research communications
of 5-[(benzoyloxy)methyl]-5,6-dihydroxy-4-oxocyclohex-2-en-1-yl benzoate
aDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand, and bThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
*Correspondence e-mail: fscitwd@ku.ac.th
The 21H18O7, was confirmed by single-crystal X-ray diffraction. The has three chiral centers at positions C1, C5 and C6 of the cyclohexanone ring, but the could not be determined reliably. The methyl benzoate and benzoyloxy substituents at positions C1 and C5 of the cyclohexenone ring are on the same side of the ring with the dihedral angle between their mean planes being 16.25 (10)°. These rings are almost perpendicular to the cyclohexenone ring. The benzoate groups and two hydroxyl groups on the cyclohexenone ring form strong hydrogen bonds to consolidate the In addition, weak C—H⋯O hydrogen bonds also contribute to the packing of the structure.
of the natural product zeylenone, CKeywords: crystal structure; Pipers griffithii; zeylenone; hydrogen bonds.
CCDC reference: 2008756
1. Chemical context
Zeylenone is a naturally occurring polyoxygenated cyclohexene derived from the shikimate pathway. It has been found in a few plant families such as Piperaceae and Annonaceae. The biological activity of zeylenone was reported as inducing apoptosis in the mitochondria of gastric cancer cells (Yang et al., 2018) and cervical carcinoma cells (Zhang et al., 2017). The of natural zeylenone was determined by CD spectroscopy to be (−)-zeylenone (Takeuchi et al., 2001).
2. Structural commentary
The molecular structure of the title compound (I) is shown in Fig. 1. It has three chiral centers at positions C1, C5 and C6 of the cyclohexanone ring. However, the (probably 1S, 5R and 6S) could not be deduced from the X-ray data because of the large standard deviation of the [0.0 (3)]. The two main substituents are methyl benzoate and benzoyloxy at positions C1 and C5, and positioned at the same side of the cyclohexenone ring. The dihedral angle between the methyl benzoate and benzoyloxy mean planes is 16.24 (10)°, indicating that the rings are almost coplanar. The dihedral angle between the cyclohexenone ring and the methyl benzoate and benzoyloxy rings are 74.92 (9) and 69.23 (10)°, respectively, indicating that the aromatic and cyclohexenone rings are almost perpendicular. The conformation of the cyclohexenone ring, the core structure of (−)-zeylenone, is described as a half-chair based on the torsion angles H4—C4—C3—C2 [−178.7 (3)°, almost planar] and C5—C6—C1—C2 [−60.65 (16)°, perfectly staggered] and the puckering parameters [Q = 0.4989 (17) Å, θ = 130.8 (2)° and Φ = 143.9 (3)°].
3. Supramolecular features
The crystal packing is characterized by both strong and weak hydrogen bonds and also by partial π–π interactions. The strong hydrogen bonds are formed between hydroxyl groups on the cyclohexenone ring and the uncoordinated oxygen atom of methyl benzoate and benzoyloxy substituents (O2—H2⋯O7i and O1—H1⋯O5ii, Fig. 2a, Table 1). These interactions form a layer parallel to the bc plane (Fig. 2b). In addition, the crystal packing features weak C—H⋯O hydrogen-bonding interactions (C13—H13⋯O2iii, Table 1) and contacts between the aromatic rings [the shortest centroid–centroid distance between phenyl rings is 4.641 (2) Å], as shown in Fig. 3.
4. Computational calculations
The structure of the title compound was optimized using density functional theory (DFT) calculations at the M062X/6-31G(d) level using GAUSSIAN 09 (Frisch et al., 2016). The optimized structure was then used for the analysis of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) using the same level of theory in order to determine the reactivity of the compound via the energy gap.
The DFT-optimized geometry was compared with the geometry obtained from the Discovery Studio visualizer (Dassault, 2018), as shown in Fig. 4. The overlay similarity, which is calculated based on the steric and electrostatic overlaps, is high with a value of 0.86 and the r.m.s.d. of the heavy atoms (non-H atoms) is 0.67 Å. Geometrical parameters (i.e. bond lengths, bond angles and torsion angles) of the experimental and optimized structures are given in Table 2.
using the molecular overlay module based on 50% steric and 50% electrostatic similarities in the
|
Finally, the molecular orbitals of zeylenone were calculated. The HOMO and LUMO plots are shown in Fig. 5. At the HOMO level, the orbitals are located on the phenyl ring of the methylene benzoate group and the orbitals are shifted to the cyclohexenone ring at the LUMO level. The energy gap (EHOMO − ELUMO) is 7.61 eV. The large energy gap indicates the stability of the title compound.
5. Database survey
In the first reported total synthesis of zeylenone from shikimic acid, the R, 5S, 6R. A study of the synthesized product gave (+)-zeylenone (Liu et al., 2004). The first total synthesis of (−)-zeylenone was also achieved from shikimic acid (Zhang et al., 2006). Similar structures to (−)-zeylenone are (−)-zeylenol and an alcohol form, (−)-zeylenone, from Piper cubeba (Taneja et al., 1991).
was assigned as 1The closest related structure is that of Cherrevenone, a polyoxygenated cyclohexene derivative from Uvaria cherrevensis. Here, the could again not be determined from the X-ray data, but was confirmed by an electronic analysis (CCDC refcode WOJLIT; Jaipetch et al., 2019).
Other reported crystal structures containing a cyclohexenone ring as a core structure include URIPUH (Mayekar et al., 2010), KADROW (Lynch et al., 1989), WINTUI (Sondossi et al., 1995) and CEZXUD (Atioğlu et al., 2018). In all of these, the cyclohexenone ring adopts a half-chair conformation, as observed in the title compound.
6. Synthesis and crystallization
Pipers griffithii leaves, collected from Kanchanaburi province in Easten Thailand, were dried in air and then powdered with a grinder. Piper powder (400 g) was macerated at room temperature in hexane for a week and then filtered. This was repeated with the remaining Piper powder using ethyl acetate. The filtrate was evaporated to yield about 2.60 g crude extract from ethyl acetate, which was dissolved again in ethyl acetate and mixed with silica gel. The mixture was evaporated by rotary evaporator, loaded on the column and eluted by using 20–50% EtOAc in hexane. The fractions were collected and combined, monitoring with thin layer to provide eleven fractions. The sixth fraction was separated by using MeOH:EtOAc:Hexane (1:4:5) as eluents, yielding a pale-yellow solid (0.60 g), which was recrystallized from dichloromethane and hexane (1:1), giving colourless in crystals, m.p. 423–424 K.
1H NMR (400 MHz, CDCl3): δ 3.22 (1H, s, br), 4.11 (1H, s, br), 4.38 (1H, d, J = 4 Hz), 4.60 (1H, d, J = 12 Hz), 4.85 (1H, d, J = 8 Hz), 5.96 (1H, d, J = 4 Hz), 6.34 (1H, dd, J = 8, 8 Hz), 6.96 (1H, dd, J = 4, 8 Hz), 7.38–7.44 (4H, m), 7.56 (2H, dd, J = 8, 16 Hz), 7.94 (2H, dd, J = 4, 8 Hz), 8.02 (2H, dd, J = 4, 8 Hz). 13C NMR (CDCl3): δ 65.4, 69.2, 71.6, 77.2, 128.4, 128.5, 128.6, 128.7, 129.1, 129.7, 129.78, 133.4, 133.7, 142.6, 165.3, 166.1, 196.2. m/z 383.1125 (M + 1)+. IR (KBr, cm−1): 712 cm−1 (s, C—H bending); 1103 cm−1 (s, C—O stretching); 1277 cm−1 (s, C—O stretching); 1593 cm−1 (w, C=C aromatic ring); 1705 cm−1 (s, C=O) ; 2933 cm−1 (w, C=C—H stretching aromatic ring); 3423 cm−1 (s, O—H stretching).
7. Refinement
Crystal data, data collection and structure . All H atoms, ternary C(H), secondary C(H,H), aromatic H and tetrahedral OH, were placed in calculated positions (C—H = 0.98, 0.97, 0.93 and 0.82 Å, respectively). They are refined using a riding model with Uiso(H) = 1.5Ueq(C) or 1.5Ueq(O).
details are summarized in Table 3Supporting information
CCDC reference: 2008756
https://doi.org/10.1107/S2056989020007793/vm2234sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007793/vm2234Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020007793/vm2234Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C21H18O7 | Dx = 1.342 Mg m−3 |
Mr = 382.37 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9916 reflections |
a = 7.4958 (11) Å | θ = 2.6–24.7° |
b = 12.422 (2) Å | µ = 0.10 mm−1 |
c = 20.325 (4) Å | T = 296 K |
V = 1892.4 (6) Å3 | Plate, colourless |
Z = 4 | 0.24 × 0.08 × 0.04 mm |
F(000) = 800.5281 |
Bruker APEX2 D8 QUEST CMOS diffractometer | 3199 reflections with I ≥ 2u(I) |
ω and φ scans | Rint = 0.045 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 25.7°, θmin = 2.9° |
Tmin = 0.708, Tmax = 0.745 | h = −9→9 |
36963 measured reflections | k = −15→15 |
3587 independent reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1967P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.082 | (Δ/σ)max = 0.0003 |
S = 1.10 | Δρmax = 0.12 e Å−3 |
3587 reflections | Δρmin = −0.10 e Å−3 |
255 parameters | Absolute structure: Flack x determined using 1259 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.0 (3) |
35 constraints |
x | y | z | Uiso*/Ueq | ||
O6 | 0.48269 (18) | 0.70917 (9) | 0.38884 (5) | 0.0630 (3) | |
O2 | 0.20328 (14) | 0.56656 (10) | 0.43093 (5) | 0.0586 (3) | |
H2 | 0.1932 (6) | 0.5895 (17) | 0.4686 (4) | 0.0879 (4)* | |
O1 | 0.43371 (18) | 0.46452 (9) | 0.52550 (5) | 0.0637 (3) | |
H1 | 0.477 (3) | 0.4158 (8) | 0.54749 (17) | 0.0956 (5)* | |
O4 | 0.25100 (18) | 0.33708 (9) | 0.38037 (5) | 0.0649 (3) | |
O5 | 0.0902 (2) | 0.19256 (12) | 0.40208 (7) | 0.0929 (5) | |
O7 | 0.5956 (3) | 0.82489 (11) | 0.46087 (7) | 0.1010 (6) | |
O3 | 0.6515 (2) | 0.30383 (12) | 0.42569 (8) | 0.0923 (5) | |
C8 | 0.1399 (2) | 0.25864 (12) | 0.36344 (9) | 0.0586 (4) | |
C6 | 0.3807 (2) | 0.53548 (12) | 0.41980 (7) | 0.0452 (3) | |
H6 | 0.3924 (2) | 0.51900 (12) | 0.37285 (7) | 0.0542 (4)* | |
C15 | 0.5290 (3) | 0.80813 (13) | 0.40783 (9) | 0.0655 (5) | |
C1 | 0.4302 (2) | 0.43358 (12) | 0.45798 (7) | 0.0511 (4) | |
C2 | 0.6172 (3) | 0.39738 (15) | 0.43677 (8) | 0.0639 (5) | |
C16 | 0.4927 (2) | 0.89129 (13) | 0.35772 (9) | 0.0605 (4) | |
C10 | 0.1230 (2) | 0.34822 (16) | 0.25339 (9) | 0.0660 (5) | |
H10 | 0.1836 (2) | 0.40757 (16) | 0.27012 (9) | 0.0793 (5)* | |
C7 | 0.2932 (3) | 0.34568 (14) | 0.44959 (8) | 0.0637 (4) | |
H7a | 0.1864 (3) | 0.36290 (14) | 0.47445 (8) | 0.0764 (5)* | |
H7b | 0.3402 (3) | 0.27786 (14) | 0.46567 (8) | 0.0764 (5)* | |
C5 | 0.5144 (2) | 0.62285 (13) | 0.43577 (8) | 0.0567 (4) | |
H5 | 0.4933 (2) | 0.64941 (13) | 0.48050 (8) | 0.0681 (5)* | |
C9 | 0.0875 (2) | 0.26165 (13) | 0.29324 (8) | 0.0560 (4) | |
C21 | 0.4190 (3) | 0.86669 (15) | 0.29726 (9) | 0.0651 (4) | |
H21 | 0.3903 (3) | 0.79577 (15) | 0.28711 (9) | 0.0781 (5)* | |
C12 | −0.0180 (3) | 0.2577 (2) | 0.16356 (11) | 0.0823 (6) | |
H12 | −0.0545 (3) | 0.2567 (2) | 0.11984 (11) | 0.0988 (7)* | |
C11 | 0.0688 (3) | 0.3472 (2) | 0.18828 (10) | 0.0775 (5) | |
H11 | 0.0905 (3) | 0.4063 (2) | 0.16137 (10) | 0.0930 (6)* | |
C3 | 0.7495 (3) | 0.4826 (2) | 0.43087 (11) | 0.0824 (6) | |
H3 | 0.8696 (3) | 0.4646 (2) | 0.42780 (11) | 0.0989 (7)* | |
C4 | 0.7022 (3) | 0.58513 (18) | 0.42980 (11) | 0.0776 (6) | |
H4 | 0.7913 (3) | 0.63662 (18) | 0.42504 (11) | 0.0931 (7)* | |
C13 | −0.0499 (3) | 0.1720 (2) | 0.20235 (13) | 0.0959 (7) | |
H13 | −0.1063 (3) | 0.1117 (2) | 0.18499 (13) | 0.1150 (9)* | |
C19 | 0.4324 (3) | 1.05213 (18) | 0.26647 (13) | 0.0881 (7) | |
H19 | 0.4110 (3) | 1.10627 (18) | 0.23586 (13) | 0.1057 (8)* | |
C20 | 0.3877 (3) | 0.94726 (18) | 0.25191 (11) | 0.0797 (6) | |
H20 | 0.3365 (3) | 0.93070 (18) | 0.21149 (11) | 0.0957 (7)* | |
C14 | 0.0004 (3) | 0.17290 (16) | 0.26754 (11) | 0.0831 (6) | |
H14 | −0.0243 (3) | 0.11396 (16) | 0.29425 (11) | 0.0997 (7)* | |
C18 | 0.5079 (4) | 1.07685 (15) | 0.32565 (14) | 0.0927 (7) | |
H18 | 0.5396 (4) | 1.14762 (15) | 0.33491 (14) | 0.1112 (9)* | |
C17 | 0.5372 (3) | 0.99762 (15) | 0.37173 (11) | 0.0815 (6) | |
H17 | 0.5869 (3) | 1.01515 (15) | 0.41227 (11) | 0.0978 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O6 | 0.0899 (8) | 0.0477 (6) | 0.0515 (6) | −0.0112 (6) | −0.0152 (6) | 0.0009 (5) |
O2 | 0.0561 (6) | 0.0730 (7) | 0.0468 (6) | 0.0150 (6) | −0.0037 (5) | 0.0023 (5) |
O1 | 0.0901 (9) | 0.0632 (7) | 0.0378 (5) | 0.0172 (6) | −0.0117 (5) | 0.0021 (5) |
O4 | 0.0891 (8) | 0.0562 (6) | 0.0493 (6) | −0.0231 (6) | −0.0050 (6) | 0.0057 (5) |
O5 | 0.1161 (12) | 0.0786 (9) | 0.0841 (10) | −0.0411 (9) | 0.0108 (9) | 0.0159 (8) |
O7 | 0.1583 (16) | 0.0694 (9) | 0.0753 (9) | −0.0311 (10) | −0.0384 (10) | −0.0099 (7) |
O3 | 0.1188 (12) | 0.0758 (9) | 0.0822 (9) | 0.0425 (9) | 0.0007 (8) | −0.0066 (8) |
C8 | 0.0596 (9) | 0.0467 (8) | 0.0694 (10) | −0.0101 (7) | 0.0105 (8) | −0.0016 (8) |
C6 | 0.0513 (8) | 0.0480 (7) | 0.0362 (7) | 0.0027 (6) | −0.0048 (6) | −0.0007 (6) |
C15 | 0.0818 (12) | 0.0530 (9) | 0.0616 (10) | −0.0123 (9) | −0.0062 (9) | −0.0082 (8) |
C1 | 0.0647 (9) | 0.0509 (8) | 0.0377 (7) | 0.0075 (7) | −0.0067 (7) | 0.0028 (6) |
C2 | 0.0741 (11) | 0.0695 (11) | 0.0479 (9) | 0.0199 (9) | −0.0099 (8) | 0.0000 (8) |
C16 | 0.0651 (10) | 0.0499 (8) | 0.0665 (10) | −0.0060 (8) | 0.0097 (8) | −0.0026 (7) |
C10 | 0.0619 (10) | 0.0719 (11) | 0.0643 (10) | −0.0136 (9) | 0.0003 (8) | −0.0089 (9) |
C7 | 0.0871 (12) | 0.0570 (9) | 0.0470 (8) | −0.0092 (9) | −0.0014 (8) | 0.0097 (8) |
C5 | 0.0712 (10) | 0.0528 (8) | 0.0461 (8) | −0.0060 (8) | −0.0139 (8) | 0.0019 (7) |
C9 | 0.0475 (8) | 0.0561 (9) | 0.0645 (10) | −0.0053 (7) | 0.0034 (7) | −0.0114 (8) |
C21 | 0.0688 (11) | 0.0619 (10) | 0.0646 (10) | −0.0105 (9) | 0.0071 (9) | 0.0044 (8) |
C12 | 0.0619 (11) | 0.1141 (17) | 0.0710 (13) | 0.0022 (12) | −0.0114 (9) | −0.0289 (12) |
C11 | 0.0674 (11) | 0.0993 (15) | 0.0658 (11) | −0.0051 (11) | 0.0001 (9) | −0.0011 (11) |
C3 | 0.0533 (10) | 0.1045 (16) | 0.0894 (14) | 0.0110 (11) | −0.0122 (10) | 0.0037 (12) |
C4 | 0.0609 (11) | 0.0900 (15) | 0.0819 (13) | −0.0174 (10) | −0.0138 (10) | 0.0071 (11) |
C13 | 0.0948 (16) | 0.0893 (16) | 0.1035 (17) | −0.0167 (14) | −0.0265 (14) | −0.0284 (14) |
C19 | 0.0926 (15) | 0.0704 (13) | 0.1013 (17) | 0.0091 (12) | 0.0195 (14) | 0.0237 (12) |
C20 | 0.0843 (13) | 0.0831 (14) | 0.0718 (12) | −0.0052 (11) | 0.0082 (10) | 0.0185 (11) |
C14 | 0.0847 (13) | 0.0656 (12) | 0.0991 (16) | −0.0195 (11) | −0.0116 (12) | −0.0095 (11) |
C18 | 0.1104 (17) | 0.0476 (10) | 0.120 (2) | 0.0003 (12) | 0.0186 (16) | 0.0019 (11) |
C17 | 0.1022 (16) | 0.0524 (10) | 0.0900 (14) | −0.0077 (10) | 0.0053 (12) | −0.0104 (9) |
O6—C15 | 1.3344 (19) | C7—H7a | 0.9700 |
O6—C5 | 1.4545 (19) | C7—H7b | 0.9700 |
O2—H2 | 0.8200 | C5—H5 | 0.9800 |
O2—C6 | 1.4033 (18) | C5—C4 | 1.489 (3) |
O1—H1 | 0.8200 | C9—C14 | 1.384 (2) |
O1—C1 | 1.4253 (17) | C21—H21 | 0.9300 |
O4—C8 | 1.3270 (19) | C21—C20 | 1.381 (3) |
O4—C7 | 1.4460 (19) | C12—H12 | 0.9300 |
O5—C8 | 1.196 (2) | C12—C11 | 1.382 (3) |
O7—C15 | 1.206 (2) | C12—C13 | 1.346 (3) |
O3—C2 | 1.211 (2) | C11—H11 | 0.9300 |
C8—C9 | 1.480 (2) | C3—H3 | 0.9300 |
C6—H6 | 0.9800 | C3—C4 | 1.322 (3) |
C6—C1 | 1.530 (2) | C4—H4 | 0.9300 |
C6—C5 | 1.512 (2) | C13—H13 | 0.9300 |
C15—C16 | 1.476 (2) | C13—C14 | 1.378 (3) |
C1—C2 | 1.534 (2) | C19—H19 | 0.9300 |
C1—C7 | 1.509 (2) | C19—C20 | 1.377 (3) |
C2—C3 | 1.456 (3) | C19—C18 | 1.364 (3) |
C16—C21 | 1.382 (3) | C20—H20 | 0.9300 |
C16—C17 | 1.392 (2) | C14—H14 | 0.9300 |
C10—H10 | 0.9300 | C18—H18 | 0.9300 |
C10—C9 | 1.372 (3) | C18—C17 | 1.376 (3) |
C10—C11 | 1.385 (3) | C17—H17 | 0.9300 |
C5—O6—C15 | 116.55 (12) | C4—C5—O6 | 109.45 (15) |
C6—O2—H2 | 109.5 | C4—C5—C6 | 112.53 (15) |
C1—O1—H1 | 109.5 | C4—C5—H5 | 109.51 (11) |
C7—O4—C8 | 116.34 (13) | C10—C9—C8 | 122.49 (14) |
O5—C8—O4 | 121.95 (17) | C14—C9—C8 | 117.97 (17) |
C9—C8—O4 | 113.45 (13) | C14—C9—C10 | 119.54 (18) |
C9—C8—O5 | 124.59 (16) | H21—C21—C16 | 119.96 (10) |
H6—C6—O2 | 107.42 (7) | C20—C21—C16 | 120.09 (18) |
C1—C6—O2 | 112.06 (13) | C20—C21—H21 | 119.96 (13) |
C1—C6—H6 | 107.42 (8) | C11—C12—H12 | 119.78 (14) |
C5—C6—O2 | 113.32 (13) | C13—C12—H12 | 119.78 (13) |
C5—C6—H6 | 107.42 (8) | C13—C12—C11 | 120.4 (2) |
C5—C6—C1 | 108.92 (12) | C12—C11—C10 | 119.5 (2) |
O7—C15—O6 | 121.68 (16) | H11—C11—C10 | 120.23 (13) |
C16—C15—O6 | 113.40 (14) | H11—C11—C12 | 120.23 (14) |
C16—C15—O7 | 124.92 (16) | H3—C3—C2 | 119.37 (11) |
C6—C1—O1 | 105.64 (12) | C4—C3—C2 | 121.27 (19) |
C2—C1—O1 | 109.44 (13) | C4—C3—H3 | 119.37 (13) |
C2—C1—C6 | 108.75 (13) | C3—C4—C5 | 123.74 (19) |
C7—C1—O1 | 108.46 (13) | H4—C4—C5 | 118.13 (10) |
C7—C1—C6 | 112.11 (13) | H4—C4—C3 | 118.13 (13) |
C7—C1—C2 | 112.22 (14) | H13—C13—C12 | 119.73 (13) |
C1—C2—O3 | 121.86 (19) | C14—C13—C12 | 120.5 (2) |
C3—C2—O3 | 122.50 (19) | C14—C13—H13 | 119.73 (14) |
C3—C2—C1 | 115.64 (16) | C20—C19—H19 | 119.90 (14) |
C21—C16—C15 | 122.19 (15) | C18—C19—H19 | 119.90 (12) |
C17—C16—C15 | 118.61 (18) | C18—C19—C20 | 120.2 (2) |
C17—C16—C21 | 119.19 (18) | C19—C20—C21 | 120.1 (2) |
C9—C10—H10 | 120.00 (10) | H20—C20—C21 | 119.96 (13) |
C11—C10—H10 | 120.00 (13) | H20—C20—C19 | 119.96 (14) |
C11—C10—C9 | 120.00 (18) | C13—C14—C9 | 119.9 (2) |
C1—C7—O4 | 108.20 (12) | H14—C14—C9 | 120.04 (13) |
H7a—C7—O4 | 110.06 (10) | H14—C14—C13 | 120.04 (14) |
H7a—C7—C1 | 110.06 (10) | H18—C18—C19 | 119.82 (13) |
H7b—C7—O4 | 110.06 (9) | C17—C18—C19 | 120.4 (2) |
H7b—C7—C1 | 110.06 (9) | C17—C18—H18 | 119.82 (14) |
H7b—C7—H7a | 108.4 | C18—C17—C16 | 120.1 (2) |
C6—C5—O6 | 106.27 (11) | H17—C17—C16 | 119.96 (13) |
H5—C5—O6 | 109.51 (8) | H17—C17—C18 | 119.96 (14) |
H5—C5—C6 | 109.51 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O7i | 0.82 | 1.93 (1) | 2.7029 (17) | 157 (1) |
O1—H1···O5ii | 0.82 | 1.89 (1) | 2.7112 (17) | 177 (2) |
C13—H13···O2iii | 0.93 (1) | 2.53 (1) | 3.221 (3) | 132 (1) |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x, y−1/2, −z+1/2. |
Parameter | Exp. | Calc. | Parameter | Exp. | Calc. |
O1—C1 | 1.425 (2) | 1.43 | C5—C6 | 1.512 (2) | 1.53 |
O2—C6 | 1.403 (2) | 1.40 | C8—C9 | 1.480 (2) | 1.49 |
O3—C2 | 1.211 (2) | 1.21 | C9—C10 | 1.372 (3) | 1.40 |
O4—C7 | 1.446 (2) | 1.43 | C9—C14 | 1.384 (2) | 1.40 |
O4—C8 | 1.327 (2) | 1.35 | C10—C11 | 1.385 (3) | 1.39 |
O5—C8 | 1.196 (2) | 1.21 | C11—C12 | 1.382 (3) | 1.39 |
O6—C5 | 1.455 (2) | 1.43 | C12—C13 | 1.346 (3) | 1.39 |
O6—C15 | 1.334 (2) | 1.35 | C13—C14 | 1.378 (3) | 1.39 |
O7—C15 | 1.206 (2) | 1.21 | C15—C16 | 1.476 (2) | 1.49 |
C1—C2 | 1.534 (2) | 1.54 | C16—C17 | 1.392 (2) | 1.40 |
C1—C6 | 1.530 (2) | 1.53 | C16—C21 | 1.382 (3) | 1.40 |
C1—C7 | 1.509 (2) | 1.52 | C17—C18 | 1.376 (3) | 1.39 |
C2—C3 | 1.456 (3) | 1.47 | C18—C19 | 1.364 (3) | 1.39 |
C3—C4 | 1.322 (3) | 1.34 | C19—C20 | 1.377 (3) | 1.39 |
C4—C5 | 1.489 (3) | 1.50 | C20—C21 | 1.381 (3) | 1.39 |
O1—C1—C7 | 108.46 (13) | 108.9 | C2—C1—C6 | 108.75 (13) | 113.5 |
O4—C8—C9 | 113.45 (13) | 113.1 | C3—C4—C5 | 123.74 (19) | 122.6 |
O6—C5—C6 | 106.27 (11) | 106.4 | C4—C5—C6 | 112.53 (15) | 111.9 |
O6—C15—C16 | 113.40 (14) | 112.5 | C5—O6—C15 | 116.55 (12) | 115.8 |
C1—O1—H1 | 109.5 | 108.0 | C6—O2—H2 | 109.5 | 106.4 |
C1—C2—C3 | 115.64 (16) | 118.1 | C8—O4—C7 | 116.34 (13) | 114.4 |
C1—C6—C5 | 108.92 (12) | 110.1 | C8—C9—C10 | 122.49 (14) | 112.7 |
C1—C7—O4 | 108.20 (12) | 107.2 | C15—C16—C21 | 122.2 (2) | 122.19 (15) |
O6—C15—C16—C21 | -0.4 (3) | 3.5 | C8—O4—C7—C1 | 175.99 (13) | 179.9 |
C5—O6—C15—C16 | -179.95 (15) | -175.2 | C9—C8—O4—C7 | 173.83 (14) | -179.6 |
C6—C1—C2—C3 | 43.70 (19) | 19.5 | C10—C9—C8—O4 | -11.7 (2) | 3.0 |
C6—C5—C4—C3 | -19.8 (3) | -29.8 |
Acknowledgements
We would like to thank Kasetsart University Research and Development Institute, Department of Chemistry, Faculty of Science, Kasetsart University, for support to facilitate our research.
References
Atioğlu, Z., Akkurt, M., Toze, F. A. A., Mammadova, G. Z. & Panahova, H. M. (2018). Acta Cryst. E74, 1035–1038. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dassault (2018). Discovery Studio. Dassault Systèmes, San Diego, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Gaussian, Inc., Wallingford, CT, USA. Google Scholar
Jaipetch, T., Hongthong, S., Kuhakarn, C., Pailee, P., Piyachaturawat, P., Suksen, K., Kongsaeree, P., Prabpai, S., Nuntasaen, N. & Reutrakul, V. (2019). Fitoterapia, 137, 104182. CSD CrossRef PubMed Google Scholar
Mayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N., (2010). Int. J. Chem. Canada 2(2), 114–123. Google Scholar
Liu, A., Liu, Z. Z., Zou, Z. M., Chen, S. Z., Xu, L. Z. & Yang, S. L. (2004). Tetrahedron, 60, 3689–3694. CrossRef CAS Google Scholar
Lynch, V. M., Thomas, S. N., Simonsen, S. H., Rao, T. V., Trivedi, G. K. & Arora, S. K. (1989). Acta Cryst. C45, 169–171. CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sondossi, M., Lloyd, B. A., Bariault, D., Sylvestre, M. & Simard, M. (1995). Acta Cryst. C51, 491–494. CSD CrossRef CAS IUCr Journals Google Scholar
Takeuchi, Y., Cheng, Q., Shi, Q., Sugiyama, T. & Oritani, T. (2001). Biosci. Biotechnol. Biochem. 65, 1395–1398. CrossRef PubMed CAS Google Scholar
Taneja, S. C., Koul, S. K., Pushpangadan, K., Dhar, L., Daniewski, W. M. & Schilf, W. (1991). Phytochemistry, 30, 871–874. CrossRef CAS Google Scholar
Yang, S., Liao, Y., Li, L., Xu, X. & Cao, L. (2018). Molecules, 23, 2149–2163. CrossRef Google Scholar
Zhang, L., Huo, X., Liao, Y., Yang, F., Gao, L. & Cao, L. (2017). Sci. Rep. 7, 1669–1681. CrossRef PubMed Google Scholar
Zhang, Y., Liu, A., Ye, Z. G., Lin, J., Xu, L. Z. & Yang, S. L. (2006). Chem. Pharm. Bull. 54, 1459–1461. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.