research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of SrCo4(OH)(PO4)3, a new hy­dr­oxy­phosphate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: fz.cherif@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 May 2020; accepted 1 June 2020; online 5 June 2020)

Single crystals of strontium tetra­cobalt tris­(orthophosphate) hydroxide, SrCo4(OH)(PO4)3, were grown serendipitously under hydro­thermal conditions at 473 K. The crystal structure consists of undulating chains of edge-sharing [CoO6] octa­hedra that are linked into (010) layers by common vertices between chains. Adjacent layers are linked along [010] into a framework structure by tetra­hedral [CoO4] units and by PO4 tetra­hedra. The framework delimits channels extending along [100] in which the eleven-coordinate strontium cations are situated. Bifurcated O—H⋯O hydrogen bonds of weak strengths consolidate the crystal packing. The title compound was also characterized by infrared spectroscopy.

1. Chemical context

The search for new inorganic materials with open-frame structures comprising transition-metal polyhedra, [MOx], with tetra­hedral phosphate or vanadate units by sharing corners or edges is still ongoing (Rghioui et al., 2019[Rghioui, L., El Ammari, L., Assani, A. & Saadi, M. (2019). Acta Cryst. E75, 1041-1045.]; Ouaatta et al., 2019[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 402-404.]; Khmiyas et al., 2020[Khmiyas, J., Benhsina, E., Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2020). Acta Cryst. E76, 186-191.]). Generally, these inter­connections can lead to structures with cages, inter­layer spaces or channels, and the corresponding compounds are explored extensively for their excellent physical properties and various applications in electrical, electrochemical, magnetic or catalytic processes (Goodenough et al., 1976[Goodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. (1976). Mater. Res. Bull. 11, 203-220.]; Borel et al., 1991[Borel, M. M., Goreaud, M., Grandin, A., Labbe', Ph., Leclaire, A. & Raveau, B. (1991). Eur. J. Solid State Inorg. Chem. 28, 93-129.]; La Parola et al., 2018[La Parola, V., , Liveri, V. T., Todaro, L., Lombardo, D., Bauer, E. M., Dell'Era, A., Longo, A., Caschera, D., de Caro, T., Toro, R. G. & Calandra, P. (2018). Mater. Lett. 220, 58-61.]; Hadouchi et al., 2019[Hadouchi, M., Assani, A., Saadi, M., Lahmar, A., El Marssi, M. & El Ammari, L. (2019). Acta Cryst. C75, 777-782.]). The introduction of borate groups (BO3 or BO4) to phosphate (PO4) units leads to a group of borophosphates with specific structural characteristics. Compounds of this family likewise exhibit remarkable physicochemical properties that allow them to be applied in different fields (Kniep et al., 1998[Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930-2934.]; Ewald et al., 2007[Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517-1540.]; Lin et al., 2008[Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39-i40.]; Menezes et al., 2008[Menezes, P. W., Hoffmann, S., Prots, Y. & Kniep, R. (2008). Z. Kristallogr. 223, 333-334.]). About a decade ago, we managed to synthesize two borophosphate phases, viz. (Ag0.57Ni0.22)Ni(H2O)2[BP2O8]·0.67H2O and AgMg(H2O)2[BP2O8]·H2O (Zouihri et al., 2011a[Zouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011a). Acta Cryst. E67, i44.],b[Zouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011b). Acta Cryst. E67, i39.]). In this context, we attempted to synthesize a strontium- and cobalt-based borophosphate, namely SrCo2BPO7, by means of the hydro­thermal process. Instead, we have isolated a new hy­droxy­phosphate, SrCo4(OH)(PO4)3, and report here its crystal structure and its infrared spectrum.

2. Structural commentary

In the three-dimensional framework structure of SrCo4(OH)(PO4)3, an octa­hedral coordination of three cobalt atoms (Co1, Co2, Co3) and a tetra­hedral coordination of the fourth cobalt (Co4) is observed. Atom O13 bears a hydrogen atom and bridges two of the six-coordinate Co atoms (Co1, Co2) and the four-coordinate Co4 atom. The hydroxide group also forms a weak bifurcated hydrogen bond (Table 1[link]) to two phosphate tetra­hedra (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯O8i 0.82 2.21 2.982 (3) 157
O13—H13⋯O10i 0.82 2.40 3.010 (3) 132
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The inter­connection of [CoO6] and [CoO4] polyhedra, and the hydroxide group linked to PO4 tetra­hedra through a bifurcated hydrogen bond (dashed lines). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x, y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x − [{1\over 2}], −y + 1, z + [{1\over 2}]; (iii) x − 1, y, z; (iv) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (v) x − [{1\over 2}], −y + [{3\over 2}], −z + 1; (vi) x + 1, y, z; (vii) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (viii) −x + [{1\over 2}], −y + 1, z − [{1\over 2}]; (ix) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (x) x + [{1\over 2}], −y + [{1\over 2}], −z + 1].

The [CoO6] octa­hedra share edges to form infinite undulating chains extending parallel to [001]. Adjacent chains are cross-linked via common vertex atoms (O3) to build up (010) layers (Fig. 2[link]) with the formation of oval voids surrounded by eight octa­hedra. Two PO4 tetra­hedra occupy the void space, whereby P1O4 shares three of its vertices with five [CoO6] octa­hedra and P2O4 shares an edge with an octa­hedron and a vertex with two opposite octa­hedra (Fig. 3[link]).

[Figure 2]
Figure 2
[CoO6] octa­hedra sharing edges to form chains that are linked together via a common corner every three octa­hedra.
[Figure 3]
Figure 3
Edge-sharing [CoO6] octa­hedra and PO4 tetra­hedra building a layer parallel to (010).

The [Co4O3OH] tetra­hedra are linked through corners into zigzag chains running parallel to [100]; the chains are flanked by P2O4 and P3O4 tetra­hedra into ribbons. The strontium cations and P1O4 tetra­hedra are of the same height as the ribbons, thus defining a second layer parallel to (010) (Fig. 4[link]). The crystal structure can be described by the stacking of the two types of layers along [010], which leads to the formation of channels extending parallel to [100] in which the strontium cations are located (Fig. 5[link]). Each SrII atom is surrounded by eleven oxygen atoms, forming a distorted polyhedron.

[Figure 4]
Figure 4
Ribbons formed by [CoO4] and P2O4 and P3O4 tetra­hedra, and strontium atoms and P1O4 tetra­hedra at the same height forming the second layer parallel to (010).
[Figure 5]
Figure 5
The crystal structure of SrCo4(OH)(PO4)3 in a projection along [100], showing channels in which the strontium cations are located.

Comparison of the metal–oxygen polyhedra in the title structure with the same type of polyhedra in comparable structures shows a similar behaviour. All [CoO6] octa­hedra in SrCo4(OH)(PO4)3 are distorted, with the Co—O distance varying between 2.022 (2) and 2.284 (2) Å. The averaged Co—O distances of 2.130 Å for Co1, 2.122 Å for Co2 and 2.124 Å for Co3 are in good agreement with those of Co5(PO4)2(OH)4 (average Co—O distances are 2.107 Å for Co1, 2.144 Å for Co2, 2.140 Å for Co3, 2.148 Å for Co4 and 2.150 Å for Co5; Ruszala et al., 1977[Ruszala, F. A., Anderson, J. B. & Kostiner, E. (1977). Inorg. Chem. 16, 2417-2422.]). The distorted [Co4O3OH] tetra­hedron shows much shorter Co—O distances ranging from 1.942 (2) to 1.995 (2) Å. These distances are comparable with the averaged [4]Co—O distances of 1.966, 1.955, 1.957 and 1.958 Å observed, respectively, in the phosphates NaCoPO4, KCoPO4, NH4CoPO4-Hex and NH4CoPO4-ABW (Feng et al., 1997[Feng, P., Bu, X., Tolbert, S. H. & Stucky, G. D. (1997). J. Am. Chem. Soc. 119, 2497-2504.]). The PO4 tetra­hedra in the title structure have averaged distances of 1.542 Å for P1, 1.539 Å for P2 and 1.539Å for P3, and are compatible with the P—O distances in the orthophosphate SrCo2Fe(PO4)3 (Bouraima et al., 2016[Bouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 1143-1146.]).

The structure model of SrCo4(OH)(PO4)3 is in good agreement with calculations of the bond-valence sums (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). The obtained values (in valence units) for the cations SrII, CoII, and PV are close to the expected values: Sr1 (1.95), Co1 (1.89), Co2 (1.89), Co3 (1.88), Co4 (1.92), P1 (4.90), P2 (4.95) and P3 (4.95). The bond-valence sums calculated for the oxygen atoms range between 1.82 and 2.29 valence units.

3. Infrared spectroscopy

An infrared spectrum of SrCo4(OH)(PO4)3 was recorded in order to verify the existence of the hydroxyl and PO4 groups in the title compound (Fig. 6[link]). The FT-IR spectrum shows characteristic vibration bands of isolated PO4 groups. The bands observed at around 420 and 463 cm−1 can be assigned to the ν2 asymmetric stretching mode while the vibration at 573 cm−1 is attributed to ν4 asymmetric O—P—O deformation. The weak band observed at 750 cm−1 most likely originates from [4]Co—O vibrations, as observed in many other phosphates (Rusakov et al., 2006[Rusakov, D. A., Filaretov, A. A., Bubentsova, M. N., Danilov, V. P. & Komissarova, L. N. (2006). Russ. J. Inorg. Chem. 51, 852-861.]; Antony et al., 2011[Antony, C. J., Aatiq, A., Panicker, C. Y., Bushiri, M. J., Varghese, H. T. & Manojkumar, T. K. (2011). Spectrochim. Acta Part A, 78, 415-419.]; Bushiri et al., 2002[Bushiri, M. J., Jayasree, R. S., Fakhfakh, M. & Nayar, V. U. (2002). Mater. Chem. Phys. 73, 179-185.]; De Pedro et al., 2010[Pedro, I. de, Rojo, J. M., Rodríguez Fernández, J., Lezama, L. & Rojo, T. (2010). Eur. J. Inorg. Chem. pp. 2514-2522.]). The vibration at 1014 cm−1 corresponds to the ν3 asymmetric stretching mode of the phosphate tetra­hedra. The remaining vibrations centred at 3566, 3433 and 1632 cm−1 are commonly assigned to the stretching vibration of the bridging –OH group, as in Co2PO4OH (Wang et al., 2014[Wang, G., Valldor, M., Spielberg, E. T. & Mudring, A. V. (2014). Inorg. Chem. 53, 3072-3077.]), in addition to the OH librational mode, which is observed at 637 cm−1. We also note the presence of bands at 1384 and 875 cm−1, indicating C—O bonds (Ribeiro et al., 2006[Ribeiro, C. C., Gibson, I. & Barbosa, M. A. (2006). Biomaterials, 27, 1749-1761.]). This observation suggests that the powdered sample contained impurities of a carbonate. The assignments of all vibration bands are summarized in Table 2[link].

Table 2
Assignments of infrared vibration bands (cm−1) for SrCo4(OH)(PO4)3

Position Assignment
420 ν2 asymmetric stretching mode of P—O bonds
463 ν2 asymmetric stretching mode of P—O bond
573 ν4 asymmetric deformation of O—P—O
637 νL libration mode of the hydroxyl group
750 [4]Co—O stretching mode
875 ν2 vibration of C—O bond
1014 ν3 asymmetric stretching mode of PO43−
1384 ν3 vibration of C—O bond
1632 O—H stretching band
3433 O—H stretching band
3566 νs stretching mode of the hydroxyl group
[Figure 6]
Figure 6
Infrared spectrum of SrCo4(OH)(PO4)3.

4. Database survey

A search in the Inorganic Crystal Structure Database (ICSD; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]) revealed no match in the pseudo-quaternary system SrO/CoO/P2O5/OH. However, five compounds were identified in the pseudo-ternary SrO/CoO/P2O5 system, viz. triclinic SrCo2(PO4)2 (P[\overline{1}], Z = 2; El Bali et al., 1993[El Bali, B., Boukhari, A., Holt, E. M. & Aride, J. (1993). J. Crystallogr. Spectrosc. Res. 23, 1001-1004.]), monoclinic SrCoP2O7 (P21/n, Z = 4; Riou & Raveau 1991[Riou, D. & Raveau, B. (1991). Acta Cryst. C47, 1708-1709.]), monoclinic Sr2Co(PO4)2 and SrCo3(P2O7)2 (both P21/c, Z = 6 and 2, respectively; Belik et al. 2001[Belik, A. A., Lazoryak, B. I., Terekhina, T. P. & Polyakov, S. N. (2001). Zh. Neorg. Khim. 46, 1453-1459.] and Yang et al., 2008[Yang, T., Zhang, Y., Yang, S., Li, G., Xiong, M., Liao, F. & Lin, J. (2008). Inorg. Chem. 47, 2562-2568.]) and hexa­gonal Sr5Co0.18P3O12.92 (P63/m, Z = 2; Kazin et al., 2017[Kazin, P. E., Zykin, M. A., Schnelle, W., Zubavichus, Y. V., Babeshkin, K. A., Tafeenko, V. A., Felser, C. & Jansen, M. (2017). Inorg. Chem. 56, 1232-1240.]).

5. Synthesis and crystallization

Single crystals of SrCo4(OH)(PO4)3 were obtained serendi­pitously by attempting to synthesize the borophosphate SrCo2BPO7 under hydro­thermal conditions. The starting materials, Sr(NO3)2 (0.3174 g), Co(CH3COO)2·4H2O (0.7473 g), H3BO3 (0.0927 g) and H3PO4 (12 N; 0.1 ml), were mixed in the molar proportions of 1:2:1:1. The hydro­thermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and heated under autogenous pressure at 473 K for five days. After the end of the heat treatment, the autoclave was taken out of the oven and allowed to cool to room temperature. The reaction product was collected, filtered, rinsed with distilled water and dried in air. Optical microscopy revealed two types of crystals, viz. dark-purple and dark-red rectangular crystals. X-ray diffraction analysis showed the red crystals to be Co2(OH)PO4 (Harrison et al., 1995[Harrison, W. T. A., Vaughey, J. T., Dussack, L. L., Jacobson, A. J., Martin, T. E. & Stucky, G. D. (1995). J. Solid State Chem. 114, 151-158.]). The purple parallelepipeds correspond to the title compound.

Infrared spectroscopic measurements were performed on a VERTEX 70 FT-IR spectrometer, using the MRI transmission technique using KBr pellets. An adequate qu­antity of the studied phosphate powder, obtained by grinding the SrCo4(OH)(PO4)3 crystals, was diluted in KBr before being pressed into a pellet. The analysis was performed at room temperature, and the spectrum was recorded in the range 4000–400 cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atom of the OH group was located in a difference-Fourier map and was refined was a fixed O—H bond length of 0.82 Å and Uiso(H) = 1.5Ueq(O). The maximum and minimum remaining electron density was located at 0.69 Å from Sr1 and 0.56 Å from Co4, respectively. The reflection (011) was affected by the beam-stop (Fo2 = 0) while reflections (052) and (053), having Fo2 > Fc2, were probably affected by the Renninger effect. All three reflections were omitted from the refinement.

Table 3
Experimental details

Crystal data
Chemical formula SrCo4(OH)(PO4)3
Mr 625.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 5.1245 (1), 12.0491 (2), 15.7118 (3)
V3) 970.13 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 12.74
Crystal size (mm) 0.35 × 0.26 × 0.17
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.391, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 34471, 4243, 4038
Rint 0.045
(sin θ/λ)max−1) 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.07
No. of reflections 4243
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.60, −0.68
Absolute structure Flack x determined using 1625 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.008 (3)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Strontium tetracobalt tris(orthophosphate) hydroxide top
Crystal data top
SrCo4(OH)(PO4)3Dx = 4.281 Mg m3
Mr = 625.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4243 reflections
a = 5.1245 (1) Åθ = 2.6–35.0°
b = 12.0491 (2) ŵ = 12.74 mm1
c = 15.7118 (3) ÅT = 296 K
V = 970.13 (3) Å3Parallelepiped, violet
Z = 40.35 × 0.26 × 0.17 mm
F(000) = 1184
Data collection top
Bruker X8 APEX Diffractometer4243 independent reflections
Radiation source: fine-focus sealed tube4038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 35.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.391, Tmax = 0.748k = 1918
34471 measured reflectionsl = 2525
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0221P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.001
wR(F2) = 0.050Δρmax = 1.60 e Å3
S = 1.07Δρmin = 0.68 e Å3
4243 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
191 parametersExtinction coefficient: 0.0042 (3)
0 restraintsAbsolute structure: Flack x determined using 1625 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Hydrogen site location: difference Fourier mapAbsolute structure parameter: 0.008 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.02677 (6)0.72309 (2)0.67782 (2)0.00840 (6)
Co10.51704 (8)0.48429 (3)0.35972 (3)0.00572 (8)
Co20.53401 (9)0.58186 (4)0.54997 (3)0.00613 (8)
Co30.47299 (8)0.46200 (3)0.74367 (3)0.00580 (8)
Co40.28203 (8)0.32358 (4)0.51444 (3)0.00794 (9)
P10.51747 (15)0.85171 (6)0.57349 (5)0.00425 (12)
P20.01127 (15)0.45034 (6)0.65719 (5)0.00471 (13)
P30.00586 (15)0.30856 (6)0.33173 (5)0.00413 (12)
O10.4003 (4)0.8648 (2)0.48533 (15)0.0092 (4)
O20.8108 (4)0.8848 (2)0.57323 (15)0.0074 (4)
O30.3638 (4)0.9243 (2)0.63798 (15)0.0074 (4)
O40.4924 (5)0.73162 (18)0.60637 (15)0.0095 (4)
O50.2427 (4)0.5287 (2)0.63664 (15)0.0078 (4)
O60.2433 (4)0.5173 (2)0.66027 (15)0.0075 (4)
O70.0710 (4)0.40910 (19)0.74879 (15)0.0068 (4)
O80.0011 (5)0.3572 (2)0.59242 (14)0.0108 (4)
O90.1926 (4)0.40027 (19)0.30856 (15)0.0073 (4)
O100.0074 (4)0.29074 (18)0.43053 (14)0.0080 (4)
O110.2813 (4)0.34923 (19)0.30965 (15)0.0075 (4)
O120.0671 (4)0.20305 (19)0.28586 (16)0.0097 (4)
O130.5519 (4)0.43152 (18)0.48508 (15)0.0073 (4)
H130.6916690.4056510.5009190.011*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01002 (12)0.00611 (12)0.00908 (12)0.00095 (10)0.00229 (10)0.00061 (10)
Co10.00609 (16)0.00557 (17)0.00550 (17)0.00054 (14)0.00005 (14)0.00035 (13)
Co20.00739 (17)0.00508 (17)0.00593 (17)0.00087 (15)0.00149 (14)0.00104 (13)
Co30.00560 (16)0.00635 (17)0.00544 (16)0.00038 (14)0.00019 (14)0.00037 (13)
Co40.00687 (17)0.0095 (2)0.00748 (18)0.00059 (14)0.00076 (14)0.00135 (16)
P10.0047 (3)0.0041 (3)0.0039 (3)0.0005 (3)0.0001 (2)0.0001 (2)
P20.0044 (3)0.0055 (3)0.0042 (3)0.0001 (3)0.0001 (2)0.0002 (2)
P30.0051 (3)0.0035 (3)0.0038 (3)0.0002 (2)0.0002 (2)0.0000 (2)
O10.0093 (9)0.0138 (11)0.0045 (9)0.0012 (8)0.0026 (8)0.0010 (9)
O20.0044 (9)0.0098 (10)0.0079 (10)0.0026 (8)0.0002 (7)0.0008 (8)
O30.0069 (9)0.0083 (10)0.0071 (10)0.0033 (8)0.0001 (7)0.0022 (9)
O40.0140 (10)0.0036 (9)0.0109 (9)0.0001 (9)0.0049 (8)0.0008 (7)
O50.0058 (9)0.0099 (10)0.0077 (10)0.0020 (8)0.0004 (7)0.0028 (9)
O60.0061 (9)0.0099 (11)0.0065 (10)0.0027 (8)0.0002 (7)0.0016 (8)
O70.0069 (9)0.0073 (10)0.0062 (9)0.0016 (7)0.0012 (7)0.0015 (8)
O80.0115 (10)0.0114 (10)0.0094 (10)0.0022 (9)0.0030 (9)0.0059 (8)
O90.0077 (9)0.0055 (9)0.0088 (10)0.0020 (7)0.0004 (7)0.0022 (8)
O100.0095 (10)0.0104 (10)0.0039 (9)0.0020 (8)0.0000 (8)0.0008 (7)
O110.0062 (9)0.0081 (10)0.0082 (10)0.0008 (8)0.0016 (7)0.0017 (8)
O120.0120 (10)0.0060 (10)0.0111 (10)0.0014 (8)0.0002 (8)0.0035 (8)
O130.0068 (9)0.0058 (9)0.0092 (9)0.0006 (7)0.0002 (8)0.0003 (8)
Geometric parameters (Å, º) top
Sr1—O7i2.570 (2)Co3—O6vi2.067 (2)
Sr1—O11ii2.575 (2)Co3—O3ix2.089 (2)
Sr1—O42.639 (2)Co3—O12x2.098 (2)
Sr1—O52.669 (2)Co3—O9iv2.125 (2)
Sr1—O2iii2.779 (2)Co3—O72.158 (2)
Sr1—O12iv2.829 (2)Co3—O52.206 (2)
Sr1—O1v2.848 (2)Co4—O81.942 (2)
Sr1—O62.853 (2)Co4—O131.954 (2)
Sr1—O9iv2.915 (2)Co4—O101.969 (2)
Sr1—O4iii2.961 (2)Co4—O10x1.995 (2)
Sr1—O33.041 (2)P1—O11.518 (2)
Co1—O132.077 (2)P1—O41.542 (2)
Co1—O11vi2.082 (2)P1—O31.553 (2)
Co1—O3vii2.091 (2)P1—O21.555 (2)
Co1—O92.106 (2)P2—O81.517 (2)
Co1—O2v2.171 (2)P2—O61.534 (2)
Co1—O7viii2.212 (2)P2—O51.550 (2)
Co2—O42.022 (2)P2—O71.553 (2)
Co2—O1vii2.060 (2)P3—O121.508 (2)
Co2—O132.081 (2)P3—O111.534 (2)
Co2—O52.120 (2)P3—O91.545 (2)
Co2—O6vi2.216 (2)P3—O101.569 (2)
Co2—O2v2.284 (2)O13—H130.8200
O7i—Sr1—O11ii80.73 (7)O9—Co1—O2v98.63 (9)
O7i—Sr1—O4109.46 (7)O13—Co1—O7viii160.47 (9)
O11ii—Sr1—O4142.85 (7)O11vi—Co1—O7viii104.92 (9)
O7i—Sr1—O5162.67 (7)O3vii—Co1—O7viii83.16 (8)
O11ii—Sr1—O595.77 (7)O9—Co1—O7viii79.48 (8)
O4—Sr1—O563.66 (7)O2v—Co1—O7viii82.02 (9)
O7i—Sr1—O2iii64.92 (7)O4—Co2—O1vii86.30 (10)
O11ii—Sr1—O2iii121.22 (7)O4—Co2—O13175.22 (10)
O4—Sr1—O2iii94.66 (7)O1vii—Co2—O1395.72 (9)
O5—Sr1—O2iii129.56 (7)O4—Co2—O585.04 (9)
O7i—Sr1—O12iv66.42 (7)O1vii—Co2—O5155.36 (9)
O11ii—Sr1—O12iv89.04 (7)O13—Co2—O594.75 (9)
O4—Sr1—O12iv65.03 (7)O4—Co2—O6vi91.44 (10)
O5—Sr1—O12iv96.69 (7)O1vii—Co2—O6vi81.43 (9)
O2iii—Sr1—O12iv115.29 (7)O13—Co2—O6vi93.14 (9)
O7i—Sr1—O1v133.13 (7)O5—Co2—O6vi75.77 (9)
O11ii—Sr1—O1v119.13 (7)O4—Co2—O2v99.31 (9)
O4—Sr1—O1v80.64 (7)O1vii—Co2—O2v99.98 (9)
O5—Sr1—O1v63.27 (7)O13—Co2—O2v76.10 (9)
O2iii—Sr1—O1v68.76 (7)O5—Co2—O2v104.17 (9)
O12iv—Sr1—O1v145.52 (7)O6vi—Co2—O2v169.22 (9)
O7i—Sr1—O6134.98 (7)O6vi—Co3—O3ix110.65 (9)
O11ii—Sr1—O663.04 (7)O6vi—Co3—O12x90.20 (10)
O4—Sr1—O6115.55 (7)O3ix—Co3—O12x84.17 (10)
O5—Sr1—O654.21 (6)O6vi—Co3—O9iv109.48 (9)
O2iii—Sr1—O6111.05 (7)O3ix—Co3—O9iv84.42 (9)
O12iv—Sr1—O6133.49 (7)O12x—Co3—O9iv159.76 (10)
O1v—Sr1—O658.64 (7)O6vi—Co3—O7142.20 (9)
O7i—Sr1—O9iv102.99 (7)O3ix—Co3—O7106.54 (9)
O11ii—Sr1—O9iv60.11 (7)O12x—Co3—O787.01 (9)
O4—Sr1—O9iv82.74 (7)O9iv—Co3—O780.30 (9)
O5—Sr1—O9iv61.25 (7)O6vi—Co3—O577.04 (9)
O2iii—Sr1—O9iv166.11 (7)O3ix—Co3—O5166.41 (9)
O12iv—Sr1—O9iv51.30 (6)O12x—Co3—O5107.46 (10)
O1v—Sr1—O9iv123.85 (7)O9iv—Co3—O582.38 (9)
O6—Sr1—O9iv82.19 (6)O7—Co3—O568.00 (8)
O7i—Sr1—O4iii87.68 (6)O8—Co4—O13122.63 (10)
O11ii—Sr1—O4iii82.23 (7)O8—Co4—O1086.00 (10)
O4—Sr1—O4iii132.33 (9)O13—Co4—O10118.80 (9)
O5—Sr1—O4iii108.78 (7)O8—Co4—O10x107.64 (10)
O2iii—Sr1—O4iii51.92 (6)O13—Co4—O10x98.76 (9)
O12iv—Sr1—O4iii153.73 (7)O10—Co4—O10x124.43 (5)
O1v—Sr1—O4iii57.40 (6)O1—P1—O4111.72 (14)
O6—Sr1—O4iii62.94 (6)O1—P1—O3109.66 (13)
O9iv—Sr1—O4iii137.82 (6)O4—P1—O3105.51 (13)
O7i—Sr1—O360.53 (7)O1—P1—O2110.70 (14)
O11ii—Sr1—O3135.45 (7)O4—P1—O2108.80 (14)
O4—Sr1—O350.80 (6)O3—P1—O2110.33 (13)
O5—Sr1—O3114.45 (6)O8—P2—O6112.00 (14)
O2iii—Sr1—O362.97 (6)O8—P2—O5110.08 (14)
O12iv—Sr1—O356.98 (7)O6—P2—O5109.67 (13)
O1v—Sr1—O3103.90 (6)O8—P2—O7113.16 (14)
O6—Sr1—O3161.48 (6)O6—P2—O7107.85 (13)
O9iv—Sr1—O3105.74 (6)O5—P2—O7103.72 (12)
O4iii—Sr1—O3114.80 (6)O12—P3—O11112.92 (13)
O13—Co1—O11vi94.38 (9)O12—P3—O9109.08 (14)
O13—Co1—O3vii94.12 (9)O11—P3—O9108.90 (13)
O11vi—Co1—O3vii89.80 (9)O12—P3—O10110.29 (14)
O13—Co1—O9106.41 (9)O11—P3—O10107.90 (13)
O11vi—Co1—O982.65 (9)O9—P3—O10107.61 (13)
O3vii—Co1—O9158.54 (9)Co4—O13—H13107.1
O13—Co1—O2v78.70 (9)Co1—O13—H13118.6
O11vi—Co1—O2v173.06 (9)Co2—O13—H13102.7
O3vii—Co1—O2v91.29 (9)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1/2, y+1, z+1/2; (iii) x1, y, z; (iv) x+1/2, y+1, z+1/2; (v) x1/2, y+3/2, z+1; (vi) x+1, y, z; (vii) x+1/2, y+3/2, z+1; (viii) x+1/2, y+1, z1/2; (ix) x+1, y1/2, z+3/2; (x) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O8vi0.822.212.982 (3)157
O13—H13···O10vi0.822.403.010 (3)132
Symmetry code: (vi) x+1, y, z.
Assignments of infrared vibration bands (cm-1) for SrCo4(OH)(PO4)3 top
PositionAssignment
420ν2 asymmetric stretching mode of P—O bonds
463ν2 asymmetric stretching mode of P—O bond
573ν4 asymmetric deformation of O—P—O
637νL vibration mode of the hydroxyl group
750[4]Co—O stretching mode
875ν2 vibration of C—O bond
1014ν3 asymmetric stretching mode of PO43-
1384ν3 vibration of C—O bond
1632O—H stretching band
3433O—H stretching band
3566νs stretching mode of the hydroxyl group-
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

References

First citationAntony, C. J., Aatiq, A., Panicker, C. Y., Bushiri, M. J., Varghese, H. T. & Manojkumar, T. K. (2011). Spectrochim. Acta Part A, 78, 415–419.  Web of Science CrossRef CAS Google Scholar
First citationBelik, A. A., Lazoryak, B. I., Terekhina, T. P. & Polyakov, S. N. (2001). Zh. Neorg. Khim. 46, 1453–1459.  CAS Google Scholar
First citationBorel, M. M., Goreaud, M., Grandin, A., Labbe', Ph., Leclaire, A. & Raveau, B. (1991). Eur. J. Solid State Inorg. Chem. 28, 93–129.  CAS Google Scholar
First citationBouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 1143–1146.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBushiri, M. J., Jayasree, R. S., Fakhfakh, M. & Nayar, V. U. (2002). Mater. Chem. Phys. 73, 179–185.  Web of Science CrossRef CAS Google Scholar
First citationEl Bali, B., Boukhari, A., Holt, E. M. & Aride, J. (1993). J. Crystallogr. Spectrosc. Res. 23, 1001–1004.  CAS Google Scholar
First citationEwald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517–1540.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, P., Bu, X., Tolbert, S. H. & Stucky, G. D. (1997). J. Am. Chem. Soc. 119, 2497–2504.  CrossRef CAS Web of Science Google Scholar
First citationGoodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. (1976). Mater. Res. Bull. 11, 203–220.  CrossRef ICSD CAS Web of Science Google Scholar
First citationHadouchi, M., Assani, A., Saadi, M., Lahmar, A., El Marssi, M. & El Ammari, L. (2019). Acta Cryst. C75, 777–782.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationHarrison, W. T. A., Vaughey, J. T., Dussack, L. L., Jacobson, A. J., Martin, T. E. & Stucky, G. D. (1995). J. Solid State Chem. 114, 151–158.  CrossRef ICSD CAS Web of Science Google Scholar
First citationKazin, P. E., Zykin, M. A., Schnelle, W., Zubavichus, Y. V., Babeshkin, K. A., Tafeenko, V. A., Felser, C. & Jansen, M. (2017). Inorg. Chem. 56, 1232–1240.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhmiyas, J., Benhsina, E., Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2020). Acta Cryst. E76, 186–191.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationKniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930–2934.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLa Parola, V., , Liveri, V. T., Todaro, L., Lombardo, D., Bauer, E. M., Dell'Era, A., Longo, A., Caschera, D., de Caro, T., Toro, R. G. & Calandra, P. (2018). Mater. Lett. 220, 58–61.  Google Scholar
First citationLin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMenezes, P. W., Hoffmann, S., Prots, Y. & Kniep, R. (2008). Z. Kristallogr. 223, 333–334.  CAS Google Scholar
First citationOuaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 402–404.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPedro, I. de, Rojo, J. M., Rodríguez Fernández, J., Lezama, L. & Rojo, T. (2010). Eur. J. Inorg. Chem. pp. 2514–2522.  Google Scholar
First citationRghioui, L., El Ammari, L., Assani, A. & Saadi, M. (2019). Acta Cryst. E75, 1041–1045.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationRibeiro, C. C., Gibson, I. & Barbosa, M. A. (2006). Biomaterials, 27, 1749–1761.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRiou, D. & Raveau, B. (1991). Acta Cryst. C47, 1708–1709.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationRusakov, D. A., Filaretov, A. A., Bubentsova, M. N., Danilov, V. P. & Komissarova, L. N. (2006). Russ. J. Inorg. Chem. 51, 852–861.  Web of Science CrossRef Google Scholar
First citationRuszala, F. A., Anderson, J. B. & Kostiner, E. (1977). Inorg. Chem. 16, 2417–2422.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, G., Valldor, M., Spielberg, E. T. & Mudring, A. V. (2014). Inorg. Chem. 53, 3072–3077.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Zhang, Y., Yang, S., Li, G., Xiong, M., Liao, F. & Lin, J. (2008). Inorg. Chem. 47, 2562–2568.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011a). Acta Cryst. E67, i44.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationZouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011b). Acta Cryst. E67, i39.  Web of Science CrossRef ICSD IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds