research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-{2,2-di­chloro-1-[(E)-(4-chloro­phen­yl)diazen­yl]ethen­yl}-N,N-di­methyl­aniline

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, and dDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 April 2020; accepted 4 June 2020; online 9 June 2020)

The title compound, C16H14Cl3N3, comprises three mol­ecules of similar shape in the asymmetric unit. The crystal cohesion is ensured by inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds in addition to C—Cl⋯π inter­actions. Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that Cl⋯H/H⋯Cl (33.6%), H⋯H (27.9%) and C⋯H/H⋯C (17.6%) are the most important contributors towards the crystal packing.

1. Chemical context

Non-covalent inter­actions, such as hydrogen bonds, halogen–halogen or chalcogen–chalcogen bonds, van der Waals inter­actions or ππ stacking, π⋯cation and π⋯anion inter­actions, etc. are much weaker than covalent bonds. Nevertheless, they can control the reactivity of mol­ecules, the crystal packing, tautomerization and other properties (Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145-153.]; Mahmudov et al., 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]). For example, such kinds of weak inter­actions can create inter­esting supra­molecular networks in coordination compounds, involving monomeric, oligomeric or polymeric subunits, which affects their catalytic activity (Afkhami et al., 2017[Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]).

[Scheme 1]

In a previous study we have attached resonance-assisted hydrogen-bonded synthons or chlorine atoms to dye mol­ecules, which leads to inter­molecular weak inter­actions for the resulting products with inter­esting analytical and solvatochromic properties (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmudov & Pombeiro, 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.]). In a continuation of our work in this direction, we now have synthesized a new azo dye, 4-{2,2-di­chloro-1-[(E)-(4-chloro­phen­yl)diazen­yl]ethen­yl}-N,N-di­methyl­aniline, which features C—H⋯N, C—H⋯π and C—Cl⋯Cl types of weak inter­molecular inter­actions.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) contains three mol­ecules of similar shape, hereafter referred to as Mol-N1 (C1–C16/N1–N3/Cl1–Cl3), Mol-N1A (C1A–C16A/N1A–N3A/Cl1A–Cl3A) and Mol-N1B (C1B–C16B/N1B–N3B/Cl1B–Cl3B). The conformational differences between mol­ecules Mol-N1, Mol-N1A and Mol-N1B are highlighted in an overlay diagram shown in Fig. 2[link]. The dihedral angles between the benzene rings [C1–C6 and C8–C13 (mol­ecule Mol-N1), C1A–C6A and C8A–C13A (mol­ecule Mol-N1A), and C1B–C6B and C8B–C13B (mol­ecule Mol-N1B)] of the 4-chloro­phenyl and N,N-di­methyl­aniline groups are 69.94 (10), 79.68 (12) and 88.08 (13)°, respectively. In mol­ecule Mol-N1, the N1—N2—C7—C14, N2—C7—C14—Cl2, N2—C7—C14—Cl3 and C8—C7—C14—Cl3 torsion angles are −178.7 (2), 3.1 (3), −176.21 (16) and 4.1 (3)°, respectively. The corres­ponding angles are 178.4 (2), 3.8 (3), −175.1 (2) and 2.5 (3)° for mol­ecule Mol-N1A, and −175.0 (2), 0.3 (3), 179.71 (18) and −0.1 (4) for mol­ecule Mol-N1B.

[Figure 1]
Figure 1
The mol­ecular structures of the three mol­ecules in the asymmetric unit of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Overlay image of the three mol­ecules in the asymmetric unit of the title compound.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are connected by inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds and C—Cl⋯π inter­actions, which contribute to the overall packing, forming a three-dimensional network (Table 1[link]; Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the C1–C6 and C8A–C13A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N3A 0.93 2.68 3.597 (3) 167
C5B—H5BA⋯Cl3i 0.93 2.95 3.703 (3) 139
C14—Cl3⋯Cg1ii 1.71 (1) 3.55 (1) 4.083 (2) 96 (1)
C14B—Cl3BCg4iii 1.71 (1) 3.85 (1) 5.300 (3) 142 (1)
Symmetry codes: (i) x, y+1, z-1; (ii) -x+2, -y, -z+2; (iii) -x+1, -y, -z+1.
[Figure 3]
Figure 3
A partial view of the crystal packing of the title compound. Inter­molecular inter­actions are shown as dashed lines.

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure. The Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) of the title compound were calculated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The three-dimensional mol­ecular Hirshfeld surfaces of the three mol­ecules Mol-N1, Mol-N1A and Mol-N1B and the overall surface were generated using a high standard surface resolution colour-mapped over the normalized contact distance. The red, white and blue regions visible on the dnorm surfaces indicate contacts with distances shorter, longer and equal to the van der Waals radii (Fig. 4[link]a). The shape-index of the Hirshfeld surface is a tool to visualize ππ stacking inter­actions; Fig. 4[link]b clearly suggest that there are no ππ inter­actions in the title compound. The red spots in Fig. 4[link]a correspond to the relatively strong C—H⋯N hydrogen-bonding inter­actions in the crystal structure; in Mol-N1A it involves the N3A atoms of the N,N-di­methyl­aniline group as acceptors with the aromatic H2A donor atom of the chloro­benzene ring in Mol-N1 (C2—H2A⋯N3A).

[Figure 4]
Figure 4
Hirshfeld surface of the title compound (symmetry-independent mol­ecules Mol-N1, Mol-N1A and Mol-N1B, and overall), with (a) the inter­action of neighbouring mol­ecules mapped over dnorm and (b) mapped over shape-index.

Two-dimensional fingerprint plots are presented in Fig. 5[link]. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to C—H⋯Cl inter­actions. The reciprocal Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with de + di ≃ 2.85 Å and contribute 33.6% to the Hirshfeld surface (Fig. 5[link]b). Another significant reciprocal inter­action (H⋯H) with a contribution of 27.9% is present as broad symmetrical spikes at diagonal axes de + di ≃ 2.2 Å (Fig. 5[link]c). The pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (Tables 2[link] and 3[link], Fig. 5[link]d; 17.6% contribution to the Hirshfeld surface), have tips at de + di ≃ 2.80 Å. The Cl⋯Cl contacts, Fig. 5[link]e (5.7% contribution), have an arrow-shaped distribution of points with the tip at de = di = 3.50 Å.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
(C2) H2A⋯N3A (C11A) 2.68 (x, y, z)
(C4) Cl1⋯Cl1B (C4B) 3.5403 (11) (2 − x, 2 − y, 1 − z)
(C14) Cl2⋯Cl1 (C4) 3.6580 (11) (2 − x, 1 − y, 2 − z)
(C13) H13A⋯Cl2 (C14) 3.10 (2 − x, −y, 2 − z)
(C14) Cl3⋯H5BA (C5B) 2.95 (x, −1 + y, 1 + z)
(C9) H9A⋯H15D (C15A) 2.60 (1 − x, −y, 2 − z)
(C15) H15C⋯Cl3 (C14) 3.00 (1 − x, −1 − y, 2 − z)
(C4) C5⋯H12A (C12) 2.95 (x, 1 + y, z)
(C6A) H6AA⋯H12C (C12B) 2.54 (x, y, z)
(C5A) H5AA⋯Cl2A (C14A) 3.10 (1 − x, 1 − y, 1 − z)
(C9A) H9AA⋯N2B (N1B) 2.92 (1 − x, 1 − y, 1 − z)
(C11A) N3A⋯H2A (C2) 2.68 (x, y, z)
(C14A) Cl3A⋯H16E (C16A) 3.09 (x, 1 + y, z)
(C14A) Cl3A⋯Cl1B (C4B) 3.6816 (11) (2 − x, 2 − y, 1 − z)
(C4A) C5A⋯H15G (C15B) 2.97 (−1 + x, y, z)
(C3A) H3AA⋯H16I (C16B) 2.49 (1 − x, −y, 1 − z)
(C15A) H15D⋯H9A (C9) 2.60 (1 − x, −y, 2 − z)
(C12A) H12B⋯C4B (Cl1B) 2.98 (2 − x, 1 − y, 1 − z)
(C4B) Cl1B⋯Cl1 (C4) 3.5403 (11) (2 − x, 2 − y, 1 − z)
(C4B) Cl1B⋯Cl3A (C14A) 3.6816 (11) (2 − x, 2 − y, 1 − z)
(Cl1B) C4B⋯H12B (C12A) 2.98 (2 − x, 1 − y, 1 − z)
(C16B) H16I⋯H3AA (C3A) 2.49 (1 − x, −y, 1 − z)
(N1B) N2B⋯H9AA (C9A) 2.92 (1 − x, 1 − y, 1 − z)
(C8B) C9B⋯H3BA (C3B) 2.92 (x, −1 + y, z)
(C15B) H15G⋯C5A (C4A) 2.97 (1 + x, y, z)
(C15B) H15I⋯H2BA (C2B) 2.37 (2 − x, 1 − y, 1 − z)
(C12B) H12C⋯H6AA (C6A) 2.54 (x, y, z)
(C5B) H5BA⋯Cl3 (C14) 2.95 (x, 1 + y, −1 + z)

Table 3
Experimental details

Crystal data
Chemical formula C16H14Cl3N3
Mr 354.65
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.7515 (5), 9.8203 (5), 26.6696 (16)
α, β, γ (°) 92.338 (2), 91.212 (2), 94.048 (2)
V3) 2544.7 (2)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.24 × 0.15 × 0.09
 
Data collection
Diffractometer Bruker APEXII PHOTON 100 detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.894, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 40829, 9634, 6689
Rint 0.056
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.01
No. of reflections 9634
No. of parameters 601
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.30
Computer programs: APEX3 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 5]
Figure 5
Fingerprint plots representative of specific inter­atomic contacts in the title compound (symmetry-independent mol­ecules Mol-N1, Mol-N1A, Mol-N1B and overall), (a) for all inter­actions, and delineated into (b) Cl⋯H/H⋯Cl, (c) H⋯H, (d) C⋯H/H⋯C and (e) Cl⋯Cl inter­actions.

The other weak inter­molecular inter­actions, viz. Cl⋯C/C⋯Cl (5.4%), N⋯H/H⋯N (4.7%), C⋯C (1.7%), Cl⋯N/N⋯Cl (1.6%), N⋯C/C⋯N (1.0%) and N⋯N (0.8%) contacts, show only small contributions and thus have a negligible effect on the packing.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having an (E)-1-(2,2-di­chloro-1-phenyl­vin­yl)-2-phenyl­diazene skeleton gave 25 hits, of which six closely resemble the title compound, viz. 1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (CSD refcode HONBOE; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (HONBUK; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]diazene (HODQAV; Shixaliyev et al., 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]), 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (XIZ­REG; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­[(2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (LEQ­XIR; Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]), 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­{[2,2-di­chloro-1-(4-chloro­phen­yl) ethen­yl]diazene} (LEQXOX; Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]).

In the crystal structures of HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Mol­ecules are linked through weak X⋯Cl contacts [X = Br for HONBOE, and Cl for HONBUK], C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to (001). Additional van der Waals inter­actions consolidate the three-dimensional packing. In the crystal of HODQAV, mol­ecules are stacked in columns along [100] via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In XIZREG, mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along [001]. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystal of LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and Cl⋯O contacts were found, and in LEQXOX, C—H⋯N and Cl⋯Cl contacts are observed.

5. Synthesis and crystallization

The title compound was synthesized according to a reported literature protocol (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]). A 20 ml screw-neck vial was charged with DMSO (10 ml), (E)-4-[(2-(4-chloro­phen­yl)hydrazineyl­idene]meth­yl)-N,N-di­methyl­aniline (274 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a ∼0.01 M solution of HCl (100 mL, pH = ∼2–3) and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 x 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo in a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1) to give an orange solid. Yield: 72%; mp 408 K. Analysis: calculated for C16H14Cl3N3: C 54.19, H 3.98, N 11.85; found: C 54.08, H 3.91, N 11.82%. 1H NMR (300 MHz, CDCl3) δ 3.05 (6H, NMe2), 6.79–7.79 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ 152.41, 151.45, 150.29, 137.26, 135.11, 131.08, 129.27, 124.50, 119.11, 111.48, 40.29. ESI–MS: m/z: 355.48 [M + H]+.

Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms. Owing to poor agreement between observed and calculated intensities, five outliers ([\overline{11}] 0 4), (4 [\overline{10}] 13), ([\overline{5}] 8 8), ([\overline{7}] 2 18) and (1 8 14) were omitted in the final cycles of refinement.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2020), publCIF (Westrip, 2010).

4-{2,2-Dichloro-1-[(E)-(4-chlorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline top
Crystal data top
C16H14Cl3N3Z = 6
Mr = 354.65F(000) = 1092
Triclinic, P1Dx = 1.389 Mg m3
a = 9.7515 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8203 (5) ÅCell parameters from 9939 reflections
c = 26.6696 (16) Åθ = 2.3–25.6°
α = 92.338 (2)°µ = 0.54 mm1
β = 91.212 (2)°T = 296 K
γ = 94.048 (2)°Plate, orange
V = 2544.7 (2) Å30.24 × 0.15 × 0.09 mm
Data collection top
Bruker APEXII PHOTON 100 detector
diffractometer
6689 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.7°, θmin = 2.3°
Tmin = 0.894, Tmax = 0.946h = 1111
40829 measured reflectionsk = 1111
9634 independent reflectionsl = 3232
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.050P)2 + 0.8216P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
9634 reflectionsΔρmax = 0.29 e Å3
601 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8482 (2)0.1999 (2)0.93028 (8)0.0452 (5)
C20.8218 (2)0.1942 (2)0.87896 (8)0.0546 (6)
H2A0.7741450.1174480.8638530.066*
C30.8656 (3)0.3016 (2)0.85007 (9)0.0572 (6)
H3A0.8484140.2976230.8155950.069*
C40.9351 (2)0.4144 (2)0.87313 (9)0.0524 (5)
C50.9607 (2)0.4232 (2)0.92419 (9)0.0539 (6)
H5A1.0067270.5010990.9391520.065*
C60.9173 (2)0.3156 (2)0.95289 (8)0.0511 (5)
H6A0.9344110.3204530.9873790.061*
C70.7902 (2)0.0305 (2)1.02733 (8)0.0475 (5)
C80.7076 (2)0.1457 (2)1.00137 (8)0.0445 (5)
C90.5679 (2)0.1675 (2)1.00872 (9)0.0534 (6)
H9A0.5260510.1116021.0319020.064*
C100.4892 (2)0.2699 (2)0.98260 (9)0.0557 (6)
H10A0.3954610.2810930.9883560.067*
C110.5471 (2)0.3571 (2)0.94773 (8)0.0498 (5)
C120.6895 (2)0.3368 (2)0.94155 (9)0.0519 (5)
H12A0.7327330.3946390.9194430.062*
C130.7660 (2)0.2337 (2)0.96741 (8)0.0507 (5)
H13A0.8599830.2224050.9620230.061*
C140.8254 (2)0.0283 (2)1.07589 (8)0.0509 (5)
C150.3225 (3)0.4714 (3)0.92575 (14)0.0888 (9)
H15A0.2837550.3844310.9240670.133*
H15B0.3042550.5086990.9578520.133*
H15C0.2818070.5325640.8996900.133*
C160.5316 (3)0.5541 (3)0.88809 (12)0.0829 (8)
H16A0.5888300.5088240.8641060.124*
H16B0.4611590.6122190.8707290.124*
H16C0.5865590.6082260.9086550.124*
N10.79963 (19)0.08299 (18)0.95616 (7)0.0504 (4)
N20.83684 (19)0.08700 (19)1.00163 (7)0.0508 (4)
N30.4692 (2)0.4541 (2)0.91918 (9)0.0725 (6)
Cl10.99248 (9)0.55056 (8)0.83780 (3)0.0881 (3)
Cl20.91333 (8)0.10675 (7)1.10783 (2)0.0745 (2)
Cl30.78721 (7)0.16465 (7)1.11246 (2)0.06280 (17)
C1A0.4229 (2)0.1795 (2)0.57132 (8)0.0498 (5)
C2A0.3627 (3)0.0499 (3)0.56121 (9)0.0640 (6)
H2AA0.3571550.0125200.5865250.077*
C3A0.3104 (3)0.0118 (3)0.51352 (11)0.0718 (7)
H3AA0.2686210.0753080.5068220.086*
C4A0.3211 (3)0.1042 (3)0.47640 (9)0.0646 (7)
C5A0.3798 (3)0.2340 (3)0.48587 (9)0.0670 (7)
H5AA0.3856650.2958540.4603930.080*
C6A0.4299 (2)0.2718 (3)0.53333 (9)0.0593 (6)
H6AA0.4688890.3600250.5400090.071*
C7A0.6011 (2)0.3445 (2)0.67585 (8)0.0470 (5)
C8A0.5983 (2)0.2358 (2)0.71298 (8)0.0454 (5)
C9A0.4996 (3)0.2286 (3)0.74897 (9)0.0592 (6)
H9AA0.4341650.2930290.7499790.071*
C10A0.4954 (3)0.1287 (3)0.78346 (9)0.0607 (6)
H10B0.4266670.1263460.8071080.073*
C11A0.5920 (2)0.0304 (2)0.78387 (8)0.0458 (5)
C12A0.6903 (2)0.0377 (2)0.74676 (9)0.0563 (6)
H12B0.7555640.0268180.7451520.068*
C13A0.6926 (2)0.1388 (3)0.71237 (9)0.0570 (6)
H13B0.7599220.1412510.6881540.068*
C14A0.6685 (2)0.4666 (2)0.68521 (9)0.0545 (6)
C15A0.4881 (4)0.0761 (3)0.85675 (12)0.0900 (10)
H15D0.4968070.0052350.8781150.135*
H15E0.5000500.1542590.8764650.135*
H15F0.3984980.0847930.8408320.135*
C16A0.6869 (3)0.1722 (3)0.81753 (12)0.0777 (8)
H16D0.7785920.1311720.8229150.117*
H16E0.6800260.2198760.7853220.117*
H16F0.6662430.2354990.8432980.117*
N1A0.47860 (19)0.2058 (2)0.62087 (7)0.0521 (5)
N2A0.53735 (18)0.3236 (2)0.62771 (7)0.0494 (4)
N3A0.5912 (2)0.0680 (2)0.81912 (7)0.0600 (5)
Cl1A0.25859 (11)0.05792 (10)0.41636 (3)0.1059 (3)
Cl2A0.67447 (7)0.59912 (7)0.64516 (3)0.07071 (19)
Cl3A0.76185 (9)0.50455 (7)0.73961 (3)0.0824 (2)
C1B0.8791 (2)0.7795 (2)0.30878 (8)0.0534 (5)
C2B0.9091 (3)0.8881 (3)0.34212 (10)0.0732 (8)
H2BA0.9071660.8745250.3764140.088*
C3B0.9419 (3)1.0168 (3)0.32550 (10)0.0753 (8)
H3BA0.9611501.0901660.3483190.090*
C4B0.9458 (3)1.0357 (3)0.27501 (9)0.0580 (6)
C5B0.9201 (3)0.9284 (3)0.24133 (10)0.0740 (8)
H5BA0.9252620.9421550.2071030.089*
C6B0.8865 (3)0.8002 (3)0.25782 (9)0.0710 (7)
H6BA0.8686090.7271340.2347870.085*
C7B0.7467 (2)0.4383 (2)0.31889 (9)0.0555 (6)
C8B0.7881 (2)0.4045 (2)0.37050 (9)0.0496 (5)
C9B0.9197 (2)0.3708 (3)0.38160 (9)0.0582 (6)
H9BA0.9832400.3686420.3561030.070*
C10B0.9597 (2)0.3403 (3)0.42917 (10)0.0609 (6)
H10C1.0489490.3159830.4349460.073*
C11B0.8701 (2)0.3447 (2)0.46910 (9)0.0527 (5)
C12B0.7377 (3)0.3785 (3)0.45733 (11)0.0753 (8)
H12C0.6735960.3820260.4826120.090*
C13B0.6991 (3)0.4069 (3)0.40940 (11)0.0752 (8)
H13C0.6091600.4284910.4031060.090*
C14B0.6730 (3)0.3507 (3)0.28757 (10)0.0675 (7)
C15B1.0461 (3)0.2825 (4)0.52857 (13)0.1025 (12)
H15G1.1111030.3398110.5109890.154*
H15H1.0546160.1886770.5183440.154*
H15I1.0641910.2947540.5640510.154*
C16B0.8219 (3)0.3376 (3)0.55890 (11)0.0845 (9)
H16G0.7857600.4259160.5578670.127*
H16H0.8735950.3315240.5896660.127*
H16I0.7474460.2680880.5571110.127*
N1B0.8435 (2)0.6513 (2)0.32988 (7)0.0580 (5)
N2B0.7831 (2)0.5669 (2)0.29885 (7)0.0582 (5)
N3B0.9100 (2)0.3187 (3)0.51715 (8)0.0759 (7)
Cl1B0.98597 (9)1.19767 (8)0.25356 (3)0.0849 (2)
Cl2B0.62580 (10)0.38856 (10)0.22766 (3)0.1031 (3)
Cl3B0.61794 (9)0.18941 (8)0.30326 (3)0.0901 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (12)0.0453 (12)0.0428 (11)0.0008 (9)0.0046 (9)0.0019 (9)
C20.0661 (15)0.0469 (13)0.0481 (13)0.0105 (11)0.0127 (11)0.0010 (10)
C30.0721 (16)0.0548 (14)0.0428 (12)0.0086 (11)0.0103 (11)0.0064 (10)
C40.0547 (13)0.0455 (12)0.0560 (14)0.0045 (10)0.0061 (11)0.0098 (10)
C50.0580 (14)0.0462 (13)0.0553 (14)0.0055 (10)0.0114 (11)0.0032 (10)
C60.0567 (14)0.0524 (13)0.0424 (12)0.0024 (10)0.0075 (10)0.0024 (10)
C70.0461 (12)0.0515 (13)0.0446 (12)0.0005 (10)0.0033 (9)0.0038 (10)
C80.0452 (12)0.0471 (12)0.0410 (11)0.0005 (9)0.0003 (9)0.0058 (9)
C90.0513 (13)0.0570 (14)0.0520 (13)0.0034 (11)0.0091 (10)0.0011 (11)
C100.0423 (12)0.0613 (14)0.0627 (14)0.0025 (10)0.0053 (11)0.0012 (12)
C110.0527 (13)0.0430 (12)0.0535 (13)0.0019 (10)0.0043 (10)0.0066 (10)
C120.0535 (14)0.0487 (13)0.0541 (13)0.0097 (10)0.0019 (10)0.0009 (10)
C130.0428 (12)0.0542 (13)0.0556 (13)0.0053 (10)0.0030 (10)0.0055 (11)
C140.0527 (13)0.0564 (13)0.0422 (12)0.0051 (10)0.0016 (10)0.0009 (10)
C150.0653 (18)0.080 (2)0.116 (3)0.0120 (15)0.0196 (17)0.0149 (18)
C160.097 (2)0.0678 (18)0.0799 (19)0.0049 (16)0.0045 (16)0.0200 (15)
N10.0551 (11)0.0494 (11)0.0456 (11)0.0032 (8)0.0037 (8)0.0037 (8)
N20.0545 (11)0.0534 (11)0.0434 (10)0.0046 (9)0.0012 (8)0.0041 (8)
N30.0592 (13)0.0619 (13)0.0931 (17)0.0044 (10)0.0078 (12)0.0172 (12)
Cl10.1108 (6)0.0707 (4)0.0783 (5)0.0343 (4)0.0217 (4)0.0297 (4)
Cl20.0924 (5)0.0755 (4)0.0505 (3)0.0260 (4)0.0073 (3)0.0010 (3)
Cl30.0757 (4)0.0640 (4)0.0483 (3)0.0032 (3)0.0018 (3)0.0122 (3)
C1A0.0444 (12)0.0593 (14)0.0454 (12)0.0022 (10)0.0015 (9)0.0029 (10)
C2A0.0755 (17)0.0601 (15)0.0561 (15)0.0021 (13)0.0064 (12)0.0062 (12)
C3A0.0817 (19)0.0587 (16)0.0729 (18)0.0033 (13)0.0159 (14)0.0100 (14)
C4A0.0644 (16)0.0774 (18)0.0519 (14)0.0146 (13)0.0122 (12)0.0087 (13)
C5A0.0687 (17)0.0817 (19)0.0502 (14)0.0011 (14)0.0101 (12)0.0115 (13)
C6A0.0601 (15)0.0648 (15)0.0511 (14)0.0068 (12)0.0070 (11)0.0054 (11)
C7A0.0484 (12)0.0537 (13)0.0393 (11)0.0049 (10)0.0018 (9)0.0048 (9)
C8A0.0477 (12)0.0499 (12)0.0381 (11)0.0014 (10)0.0023 (9)0.0003 (9)
C9A0.0627 (15)0.0602 (15)0.0577 (14)0.0197 (12)0.0111 (12)0.0090 (12)
C10A0.0650 (15)0.0648 (15)0.0552 (14)0.0146 (12)0.0180 (12)0.0106 (12)
C11A0.0514 (13)0.0446 (12)0.0403 (11)0.0015 (9)0.0049 (9)0.0003 (9)
C12A0.0567 (14)0.0564 (14)0.0581 (14)0.0158 (11)0.0053 (11)0.0069 (11)
C13A0.0566 (14)0.0644 (15)0.0521 (13)0.0110 (12)0.0118 (11)0.0103 (11)
C14A0.0598 (14)0.0541 (14)0.0492 (13)0.0008 (11)0.0056 (11)0.0072 (10)
C15A0.117 (3)0.080 (2)0.0776 (19)0.0204 (18)0.0359 (19)0.0309 (16)
C16A0.095 (2)0.0595 (16)0.0822 (19)0.0187 (15)0.0033 (16)0.0202 (14)
N1A0.0521 (11)0.0590 (12)0.0448 (10)0.0002 (9)0.0017 (8)0.0048 (9)
N2A0.0486 (10)0.0559 (11)0.0437 (10)0.0022 (9)0.0021 (8)0.0050 (8)
N3A0.0739 (14)0.0538 (12)0.0542 (11)0.0107 (10)0.0075 (10)0.0126 (9)
Cl1A0.1388 (8)0.1108 (7)0.0653 (5)0.0166 (6)0.0417 (5)0.0205 (4)
Cl2A0.0811 (4)0.0591 (4)0.0719 (4)0.0015 (3)0.0089 (3)0.0195 (3)
Cl3A0.1102 (6)0.0644 (4)0.0681 (4)0.0145 (4)0.0345 (4)0.0034 (3)
C1B0.0573 (14)0.0551 (14)0.0474 (13)0.0008 (11)0.0043 (10)0.0054 (10)
C2B0.117 (2)0.0571 (16)0.0454 (13)0.0029 (15)0.0056 (14)0.0047 (12)
C3B0.118 (2)0.0528 (15)0.0550 (15)0.0041 (15)0.0002 (15)0.0007 (12)
C4B0.0583 (14)0.0583 (14)0.0585 (15)0.0047 (11)0.0070 (11)0.0125 (12)
C5B0.093 (2)0.0810 (19)0.0453 (14)0.0183 (16)0.0008 (13)0.0091 (13)
C6B0.091 (2)0.0711 (17)0.0465 (14)0.0179 (14)0.0012 (13)0.0052 (12)
C7B0.0515 (13)0.0519 (13)0.0622 (15)0.0031 (10)0.0065 (11)0.0017 (11)
C8B0.0470 (13)0.0444 (12)0.0568 (13)0.0016 (9)0.0025 (10)0.0011 (10)
C9B0.0513 (14)0.0680 (16)0.0565 (14)0.0114 (11)0.0065 (11)0.0015 (12)
C10B0.0452 (13)0.0731 (17)0.0660 (16)0.0132 (11)0.0021 (11)0.0061 (13)
C11B0.0482 (13)0.0515 (13)0.0590 (14)0.0045 (10)0.0043 (11)0.0063 (11)
C12B0.0498 (15)0.111 (2)0.0682 (17)0.0185 (15)0.0148 (13)0.0153 (16)
C13B0.0464 (14)0.105 (2)0.0774 (19)0.0201 (14)0.0014 (13)0.0136 (16)
C14B0.0640 (16)0.0637 (16)0.0731 (17)0.0020 (12)0.0146 (13)0.0041 (13)
C15B0.083 (2)0.152 (3)0.079 (2)0.037 (2)0.0014 (17)0.037 (2)
C16B0.095 (2)0.099 (2)0.0606 (17)0.0094 (18)0.0140 (16)0.0004 (16)
N1B0.0681 (13)0.0522 (12)0.0527 (11)0.0000 (10)0.0072 (10)0.0010 (9)
N2B0.0605 (12)0.0570 (12)0.0560 (12)0.0011 (9)0.0080 (9)0.0002 (10)
N3B0.0611 (13)0.1092 (19)0.0611 (13)0.0214 (13)0.0082 (11)0.0188 (13)
Cl1B0.1076 (6)0.0658 (4)0.0832 (5)0.0017 (4)0.0239 (4)0.0219 (4)
Cl2B0.1230 (7)0.0965 (6)0.0848 (5)0.0064 (5)0.0471 (5)0.0079 (4)
Cl3B0.0889 (5)0.0609 (4)0.1158 (6)0.0135 (4)0.0188 (5)0.0088 (4)
Geometric parameters (Å, º) top
C1—C21.386 (3)C10A—C11A1.395 (3)
C1—C61.388 (3)C10A—H10B0.9300
C1—N11.421 (3)C11A—N3A1.376 (3)
C2—C31.380 (3)C11A—C12A1.393 (3)
C2—H2A0.9300C12A—C13A1.378 (3)
C3—C41.373 (3)C12A—H12B0.9300
C3—H3A0.9300C13A—H13B0.9300
C4—C51.377 (3)C14A—Cl3A1.710 (2)
C4—Cl11.734 (2)C14A—Cl2A1.715 (2)
C5—C61.378 (3)C15A—N3A1.436 (3)
C5—H5A0.9300C15A—H15D0.9600
C6—H6A0.9300C15A—H15E0.9600
C7—C141.332 (3)C15A—H15F0.9600
C7—N21.418 (3)C16A—N3A1.433 (3)
C7—C81.481 (3)C16A—H16D0.9600
C8—C91.383 (3)C16A—H16E0.9600
C8—C131.385 (3)C16A—H16F0.9600
C9—C101.377 (3)N1A—N2A1.259 (3)
C9—H9A0.9300C1B—C2B1.372 (3)
C10—C111.393 (3)C1B—C6B1.385 (3)
C10—H10A0.9300C1B—N1B1.423 (3)
C11—N31.370 (3)C2B—C3B1.375 (4)
C11—C121.403 (3)C2B—H2BA0.9300
C12—C131.368 (3)C3B—C4B1.368 (4)
C12—H12A0.9300C3B—H3BA0.9300
C13—H13A0.9300C4B—C5B1.362 (4)
C14—Cl31.713 (2)C4B—Cl1B1.734 (2)
C14—Cl21.714 (2)C5B—C6B1.370 (4)
C15—N31.445 (4)C5B—H5BA0.9300
C15—H15A0.9600C6B—H6BA0.9300
C15—H15B0.9600C7B—C14B1.335 (3)
C15—H15C0.9600C7B—N2B1.417 (3)
C16—N31.436 (3)C7B—C8B1.483 (3)
C16—H16A0.9600C8B—C13B1.367 (3)
C16—H16B0.9600C8B—C9B1.378 (3)
C16—H16C0.9600C9B—C10B1.370 (3)
N1—N21.257 (2)C9B—H9BA0.9300
C1A—C2A1.378 (3)C10B—C11B1.393 (3)
C1A—C6A1.386 (3)C10B—H10C0.9300
C1A—N1A1.425 (3)C11B—N3B1.370 (3)
C2A—C3A1.387 (4)C11B—C12B1.389 (3)
C2A—H2AA0.9300C12B—C13B1.370 (4)
C3A—C4A1.370 (4)C12B—H12C0.9300
C3A—H3AA0.9300C13B—H13C0.9300
C4A—C5A1.371 (4)C14B—Cl3B1.707 (3)
C4A—Cl1A1.733 (3)C14B—Cl2B1.716 (3)
C5A—C6A1.374 (3)C15B—N3B1.428 (4)
C5A—H5AA0.9300C15B—H15G0.9600
C6A—H6AA0.9300C15B—H15H0.9600
C7A—C14A1.338 (3)C15B—H15I0.9600
C7A—N2A1.415 (3)C16B—N3B1.435 (3)
C7A—C8A1.484 (3)C16B—H16G0.9600
C8A—C13A1.370 (3)C16B—H16H0.9600
C8A—C9A1.374 (3)C16B—H16I0.9600
C9A—C10A1.371 (3)N1B—N2B1.255 (3)
C9A—H9AA0.9300
C2—C1—C6119.6 (2)N3A—C11A—C12A121.6 (2)
C2—C1—N1115.70 (19)N3A—C11A—C10A122.0 (2)
C6—C1—N1124.67 (19)C12A—C11A—C10A116.4 (2)
C3—C2—C1120.6 (2)C13A—C12A—C11A121.3 (2)
C3—C2—H2A119.7C13A—C12A—H12B119.4
C1—C2—H2A119.7C11A—C12A—H12B119.4
C4—C3—C2118.8 (2)C8A—C13A—C12A121.6 (2)
C4—C3—H3A120.6C8A—C13A—H13B119.2
C2—C3—H3A120.6C12A—C13A—H13B119.2
C3—C4—C5121.6 (2)C7A—C14A—Cl3A122.02 (18)
C3—C4—Cl1119.95 (18)C7A—C14A—Cl2A125.13 (18)
C5—C4—Cl1118.43 (18)Cl3A—C14A—Cl2A112.84 (14)
C4—C5—C6119.4 (2)N3A—C15A—H15D109.5
C4—C5—H5A120.3N3A—C15A—H15E109.5
C6—C5—H5A120.3H15D—C15A—H15E109.5
C5—C6—C1120.0 (2)N3A—C15A—H15F109.5
C5—C6—H6A120.0H15D—C15A—H15F109.5
C1—C6—H6A120.0H15E—C15A—H15F109.5
C14—C7—N2115.2 (2)N3A—C16A—H16D109.5
C14—C7—C8123.2 (2)N3A—C16A—H16E109.5
N2—C7—C8121.58 (18)H16D—C16A—H16E109.5
C9—C8—C13117.1 (2)N3A—C16A—H16F109.5
C9—C8—C7121.4 (2)H16D—C16A—H16F109.5
C13—C8—C7121.44 (19)H16E—C16A—H16F109.5
C10—C9—C8121.7 (2)N2A—N1A—C1A113.44 (18)
C10—C9—H9A119.2N1A—N2A—C7A112.75 (18)
C8—C9—H9A119.2C11A—N3A—C16A121.3 (2)
C9—C10—C11121.4 (2)C11A—N3A—C15A121.2 (2)
C9—C10—H10A119.3C16A—N3A—C15A117.4 (2)
C11—C10—H10A119.3C2B—C1B—C6B119.0 (2)
N3—C11—C10122.3 (2)C2B—C1B—N1B116.4 (2)
N3—C11—C12121.2 (2)C6B—C1B—N1B124.6 (2)
C10—C11—C12116.5 (2)C1B—C2B—C3B120.9 (2)
C13—C12—C11121.3 (2)C1B—C2B—H2BA119.6
C13—C12—H12A119.3C3B—C2B—H2BA119.6
C11—C12—H12A119.3C4B—C3B—C2B119.2 (3)
C12—C13—C8121.9 (2)C4B—C3B—H3BA120.4
C12—C13—H13A119.0C2B—C3B—H3BA120.4
C8—C13—H13A119.0C5B—C4B—C3B120.8 (2)
C7—C14—Cl3122.13 (18)C5B—C4B—Cl1B119.55 (19)
C7—C14—Cl2124.47 (18)C3B—C4B—Cl1B119.7 (2)
Cl3—C14—Cl2113.40 (13)C4B—C5B—C6B120.1 (2)
N3—C15—H15A109.5C4B—C5B—H5BA120.0
N3—C15—H15B109.5C6B—C5B—H5BA120.0
H15A—C15—H15B109.5C5B—C6B—C1B120.0 (2)
N3—C15—H15C109.5C5B—C6B—H6BA120.0
H15A—C15—H15C109.5C1B—C6B—H6BA120.0
H15B—C15—H15C109.5C14B—C7B—N2B114.6 (2)
N3—C16—H16A109.5C14B—C7B—C8B123.1 (2)
N3—C16—H16B109.5N2B—C7B—C8B122.3 (2)
H16A—C16—H16B109.5C13B—C8B—C9B116.7 (2)
N3—C16—H16C109.5C13B—C8B—C7B122.1 (2)
H16A—C16—H16C109.5C9B—C8B—C7B121.2 (2)
H16B—C16—H16C109.5C10B—C9B—C8B121.8 (2)
N2—N1—C1113.53 (18)C10B—C9B—H9BA119.1
N1—N2—C7113.61 (18)C8B—C9B—H9BA119.1
C11—N3—C16121.5 (2)C9B—C10B—C11B121.7 (2)
C11—N3—C15120.0 (2)C9B—C10B—H10C119.1
C16—N3—C15117.8 (2)C11B—C10B—H10C119.1
C2A—C1A—C6A119.2 (2)N3B—C11B—C12B121.9 (2)
C2A—C1A—N1A115.7 (2)N3B—C11B—C10B122.3 (2)
C6A—C1A—N1A125.0 (2)C12B—C11B—C10B115.8 (2)
C1A—C2A—C3A120.4 (2)C13B—C12B—C11B121.6 (2)
C1A—C2A—H2AA119.8C13B—C12B—H12C119.2
C3A—C2A—H2AA119.8C11B—C12B—H12C119.2
C4A—C3A—C2A119.2 (3)C8B—C13B—C12B122.3 (2)
C4A—C3A—H3AA120.4C8B—C13B—H13C118.8
C2A—C3A—H3AA120.4C12B—C13B—H13C118.8
C3A—C4A—C5A121.2 (2)C7B—C14B—Cl3B123.1 (2)
C3A—C4A—Cl1A119.9 (2)C7B—C14B—Cl2B123.4 (2)
C5A—C4A—Cl1A118.9 (2)Cl3B—C14B—Cl2B113.56 (15)
C4A—C5A—C6A119.4 (2)N3B—C15B—H15G109.5
C4A—C5A—H5AA120.3N3B—C15B—H15H109.5
C6A—C5A—H5AA120.3H15G—C15B—H15H109.5
C5A—C6A—C1A120.5 (2)N3B—C15B—H15I109.5
C5A—C6A—H6AA119.7H15G—C15B—H15I109.5
C1A—C6A—H6AA119.7H15H—C15B—H15I109.5
C14A—C7A—N2A115.90 (19)N3B—C16B—H16G109.5
C14A—C7A—C8A121.9 (2)N3B—C16B—H16H109.5
N2A—C7A—C8A122.12 (19)H16G—C16B—H16H109.5
C13A—C8A—C9A117.7 (2)N3B—C16B—H16I109.5
C13A—C8A—C7A121.45 (19)H16G—C16B—H16I109.5
C9A—C8A—C7A120.8 (2)H16H—C16B—H16I109.5
C10A—C9A—C8A121.5 (2)N2B—N1B—C1B112.63 (19)
C10A—C9A—H9AA119.2N1B—N2B—C7B113.78 (19)
C8A—C9A—H9AA119.2C11B—N3B—C15B121.2 (2)
C9A—C10A—C11A121.5 (2)C11B—N3B—C16B122.0 (2)
C9A—C10A—H10B119.3C15B—N3B—C16B116.6 (2)
C11A—C10A—H10B119.3
C6—C1—C2—C31.1 (4)N3A—C11A—C12A—C13A178.3 (2)
N1—C1—C2—C3179.3 (2)C10A—C11A—C12A—C13A1.3 (4)
C1—C2—C3—C40.4 (4)C9A—C8A—C13A—C12A0.5 (4)
C2—C3—C4—C50.6 (4)C7A—C8A—C13A—C12A180.0 (2)
C2—C3—C4—Cl1179.58 (19)C11A—C12A—C13A—C8A0.4 (4)
C3—C4—C5—C60.9 (4)N2A—C7A—C14A—Cl3A175.07 (17)
Cl1—C4—C5—C6179.27 (18)C8A—C7A—C14A—Cl3A2.5 (3)
C4—C5—C6—C10.2 (4)N2A—C7A—C14A—Cl2A3.8 (3)
C2—C1—C6—C50.8 (3)C8A—C7A—C14A—Cl2A178.64 (17)
N1—C1—C6—C5179.7 (2)C2A—C1A—N1A—N2A177.3 (2)
C14—C7—C8—C974.0 (3)C6A—C1A—N1A—N2A0.3 (3)
N2—C7—C8—C9105.6 (2)C1A—N1A—N2A—C7A175.50 (18)
C14—C7—C8—C13108.2 (3)C14A—C7A—N2A—N1A178.4 (2)
N2—C7—C8—C1372.2 (3)C8A—C7A—N2A—N1A0.8 (3)
C13—C8—C9—C101.6 (3)C12A—C11A—N3A—C16A3.5 (4)
C7—C8—C9—C10176.3 (2)C10A—C11A—N3A—C16A176.9 (3)
C8—C9—C10—C110.5 (4)C12A—C11A—N3A—C15A179.0 (3)
C9—C10—C11—N3175.9 (2)C10A—C11A—N3A—C15A1.4 (4)
C9—C10—C11—C121.3 (3)C6B—C1B—C2B—C3B2.0 (4)
N3—C11—C12—C13175.3 (2)N1B—C1B—C2B—C3B178.7 (3)
C10—C11—C12—C132.0 (3)C1B—C2B—C3B—C4B0.7 (5)
C11—C12—C13—C81.0 (3)C2B—C3B—C4B—C5B1.1 (4)
C9—C8—C13—C120.9 (3)C2B—C3B—C4B—Cl1B179.6 (2)
C7—C8—C13—C12177.0 (2)C3B—C4B—C5B—C6B1.6 (4)
N2—C7—C14—Cl3176.21 (16)Cl1B—C4B—C5B—C6B179.1 (2)
C8—C7—C14—Cl34.1 (3)C4B—C5B—C6B—C1B0.2 (4)
N2—C7—C14—Cl23.1 (3)C2B—C1B—C6B—C5B1.6 (4)
C8—C7—C14—Cl2176.55 (17)N1B—C1B—C6B—C5B179.2 (3)
C2—C1—N1—N2173.7 (2)C14B—C7B—C8B—C13B78.7 (3)
C6—C1—N1—N26.7 (3)N2B—C7B—C8B—C13B101.5 (3)
C1—N1—N2—C7179.12 (18)C14B—C7B—C8B—C9B102.2 (3)
C14—C7—N2—N1178.7 (2)N2B—C7B—C8B—C9B77.6 (3)
C8—C7—N2—N11.0 (3)C13B—C8B—C9B—C10B0.4 (4)
C10—C11—N3—C16172.1 (2)C7B—C8B—C9B—C10B179.5 (2)
C12—C11—N3—C1610.8 (4)C8B—C9B—C10B—C11B1.4 (4)
C10—C11—N3—C151.9 (4)C9B—C10B—C11B—N3B177.9 (3)
C12—C11—N3—C15179.0 (2)C9B—C10B—C11B—C12B1.5 (4)
C6A—C1A—C2A—C3A0.4 (4)N3B—C11B—C12B—C13B178.8 (3)
N1A—C1A—C2A—C3A177.3 (2)C10B—C11B—C12B—C13B0.6 (4)
C1A—C2A—C3A—C4A0.9 (4)C9B—C8B—C13B—C12B0.6 (4)
C2A—C3A—C4A—C5A1.4 (4)C7B—C8B—C13B—C12B178.6 (3)
C2A—C3A—C4A—Cl1A179.1 (2)C11B—C12B—C13B—C8B0.4 (5)
C3A—C4A—C5A—C6A0.5 (4)N2B—C7B—C14B—Cl3B179.71 (18)
Cl1A—C4A—C5A—C6A179.9 (2)C8B—C7B—C14B—Cl3B0.1 (4)
C4A—C5A—C6A—C1A0.8 (4)N2B—C7B—C14B—Cl2B0.3 (3)
C2A—C1A—C6A—C5A1.2 (4)C8B—C7B—C14B—Cl2B179.54 (19)
N1A—C1A—C6A—C5A176.3 (2)C2B—C1B—N1B—N2B162.2 (2)
C14A—C7A—C8A—C13A92.7 (3)C6B—C1B—N1B—N2B18.5 (3)
N2A—C7A—C8A—C13A84.7 (3)C1B—N1B—N2B—C7B179.93 (19)
C14A—C7A—C8A—C9A87.8 (3)C14B—C7B—N2B—N1B175.0 (2)
N2A—C7A—C8A—C9A94.7 (3)C8B—C7B—N2B—N1B5.2 (3)
C13A—C8A—C9A—C10A0.4 (4)C12B—C11B—N3B—C15B179.3 (3)
C7A—C8A—C9A—C10A179.9 (2)C10B—C11B—N3B—C15B1.3 (4)
C8A—C9A—C10A—C11A0.6 (4)C12B—C11B—N3B—C16B6.2 (4)
C9A—C10A—C11A—N3A178.2 (2)C10B—C11B—N3B—C16B173.2 (3)
C9A—C10A—C11A—C12A1.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the C1–C6 and C8A–C13A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···N3A0.932.683.597 (3)167
C5B—H5BA···Cl3i0.932.953.703 (3)139
C14—Cl3···Cg1ii1.71 (1)3.55 (1)4.083 (2)96 (1)
C14B—Cl3B···Cg4iii1.71 (1)3.85 (1)5.300 (3)142 (1)
Symmetry codes: (i) x, y+1, z1; (ii) x+2, y, z+2; (iii) x+1, y, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
(C2) H2A···N3A (C11A)2.68(x, y, z)
(C4) Cl1···Cl1B (C4B)3.5403 (11)(2 - x, 2 - y, 1 - z)
(C14) Cl2···Cl1 (C4)3.6580 (11)(2 - x, 1 - y, 2 - z)
(C13) H13A···Cl2 (C14)3.10(2 - x, -y, 2 - z)
(C14) Cl3···H5BA (C5B)2.95(x, -1 + y, 1 + z)
(C9) H9A···H15D (C15A)2.60(1 - x, -y, 2 - z)
(C15) H15C···Cl3 (C14)3.00(1 - x, -1 - y, 2 - z)
(C4) C5···H12A (C12)2.95(x, 1 + y, z)
(C6A) H6AA···H12C (C12B)2.54(x, y, z)
(C5A) H5AA···Cl2A (C14A)3.10(1 - x, 1 - y, 1 - z)
(C9A) H9AA···N2B (N1B)2.92(1 - x, 1 - y, 1 - z)
(C11A) N3A···H2A (C2)2.68(x, y, z)
(C14A) Cl3A···H16E (C16A)3.09(x, 1 + y, z)
(C14A) Cl3A···Cl1B (C4B)3.6816 (11)(2 - x, 2 - y, 1 - z)
(C4A) C5A···H15G (C15B)2.97(-1 + x, y, z)
(C3A) H3AA···H16I (C16B)2.49(1 - x, -y, 1 - z)
(C15A) H15D···H9A (C9)2.60(1 - x, -y, 2 - z)
(C12A) H12B···C4B (Cl1B)2.98(2 - x, 1 - y, 1 - z)
(C4B) Cl1B···Cl1 (C4)3.5403 (11)(2 - x, 2 - y, 1 - z)
(C4B) Cl1B···Cl3A (C14A)3.6816 (11)(2 - x, 2 - y, 1 - z)
(Cl1B) C4B···H12B (C12A)2.98(2 - x, 1 - y, 1 - z)
(C16B) H16I···H3AA (C3A)2.49(1 - x, -y, 1 - z)
(N1B) N2B···H9AA (C9A)2.92(1 - x, 1 - y, 1 - z)
(C8B) C9B···H3BA (C3B)2.92(x, -1 + y, z)
(C15B) H15G···C5A (C4A)2.97(1 + x, y, z)
(C15B) H15I···H2BA (C2B)2.37(2 - x, 1 - y, 1 - z)
(C12B) H12C···H6AA (C6A)2.54(x, y, z)
(C5B) H5BA···Cl3 (C14)2.95(x, 1 + y, -1 + z)
 

Funding information

This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan [grant No. EIF/MQM/Elm-Tehsil-1–2016-1(26)–71/06/4].

References

First citationAfkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science PubMed Google Scholar
First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds