research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of (E)-4-methyl-2-{[(4-methyl­phen­yl)imino]­meth­yl}phenol

CROSSMARK_Color_square_no_text.svg

aKirikkale University, Faculty of Arts and Sciences, Physics Department, 71450 Kirikkale, Turkey, bDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, and eFaculty of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 1 June 2020; accepted 10 June 2020; online 16 June 2020)

In the title compound, C15H15NO, the configuration of the C=N bond of the Schiff base is E, and an intra­molecular O—H⋯N hydrogen bond is observed, forming an intra­molecular S(6) ring motif. The phenol ring is inclined by 45.73 (2)° from the plane of the aniline ring. In the crystal, mol­ecules are linked along the b axis by O—H⋯N and C—H⋯O hydrogen bonds, forming polymeric chains. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the packing arrangement are from H⋯H (56.9%) and H⋯C/C⋯H (31.2%) inter­actions. The density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure, and the HOMO–LUMO energy gap is provided. The crystal studied was refined as an inversion twin.

1. Chemical context

Azomethines (known as Schiff bases), having imine groups (CH=N) and benzyl rings alternately in the main chain and being conjugated, are inter­esting materials for a wide spectrum of applications, in particular as metal-ion complexing agents and in biological systems (Hökelek et al., 2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]; Kansız & Dege, 2018[Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42-51.]). Schiff bases are important in various areas of chemistry and biochemistry because of their biological activity (El-masry et al., 2000[El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429-1438.]) and photochromic properties. They also have applications in various fields such as the measurement and control of radiation intensities in imaging systems and optical computers (Elmalı et al., 1999[Elmalı, A., Kabak, M., Kavlakoğlu, E., Elerman, Y. & Durlu, T. N. (1999). J. Mol. Struct. 510, 207-214.]), and electronics, optoelectronics and photonics (Iwan et al., 2007[Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030-1041.]). They are used as anion sensors (Dalapati et al., 2011[Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536-540.]) and as non-linear optics compounds (Sun et al., 2012[Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 42-50.]). The present work is part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic, excited-state proton-transfer compounds, and fluorescent chemosensors (Faizi et al., 2016[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366-1369.], 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]; Kumar et al., 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787-3796.]). We report herein the crystal structure as well as the Hirshfeld surface analysis of the title Schiff base (E)-4-methyl-2-{[(4-methyl­phen­yl)imino]­meth­yl}phenol, (I)[link]. A comparison between the calculated structure [obtained using density functional theory at the B3LYP/6-311 G(d,p) level] and the experimental data is also presented.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. An intra­molecular O—H⋯N hydrogen bond is observed, which forms an S(6) ring motif (Table 1[link] and Fig. 1[link]). This is a relatively common feature in analogous imine–phenol compounds (see Database survey section). The imine group, which displays a C9—C8—N1—C5 torsion angle of −169.8 (3)°, contributes to the general non-planarity of the mol­ecule. The phenol ring (C9–C14) is inclined by 45.73 (2)° to the aniline ring (C2–C7). The configuration of the C8=N1 bond of this Schiff base is E. The C14—O1 bond is 1.335 (5) Å, which is close to reported values of single C—O bonds in phenols and salicyl­idene­amines (Ozeryanskii et al., 2006[Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782-790.]). The N1—C8 bond is short at 1.273 (4) Å, strongly indicating the existence of a conjugated C=N bond, while the longer C8—C9 bond [1.460 (5) Å] implies a single bond. All these data support the existence of the phenol–imine tautomer for (I)[link] in its crystalline state. These features are similar to those observed in related 4-di­methyl­amino-N-salicylideneanilines (Pizzala et al., 2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935-939.]). The C—N, C=N and C—C bond lengths are normal and close to the values observed in related structures (Faizi et al., 2017a[Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38-40.],b[Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96-98.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.591 (4) 146
C4—H4⋯O1i 0.93 2.60 3.448 (5) 152
Symmetry code: (i) x, y, z-1.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond (see Table 1[link]) is shown as a dashed line.

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by C—H⋯O inter­actions, forming sheets propagating along the b-axis direction (Fig. 2[link] and Table 1[link]). There are no other significant inter­molecular inter­actions present.

[Figure 2]
Figure 2
A view along the b axis of the polymeric chain formed via C—H⋯O inter­molecular hydrogen bonds (see Table 1[link]).

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal packing of (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]a), white indicates contacts with distances equal to the sum of van der Waals radii, while the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as respective donors and/or acceptors. The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 3[link]b clearly suggests that there are no ππ inter­actions in (I)[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surfaces of (I)[link] plotted over (a) dnorm and (b) shape-index.

The overall two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) is shown in Fig. 4[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯O/O⋯C contacts are illustrated in Fig. 4[link]bf, respectively. The most important inter­action is H⋯H, contributing to 56.9% to the overall crystal packing (Fig. 4[link]b). The fingerprint plot delin­eated into H⋯C/C⋯H contacts (31.2% contribution to the HS) shows a pair of characteristic wings, Fig. 4[link]c. The scattered points in a pair of spikes are seen in the fingerprint plot for H⋯O/O⋯H contacts (Fig. 4[link]d, 5.8% contribution). H⋯N/N⋯H contacts contribute 2.7% (Fig. 4[link]e). The scattered points form a the pair of spikes in the fingerprint plot delineated into C⋯O/O⋯C contacts (Fig. 4[link]f, 2.4% contribution). The other inter­actions are C⋯C (0.8%) and O⋯N/C⋯N (0.1%). The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the main roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 4]
Figure 4
(a) Full two-dimensional fingerprint plot of (I)[link], and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H and (f) C⋯O/O⋯C inter­actions.

5. DFT calculations

The optimized structure in the gas phase of compound (I)[link] was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 2[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity (Fukui, 1982[Fukui, K. (1982). Science, 218, 747-754.]; Khan et al., 2015[Khan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800-9812.]). The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework, EHOMO and ELUMO, which clarify the inevitable charge-exchange collaboration inside the studied material. These data, which also include the electronegativity (χ), hardness (η), electrophilicity (ω), softness (σ) and fraction of electrons transferred (ΔN) are recorded in Table 3[link]. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5[link]. The HOMO and LUMO are localized in the plane extending from the whole phenol ring. The energy band gap [ΔE = ELUMO-EHOMO] of the mol­ecule is 2.742 eV, the frontier mol­ecular orbital energies EHOMO and ELUMO being −1.6411eV and −5.8477 eV, respectively. The dipole moment of (I)[link] is estimated to be 2.61 Debye.

Table 2
Comparison of observed (X-ray data) and calculated (DFT) geometric parameters (Å, °)

Parameter X-ray B3LYP/6–311G(d,p)
O1—C14 1.335 (5) 1.335
N1—C8 1.273 (4) 1.273
N1—C5 1.419 (5) 1.419
C1—C2 1.499 (5) 1.499
C11—C15 1.521 (6) 1.521
C8—C9 1.460 (5) 1.460
     
C8—N1—C5 120.6 (3) 120.6
N1—C8—C9 120.6 (3) 120.6
     
C5—N1—C8—C9 −169.8 (3) −169.8

Table 3
Calculated mol­ecular energies for (I)

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy, TE (eV) −19333.931
EHOMO (eV) −1.641
ELUMO (eV) −5.848
Gap, ΔE (eV) 4.207
Dipole moment, μ (Debye) 2.61
Ionization potential, I (eV) 1.641
Electron affinity, A 5.848
Electronegativity, χ 3.744
Hardness, η 2.103
Electrophilicity index, ω 3.333
Softness, σ 0.238
Fraction of electron transferred, ΔN 0.774
[Figure 5]
Figure 5
Energy band gap of the title compound (I)[link].

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave six hits for the {[(3-hy­droxy­phen­yl)imino]­meth­yl}phenol moiety. Two compounds that are very similar compound to (I)[link] have been reported in the literature, viz. N-(3-hy­droxy­phen­yl)-5-meth­oxy­salicylaldimine (BALHUS; Popović et al., 2002[Popović, Z., Pavlović, G., Matković-Čalogović, D., Roje, V. & Leban, I. (2002). J. Mol. Struct. 615, 23-31.]) in which a meth­oxy group replaces the methyl group and 4-chloro-2-{[(3-hy­droxy­phen­yl)imino]­meth­yl}phenol (ISENIE; Yu et al., 2011[Yu, J., Huang, D., Hong, Y. & Huang, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 275-276.]) in which the methyl group is replaced by a chloro group. In the cobalt and manganese complexes di­aqua-bis­{2-hy­droxy-4-[(2-hy­droxy­benzyl­idene)amino]­benzoato-O}bis­(methanol)cobalt(II) (SUL­HOX; Zhou et al. 2009[Zhou, R.-W., Ma, C.-B., Wang, M., Chen, H. & Chen, C.-N. (2009). Chin. J. Struct. Chem. 28, 864-868.]) and (2,2′-{ethane-1,2-diylbis[(nitrilo)­methylyl­idene]}diphenolato){2-hy­droxy-4-[(2-hy­drox­y­benzyl­idene)amino]­benzoato}manganese(III) (UQUBEO; Chen et al., 2011[Chen, H., Zhou, R.-W., Ma, C.-B., Hu, M.-Q. & Chen, C.-N. (2011). Chin. J. Struct. Chem. 30, 158-163.]), the methyl group of (I)[link] is replaced by an ester and acts as a ligand. A similar compound, 2-hy­droxy-N′-(2-hy­droxy­benzyl­idene)-4-[(2-hy­droxy­benzyl­idene)amino]­benzohydrazide (TAXRUI; Mitra et al., 2017[Mitra, S., Sasmal, H. S., Kundu, T., Kandambeth, S., Illath, K., Díaz Díaz, D. & Banerjee, R. (2017). J. Am. Chem. Soc. 139, 4513-4520.]) is substituted at the methyl group of (I)[link]. All these compounds have a similar intra­molecular O—H⋯N hydrogen bond present, forming an S(6) ring motif.

7. Synthesis and crystallization

The title compound (I)[link] was obtained following a published method (Hanika et al., 1971[Hanika, J., Sporka, K. & Ruzicka, V. (1971). Chem. Commun. 36, 3608-3620.]; Samant & Mayadeo 1982[Samant, S. D. & Mayadeo, M. S. (1982). J. Indian Chem. Soc. 14, 383-384.]). Single crystals of compound (I)[link] were obtained by slow evaporation of an ethanol solution after 4 d.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq or 1.5Ueq(C,O). The crystal studied was refined an a perfect inversion twin.

Table 4
Experimental details

Crystal data
Chemical formula C15H15NO
Mr 225.28
Crystal system, space group Monoclinic, Pc
Temperature (K) 296
a, b, c (Å) 13.8433 (10), 7.0774 (6), 6.2142 (5)
β (°) 95.517 (6)
V3) 606.01 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.75 × 0.53 × 0.14
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.944, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 9856, 4081, 2430
Rint 0.063
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.199, 1.05
No. of reflections 4081
No. of parameters 154
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.18
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.5
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020), SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

(E)-4-Methyl-2-{[(4-methylphenyl)imino]methyl}phenol top
Crystal data top
C15H15NOF(000) = 240
Mr = 225.28Dx = 1.235 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 13.8433 (10) ÅCell parameters from 12502 reflections
b = 7.0774 (6) Åθ = 2.9–32.2°
c = 6.2142 (5) ŵ = 0.08 mm1
β = 95.517 (6)°T = 296 K
V = 606.01 (8) Å3Prism, yellow
Z = 20.75 × 0.53 × 0.14 mm
Data collection top
STOE IPDS 2
diffractometer
4081 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2430 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.063
Detector resolution: 6.67 pixels mm-1θmax = 31.9°, θmin = 3.0°
rotation method scansh = 2020
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.944, Tmax = 0.989l = 99
9856 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0974P)2 + 0.0159P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4081 reflectionsΔρmax = 0.22 e Å3
154 parametersΔρmin = 0.18 e Å3
2 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.5
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.5639 (2)1.6821 (5)1.9220 (4)0.0603 (8)
H11.5153491.7110851.8427790.090*
C141.6429 (3)1.7148 (5)1.8202 (5)0.0440 (8)
N11.4649 (2)1.7758 (4)1.5628 (5)0.0469 (8)
C71.2034 (3)1.8103 (6)1.3960 (8)0.0518 (10)
H71.1482451.8535171.4549500.062*
C51.3754 (3)1.7675 (5)1.4311 (6)0.0429 (8)
C101.7225 (3)1.8176 (5)1.5071 (6)0.0436 (7)
H101.7187151.8646331.3668240.052*
C81.5439 (2)1.8060 (6)1.4792 (5)0.0425 (8)
H81.5421311.8426771.3351680.051*
C91.6373 (3)1.7836 (5)1.6074 (6)0.0424 (8)
C31.2783 (3)1.6698 (6)1.1093 (7)0.0511 (9)
H31.2743881.6162640.9720300.061*
C61.2917 (3)1.8269 (6)1.5136 (6)0.0510 (10)
H61.2953181.8789971.6515400.061*
C21.1939 (3)1.7306 (6)1.1904 (6)0.0507 (10)
C131.7325 (3)1.6749 (6)1.9267 (6)0.0522 (10)
H131.7371031.6260822.0663010.063*
C41.3679 (3)1.6860 (5)1.2251 (6)0.0475 (8)
H41.4232211.6429091.1666390.057*
C121.8156 (3)1.7078 (6)1.8251 (7)0.0537 (11)
H121.8754441.6796601.8991170.064*
C151.9044 (3)1.8119 (7)1.5057 (9)0.0700 (12)
H15A1.8865551.8632321.3644480.105*
H15B1.9465111.8986741.5878550.105*
H15C1.9373391.6937341.4923550.105*
C111.8135 (3)1.7801 (5)1.6204 (7)0.0485 (9)
C11.0972 (3)1.7067 (8)1.0630 (9)0.0758 (15)
H1A1.0472781.7565981.1439080.114*
H1B1.0969151.7732110.9283310.114*
H1C1.0853491.5748481.0351500.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0522 (14)0.087 (2)0.0425 (13)0.0019 (15)0.0088 (11)0.0087 (15)
C140.052 (2)0.0442 (19)0.0359 (17)0.0002 (15)0.0035 (15)0.0015 (15)
N10.0464 (16)0.0464 (18)0.0479 (19)0.0010 (14)0.0045 (13)0.0029 (14)
C70.0372 (18)0.054 (2)0.065 (3)0.0014 (16)0.0097 (17)0.007 (2)
C50.0459 (18)0.0420 (18)0.0406 (19)0.0030 (16)0.0037 (15)0.0054 (16)
C100.0442 (16)0.0428 (17)0.0435 (18)0.0017 (15)0.0030 (14)0.0031 (15)
C80.0434 (18)0.0474 (19)0.0359 (17)0.0036 (14)0.0001 (14)0.0054 (14)
C90.0421 (16)0.0426 (18)0.042 (2)0.0034 (15)0.0014 (15)0.0044 (16)
C30.054 (2)0.051 (2)0.048 (2)0.0009 (18)0.0012 (17)0.0079 (18)
C60.057 (2)0.050 (2)0.048 (2)0.0011 (18)0.0102 (18)0.0016 (18)
C20.046 (2)0.045 (2)0.060 (2)0.0003 (16)0.0012 (18)0.0048 (18)
C130.059 (2)0.0455 (19)0.050 (2)0.0028 (18)0.0029 (19)0.0017 (17)
C40.0477 (19)0.0468 (19)0.050 (2)0.0037 (15)0.0117 (15)0.0010 (16)
C120.045 (2)0.052 (3)0.061 (3)0.0010 (15)0.0061 (18)0.0008 (18)
C150.051 (2)0.078 (3)0.082 (3)0.001 (2)0.010 (2)0.007 (3)
C110.0428 (18)0.0413 (18)0.062 (2)0.0055 (14)0.0066 (17)0.0073 (16)
C10.046 (2)0.081 (3)0.096 (4)0.002 (2)0.014 (2)0.002 (3)
Geometric parameters (Å, º) top
O1—C141.335 (5)C3—C21.384 (6)
O1—H10.8200C3—H30.9300
C14—C131.378 (5)C6—H60.9300
C14—C91.404 (5)C2—C11.499 (5)
N1—C81.273 (4)C13—C121.384 (6)
N1—C51.419 (5)C13—H130.9300
C7—C61.368 (6)C4—H40.9300
C7—C21.391 (6)C12—C111.369 (6)
C7—H70.9300C12—H120.9300
C5—C61.376 (5)C15—C111.521 (6)
C5—C41.399 (6)C15—H15A0.9600
C10—C91.407 (5)C15—H15B0.9600
C10—C111.408 (5)C15—H15C0.9600
C10—H100.9300C1—H1A0.9600
C8—C91.460 (5)C1—H1B0.9600
C8—H80.9300C1—H1C0.9600
C3—C41.378 (5)
C14—O1—H1109.5C3—C2—C1121.0 (4)
O1—C14—C13118.5 (3)C7—C2—C1122.1 (4)
O1—C14—C9122.2 (3)C14—C13—C12119.7 (4)
C13—C14—C9119.3 (3)C14—C13—H13120.2
C8—N1—C5120.6 (3)C12—C13—H13120.2
C6—C7—C2121.7 (4)C3—C4—C5119.7 (4)
C6—C7—H7119.1C3—C4—H4120.1
C2—C7—H7119.1C5—C4—H4120.1
C6—C5—C4118.4 (4)C11—C12—C13122.9 (3)
C6—C5—N1119.5 (3)C11—C12—H12118.6
C4—C5—N1121.9 (3)C13—C12—H12118.6
C9—C10—C11119.6 (4)C11—C15—H15A109.5
C9—C10—H10120.2C11—C15—H15B109.5
C11—C10—H10120.2H15A—C15—H15B109.5
N1—C8—C9120.6 (3)C11—C15—H15C109.5
N1—C8—H8119.7H15A—C15—H15C109.5
C9—C8—H8119.7H15B—C15—H15C109.5
C14—C9—C10120.2 (3)C12—C11—C10118.2 (4)
C14—C9—C8121.2 (3)C12—C11—C15123.1 (3)
C10—C9—C8118.4 (3)C10—C11—C15118.6 (4)
C4—C3—C2122.2 (4)C2—C1—H1A109.5
C4—C3—H3118.9C2—C1—H1B109.5
C2—C3—H3118.9H1A—C1—H1B109.5
C7—C6—C5121.0 (4)C2—C1—H1C109.5
C7—C6—H6119.5H1A—C1—H1C109.5
C5—C6—H6119.5H1B—C1—H1C109.5
C3—C2—C7116.9 (3)
C8—N1—C5—C6148.2 (4)C4—C3—C2—C70.2 (6)
C8—N1—C5—C437.2 (6)C4—C3—C2—C1178.4 (4)
C5—N1—C8—C9169.8 (3)C6—C7—C2—C30.5 (6)
O1—C14—C9—C10179.4 (4)C6—C7—C2—C1178.1 (4)
C13—C14—C9—C102.2 (5)O1—C14—C13—C12179.9 (3)
O1—C14—C9—C85.9 (5)C9—C14—C13—C121.7 (6)
C13—C14—C9—C8172.5 (4)C2—C3—C4—C50.5 (6)
C11—C10—C9—C140.8 (5)C6—C5—C4—C31.0 (6)
C11—C10—C9—C8174.0 (3)N1—C5—C4—C3175.6 (4)
N1—C8—C9—C144.9 (6)C14—C13—C12—C110.2 (6)
N1—C8—C9—C10179.6 (3)C13—C12—C11—C101.7 (6)
C2—C7—C6—C51.0 (7)C13—C12—C11—C15178.4 (4)
C4—C5—C6—C71.3 (6)C9—C10—C11—C121.1 (5)
N1—C5—C6—C7176.0 (4)C9—C10—C11—C15178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.591 (4)146
C4—H4···O1i0.932.603.448 (5)152
Symmetry code: (i) x, y, z1.
Comparison of observed (X-ray data) and calculated (DFT) geometric parameters (Å, °) top
ParameterX-rayB3LYP/6–311G(d,p)
O1—C141.335 (5)1.335
N1—C81.273 (4)1.273
N1—C51.419 (5)1.419
C1—C21.499 (5)1.499
C11—C151.521 (6)1.521
C8—C91.460 (5)1.460
C8—N1—C5120.6 (3)120.6
N1—C8—C9120.6 (3)120.6
C5—N1—C8—C9-169.8 (3)-169.8
Calculated molecular energies for (I) top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy, TE (eV)-19333.931
EHOMO (eV)-1.641
ELUMO (eV)-5.848
Gap, ΔE (eV)4.207
Dipole moment, µ (Debye)2.61
Ionization potential, I (eV)1.641
Electron affinity, A5.848
Electronegativity, χ3.744
Hardness, η2.103
Electrophilicity index, ω3.333
Softness, σ0.238
Fraction of electron transferred, ΔN0.774
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer.

Funding information

Funding for this research was provided by: Ondokuz Mayıs University under project No. PYO·FEN1906.19.001.

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationChen, H., Zhou, R.-W., Ma, C.-B., Hu, M.-Q. & Chen, C.-N. (2011). Chin. J. Struct. Chem. 30, 158–163.  Google Scholar
First citationDalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536–540.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElmalı, A., Kabak, M., Kavlakoğlu, E., Elerman, Y. & Durlu, T. N. (1999). J. Mol. Struct. 510, 207–214.  Google Scholar
First citationEl-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429–1438.  CAS Google Scholar
First citationFaizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38–40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96–98.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationFukui, K. (1982). Science, 218, 747–754.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHanika, J., Sporka, K. & Ruzicka, V. (1971). Chem. Commun. 36, 3608–3620.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041.  Web of Science CrossRef PubMed Google Scholar
First citationKansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.  Google Scholar
First citationKhan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800–9812.  Web of Science CrossRef CAS Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMitra, S., Sasmal, H. S., Kundu, T., Kandambeth, S., Illath, K., Díaz Díaz, D. & Banerjee, R. (2017). J. Am. Chem. Soc. 139, 4513–4520.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.  CAS Google Scholar
First citationOzeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790.  Web of Science CSD CrossRef Google Scholar
First citationPizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.  CSD CrossRef Google Scholar
First citationPopović, Z., Pavlović, G., Matković-Čalogović, D., Roje, V. & Leban, I. (2002). J. Mol. Struct. 615, 23–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationSamant, S. D. & Mayadeo, M. S. (1982). J. Indian Chem. Soc. 14, 383–384.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 42–50.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J., Huang, D., Hong, Y. & Huang, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 275–276.  CAS Google Scholar
First citationZhou, R.-W., Ma, C.-B., Wang, M., Chen, H. & Chen, C.-N. (2009). Chin. J. Struct. Chem. 28, 864–868.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds