | 1.83 (1) | 2.6801 (13) | 169 (2) |
C14—H14B···F2 | 0.98 | 2.2 | 2.840 (2) | 122 |
C14—H14C···O2 | 0.98 | 2.53 | 3.080 (2) | 115 |
C24—H24B···O5 | 0.98 | 2.22 | 2.8685 (18) | 123 |
Funding information
This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant Nos. 0521237 and 0911324 to JMT). We acknowledge the Salmon Fund and Olin College Fund of Vassar College for funding publication expenses.
References
Allen, D. A., Tomaso, A. E. Jr, Priest, O. P., Hindson, D. F. & Hurlburt, J. L. (2008). J. Chem. Educ. 85, 698–700. CrossRef CAS Google Scholar
Bruker (2017). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cimmino, A., Masi, M., Evidente, M., Superchi, S. & Evidente, A. (2017). J. Pharm. Biomed. Anal. 144, 59–89. CrossRef CAS PubMed Google Scholar
Dale, J. A., Dull, D. L. & Mosher, H. S. (1969). J. Org. Chem. 34, 2543–2549. CrossRef CAS Google Scholar
Di Raddo, P. (1993). J. Chem. Educ. 70, 1034. CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Glowacki, B., Lutter, M., Hiller, W. & Jurkschat, K. (2019). Inorg. Chem. 58, 4244–4252. CSD CrossRef CAS PubMed Google Scholar
Goldberg, Y. & Alper, H. (1992). J. Org. Chem. 57, 3731–3732. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tydlitát, J., Bureš, F., Kulhánek, J. & Růžička, A. (2010). Synthesis, pp. 3934–3940. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.