research communications
E)-4-methyl-2-{[(4-methylphenyl)imino]methyl}phenol
Hirshfeld surface analysis and DFT studies of (aKirikkale University, Faculty of Arts and Sciences, Physics Department, 71450 Kirikkale, Turkey, bDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, and eFaculty of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com
In the title compound, C15H15NO, the configuration of the C=N bond of the Schiff base is E, and an intramolecular O—H⋯N hydrogen bond is observed, forming an intramolecular S(6) ring motif. The phenol ring is inclined by 45.73 (2)° from the plane of the aniline ring. In the crystal, molecules are linked along the b axis by O—H⋯N and C—H⋯O hydrogen bonds, forming polymeric chains. The Hirshfeld surface analysis of the indicates that the most important contributions for the packing arrangement are from H⋯H (56.9%) and H⋯C/C⋯H (31.2%) interactions. The density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined molecular structure, and the HOMO–LUMO energy gap is provided. The crystal studied was refined as an inversion twin.
Keywords: crystal structure; Schiff base; intramolecular hydrogen bonding; 2-hydroxy-5-methylbenzaldehyde; p-tolylamine.
CCDC reference: 2009052
1. Chemical context
et al., 2004; Moroz et al., 2012; Kansız & Dege, 2018). are important in various areas of chemistry and biochemistry because of their biological activity (El-masry et al., 2000) and photochromic properties. They also have applications in various fields such as the measurement and control of radiation intensities in imaging systems and optical computers (Elmalı et al., 1999), and electronics, optoelectronics and photonics (Iwan et al., 2007). They are used as anion sensors (Dalapati et al., 2011) and as non-linear optics compounds (Sun et al., 2012). The present work is part of an ongoing structural study of and their utilization in the synthesis of new organic, excited-state proton-transfer compounds, and fluorescent chemosensors (Faizi et al., 2016, 2018; Kumar et al., 2018; Mukherjee et al., 2018). We report herein the as well as the Hirshfeld surface analysis of the title Schiff base (E)-4-methyl-2-{[(4-methylphenyl)imino]methyl}phenol, (I). A comparison between the calculated structure [obtained using density functional theory at the B3LYP/6-311 G(d,p) level] and the experimental data is also presented.
(known as Schiff bases), having imine groups (CH=N) and benzyl rings alternately in the main chain and being conjugated, are interesting materials for a wide spectrum of applications, in particular as metal-ion complexing agents and in biological systems (Hökelek2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. An intramolecular O—H⋯N hydrogen bond is observed, which forms an S(6) ring motif (Table 1 and Fig. 1). This is a relatively common feature in analogous imine–phenol compounds (see Database survey section). The imine group, which displays a C9—C8—N1—C5 torsion angle of −169.8 (3)°, contributes to the general non-planarity of the molecule. The phenol ring (C9–C14) is inclined by 45.73 (2)° to the aniline ring (C2–C7). The configuration of the C8=N1 bond of this Schiff base is E. The C14—O1 bond is 1.335 (5) Å, which is close to reported values of single C—O bonds in and salicylideneamines (Ozeryanskii et al., 2006). The N1—C8 bond is short at 1.273 (4) Å, strongly indicating the existence of a conjugated C=N bond, while the longer C8—C9 bond [1.460 (5) Å] implies a single bond. All these data support the existence of the phenol–imine tautomer for (I) in its crystalline state. These features are similar to those observed in related 4-dimethylamino-N-salicylideneanilines (Pizzala et al., 2000). The C—N, C=N and C—C bond lengths are normal and close to the values observed in related structures (Faizi et al., 2017a,b).
3. Supramolecular features
In the crystal of (I), molecules are linked by C—H⋯O interactions, forming sheets propagating along the b-axis direction (Fig. 2 and Table 1). There are no other significant intermolecular interactions present.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal packing of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3a), white indicates contacts with distances equal to the sum of van der Waals radii, while the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as respective donors and/or acceptors. The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 3b clearly suggests that there are no π–π interactions in (I).
The overall two-dimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 4a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯O/O⋯C contacts are illustrated in Fig. 4b–f, respectively. The most important interaction is H⋯H, contributing to 56.9% to the overall crystal packing (Fig. 4b). The fingerprint plot delineated into H⋯C/C⋯H contacts (31.2% contribution to the HS) shows a pair of characteristic wings, Fig. 4c. The scattered points in a pair of spikes are seen in the fingerprint plot for H⋯O/O⋯H contacts (Fig. 4d, 5.8% contribution). H⋯N/N⋯H contacts contribute 2.7% (Fig. 4e). The scattered points form a the pair of spikes in the fingerprint plot delineated into C⋯O/O⋯C contacts (Fig. 4f, 2.4% contribution). The other interactions are C⋯C (0.8%) and O⋯N/C⋯N (0.1%). The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the main roles in the crystal packing (Hathwar et al., 2015).
5. DFT calculations
The optimized structure in the gas phase of compound (I) was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 2). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity (Fukui, 1982; Khan et al., 2015). The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework, EHOMO and ELUMO, which clarify the inevitable charge-exchange collaboration inside the studied material. These data, which also include the (χ), hardness (η), (ω), softness (σ) and fraction of electrons transferred (ΔN) are recorded in Table 3. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5. The HOMO and LUMO are localized in the plane extending from the whole phenol ring. The energy band gap [ΔE = ELUMO-EHOMO] of the molecule is 2.742 eV, the frontier molecular orbital energies EHOMO and ELUMO being −1.6411eV and −5.8477 eV, respectively. The of (I) is estimated to be 2.61 Debye.
|
|
6. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave six hits for the {[(3-hydroxyphenyl)imino]methyl}phenol moiety. Two compounds that are very similar compound to (I) have been reported in the literature, viz. N-(3-hydroxyphenyl)-5-methoxysalicylaldimine (BALHUS; Popović et al., 2002) in which a methoxy group replaces the methyl group and 4-chloro-2-{[(3-hydroxyphenyl)imino]methyl}phenol (ISENIE; Yu et al., 2011) in which the methyl group is replaced by a chloro group. In the cobalt and manganese complexes diaqua-bis{2-hydroxy-4-[(2-hydroxybenzylidene)amino]benzoato-O}bis(methanol)cobalt(II) (SULHOX; Zhou et al. 2009) and (2,2′-{ethane-1,2-diylbis[(nitrilo)methylylidene]}diphenolato){2-hydroxy-4-[(2-hydroxybenzylidene)amino]benzoato}manganese(III) (UQUBEO; Chen et al., 2011), the methyl group of (I) is replaced by an ester and acts as a ligand. A similar compound, 2-hydroxy-N′-(2-hydroxybenzylidene)-4-[(2-hydroxybenzylidene)amino]benzohydrazide (TAXRUI; Mitra et al., 2017) is substituted at the methyl group of (I). All these compounds have a similar intramolecular O—H⋯N hydrogen bond present, forming an S(6) ring motif.
7. Synthesis and crystallization
The title compound (I) was obtained following a published method (Hanika et al., 1971; Samant & Mayadeo 1982). Single crystals of compound (I) were obtained by slow evaporation of an ethanol solution after 4 d.
8. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq or 1.5Ueq(C,O). The crystal studied was refined an a perfect inversion twin.
details are summarized in Table 4Supporting information
CCDC reference: 2009052
https://doi.org/10.1107/S2056989020007847/tx2025sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007847/tx2025Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020007847/tx2025Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020), SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).C15H15NO | F(000) = 240 |
Mr = 225.28 | Dx = 1.235 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.8433 (10) Å | Cell parameters from 12502 reflections |
b = 7.0774 (6) Å | θ = 2.9–32.2° |
c = 6.2142 (5) Å | µ = 0.08 mm−1 |
β = 95.517 (6)° | T = 296 K |
V = 606.01 (8) Å3 | Prism, yellow |
Z = 2 | 0.75 × 0.53 × 0.14 mm |
STOE IPDS 2 diffractometer | 4081 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2430 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.063 |
Detector resolution: 6.67 pixels mm-1 | θmax = 31.9°, θmin = 3.0° |
rotation method scans | h = −20→20 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −10→10 |
Tmin = 0.944, Tmax = 0.989 | l = −9→9 |
9856 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.199 | w = 1/[σ2(Fo2) + (0.0974P)2 + 0.0159P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4081 reflections | Δρmax = 0.22 e Å−3 |
154 parameters | Δρmin = −0.18 e Å−3 |
2 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.5 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.5639 (2) | 1.6821 (5) | 1.9220 (4) | 0.0603 (8) | |
H1 | 1.515349 | 1.711085 | 1.842779 | 0.090* | |
C14 | 1.6429 (3) | 1.7148 (5) | 1.8202 (5) | 0.0440 (8) | |
N1 | 1.4649 (2) | 1.7758 (4) | 1.5628 (5) | 0.0469 (8) | |
C7 | 1.2034 (3) | 1.8103 (6) | 1.3960 (8) | 0.0518 (10) | |
H7 | 1.148245 | 1.853517 | 1.454950 | 0.062* | |
C5 | 1.3754 (3) | 1.7675 (5) | 1.4311 (6) | 0.0429 (8) | |
C10 | 1.7225 (3) | 1.8176 (5) | 1.5071 (6) | 0.0436 (7) | |
H10 | 1.718715 | 1.864633 | 1.366824 | 0.052* | |
C8 | 1.5439 (2) | 1.8060 (6) | 1.4792 (5) | 0.0425 (8) | |
H8 | 1.542131 | 1.842677 | 1.335168 | 0.051* | |
C9 | 1.6373 (3) | 1.7836 (5) | 1.6074 (6) | 0.0424 (8) | |
C3 | 1.2783 (3) | 1.6698 (6) | 1.1093 (7) | 0.0511 (9) | |
H3 | 1.274388 | 1.616264 | 0.972030 | 0.061* | |
C6 | 1.2917 (3) | 1.8269 (6) | 1.5136 (6) | 0.0510 (10) | |
H6 | 1.295318 | 1.878997 | 1.651540 | 0.061* | |
C2 | 1.1939 (3) | 1.7306 (6) | 1.1904 (6) | 0.0507 (10) | |
C13 | 1.7325 (3) | 1.6749 (6) | 1.9267 (6) | 0.0522 (10) | |
H13 | 1.737103 | 1.626082 | 2.066301 | 0.063* | |
C4 | 1.3679 (3) | 1.6860 (5) | 1.2251 (6) | 0.0475 (8) | |
H4 | 1.423221 | 1.642909 | 1.166639 | 0.057* | |
C12 | 1.8156 (3) | 1.7078 (6) | 1.8251 (7) | 0.0537 (11) | |
H12 | 1.875444 | 1.679660 | 1.899117 | 0.064* | |
C15 | 1.9044 (3) | 1.8119 (7) | 1.5057 (9) | 0.0700 (12) | |
H15A | 1.886555 | 1.863232 | 1.364448 | 0.105* | |
H15B | 1.946511 | 1.898674 | 1.587855 | 0.105* | |
H15C | 1.937339 | 1.693734 | 1.492355 | 0.105* | |
C11 | 1.8135 (3) | 1.7801 (5) | 1.6204 (7) | 0.0485 (9) | |
C1 | 1.0972 (3) | 1.7067 (8) | 1.0630 (9) | 0.0758 (15) | |
H1A | 1.047278 | 1.756598 | 1.143908 | 0.114* | |
H1B | 1.096915 | 1.773211 | 0.928331 | 0.114* | |
H1C | 1.085349 | 1.574848 | 1.035150 | 0.114* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0522 (14) | 0.087 (2) | 0.0425 (13) | −0.0019 (15) | 0.0088 (11) | 0.0087 (15) |
C14 | 0.052 (2) | 0.0442 (19) | 0.0359 (17) | −0.0002 (15) | 0.0035 (15) | 0.0015 (15) |
N1 | 0.0464 (16) | 0.0464 (18) | 0.0479 (19) | −0.0010 (14) | 0.0045 (13) | 0.0029 (14) |
C7 | 0.0372 (18) | 0.054 (2) | 0.065 (3) | 0.0014 (16) | 0.0097 (17) | −0.007 (2) |
C5 | 0.0459 (18) | 0.0420 (18) | 0.0406 (19) | −0.0030 (16) | 0.0037 (15) | 0.0054 (16) |
C10 | 0.0442 (16) | 0.0428 (17) | 0.0435 (18) | −0.0017 (15) | 0.0030 (14) | 0.0031 (15) |
C8 | 0.0434 (18) | 0.0474 (19) | 0.0359 (17) | −0.0036 (14) | −0.0001 (14) | 0.0054 (14) |
C9 | 0.0421 (16) | 0.0426 (18) | 0.042 (2) | −0.0034 (15) | 0.0014 (15) | −0.0044 (16) |
C3 | 0.054 (2) | 0.051 (2) | 0.048 (2) | −0.0009 (18) | −0.0012 (17) | −0.0079 (18) |
C6 | 0.057 (2) | 0.050 (2) | 0.048 (2) | 0.0011 (18) | 0.0102 (18) | 0.0016 (18) |
C2 | 0.046 (2) | 0.045 (2) | 0.060 (2) | 0.0003 (16) | 0.0012 (18) | 0.0048 (18) |
C13 | 0.059 (2) | 0.0455 (19) | 0.050 (2) | −0.0028 (18) | −0.0029 (19) | −0.0017 (17) |
C4 | 0.0477 (19) | 0.0468 (19) | 0.050 (2) | 0.0037 (15) | 0.0117 (15) | 0.0010 (16) |
C12 | 0.045 (2) | 0.052 (3) | 0.061 (3) | 0.0010 (15) | −0.0061 (18) | −0.0008 (18) |
C15 | 0.051 (2) | 0.078 (3) | 0.082 (3) | −0.001 (2) | 0.010 (2) | 0.007 (3) |
C11 | 0.0428 (18) | 0.0413 (18) | 0.062 (2) | −0.0055 (14) | 0.0066 (17) | −0.0073 (16) |
C1 | 0.046 (2) | 0.081 (3) | 0.096 (4) | −0.002 (2) | −0.014 (2) | −0.002 (3) |
O1—C14 | 1.335 (5) | C3—C2 | 1.384 (6) |
O1—H1 | 0.8200 | C3—H3 | 0.9300 |
C14—C13 | 1.378 (5) | C6—H6 | 0.9300 |
C14—C9 | 1.404 (5) | C2—C1 | 1.499 (5) |
N1—C8 | 1.273 (4) | C13—C12 | 1.384 (6) |
N1—C5 | 1.419 (5) | C13—H13 | 0.9300 |
C7—C6 | 1.368 (6) | C4—H4 | 0.9300 |
C7—C2 | 1.391 (6) | C12—C11 | 1.369 (6) |
C7—H7 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.376 (5) | C15—C11 | 1.521 (6) |
C5—C4 | 1.399 (6) | C15—H15A | 0.9600 |
C10—C9 | 1.407 (5) | C15—H15B | 0.9600 |
C10—C11 | 1.408 (5) | C15—H15C | 0.9600 |
C10—H10 | 0.9300 | C1—H1A | 0.9600 |
C8—C9 | 1.460 (5) | C1—H1B | 0.9600 |
C8—H8 | 0.9300 | C1—H1C | 0.9600 |
C3—C4 | 1.378 (5) | ||
C14—O1—H1 | 109.5 | C3—C2—C1 | 121.0 (4) |
O1—C14—C13 | 118.5 (3) | C7—C2—C1 | 122.1 (4) |
O1—C14—C9 | 122.2 (3) | C14—C13—C12 | 119.7 (4) |
C13—C14—C9 | 119.3 (3) | C14—C13—H13 | 120.2 |
C8—N1—C5 | 120.6 (3) | C12—C13—H13 | 120.2 |
C6—C7—C2 | 121.7 (4) | C3—C4—C5 | 119.7 (4) |
C6—C7—H7 | 119.1 | C3—C4—H4 | 120.1 |
C2—C7—H7 | 119.1 | C5—C4—H4 | 120.1 |
C6—C5—C4 | 118.4 (4) | C11—C12—C13 | 122.9 (3) |
C6—C5—N1 | 119.5 (3) | C11—C12—H12 | 118.6 |
C4—C5—N1 | 121.9 (3) | C13—C12—H12 | 118.6 |
C9—C10—C11 | 119.6 (4) | C11—C15—H15A | 109.5 |
C9—C10—H10 | 120.2 | C11—C15—H15B | 109.5 |
C11—C10—H10 | 120.2 | H15A—C15—H15B | 109.5 |
N1—C8—C9 | 120.6 (3) | C11—C15—H15C | 109.5 |
N1—C8—H8 | 119.7 | H15A—C15—H15C | 109.5 |
C9—C8—H8 | 119.7 | H15B—C15—H15C | 109.5 |
C14—C9—C10 | 120.2 (3) | C12—C11—C10 | 118.2 (4) |
C14—C9—C8 | 121.2 (3) | C12—C11—C15 | 123.1 (3) |
C10—C9—C8 | 118.4 (3) | C10—C11—C15 | 118.6 (4) |
C4—C3—C2 | 122.2 (4) | C2—C1—H1A | 109.5 |
C4—C3—H3 | 118.9 | C2—C1—H1B | 109.5 |
C2—C3—H3 | 118.9 | H1A—C1—H1B | 109.5 |
C7—C6—C5 | 121.0 (4) | C2—C1—H1C | 109.5 |
C7—C6—H6 | 119.5 | H1A—C1—H1C | 109.5 |
C5—C6—H6 | 119.5 | H1B—C1—H1C | 109.5 |
C3—C2—C7 | 116.9 (3) | ||
C8—N1—C5—C6 | −148.2 (4) | C4—C3—C2—C7 | 0.2 (6) |
C8—N1—C5—C4 | 37.2 (6) | C4—C3—C2—C1 | −178.4 (4) |
C5—N1—C8—C9 | −169.8 (3) | C6—C7—C2—C3 | −0.5 (6) |
O1—C14—C9—C10 | 179.4 (4) | C6—C7—C2—C1 | 178.1 (4) |
C13—C14—C9—C10 | −2.2 (5) | O1—C14—C13—C12 | −179.9 (3) |
O1—C14—C9—C8 | −5.9 (5) | C9—C14—C13—C12 | 1.7 (6) |
C13—C14—C9—C8 | 172.5 (4) | C2—C3—C4—C5 | −0.5 (6) |
C11—C10—C9—C14 | 0.8 (5) | C6—C5—C4—C3 | 1.0 (6) |
C11—C10—C9—C8 | −174.0 (3) | N1—C5—C4—C3 | 175.6 (4) |
N1—C8—C9—C14 | 4.9 (6) | C14—C13—C12—C11 | 0.2 (6) |
N1—C8—C9—C10 | 179.6 (3) | C13—C12—C11—C10 | −1.7 (6) |
C2—C7—C6—C5 | 1.0 (7) | C13—C12—C11—C15 | −178.4 (4) |
C4—C5—C6—C7 | −1.3 (6) | C9—C10—C11—C12 | 1.1 (5) |
N1—C5—C6—C7 | −176.0 (4) | C9—C10—C11—C15 | 178.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.87 | 2.591 (4) | 146 |
C4—H4···O1i | 0.93 | 2.60 | 3.448 (5) | 152 |
Symmetry code: (i) x, y, z−1. |
Parameter | X-ray | B3LYP/6–311G(d,p) |
O1—C14 | 1.335 (5) | 1.335 |
N1—C8 | 1.273 (4) | 1.273 |
N1—C5 | 1.419 (5) | 1.419 |
C1—C2 | 1.499 (5) | 1.499 |
C11—C15 | 1.521 (6) | 1.521 |
C8—C9 | 1.460 (5) | 1.460 |
C8—N1—C5 | 120.6 (3) | 120.6 |
N1—C8—C9 | 120.6 (3) | 120.6 |
C5—N1—C8—C9 | -169.8 (3) | -169.8 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy, TE (eV) | -19333.931 |
EHOMO (eV) | -1.641 |
ELUMO (eV) | -5.848 |
Gap, ΔE (eV) | 4.207 |
Dipole moment, µ (Debye) | 2.61 |
Ionization potential, I (eV) | 1.641 |
Electron affinity, A | 5.848 |
Electronegativity, χ | 3.744 |
Hardness, η | 2.103 |
Electrophilicity index, ω | 3.333 |
Softness, σ | 0.238 |
Fraction of electron transferred, ΔN | 0.774 |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer.
Funding information
Funding for this research was provided by: Ondokuz Mayıs University under project No. PYO·FEN1906.19.001.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Chen, H., Zhou, R.-W., Ma, C.-B., Hu, M.-Q. & Chen, C.-N. (2011). Chin. J. Struct. Chem. 30, 158–163. Google Scholar
Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536–540. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elmalı, A., Kabak, M., Kavlakoğlu, E., Elerman, Y. & Durlu, T. N. (1999). J. Mol. Struct. 510, 207–214. Google Scholar
El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429–1438. CAS Google Scholar
Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38–40. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464. Web of Science CSD CrossRef CAS Google Scholar
Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96–98. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Fukui, K. (1982). Science, 218, 747–754. CrossRef PubMed CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hanika, J., Sporka, K. & Ruzicka, V. (1971). Chem. Commun. 36, 3608–3620. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. Web of Science CSD CrossRef IUCr Journals Google Scholar
Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041. Web of Science CrossRef PubMed Google Scholar
Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51. Google Scholar
Khan, E., Shukla, A., Srivastava, A., Shweta, P. & Tandon, P. (2015). New J. Chem. 39, 9800–9812. Web of Science CrossRef CAS Google Scholar
Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mitra, S., Sasmal, H. S., Kundu, T., Kandambeth, S., Illath, K., Díaz Díaz, D. & Banerjee, R. (2017). J. Am. Chem. Soc. 139, 4513–4520. Web of Science CSD CrossRef CAS PubMed Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796. CAS Google Scholar
Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790. Web of Science CSD CrossRef Google Scholar
Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939. CSD CrossRef Google Scholar
Popović, Z., Pavlović, G., Matković-Čalogović, D., Roje, V. & Leban, I. (2002). J. Mol. Struct. 615, 23–31. Web of Science CSD CrossRef CAS Google Scholar
Samant, S. D. & Mayadeo, M. S. (1982). J. Indian Chem. Soc. 14, 383–384. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 42–50. Web of Science CSD CrossRef CAS PubMed Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, J., Huang, D., Hong, Y. & Huang, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 275–276. CAS Google Scholar
Zhou, R.-W., Ma, C.-B., Wang, M., Chen, H. & Chen, C.-N. (2009). Chin. J. Struct. Chem. 28, 864–868. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.