research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of posnjakite formed in the first crystal water-cooling line of the ANSTO Melbourne Australian Synchrotron MX1 Double Crystal Monochromator

CROSSMARK_Color_square_no_text.svg

aGeosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria, 3001, Australia, bBrookhaven National Laboratory, 743 Brookhaven Avenue, Upton, NY, USA, cAustralian Synchrotron, ANSTO - Melbourne, 800 Blackburn Rd, Clayton, VIC, 3168, Australia, dDiamond Light Source, Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK, and eDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
*Correspondence e-mail: jason.price@ansto.gov.au

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 22 May 2020; accepted 17 June 2020; online 26 June 2020)

Exceptionally large crystals of posnjakite, Cu4SO4(OH)6(H2O), formed during corrosion of a Swagelock(tm) Snubber copper gasket within the MX1 beamline at the ANSTO-Melbourne, Australian Synchrotron. The crystal structure was solved using synchrotron radiation to R1 = 0.029 and revealed a structure based upon [Cu4(OH)6(H2O)O] sheets, which contain Jahn–Teller-distorted Cu octa­hedra. The sulfate tetra­hedra are bonded to one side of the sheet via corner sharing and linked to successive sheets via extensive hydrogen bonds. The sulfate tetra­hedra are split and rotated, which enables additional hydrogen bonds.

1. Chemical context

The MX1 beamline at the ANSTO-Melbourne Australian Synchrotron has been operating since 2007 (Cowieson et al., 2015[Cowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187-190.]). The vacuum vessel for the double crystal monochromator suffered a loss of vacuum in July 2019. Investigation lead to the discovery of a pinhole leak in the water-cooling system for the first crystal. On disassembly, there was the discovery of corrosion, oxidation and a crust of crystal aggregates deposited on the Swagelock(tm) Snubber copper gasket within the connection. The coolant for the system is reverse osmosis (RO) water, kept at constant temperature of 20°C by a Huber Chiller (CC-K6, Pilot ONE) and previously had Aqua-Stabil (Jubalo GmbH) added to prevent microbial and fungal growth. The lines are a combination of plastic and stainless steel, with water passing through an oxygen-free copper block into which the Silicon 111 first crystal is clamped with a layer of indium between the silicon crystal and the copper cooling block. The Aqua-Stabil was removed from service following a review of the environmental risks from chemicals in use. The pH-neutral RO water has been used as a coolant since 2015. In order to understand how the crystalline material was formed, the MX1 beamline was used after repairs were enacted.

A thin film of red copper oxide (cuprite) coats the surface of the gasket, and on top of that sits a mat of crystals up to 0.5 cm thick (Fig. 1[link]). Above the cuprite coating a pale-blue X-ray amorphous phase is observed, and perched on this phase sits exceptionally well-crystallized dark-blue crystals of posnjakite. The crystals of posnjakite are tabular on ([\overline{1}]01) with maximum dimension of ∼0.2 × 0.2 × 0.2 mm. On some crystals, dark-green tips are observed where the crystals are transforming to brochantite.

[Figure 1]
Figure 1
The copper Swagelok Snubber gasket from the MX1 cooling line for the first crystal in the double crystal monochromater showing crystalline deposits.

2. Formation of the crystals

The corrosion of copper is of great inter­est in corrosion science, the arts and in the understanding of electrical apparatus failures. As is in our case, the copper corrosion has resulted in equipment failure. It has been seen that corrosive sulfur in oil has become a problem in electrical apparatus failures, where it is noted `a number of failures of very large power transformers and shunt reactors associated with corrosive sulfur in electrical insulating mineral oils. Although the number of failures has been relatively small, perhaps 100 or so units, the assets lost have been substantial' (Griffin & Lewand 2007[Griffin, P. J. & Lewand, L. R. (2007). Proceedings of the Seventy-Fourth Annual International Conference of Doble Clients. pp. 1-7.]). Although no sulfur is in the MX1 system, the copper gasket was produced using milling oils that have sulfurized fat as a component. Even though these gaskets are cleaned before use, it is apparent that some residue remained and that it contains enough sulfur to produce abundant mineralization if a pinhole leak exists.

The production of copper patinas in several outdoor conditions has been charted (Krätschmer et al. 2002[Krätschmer, A., Odnevall Wallinder, I. & Leygraf, C. (2002). Corros. Sci. 44, 425-450.]) and it was shown that cuprite was formed immediately, followed by an amorphous copper sulfate over hours to weeks, posnjakite over weeks to months and finally brochantite over years. We see this entire assemblage on the MX1 gasket; however, brochantite is the least common of the phases. We can use this data to estimate that the leak was present for approximately a year before failure. What is inter­esting is that the formation in this moderately closed system has enhanced the formation of posnajkite, creating sub-millimetre-sized crystals. It is worth noting that posnajkite is metastable with respect to brochantite (Zittlau et al., 2013[Zittlau, A. H., Shi, Q., Boerio-Goates, J., Woodfield, B. F. & Majzlan, J. (2013). Geochemistry, 73, 39-50.]); however, it is also common especially in geological systems that the crystalline phase that may form in a system that is not the most stable one, but very frequently metastable with a simpler structure (Krivovichev, 2017[Krivovichev, S. V. (2017). J. Geosci. pp. 79-85.]).

3. Structural commentary and supramolecular features

Mellini & Merlino (1979[Mellini, M. & Merlino, S. (1979). Z. Kristallogr. 149, 249-257.]) published the original structure of posnjakite, but with one H atom missing and limited thermal parameters. Our dataset has enabled the location of all H atoms from the difference map as well as an anisotropic model of all non-hydrogen atoms, except for the disordered sulfate. The posnjakite structure is based upon [Cu4(OH)6(H2O)O] sheets, which contain Jahn–Teller-distorted Cu octa­hedra. The average bond lengths for the octa­hedra are 2.08, 2.07, 2.11 and 2.11 for Cu1–4, respectively. These octa­hedra are more regular than the ones observed previously (Mellini & Merlino, 1979[Mellini, M. & Merlino, S. (1979). Z. Kristallogr. 149, 249-257.]) because of the higher quality dataset and lower temperature refinement, which places the water mol­ecule ∼0.3 Å closer to the Cu atoms. The sheet is also less undulating than reported for the previous refinement. The asymmetric unit for the current structure is shown in Fig. 2[link].

[Figure 2]
Figure 2
The asymmetric unit of posnjakite, the atomic numbering scheme is shown, and displacement ellipsoids are drawn at the 50% probability level.

The sulfate tetra­hedra are bonded to one side of the sheet via corner sharing and linked to successive sheets via extensive hydrogen bonds (Table 1[link]). The main difference in this dataset is that the sulfate tetra­hedra are split and rotated by ∼7°. This allows greater connectivity between the sulfate oxygen atoms and the hydroxyl atoms in the sheet (e.g. O14A—H4) as well as the water of solvation (O13A—H7A, Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O12i 0.87 (6) 1.86 (6) 2.693 (9) 160 (7)
O7—H7B⋯O12 0.87 (3) 2.02 (4) 2.844 (7) 158 (7)
O2—H2⋯O13Aii 0.91 (6) 1.95 (6) 2.746 (9) 144 (7)
O2—H2⋯O13Bii 0.91 (6) 1.96 (7) 2.731 (18) 141 (7)
O3—H3⋯O13Aiii 0.83 (6) 1.96 (6) 2.757 (10) 161 (9)
O3—H3⋯O13Biii 0.83 (6) 1.99 (7) 2.799 (19) 164 (9)
O7—H7A⋯O13Aiv 0.89 (3) 2.13 (3) 2.995 (10) 167 (7)
O4—H4⋯O14Av 0.86 (6) 2.22 (7) 2.929 (9) 141 (7)
O4—H4⋯O14Bv 0.86 (6) 2.57 (7) 3.239 (18) 136 (7)
O5—H5⋯O14Avi 0.87 (6) 1.86 (6) 2.727 (9) 177 (8)
O5—H5⋯O14Bvi 0.87 (6) 1.93 (6) 2.763 (17) 162 (7)
O6—H6⋯O13B 0.86 (6) 2.45 (8) 2.98 (2) 120 (7)
O6—H6⋯O14Biv 0.86 (6) 2.47 (7) 3.211 (17) 145 (7)
O7—H7A⋯O13Biv 0.89 (3) 2.64 (4) 3.489 (18) 161 (7)
O7—H7A⋯O14Biv 0.89 (3) 2.31 (6) 3.034 (19) 139 (7)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x-{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (vi) x-1, y, z.
[Figure 3]
Figure 3
The complex arrangement of hydrogen bonds surrounding the disordered sulfate anion (ORTEP-3; Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). Symmetry codes: (i) x + [{1\over 2}], 1 − y, z − [{3\over 2}]; (ii) x + [{1\over 2}], 2 − y, z + [{1\over 2}]; (iii) x + [{1\over 2}], 2 − y, z − [{1\over 2}]; (iv) x + 1, y, z; (v) x, y + 1, z; (vi) x + [{1\over 2}], 2 − y, z + [{1\over 2}].

The tetra­hedra were restrained to have the grand mean <S—O> of 1.473 Å reported (Hawthorne et al. 2000[Hawthorne, F. C., Krivovichev, S. V. & Burns, P. C. (2000). Rev. Mineral. Geochem. 40, 1-112.]), and the atoms kept isotropic.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atom sites in the asymmetric unit were modelled with anisotropic displacement parameters with exception of the partially occupancy atoms which were left isotropic. The disordered sulfate tetra­hedra were restrained to have the grand mean <S—O> of 1.473 Å reported (Hawthorne et al. 2000[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]), and the atoms kept isotropic. Hydrogen atoms were located in the difference map and their coordinates refined with group displacement parameters Uiso(H) = 1.5Ueq(O). Twinning of the crystal was explored to examine if the apparent disorder of the sulfate anion was from a twin component. An inversion twining was ruled out as the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter was 0.08 (4); further twinning was explored with TwinRotMat in the PLATON suite (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) with no twins found.

Table 2
Experimental details

Crystal data
Chemical formula Cu4(SO)4(OH)6(H2O)
Mr 470.28
Crystal system, space group Monoclinic, Pn
Temperature (K) 100
a, b, c (Å) 7.8400 (16), 6.3400 (13), 9.768 (2)
β (°) 107.32 (3)
V3) 463.51 (18)
Z 2
Radiation type Synchrotron, λ = 0.71074 Å
μ (mm−1) 9.33
Crystal size (mm) 0.15 × 0.10 × 0.05
 
Data collection
Diffractometer MX1 Beamline Australian Synchrotron
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.517, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 5709, 1763, 1652
Rint 0.019
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.06
No. of reflections 1763
No. of parameters 157
No. of restraints 19
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.67, −0.92
Absolute structure Flack x determined using 745 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.128 (16)
Computer programs: AS QEGUI, XDS (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: AS QEGUI; cell refinement: XDS (Kabsch, 2010); data reduction: XDS (Kabsch, 2010)); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[hexa-µ-hydroxido-tetracopper(II)] sulfate monohydrate] top
Crystal data top
Cu4(SO)4(OH)6(H2O)F(000) = 456
Mr = 470.28Dx = 3.370 Mg m3
Monoclinic, PnSynchrotron radiation, λ = 0.71074 Å
a = 7.8400 (16) ÅCell parameters from 96 reflections
b = 6.3400 (13) ŵ = 9.33 mm1
c = 9.768 (2) ÅT = 100 K
β = 107.32 (3)°Plate, blue
V = 463.51 (18) Å30.15 × 0.10 × 0.05 mm
Z = 2
Data collection top
MX1 Beamline Australian Synchrotron
diffractometer
1652 reflections with I > 2σ(I)
Radiation source: Double Crystal MonochromatorRint = 0.019
Silicon 111 scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.517, Tmax = 0.746k = 77
5709 measured reflectionsl = 1211
1763 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0447P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.67 e Å3
1763 reflectionsΔρmin = 0.92 e Å3
157 parametersAbsolute structure: Flack x determined using 745 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
19 restraintsAbsolute structure parameter: 0.128 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.64047 (12)0.74631 (16)0.76709 (10)0.0112 (2)
Cu20.40646 (10)0.48699 (12)0.51341 (8)0.0113 (4)
Cu30.37581 (9)0.98271 (12)0.52445 (7)0.0117 (4)
Cu40.14420 (12)0.75064 (16)0.26663 (9)0.0108 (2)
O10.4814 (10)0.4981 (7)0.7249 (8)0.0150 (14)
H10.398 (10)0.481 (12)0.765 (10)0.022*
O20.5487 (8)0.2232 (8)0.5561 (7)0.0129 (11)
H20.625 (9)0.211 (12)0.502 (8)0.019*
O30.4523 (10)0.9538 (8)0.7302 (7)0.0157 (12)
H30.382 (10)0.941 (14)0.779 (8)0.024*
O40.3320 (10)0.4581 (8)0.3087 (7)0.0132 (12)
H40.408 (10)0.436 (12)0.263 (8)0.020*
O50.2300 (9)0.7197 (7)0.4785 (7)0.0145 (11)
H50.134 (9)0.715 (12)0.505 (9)0.022*
O60.3032 (10)1.0043 (7)0.3128 (7)0.0124 (13)
H60.376 (10)1.021 (11)0.262 (9)0.019*
O110.6098 (9)0.7456 (7)0.5254 (8)0.0170 (12)*
O120.7217 (8)0.6493 (7)0.3281 (6)0.0221 (10)*
S1A0.7607 (9)0.7811 (8)0.4618 (7)0.0195 (19)*0.7
O13A0.7641 (12)1.0103 (9)0.4267 (9)0.0178 (16)*0.7
O14A0.9297 (11)0.7171 (13)0.5649 (9)0.0204 (17)*0.7
S1B0.7426 (14)0.7916 (17)0.4462 (11)0.009 (3)*0.3
O13B0.699 (2)1.008 (2)0.3789 (19)0.019 (4)*0.3
O14B0.922 (2)0.799 (3)0.5522 (17)0.018 (4)*0.3
O70.6288 (8)0.7998 (8)0.0410 (7)0.0207 (10)
H7B0.645 (10)0.722 (10)0.117 (6)0.031*
H7A0.526 (6)0.869 (11)0.020 (8)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0116 (4)0.0092 (4)0.0113 (4)0.0003 (2)0.0010 (3)0.0002 (2)
Cu20.0131 (9)0.0097 (4)0.0097 (6)0.0000 (4)0.0012 (5)0.0004 (4)
Cu30.0124 (9)0.0108 (4)0.0098 (6)0.0000 (5)0.0002 (5)0.0005 (5)
Cu40.0124 (4)0.0094 (4)0.0094 (4)0.0011 (2)0.0011 (3)0.0001 (2)
O10.016 (4)0.016 (2)0.013 (3)0.0010 (19)0.005 (2)0.0006 (16)
O20.013 (3)0.014 (3)0.011 (2)0.001 (2)0.002 (2)0.0001 (18)
O30.017 (3)0.018 (3)0.013 (3)0.000 (2)0.006 (2)0.000 (2)
O40.015 (3)0.014 (3)0.010 (3)0.001 (2)0.003 (2)0.001 (2)
O50.016 (3)0.015 (2)0.014 (2)0.001 (2)0.006 (2)0.000 (2)
O60.010 (3)0.014 (3)0.013 (3)0.0005 (18)0.003 (2)0.0006 (17)
O70.018 (2)0.021 (3)0.022 (3)0.002 (2)0.005 (2)0.004 (2)
Geometric parameters (Å, º) top
Cu1—O31.929 (7)Cu4—O51.986 (7)
Cu1—O4i1.933 (7)Cu4—O1v1.993 (6)
Cu1—O11.974 (6)Cu4—O62.002 (6)
Cu1—O6ii1.997 (6)Cu4—O42.327 (6)
Cu1—O112.300 (7)Cu4—O3vi2.363 (6)
Cu1—Cu33.0399 (14)O1—H10.87 (6)
Cu1—Cu2i3.0558 (14)O2—H20.91 (6)
Cu2—O41.918 (7)O3—H30.83 (6)
Cu2—O11.974 (7)O4—H40.86 (6)
Cu2—O51.981 (6)O5—H50.87 (6)
Cu2—O21.984 (5)O6—H60.86 (6)
Cu2—O112.265 (6)O11—S1B1.499 (11)
Cu2—Cu4i3.0194 (14)O11—S1A1.508 (8)
Cu3—O31.927 (7)O12—S1B1.435 (11)
Cu3—O61.979 (7)O12—S1A1.503 (6)
Cu3—O51.996 (6)S1A—O14A1.463 (9)
Cu3—O2iii2.002 (6)S1A—O13A1.495 (8)
Cu3—O112.370 (6)S1B—O14B1.479 (17)
Cu3—O7iv2.422 (6)S1B—O13B1.516 (19)
Cu3—Cu43.0135 (14)O7—H7B0.87 (3)
Cu4—O2v1.975 (7)O7—H7A0.89 (3)
O3—Cu1—O4i178.6 (4)O6—Cu4—O4106.4 (3)
O3—Cu1—O196.0 (3)O2v—Cu4—O3vi75.5 (2)
O4i—Cu1—O185.0 (3)O5—Cu4—O3vi103.8 (2)
O3—Cu1—O6ii84.5 (3)O1v—Cu4—O3vi104.9 (3)
O4i—Cu1—O6ii94.5 (3)O6—Cu4—O3vi73.9 (2)
O1—Cu1—O6ii179.1 (4)O4—Cu4—O3vi178.4 (3)
O3—Cu1—O1188.2 (3)O2v—Cu4—Cu3140.94 (16)
O4i—Cu1—O1193.0 (2)O5—Cu4—Cu340.93 (15)
O1—Cu1—O1185.3 (3)O1v—Cu4—Cu3138.3 (2)
O6ii—Cu1—O1195.5 (2)O6—Cu4—Cu340.5 (2)
O3—Cu1—Cu337.9 (2)O4—Cu4—Cu392.84 (17)
O4i—Cu1—Cu3143.3 (2)O3vi—Cu4—Cu386.39 (18)
O1—Cu1—Cu389.3 (2)O2v—Cu4—Cu2v40.42 (15)
O6ii—Cu1—Cu391.51 (19)O5—Cu4—Cu2v137.68 (16)
O11—Cu1—Cu350.39 (16)O1v—Cu4—Cu2v40.2 (2)
O3—Cu1—Cu2i141.5 (2)O6—Cu4—Cu2v140.9 (2)
O4i—Cu1—Cu2i37.3 (2)O4—Cu4—Cu2v87.18 (17)
O1—Cu1—Cu2i91.1 (2)O3vi—Cu4—Cu2v93.56 (17)
O6ii—Cu1—Cu2i88.07 (19)Cu3—Cu4—Cu2v178.43 (5)
O11—Cu1—Cu2i130.19 (16)Cu1—O1—Cu2102.7 (3)
Cu3—Cu1—Cu2i179.32 (4)Cu1—O1—Cu4i105.2 (4)
O4—Cu2—O1176.5 (2)Cu2—O1—Cu4i99.1 (3)
O4—Cu2—O584.9 (3)Cu1—O1—H1122 (5)
O1—Cu2—O597.4 (3)Cu2—O1—H1116 (6)
O4—Cu2—O296.7 (2)Cu4i—O1—H1110 (5)
O1—Cu2—O280.6 (3)Cu4i—O2—Cu299.4 (2)
O5—Cu2—O2169.6 (3)Cu4i—O2—Cu3vii104.7 (3)
O4—Cu2—O1196.6 (2)Cu2—O2—Cu3vii107.3 (3)
O1—Cu2—O1186.2 (3)Cu4i—O2—H2120 (5)
O5—Cu2—O1185.1 (2)Cu2—O2—H2112 (5)
O2—Cu2—O11104.8 (3)Cu3vii—O2—H2112 (5)
O4—Cu2—Cu4i136.77 (17)Cu3—O3—Cu1104.1 (3)
O1—Cu2—Cu4i40.67 (17)Cu3—O3—Cu4ii93.9 (2)
O5—Cu2—Cu4i137.9 (2)Cu1—O3—Cu4ii95.5 (3)
O2—Cu2—Cu4i40.18 (19)Cu3—O3—H3124 (6)
O11—Cu2—Cu4i93.75 (18)Cu1—O3—H3115 (6)
O4—Cu2—Cu1v37.7 (2)Cu4ii—O3—H3119 (6)
O1—Cu2—Cu1v139.7 (2)Cu2—O4—Cu1v105.0 (3)
O5—Cu2—Cu1v86.97 (19)Cu2—O4—Cu495.1 (2)
O2—Cu2—Cu1v88.10 (19)Cu1v—O4—Cu494.9 (3)
O11—Cu2—Cu1v134.10 (19)Cu2—O4—H4121 (5)
Cu4i—Cu2—Cu1v120.91 (4)Cu1v—O4—H4113 (5)
O3—Cu3—O6178.0 (3)Cu4—O4—H4123 (5)
O3—Cu3—O597.7 (2)Cu2—O5—Cu4104.8 (3)
O6—Cu3—O581.7 (3)Cu2—O5—Cu3105.1 (3)
O3—Cu3—O2iii85.7 (3)Cu4—O5—Cu398.4 (2)
O6—Cu3—O2iii94.6 (2)Cu2—O5—H5123 (5)
O5—Cu3—O2iii170.8 (3)Cu4—O5—H5105 (6)
O3—Cu3—O1186.3 (3)Cu3—O5—H5117 (5)
O6—Cu3—O1191.7 (2)Cu3—O6—Cu1vi104.7 (3)
O5—Cu3—O1182.0 (2)Cu3—O6—Cu498.4 (3)
O2iii—Cu3—O1189.7 (2)Cu1vi—O6—Cu4105.8 (4)
O3—Cu3—O7iv89.5 (2)Cu3—O6—H6125 (6)
O6—Cu3—O7iv92.5 (3)Cu1vi—O6—H6105 (5)
O5—Cu3—O7iv94.3 (2)Cu4—O6—H6116 (5)
O2iii—Cu3—O7iv94.3 (2)S1B—O11—Cu2134.4 (5)
O11—Cu3—O7iv174.0 (2)S1A—O11—Cu2135.5 (4)
O3—Cu3—Cu4138.42 (17)S1B—O11—Cu1130.7 (5)
O6—Cu3—Cu441.10 (16)S1A—O11—Cu1124.6 (4)
O5—Cu3—Cu440.70 (19)Cu2—O11—Cu184.9 (2)
O2iii—Cu3—Cu4135.46 (18)S1B—O11—Cu3122.0 (5)
O11—Cu3—Cu488.09 (17)S1A—O11—Cu3127.2 (3)
O7iv—Cu3—Cu492.24 (15)Cu2—O11—Cu385.8 (2)
O3—Cu3—Cu137.98 (19)Cu1—O11—Cu381.2 (2)
O6—Cu3—Cu1139.99 (19)O14A—S1A—O13A110.7 (6)
O5—Cu3—Cu188.6 (2)O14A—S1A—O12110.6 (5)
O2iii—Cu3—Cu188.94 (17)O13A—S1A—O12110.8 (5)
O11—Cu3—Cu148.41 (18)O14A—S1A—O11109.6 (5)
O7iv—Cu3—Cu1127.04 (15)O13A—S1A—O11108.0 (5)
Cu4—Cu3—Cu1120.83 (4)O12—S1A—O11107.1 (4)
O2v—Cu4—O5177.5 (3)O12—S1B—O14B116.1 (10)
O2v—Cu4—O1v80.3 (3)O12—S1B—O11111.2 (7)
O5—Cu4—O1v97.6 (3)O14B—S1B—O11107.9 (9)
O2v—Cu4—O6100.6 (3)O12—S1B—O13B105.3 (9)
O5—Cu4—O681.3 (3)O14B—S1B—O13B108.6 (12)
O1v—Cu4—O6178.1 (4)O11—S1B—O13B107.3 (10)
O2v—Cu4—O4105.9 (2)Cu3viii—O7—H7B118 (5)
O5—Cu4—O474.8 (2)Cu3viii—O7—H7A113 (5)
O1v—Cu4—O474.8 (2)H7B—O7—H7A112 (6)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+2, z+1/2; (iii) x, y+1, z; (iv) x1/2, y+2, z+1/2; (v) x1/2, y+1, z1/2; (vi) x1/2, y+2, z1/2; (vii) x, y1, z; (viii) x+1/2, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O12ix0.87 (6)1.86 (6)2.693 (9)160 (7)
O7—H7B···O120.87 (3)2.02 (4)2.844 (7)158 (7)
O2—H2···O13Avii0.91 (6)1.95 (6)2.746 (9)144 (7)
O2—H2···O13Bvii0.91 (6)1.96 (7)2.731 (18)141 (7)
O3—H3···O13Aiv0.83 (6)1.96 (6)2.757 (10)161 (9)
O3—H3···O13Biv0.83 (6)1.99 (7)2.799 (19)164 (9)
O7—H7A···O13Avi0.89 (3)2.13 (3)2.995 (10)167 (7)
O4—H4···O14Av0.86 (6)2.22 (7)2.929 (9)141 (7)
O4—H4···O14Bv0.86 (6)2.57 (7)3.239 (18)136 (7)
O5—H5···O14Ax0.87 (6)1.86 (6)2.727 (9)177 (8)
O5—H5···O14Bx0.87 (6)1.93 (6)2.763 (17)162 (7)
O6—H6···O13B0.86 (6)2.45 (8)2.98 (2)120 (7)
O6—H6···O14Bvi0.86 (6)2.47 (7)3.211 (17)145 (7)
O7—H7A···O13Bvi0.89 (3)2.64 (4)3.489 (18)161 (7)
O7—H7A···O14Bvi0.89 (3)2.31 (6)3.034 (19)139 (7)
Symmetry codes: (iv) x1/2, y+2, z+1/2; (v) x1/2, y+1, z1/2; (vi) x1/2, y+2, z1/2; (vii) x, y1, z; (ix) x1/2, y+1, z+1/2; (x) x1, y, z.
 

Acknowledgements

This research was undertaken in part using the MX1 beamline at the Australian Synchrotron, part of ANSTO.

References

First citationBruker (2001). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187–190.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGriffin, P. J. & Lewand, L. R. (2007). Proceedings of the Seventy-Fourth Annual International Conference of Doble Clients. pp. 1–7.  Google Scholar
First citationHawthorne, F. C., Krivovichev, S. V. & Burns, P. C. (2000). Rev. Mineral. Geochem. 40, 1–112.  Web of Science CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 125–132.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrätschmer, A., Odnevall Wallinder, I. & Leygraf, C. (2002). Corros. Sci. 44, 425–450.  Google Scholar
First citationKrivovichev, S. V. (2017). J. Geosci. pp. 79–85.  CrossRef Google Scholar
First citationMellini, M. & Merlino, S. (1979). Z. Kristallogr. 149, 249–257.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZittlau, A. H., Shi, Q., Boerio-Goates, J., Woodfield, B. F. & Majzlan, J. (2013). Geochemistry, 73, 39–50.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds