research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-[(benzo­yl­oxy)meth­yl]-5,6-dihy­dr­oxy-4-oxo­cyclo­hex-2-en-1-yl benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand, and bThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
*Correspondence e-mail: fscitwd@ku.ac.th

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 27 May 2020; accepted 9 June 2020; online 19 June 2020)

The crystal structure of the natural product zeylenone, C21H18O7, was confirmed by single-crystal X-ray diffraction. The crystal structure has three chiral centers at positions C1, C5 and C6 of the cyclo­hexa­none ring, but the absolute configuration could not be determined reliably. The methyl benzoate and benzo­yloxy substituents at positions C1 and C5 of the cyclo­hexenone ring are on the same side of the ring with the dihedral angle between their mean planes being 16.25 (10)°. These rings are almost perpendicular to the cyclo­hexenone ring. The benzoate groups and two hydroxyl groups on the cyclo­hexenone ring form strong hydrogen bonds to consolidate the crystal structure. In addition, weak C—H⋯O hydrogen bonds also contribute to the packing of the structure.

1. Chemical context

Zeylenone is a naturally occurring polyoxygenated cyclo­hexene derived from the shikimate pathway. It has been found in a few plant families such as Piperaceae and Annona­ceae. The biological activity of zeylenone was reported as inducing apoptosis in the mitochondria of gastric cancer cells (Yang et al., 2018[Yang, S., Liao, Y., Li, L., Xu, X. & Cao, L. (2018). Molecules, 23, 2149-2163.]) and cervical carcinoma cells (Zhang et al., 2017[Zhang, L., Huo, X., Liao, Y., Yang, F., Gao, L. & Cao, L. (2017). Sci. Rep. 7, 1669-1681.]). The absolute configuration of natural zeylenone was determined by CD spectroscopy to be (−)-zeylenone (Takeuchi et al., 2001[Takeuchi, Y., Cheng, Q., Shi, Q., Sugiyama, T. & Oritani, T. (2001). Biosci. Biotechnol. Biochem. 65, 1395-1398.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (I)[link] is shown in Fig. 1[link]. It has three chiral centers at positions C1, C5 and C6 of the cyclo­hexa­none ring. However, the absolute configuration (probably 1S, 5R and 6S) could not be deduced from the X-ray data because of the large standard deviation of the Flack parameter [0.0 (3)]. The two main substituents are methyl benzoate and benzo­yloxy at positions C1 and C5, and positioned at the same side of the cyclo­hexenone ring. The dihedral angle between the methyl benzoate and benzo­yloxy mean planes is 16.24 (10)°, indicating that the rings are almost coplanar. The dihedral angle between the cyclo­hexenone ring and the methyl benzoate and benzo­yloxy rings are 74.92 (9) and 69.23 (10)°, respectively, indicating that the aromatic and cyclo­hexenone rings are almost perpendicular. The conformation of the cyclo­hexenone ring, the core structure of (−)-zeylenone, is described as a half-chair based on the torsion angles H4—C4—C3—C2 [−178.7 (3)°, almost planar] and C5—C6—C1—C2 [−60.65 (16)°, perfectly staggered] and the puckering parameters [Q = 0.4989 (17) Å, θ = 130.8 (2)° and Φ = 143.9 (3)°].

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] with the atom labelling and 50% probability displacement ellipsoids.

3. Supra­molecular features

The crystal packing is characterized by both strong and weak hydrogen bonds and also by partial ππ inter­actions. The strong hydrogen bonds are formed between hydroxyl groups on the cyclo­hexenone ring and the uncoordinated oxygen atom of methyl benzoate and benzo­yloxy substituents (O2—H2⋯O7i and O1—H1⋯O5ii, Fig. 2[link]a, Table 1[link]). These inter­actions form a layer parallel to the bc plane (Fig. 2[link]b). In addition, the crystal packing features weak C—H⋯O hydrogen-bonding inter­actions (C13—H13⋯O2iii, Table 1[link]) and contacts between the aromatic rings [the shortest centroid–centroid distance between phenyl rings is 4.641 (2) Å], as shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O7i 0.82 1.93 (1) 2.7029 (17) 157 (1)
O1—H1⋯O5ii 0.82 1.89 (1) 2.7112 (17) 177 (2)
C13—H13⋯O2iii 0.93 (1) 2.53 (1) 3.221 (3) 132 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
(a) O—H⋯O hydrogen bond formation in (I)[link] and (b) the crystal packing viewed along the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
(a) C—H⋯O hydrogen bonds and (b) the crystal packing viewed along the b axis. Blue dashed lines represent O—H⋯O hydrogen bonds and black dashed lines represent the C—H⋯O and the weak ππ inter­actions.

4. Computational calculations

The structure of the title compound was optimized using density functional theory (DFT) calculations at the M062X/6-31G(d) level using GAUSSIAN 09 (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Gaussian, Inc., Wallingford, CT, USA.]). The optimized structure was then used for the analysis of the highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO) using the same level of theory in order to determine the reactivity of the compound via the energy gap.

The DFT-optimized geometry was compared with the geometry obtained from the crystal structure using the mol­ecular overlay module based on 50% steric and 50% electrostatic similarities in the Discovery Studio visualizer (Dassault, 2018[Dassault (2018). Discovery Studio. Dassault Systèmes, San Diego, USA.]), as shown in Fig. 4[link]. The overlay similarity, which is calculated based on the steric and electrostatic overlaps, is high with a value of 0.86 and the r.m.s.d. of the heavy atoms (non-H atoms) is 0.67 Å. Geometrical parameters (i.e. bond lengths, bond angles and torsion angles) of the experimental and optimized structures are given in Table 2[link].

Table 2
Comparison of geometric parameters (Å, °) between the experimental and optimized structures

Parameter Exp. Calc. Parameter Exp. Calc.
O1—C1 1.425 (2) 1.43 C5—C6 1.512 (2) 1.53
O2—C6 1.403 (2) 1.40 C8—C9 1.480 (2) 1.49
O3—C2 1.211 (2) 1.21 C9—C10 1.372 (3) 1.40
O4—C7 1.446 (2) 1.43 C9—C14 1.384 (2) 1.40
O4—C8 1.327 (2) 1.35 C10—C11 1.385 (3) 1.39
O5—C8 1.196 (2) 1.21 C11—C12 1.382 (3) 1.39
O6—C5 1.455 (2) 1.43 C12—C13 1.346 (3) 1.39
O6—C15 1.334 (2) 1.35 C13—C14 1.378 (3) 1.39
O7—C15 1.206 (2) 1.21 C15—C16 1.476 (2) 1.49
C1—C2 1.534 (2) 1.54 C16—C17 1.392 (2) 1.40
C1—C6 1.530 (2) 1.53 C16—C21 1.382 (3) 1.40
C1—C7 1.509 (2) 1.52 C17—C18 1.376 (3) 1.39
C2—C3 1.456 (3) 1.47 C18—C19 1.364 (3) 1.39
C3—C4 1.322 (3) 1.34 C19—C20 1.377 (3) 1.39
C4—C5 1.489 (3) 1.50 C20—C21 1.381 (3) 1.39
           
O1—C1—C7 108.46 (13) 108.9 C2—C1—C6 108.75 (13) 113.5
O4—C8—C9 113.45 (13) 113.1 C3—C4—C5 123.74 (19) 122.6
O6—C5—C6 106.27 (11) 106.4 C4—C5—C6 112.53 (15) 111.9
O6—C15—C16 113.40 (14) 112.5 C5—O6—C15 116.55 (12) 115.8
C1—O1—H1 109.5 108.0 C6—O2—H2 109.5 106.4
C1—C2—C3 115.64 (16) 118.1 C8—O4—C7 116.34 (13) 114.4
C1—C6—C5 108.92 (12) 110.1 C8—C9—C10 122.49 (14) 112.7
C1—C7—O4 108.20 (12) 107.2 C15—C16—C21 122.2 (2) 122.19 (15)
           
O6—C15—C16—C21 −0.4 (3) 3.5 C8—O4—C7—C1 175.99 (13) 179.9
C5—O6—C15—C16 −179.95 (15) −175.2 C9—C8—O4—C7 173.83 (14) 179.6
C6—C1—C2—C3 43.70 (19) 19.5 C10—C9—C8—O4 −11.7 (2) 3.0
C6—C5—C4—C3 −19.8 (3) −29.8      
[Figure 4]
Figure 4
Superposition of the experimental (ball-and-stick model) and optimized (stick model) structures.

Finally, the mol­ecular orbitals of zeylenone were calculated. The HOMO and LUMO plots are shown in Fig. 5[link]. At the HOMO level, the orbitals are located on the phenyl ring of the methyl­ene benzoate group and the orbitals are shifted to the cyclo­hexenone ring at the LUMO level. The energy gap (EHOMO − ELUMO) is 7.61 eV. The large energy gap indicates the stability of the title compound.

[Figure 5]
Figure 5
The HOMO–LUMO plot for the title compound (I)[link].

5. Database survey

In the first reported total synthesis of zeylenone from shikimic acid, the absolute configuration was assigned as 1R, 5S, 6R. A circular dichroism study of the synthesized product gave (+)-zeylenone (Liu et al., 2004[Liu, A., Liu, Z. Z., Zou, Z. M., Chen, S. Z., Xu, L. Z. & Yang, S. L. (2004). Tetrahedron, 60, 3689-3694.]). The first total synthesis of (−)-zeylenone was also achieved from shikimic acid (Zhang et al., 2006[Zhang, Y., Liu, A., Ye, Z. G., Lin, J., Xu, L. Z. & Yang, S. L. (2006). Chem. Pharm. Bull. 54, 1459-1461.]). Similar structures to (−)-zeylenone are (−)-zeylenol and an alcohol form, (−)-zeylenone, from Piper cubeba (Taneja et al., 1991[Taneja, S. C., Koul, S. K., Pushpangadan, K., Dhar, L., Daniewski, W. M. & Schilf, W. (1991). Phytochemistry, 30, 871-874.]).

The closest related structure is that of Cherrevenone, a polyoxygenated cyclo­hexene derivative from Uvaria cherrevensis. Here, the absolute configuration could again not be determined from the X-ray data, but was confirmed by an electronic circular dichroism analysis (CCDC refcode WOJLIT; Jaipetch et al., 2019[Jaipetch, T., Hongthong, S., Kuhakarn, C., Pailee, P., Piyachaturawat, P., Suksen, K., Kongsaeree, P., Prabpai, S., Nuntasaen, N. & Reutrakul, V. (2019). Fitoterapia, 137, 104182.]).

Other reported crystal structures containing a cyclo­hexenone ring as a core structure include URIPUH (Mayekar et al., 2010[Mayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N., (2010). Int. J. Chem. Canada 2(2), 114-123.]), KADROW (Lynch et al., 1989[Lynch, V. M., Thomas, S. N., Simonsen, S. H., Rao, T. V., Trivedi, G. K. & Arora, S. K. (1989). Acta Cryst. C45, 169-171.]), WINTUI (Sondossi et al., 1995[Sondossi, M., Lloyd, B. A., Bariault, D., Sylvestre, M. & Simard, M. (1995). Acta Cryst. C51, 491-494.]) and CEZXUD (Atioğlu et al., 2018[Atioğlu, Z., Akkurt, M., Toze, F. A. A., Mammadova, G. Z. & Panahova, H. M. (2018). Acta Cryst. E74, 1035-1038.]). In all of these, the cyclo­hexenone ring adopts a half-chair conformation, as observed in the title compound.

6. Synthesis and crystallization

Pipers griffithii leaves, collected from Kanchanaburi province in Easten Thailand, were dried in air and then powdered with a grinder. Piper powder (400 g) was macerated at room temperature in hexane for a week and then filtered. This was repeated with the remaining Piper powder using ethyl acetate. The filtrate was evaporated to yield about 2.60 g crude extract from ethyl acetate, which was dissolved again in ethyl acetate and mixed with silica gel. The mixture was evaporated by rotary evaporator, loaded on the column and eluted by gradient elution using 20–50% EtOAc in hexane. The fractions were collected and combined, monitoring with thin layer chromatography, to provide eleven fractions. The sixth fraction was separated by column chromatography using MeOH:EtOAc:Hexane (1:4:5) as eluents, yielding a pale-yellow solid (0.60 g), which was recrystallized from di­chloro­methane and hexane (1:1), giving colourless in CIF crystals, m.p. 423–424 K.

1H NMR (400 MHz, CDCl3): δ 3.22 (1H, s, br), 4.11 (1H, s, br), 4.38 (1H, d, J = 4 Hz), 4.60 (1H, d, J = 12 Hz), 4.85 (1H, d, J = 8 Hz), 5.96 (1H, d, J = 4 Hz), 6.34 (1H, dd, J = 8, 8 Hz), 6.96 (1H, dd, J = 4, 8 Hz), 7.38–7.44 (4H, m), 7.56 (2H, dd, J = 8, 16 Hz), 7.94 (2H, dd, J = 4, 8 Hz), 8.02 (2H, dd, J = 4, 8 Hz). 13C NMR (CDCl3): δ 65.4, 69.2, 71.6, 77.2, 128.4, 128.5, 128.6, 128.7, 129.1, 129.7, 129.78, 133.4, 133.7, 142.6, 165.3, 166.1, 196.2. Mass spectroscopy m/z 383.1125 (M + 1)+. IR (KBr, cm−1): 712 cm−1 (s, C—H bending); 1103 cm−1 (s, C—O stretching); 1277 cm−1 (s, C—O stretching); 1593 cm−1 (w, C=C aromatic ring); 1705 cm−1 (s, C=O) ; 2933 cm−1 (w, C=C—H stretching aromatic ring); 3423 cm−1 (s, O—H stretching).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms, ternary C(H), secondary C(H,H), aromatic H and tetra­hedral OH, were placed in calculated positions (C—H = 0.98, 0.97, 0.93 and 0.82 Å, respectively). They are refined using a riding model with Uiso(H) = 1.5Ueq(C) or 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula C21H18O7
Mr 382.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.4958 (11), 12.422 (2), 20.325 (4)
V3) 1892.4 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.24 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker APEXII D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.708, 0.745
No. of measured, independent and observed [I ≥ 2u(I)] reflections 36963, 3587, 3199
Rint 0.045
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.10
No. of reflections 3587
No. of parameters 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.10
Absolute structure Flack x determined using 1259 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (3)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-[(Benzoyloxy)methyl]-5,6-dihydroxy-4-oxocyclohex-2-en-1-yl benzoate top
Crystal data top
C21H18O7Dx = 1.342 Mg m3
Mr = 382.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9916 reflections
a = 7.4958 (11) Åθ = 2.6–24.7°
b = 12.422 (2) ŵ = 0.10 mm1
c = 20.325 (4) ÅT = 296 K
V = 1892.4 (6) Å3Plate, colourless
Z = 40.24 × 0.08 × 0.04 mm
F(000) = 800.5281
Data collection top
Bruker APEX2 D8 QUEST CMOS
diffractometer
3199 reflections with I 2u(I)
ω and φ scansRint = 0.045
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.7°, θmin = 2.9°
Tmin = 0.708, Tmax = 0.745h = 99
36963 measured reflectionsk = 1515
3587 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1967P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.0003
S = 1.10Δρmax = 0.12 e Å3
3587 reflectionsΔρmin = 0.10 e Å3
255 parametersAbsolute structure: Flack x determined using 1259 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.0 (3)
35 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.48269 (18)0.70917 (9)0.38884 (5)0.0630 (3)
O20.20328 (14)0.56656 (10)0.43093 (5)0.0586 (3)
H20.1932 (6)0.5895 (17)0.4686 (4)0.0879 (4)*
O10.43371 (18)0.46452 (9)0.52550 (5)0.0637 (3)
H10.477 (3)0.4158 (8)0.54749 (17)0.0956 (5)*
O40.25100 (18)0.33708 (9)0.38037 (5)0.0649 (3)
O50.0902 (2)0.19256 (12)0.40208 (7)0.0929 (5)
O70.5956 (3)0.82489 (11)0.46087 (7)0.1010 (6)
O30.6515 (2)0.30383 (12)0.42569 (8)0.0923 (5)
C80.1399 (2)0.25864 (12)0.36344 (9)0.0586 (4)
C60.3807 (2)0.53548 (12)0.41980 (7)0.0452 (3)
H60.3924 (2)0.51900 (12)0.37285 (7)0.0542 (4)*
C150.5290 (3)0.80813 (13)0.40783 (9)0.0655 (5)
C10.4302 (2)0.43358 (12)0.45798 (7)0.0511 (4)
C20.6172 (3)0.39738 (15)0.43677 (8)0.0639 (5)
C160.4927 (2)0.89129 (13)0.35772 (9)0.0605 (4)
C100.1230 (2)0.34822 (16)0.25339 (9)0.0660 (5)
H100.1836 (2)0.40757 (16)0.27012 (9)0.0793 (5)*
C70.2932 (3)0.34568 (14)0.44959 (8)0.0637 (4)
H7a0.1864 (3)0.36290 (14)0.47445 (8)0.0764 (5)*
H7b0.3402 (3)0.27786 (14)0.46567 (8)0.0764 (5)*
C50.5144 (2)0.62285 (13)0.43577 (8)0.0567 (4)
H50.4933 (2)0.64941 (13)0.48050 (8)0.0681 (5)*
C90.0875 (2)0.26165 (13)0.29324 (8)0.0560 (4)
C210.4190 (3)0.86669 (15)0.29726 (9)0.0651 (4)
H210.3903 (3)0.79577 (15)0.28711 (9)0.0781 (5)*
C120.0180 (3)0.2577 (2)0.16356 (11)0.0823 (6)
H120.0545 (3)0.2567 (2)0.11984 (11)0.0988 (7)*
C110.0688 (3)0.3472 (2)0.18828 (10)0.0775 (5)
H110.0905 (3)0.4063 (2)0.16137 (10)0.0930 (6)*
C30.7495 (3)0.4826 (2)0.43087 (11)0.0824 (6)
H30.8696 (3)0.4646 (2)0.42780 (11)0.0989 (7)*
C40.7022 (3)0.58513 (18)0.42980 (11)0.0776 (6)
H40.7913 (3)0.63662 (18)0.42504 (11)0.0931 (7)*
C130.0499 (3)0.1720 (2)0.20235 (13)0.0959 (7)
H130.1063 (3)0.1117 (2)0.18499 (13)0.1150 (9)*
C190.4324 (3)1.05213 (18)0.26647 (13)0.0881 (7)
H190.4110 (3)1.10627 (18)0.23586 (13)0.1057 (8)*
C200.3877 (3)0.94726 (18)0.25191 (11)0.0797 (6)
H200.3365 (3)0.93070 (18)0.21149 (11)0.0957 (7)*
C140.0004 (3)0.17290 (16)0.26754 (11)0.0831 (6)
H140.0243 (3)0.11396 (16)0.29425 (11)0.0997 (7)*
C180.5079 (4)1.07685 (15)0.32565 (14)0.0927 (7)
H180.5396 (4)1.14762 (15)0.33491 (14)0.1112 (9)*
C170.5372 (3)0.99762 (15)0.37173 (11)0.0815 (6)
H170.5869 (3)1.01515 (15)0.41227 (11)0.0978 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0899 (8)0.0477 (6)0.0515 (6)0.0112 (6)0.0152 (6)0.0009 (5)
O20.0561 (6)0.0730 (7)0.0468 (6)0.0150 (6)0.0037 (5)0.0023 (5)
O10.0901 (9)0.0632 (7)0.0378 (5)0.0172 (6)0.0117 (5)0.0021 (5)
O40.0891 (8)0.0562 (6)0.0493 (6)0.0231 (6)0.0050 (6)0.0057 (5)
O50.1161 (12)0.0786 (9)0.0841 (10)0.0411 (9)0.0108 (9)0.0159 (8)
O70.1583 (16)0.0694 (9)0.0753 (9)0.0311 (10)0.0384 (10)0.0099 (7)
O30.1188 (12)0.0758 (9)0.0822 (9)0.0425 (9)0.0007 (8)0.0066 (8)
C80.0596 (9)0.0467 (8)0.0694 (10)0.0101 (7)0.0105 (8)0.0016 (8)
C60.0513 (8)0.0480 (7)0.0362 (7)0.0027 (6)0.0048 (6)0.0007 (6)
C150.0818 (12)0.0530 (9)0.0616 (10)0.0123 (9)0.0062 (9)0.0082 (8)
C10.0647 (9)0.0509 (8)0.0377 (7)0.0075 (7)0.0067 (7)0.0028 (6)
C20.0741 (11)0.0695 (11)0.0479 (9)0.0199 (9)0.0099 (8)0.0000 (8)
C160.0651 (10)0.0499 (8)0.0665 (10)0.0060 (8)0.0097 (8)0.0026 (7)
C100.0619 (10)0.0719 (11)0.0643 (10)0.0136 (9)0.0003 (8)0.0089 (9)
C70.0871 (12)0.0570 (9)0.0470 (8)0.0092 (9)0.0014 (8)0.0097 (8)
C50.0712 (10)0.0528 (8)0.0461 (8)0.0060 (8)0.0139 (8)0.0019 (7)
C90.0475 (8)0.0561 (9)0.0645 (10)0.0053 (7)0.0034 (7)0.0114 (8)
C210.0688 (11)0.0619 (10)0.0646 (10)0.0105 (9)0.0071 (9)0.0044 (8)
C120.0619 (11)0.1141 (17)0.0710 (13)0.0022 (12)0.0114 (9)0.0289 (12)
C110.0674 (11)0.0993 (15)0.0658 (11)0.0051 (11)0.0001 (9)0.0011 (11)
C30.0533 (10)0.1045 (16)0.0894 (14)0.0110 (11)0.0122 (10)0.0037 (12)
C40.0609 (11)0.0900 (15)0.0819 (13)0.0174 (10)0.0138 (10)0.0071 (11)
C130.0948 (16)0.0893 (16)0.1035 (17)0.0167 (14)0.0265 (14)0.0284 (14)
C190.0926 (15)0.0704 (13)0.1013 (17)0.0091 (12)0.0195 (14)0.0237 (12)
C200.0843 (13)0.0831 (14)0.0718 (12)0.0052 (11)0.0082 (10)0.0185 (11)
C140.0847 (13)0.0656 (12)0.0991 (16)0.0195 (11)0.0116 (12)0.0095 (11)
C180.1104 (17)0.0476 (10)0.120 (2)0.0003 (12)0.0186 (16)0.0019 (11)
C170.1022 (16)0.0524 (10)0.0900 (14)0.0077 (10)0.0053 (12)0.0104 (9)
Geometric parameters (Å, º) top
O6—C151.3344 (19)C7—H7a0.9700
O6—C51.4545 (19)C7—H7b0.9700
O2—H20.8200C5—H50.9800
O2—C61.4033 (18)C5—C41.489 (3)
O1—H10.8200C9—C141.384 (2)
O1—C11.4253 (17)C21—H210.9300
O4—C81.3270 (19)C21—C201.381 (3)
O4—C71.4460 (19)C12—H120.9300
O5—C81.196 (2)C12—C111.382 (3)
O7—C151.206 (2)C12—C131.346 (3)
O3—C21.211 (2)C11—H110.9300
C8—C91.480 (2)C3—H30.9300
C6—H60.9800C3—C41.322 (3)
C6—C11.530 (2)C4—H40.9300
C6—C51.512 (2)C13—H130.9300
C15—C161.476 (2)C13—C141.378 (3)
C1—C21.534 (2)C19—H190.9300
C1—C71.509 (2)C19—C201.377 (3)
C2—C31.456 (3)C19—C181.364 (3)
C16—C211.382 (3)C20—H200.9300
C16—C171.392 (2)C14—H140.9300
C10—H100.9300C18—H180.9300
C10—C91.372 (3)C18—C171.376 (3)
C10—C111.385 (3)C17—H170.9300
C5—O6—C15116.55 (12)C4—C5—O6109.45 (15)
C6—O2—H2109.5C4—C5—C6112.53 (15)
C1—O1—H1109.5C4—C5—H5109.51 (11)
C7—O4—C8116.34 (13)C10—C9—C8122.49 (14)
O5—C8—O4121.95 (17)C14—C9—C8117.97 (17)
C9—C8—O4113.45 (13)C14—C9—C10119.54 (18)
C9—C8—O5124.59 (16)H21—C21—C16119.96 (10)
H6—C6—O2107.42 (7)C20—C21—C16120.09 (18)
C1—C6—O2112.06 (13)C20—C21—H21119.96 (13)
C1—C6—H6107.42 (8)C11—C12—H12119.78 (14)
C5—C6—O2113.32 (13)C13—C12—H12119.78 (13)
C5—C6—H6107.42 (8)C13—C12—C11120.4 (2)
C5—C6—C1108.92 (12)C12—C11—C10119.5 (2)
O7—C15—O6121.68 (16)H11—C11—C10120.23 (13)
C16—C15—O6113.40 (14)H11—C11—C12120.23 (14)
C16—C15—O7124.92 (16)H3—C3—C2119.37 (11)
C6—C1—O1105.64 (12)C4—C3—C2121.27 (19)
C2—C1—O1109.44 (13)C4—C3—H3119.37 (13)
C2—C1—C6108.75 (13)C3—C4—C5123.74 (19)
C7—C1—O1108.46 (13)H4—C4—C5118.13 (10)
C7—C1—C6112.11 (13)H4—C4—C3118.13 (13)
C7—C1—C2112.22 (14)H13—C13—C12119.73 (13)
C1—C2—O3121.86 (19)C14—C13—C12120.5 (2)
C3—C2—O3122.50 (19)C14—C13—H13119.73 (14)
C3—C2—C1115.64 (16)C20—C19—H19119.90 (14)
C21—C16—C15122.19 (15)C18—C19—H19119.90 (12)
C17—C16—C15118.61 (18)C18—C19—C20120.2 (2)
C17—C16—C21119.19 (18)C19—C20—C21120.1 (2)
C9—C10—H10120.00 (10)H20—C20—C21119.96 (13)
C11—C10—H10120.00 (13)H20—C20—C19119.96 (14)
C11—C10—C9120.00 (18)C13—C14—C9119.9 (2)
C1—C7—O4108.20 (12)H14—C14—C9120.04 (13)
H7a—C7—O4110.06 (10)H14—C14—C13120.04 (14)
H7a—C7—C1110.06 (10)H18—C18—C19119.82 (13)
H7b—C7—O4110.06 (9)C17—C18—C19120.4 (2)
H7b—C7—C1110.06 (9)C17—C18—H18119.82 (14)
H7b—C7—H7a108.4C18—C17—C16120.1 (2)
C6—C5—O6106.27 (11)H17—C17—C16119.96 (13)
H5—C5—O6109.51 (8)H17—C17—C18119.96 (14)
H5—C5—C6109.51 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O7i0.821.93 (1)2.7029 (17)157 (1)
O1—H1···O5ii0.821.89 (1)2.7112 (17)177 (2)
C13—H13···O2iii0.93 (1)2.53 (1)3.221 (3)132 (1)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y1/2, z+1/2.
Comparison of geometric parameters (Å, °) between the experimental and optimized structures top
ParameterExp.Calc.ParameterExp.Calc.
O1—C11.425 (2)1.43C5—C61.512 (2)1.53
O2—C61.403 (2)1.40C8—C91.480 (2)1.49
O3—C21.211 (2)1.21C9—C101.372 (3)1.40
O4—C71.446 (2)1.43C9—C141.384 (2)1.40
O4—C81.327 (2)1.35C10—C111.385 (3)1.39
O5—C81.196 (2)1.21C11—C121.382 (3)1.39
O6—C51.455 (2)1.43C12—C131.346 (3)1.39
O6—C151.334 (2)1.35C13—C141.378 (3)1.39
O7—C151.206 (2)1.21C15—C161.476 (2)1.49
C1—C21.534 (2)1.54C16—C171.392 (2)1.40
C1—C61.530 (2)1.53C16—C211.382 (3)1.40
C1—C71.509 (2)1.52C17—C181.376 (3)1.39
C2—C31.456 (3)1.47C18—C191.364 (3)1.39
C3—C41.322 (3)1.34C19—C201.377 (3)1.39
C4—C51.489 (3)1.50C20—C211.381 (3)1.39
O1—C1—C7108.46 (13)108.9C2—C1—C6108.75 (13)113.5
O4—C8—C9113.45 (13)113.1C3—C4—C5123.74 (19)122.6
O6—C5—C6106.27 (11)106.4C4—C5—C6112.53 (15)111.9
O6—C15—C16113.40 (14)112.5C5—O6—C15116.55 (12)115.8
C1—O1—H1109.5108.0C6—O2—H2109.5106.4
C1—C2—C3115.64 (16)118.1C8—O4—C7116.34 (13)114.4
C1—C6—C5108.92 (12)110.1C8—C9—C10122.49 (14)112.7
C1—C7—O4108.20 (12)107.2C15—C16—C21122.2 (2)122.19 (15)
O6—C15—C16—C21-0.4 (3)3.5C8—O4—C7—C1175.99 (13)179.9
C5—O6—C15—C16-179.95 (15)-175.2C9—C8—O4—C7173.83 (14)-179.6
C6—C1—C2—C343.70 (19)19.5C10—C9—C8—O4-11.7 (2)3.0
C6—C5—C4—C3-19.8 (3)-29.8
 

Acknowledgements

We would like to thank Kasetsart University Research and Development Institute, Department of Chemistry, Faculty of Science, Kasetsart University, for support to facilitate our research.

References

First citationAtioğlu, Z., Akkurt, M., Toze, F. A. A., Mammadova, G. Z. & Panahova, H. M. (2018). Acta Cryst. E74, 1035–1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDassault (2018). Discovery Studio. Dassault Systèmes, San Diego, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationJaipetch, T., Hongthong, S., Kuhakarn, C., Pailee, P., Piyachaturawat, P., Suksen, K., Kongsaeree, P., Prabpai, S., Nuntasaen, N. & Reutrakul, V. (2019). Fitoterapia, 137, 104182.  CSD CrossRef PubMed Google Scholar
First citationMayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N., (2010). Int. J. Chem. Canada 2(2), 114–123.  Google Scholar
First citationLiu, A., Liu, Z. Z., Zou, Z. M., Chen, S. Z., Xu, L. Z. & Yang, S. L. (2004). Tetrahedron, 60, 3689–3694.  CrossRef CAS Google Scholar
First citationLynch, V. M., Thomas, S. N., Simonsen, S. H., Rao, T. V., Trivedi, G. K. & Arora, S. K. (1989). Acta Cryst. C45, 169–171.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSondossi, M., Lloyd, B. A., Bariault, D., Sylvestre, M. & Simard, M. (1995). Acta Cryst. C51, 491–494.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTakeuchi, Y., Cheng, Q., Shi, Q., Sugiyama, T. & Oritani, T. (2001). Biosci. Biotechnol. Biochem. 65, 1395–1398.  CrossRef PubMed CAS Google Scholar
First citationTaneja, S. C., Koul, S. K., Pushpangadan, K., Dhar, L., Daniewski, W. M. & Schilf, W. (1991). Phytochemistry, 30, 871–874.  CrossRef CAS Google Scholar
First citationYang, S., Liao, Y., Li, L., Xu, X. & Cao, L. (2018). Molecules, 23, 2149–2163.  CrossRef Google Scholar
First citationZhang, L., Huo, X., Liao, Y., Yang, F., Gao, L. & Cao, L. (2017). Sci. Rep. 7, 1669–1681.  CrossRef PubMed Google Scholar
First citationZhang, Y., Liu, A., Ye, Z. G., Lin, J., Xu, L. Z. & Yang, S. L. (2006). Chem. Pharm. Bull. 54, 1459–1461.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds