research communications
4(OH)(PO4)3, a new hydroxyphosphate
of SrCoaLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: fz.cherif@yahoo.com
Single crystals of strontium tetracobalt tris(orthophosphate) hydroxide, SrCo4(OH)(PO4)3, were grown serendipitously under hydrothermal conditions at 473 K. The consists of undulating chains of edge-sharing [CoO6] octahedra that are linked into (010) layers by common vertices between chains. Adjacent layers are linked along [010] into a framework structure by tetrahedral [CoO4] units and by PO4 tetrahedra. The framework delimits channels extending along [100] in which the eleven-coordinate strontium cations are situated. Bifurcated O—H⋯O hydrogen bonds of weak strengths consolidate the crystal packing. The title compound was also characterized by infrared spectroscopy.
Keywords: crystal structure; orthophosphate; cobalt; strontium; bifurcated hydrogen bonding; infrared spectroscopy.
CCDC reference: 2006988
1. Chemical context
The search for new inorganic materials with open-frame structures comprising transition-metal polyhedra, [MOx], with tetrahedral phosphate or vanadate units by sharing corners or edges is still ongoing (Rghioui et al., 2019; Ouaatta et al., 2019; Khmiyas et al., 2020). Generally, these interconnections can lead to structures with cages, interlayer spaces or channels, and the corresponding compounds are explored extensively for their excellent physical properties and various applications in electrical, electrochemical, magnetic or catalytic processes (Goodenough et al., 1976; Borel et al., 1991; La Parola et al., 2018; Hadouchi et al., 2019). The introduction of borate groups (BO3 or BO4) to phosphate (PO4) units leads to a group of borophosphates with specific structural characteristics. Compounds of this family likewise exhibit remarkable physicochemical properties that allow them to be applied in different fields (Kniep et al., 1998; Ewald et al., 2007; Lin et al., 2008; Menezes et al., 2008). About a decade ago, we managed to synthesize two borophosphate phases, viz. (Ag0.57Ni0.22)Ni(H2O)2[BP2O8]·0.67H2O and AgMg(H2O)2[BP2O8]·H2O (Zouihri et al., 2011a,b). In this context, we attempted to synthesize a strontium- and cobalt-based borophosphate, namely SrCo2BPO7, by means of the hydrothermal process. Instead, we have isolated a new hydroxyphosphate, SrCo4(OH)(PO4)3, and report here its and its infrared spectrum.
2. Structural commentary
In the three-dimensional framework structure of SrCo4(OH)(PO4)3, an octahedral coordination of three cobalt atoms (Co1, Co2, Co3) and a tetrahedral coordination of the fourth cobalt (Co4) is observed. Atom O13 bears a hydrogen atom and bridges two of the six-coordinate Co atoms (Co1, Co2) and the four-coordinate Co4 atom. The hydroxide group also forms a weak bifurcated hydrogen bond (Table 1) to two phosphate tetrahedra (Fig. 1).
|
The [CoO6] octahedra share edges to form infinite undulating chains extending parallel to [001]. Adjacent chains are cross-linked via common vertex atoms (O3) to build up (010) layers (Fig. 2) with the formation of oval voids surrounded by eight octahedra. Two PO4 tetrahedra occupy the void space, whereby P1O4 shares three of its vertices with five [CoO6] octahedra and P2O4 shares an edge with an octahedron and a vertex with two opposite octahedra (Fig. 3).
The [Co4O3OH] tetrahedra are linked through corners into zigzag chains running parallel to [100]; the chains are flanked by P2O4 and P3O4 tetrahedra into ribbons. The strontium cations and P1O4 tetrahedra are of the same height as the ribbons, thus defining a second layer parallel to (010) (Fig. 4). The can be described by the stacking of the two types of layers along [010], which leads to the formation of channels extending parallel to [100] in which the strontium cations are located (Fig. 5). Each SrII atom is surrounded by eleven oxygen atoms, forming a distorted polyhedron.
Comparison of the metal–oxygen polyhedra in the title structure with the same type of polyhedra in comparable structures shows a similar behaviour. All [CoO6] octahedra in SrCo4(OH)(PO4)3 are distorted, with the Co—O distance varying between 2.022 (2) and 2.284 (2) Å. The averaged Co—O distances of 2.130 Å for Co1, 2.122 Å for Co2 and 2.124 Å for Co3 are in good agreement with those of Co5(PO4)2(OH)4 (average Co—O distances are 2.107 Å for Co1, 2.144 Å for Co2, 2.140 Å for Co3, 2.148 Å for Co4 and 2.150 Å for Co5; Ruszala et al., 1977). The distorted [Co4O3OH] tetrahedron shows much shorter Co—O distances ranging from 1.942 (2) to 1.995 (2) Å. These distances are comparable with the averaged [4]Co—O distances of 1.966, 1.955, 1.957 and 1.958 Å observed, respectively, in the phosphates NaCoPO4, KCoPO4, NH4CoPO4-Hex and NH4CoPO4-ABW (Feng et al., 1997). The PO4 tetrahedra in the title structure have averaged distances of 1.542 Å for P1, 1.539 Å for P2 and 1.539Å for P3, and are compatible with the P—O distances in the orthophosphate SrCo2Fe(PO4)3 (Bouraima et al., 2016).
The structure model of SrCo4(OH)(PO4)3 is in good agreement with calculations of the bond-valence sums (Brown & Altermatt, 1985). The obtained values (in valence units) for the cations SrII, CoII, and PV are close to the expected values: Sr1 (1.95), Co1 (1.89), Co2 (1.89), Co3 (1.88), Co4 (1.92), P1 (4.90), P2 (4.95) and P3 (4.95). The bond-valence sums calculated for the oxygen atoms range between 1.82 and 2.29 valence units.
3. Infrared spectroscopy
An infrared spectrum of SrCo4(OH)(PO4)3 was recorded in order to verify the existence of the hydroxyl and PO4 groups in the title compound (Fig. 6). The FT-IR spectrum shows characteristic vibration bands of isolated PO4 groups. The bands observed at around 420 and 463 cm−1 can be assigned to the ν2 asymmetric stretching mode while the vibration at 573 cm−1 is attributed to ν4 asymmetric O—P—O deformation. The weak band observed at 750 cm−1 most likely originates from [4]Co—O vibrations, as observed in many other phosphates (Rusakov et al., 2006; Antony et al., 2011; Bushiri et al., 2002; De Pedro et al., 2010). The vibration at 1014 cm−1 corresponds to the ν3 asymmetric stretching mode of the phosphate tetrahedra. The remaining vibrations centred at 3566, 3433 and 1632 cm−1 are commonly assigned to the stretching vibration of the bridging –OH group, as in Co2PO4OH (Wang et al., 2014), in addition to the OH− librational mode, which is observed at 637 cm−1. We also note the presence of bands at 1384 and 875 cm−1, indicating C—O bonds (Ribeiro et al., 2006). This observation suggests that the powdered sample contained impurities of a carbonate. The assignments of all vibration bands are summarized in Table 2.
|
4. Database survey
A search in the Inorganic et al., 2019) revealed no match in the pseudo-quaternary system SrO/CoO/P2O5/OH. However, five compounds were identified in the pseudo-ternary SrO/CoO/P2O5 system, viz. triclinic SrCo2(PO4)2 (P, Z = 2; El Bali et al., 1993), monoclinic SrCoP2O7 (P21/n, Z = 4; Riou & Raveau 1991), monoclinic Sr2Co(PO4)2 and SrCo3(P2O7)2 (both P21/c, Z = 6 and 2, respectively; Belik et al. 2001 and Yang et al., 2008) and hexagonal Sr5Co0.18P3O12.92 (P63/m, Z = 2; Kazin et al., 2017).
Database (ICSD; Zagorac5. Synthesis and crystallization
Single crystals of SrCo4(OH)(PO4)3 were obtained serendipitously by attempting to synthesize the borophosphate SrCo2BPO7 under hydrothermal conditions. The starting materials, Sr(NO3)2 (0.3174 g), Co(CH3COO)2·4H2O (0.7473 g), H3BO3 (0.0927 g) and H3PO4 (12 N; 0.1 ml), were mixed in the molar proportions of 1:2:1:1. The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and heated under autogenous pressure at 473 K for five days. After the end of the heat treatment, the autoclave was taken out of the oven and allowed to cool to room temperature. The reaction product was collected, filtered, rinsed with distilled water and dried in air. Optical microscopy revealed two types of crystals, viz. dark-purple and dark-red rectangular crystals. X-ray showed the red crystals to be Co2(OH)PO4 (Harrison et al., 1995). The purple parallelepipeds correspond to the title compound.
Infrared spectroscopic measurements were performed on a VERTEX 70 FT-IR spectrometer, using the MRI transmission technique using KBr pellets. An adequate quantity of the studied phosphate powder, obtained by grinding the SrCo4(OH)(PO4)3 crystals, was diluted in KBr before being pressed into a pellet. The analysis was performed at room temperature, and the spectrum was recorded in the range 4000–400 cm−1.
6. Refinement
Crystal data, data collection and structure . The hydrogen atom of the OH group was located in a difference-Fourier map and was refined was a fixed O—H bond length of 0.82 Å and Uiso(H) = 1.5Ueq(O). The maximum and minimum remaining electron density was located at 0.69 Å from Sr1 and 0.56 Å from Co4, respectively. The reflection (011) was affected by the beam-stop (Fo2 = 0) while reflections (052) and (053), having Fo2 > Fc2, were probably affected by the Renninger effect. All three reflections were omitted from the refinement.
details are summarized in Table 3Supporting information
CCDC reference: 2006988
https://doi.org/10.1107/S2056989020007331/wm5562sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007331/wm5562Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).SrCo4(OH)(PO4)3 | Dx = 4.281 Mg m−3 |
Mr = 625.26 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 4243 reflections |
a = 5.1245 (1) Å | θ = 2.6–35.0° |
b = 12.0491 (2) Å | µ = 12.74 mm−1 |
c = 15.7118 (3) Å | T = 296 K |
V = 970.13 (3) Å3 | Parallelepiped, violet |
Z = 4 | 0.35 × 0.26 × 0.17 mm |
F(000) = 1184 |
Bruker X8 APEX Diffractometer | 4243 independent reflections |
Radiation source: fine-focus sealed tube | 4038 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
φ and ω scans | θmax = 35.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
Tmin = 0.391, Tmax = 0.748 | k = −19→18 |
34471 measured reflections | l = −25→25 |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0221P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.022 | (Δ/σ)max = 0.001 |
wR(F2) = 0.050 | Δρmax = 1.60 e Å−3 |
S = 1.07 | Δρmin = −0.68 e Å−3 |
4243 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
191 parameters | Extinction coefficient: 0.0042 (3) |
0 restraints | Absolute structure: Flack x determined using 1625 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Hydrogen site location: difference Fourier map | Absolute structure parameter: 0.008 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.02677 (6) | 0.72309 (2) | 0.67782 (2) | 0.00840 (6) | |
Co1 | 0.51704 (8) | 0.48429 (3) | 0.35972 (3) | 0.00572 (8) | |
Co2 | 0.53401 (9) | 0.58186 (4) | 0.54997 (3) | 0.00613 (8) | |
Co3 | 0.47299 (8) | 0.46200 (3) | 0.74367 (3) | 0.00580 (8) | |
Co4 | 0.28203 (8) | 0.32358 (4) | 0.51444 (3) | 0.00794 (9) | |
P1 | 0.51747 (15) | 0.85171 (6) | 0.57349 (5) | 0.00425 (12) | |
P2 | 0.01127 (15) | 0.45034 (6) | 0.65719 (5) | 0.00471 (13) | |
P3 | −0.00586 (15) | 0.30856 (6) | 0.33173 (5) | 0.00413 (12) | |
O1 | 0.4003 (4) | 0.8648 (2) | 0.48533 (15) | 0.0092 (4) | |
O2 | 0.8108 (4) | 0.8848 (2) | 0.57323 (15) | 0.0074 (4) | |
O3 | 0.3638 (4) | 0.9243 (2) | 0.63798 (15) | 0.0074 (4) | |
O4 | 0.4924 (5) | 0.73162 (18) | 0.60637 (15) | 0.0095 (4) | |
O5 | 0.2427 (4) | 0.5287 (2) | 0.63664 (15) | 0.0078 (4) | |
O6 | −0.2433 (4) | 0.5173 (2) | 0.66027 (15) | 0.0075 (4) | |
O7 | 0.0710 (4) | 0.40910 (19) | 0.74879 (15) | 0.0068 (4) | |
O8 | −0.0011 (5) | 0.3572 (2) | 0.59242 (14) | 0.0108 (4) | |
O9 | 0.1926 (4) | 0.40027 (19) | 0.30856 (15) | 0.0073 (4) | |
O10 | 0.0074 (4) | 0.29074 (18) | 0.43053 (14) | 0.0080 (4) | |
O11 | −0.2813 (4) | 0.34923 (19) | 0.30965 (15) | 0.0075 (4) | |
O12 | 0.0671 (4) | 0.20305 (19) | 0.28586 (16) | 0.0097 (4) | |
O13 | 0.5519 (4) | 0.43152 (18) | 0.48508 (15) | 0.0073 (4) | |
H13 | 0.691669 | 0.405651 | 0.500919 | 0.011* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.01002 (12) | 0.00611 (12) | 0.00908 (12) | 0.00095 (10) | 0.00229 (10) | 0.00061 (10) |
Co1 | 0.00609 (16) | 0.00557 (17) | 0.00550 (17) | −0.00054 (14) | −0.00005 (14) | −0.00035 (13) |
Co2 | 0.00739 (17) | 0.00508 (17) | 0.00593 (17) | −0.00087 (15) | 0.00149 (14) | −0.00104 (13) |
Co3 | 0.00560 (16) | 0.00635 (17) | 0.00544 (16) | 0.00038 (14) | 0.00019 (14) | 0.00037 (13) |
Co4 | 0.00687 (17) | 0.0095 (2) | 0.00748 (18) | −0.00059 (14) | −0.00076 (14) | 0.00135 (16) |
P1 | 0.0047 (3) | 0.0041 (3) | 0.0039 (3) | −0.0005 (3) | 0.0001 (2) | 0.0001 (2) |
P2 | 0.0044 (3) | 0.0055 (3) | 0.0042 (3) | 0.0001 (3) | −0.0001 (2) | 0.0002 (2) |
P3 | 0.0051 (3) | 0.0035 (3) | 0.0038 (3) | −0.0002 (2) | −0.0002 (2) | 0.0000 (2) |
O1 | 0.0093 (9) | 0.0138 (11) | 0.0045 (9) | 0.0012 (8) | −0.0026 (8) | −0.0010 (9) |
O2 | 0.0044 (9) | 0.0098 (10) | 0.0079 (10) | −0.0026 (8) | 0.0002 (7) | −0.0008 (8) |
O3 | 0.0069 (9) | 0.0083 (10) | 0.0071 (10) | 0.0033 (8) | −0.0001 (7) | −0.0022 (9) |
O4 | 0.0140 (10) | 0.0036 (9) | 0.0109 (9) | −0.0001 (9) | 0.0049 (8) | 0.0008 (7) |
O5 | 0.0058 (9) | 0.0099 (10) | 0.0077 (10) | −0.0020 (8) | 0.0004 (7) | 0.0028 (9) |
O6 | 0.0061 (9) | 0.0099 (11) | 0.0065 (10) | 0.0027 (8) | −0.0002 (7) | 0.0016 (8) |
O7 | 0.0069 (9) | 0.0073 (10) | 0.0062 (9) | −0.0016 (7) | −0.0012 (7) | 0.0015 (8) |
O8 | 0.0115 (10) | 0.0114 (10) | 0.0094 (10) | −0.0022 (9) | 0.0030 (9) | −0.0059 (8) |
O9 | 0.0077 (9) | 0.0055 (9) | 0.0088 (10) | −0.0020 (7) | 0.0004 (7) | 0.0022 (8) |
O10 | 0.0095 (10) | 0.0104 (10) | 0.0039 (9) | −0.0020 (8) | 0.0000 (8) | 0.0008 (7) |
O11 | 0.0062 (9) | 0.0081 (10) | 0.0082 (10) | 0.0008 (8) | −0.0016 (7) | −0.0017 (8) |
O12 | 0.0120 (10) | 0.0060 (10) | 0.0111 (10) | 0.0014 (8) | −0.0002 (8) | −0.0035 (8) |
O13 | 0.0068 (9) | 0.0058 (9) | 0.0092 (9) | 0.0006 (7) | −0.0002 (8) | 0.0003 (8) |
Sr1—O7i | 2.570 (2) | Co3—O6vi | 2.067 (2) |
Sr1—O11ii | 2.575 (2) | Co3—O3ix | 2.089 (2) |
Sr1—O4 | 2.639 (2) | Co3—O12x | 2.098 (2) |
Sr1—O5 | 2.669 (2) | Co3—O9iv | 2.125 (2) |
Sr1—O2iii | 2.779 (2) | Co3—O7 | 2.158 (2) |
Sr1—O12iv | 2.829 (2) | Co3—O5 | 2.206 (2) |
Sr1—O1v | 2.848 (2) | Co4—O8 | 1.942 (2) |
Sr1—O6 | 2.853 (2) | Co4—O13 | 1.954 (2) |
Sr1—O9iv | 2.915 (2) | Co4—O10 | 1.969 (2) |
Sr1—O4iii | 2.961 (2) | Co4—O10x | 1.995 (2) |
Sr1—O3 | 3.041 (2) | P1—O1 | 1.518 (2) |
Co1—O13 | 2.077 (2) | P1—O4 | 1.542 (2) |
Co1—O11vi | 2.082 (2) | P1—O3 | 1.553 (2) |
Co1—O3vii | 2.091 (2) | P1—O2 | 1.555 (2) |
Co1—O9 | 2.106 (2) | P2—O8 | 1.517 (2) |
Co1—O2v | 2.171 (2) | P2—O6 | 1.534 (2) |
Co1—O7viii | 2.212 (2) | P2—O5 | 1.550 (2) |
Co2—O4 | 2.022 (2) | P2—O7 | 1.553 (2) |
Co2—O1vii | 2.060 (2) | P3—O12 | 1.508 (2) |
Co2—O13 | 2.081 (2) | P3—O11 | 1.534 (2) |
Co2—O5 | 2.120 (2) | P3—O9 | 1.545 (2) |
Co2—O6vi | 2.216 (2) | P3—O10 | 1.569 (2) |
Co2—O2v | 2.284 (2) | O13—H13 | 0.8200 |
O7i—Sr1—O11ii | 80.73 (7) | O9—Co1—O2v | 98.63 (9) |
O7i—Sr1—O4 | 109.46 (7) | O13—Co1—O7viii | 160.47 (9) |
O11ii—Sr1—O4 | 142.85 (7) | O11vi—Co1—O7viii | 104.92 (9) |
O7i—Sr1—O5 | 162.67 (7) | O3vii—Co1—O7viii | 83.16 (8) |
O11ii—Sr1—O5 | 95.77 (7) | O9—Co1—O7viii | 79.48 (8) |
O4—Sr1—O5 | 63.66 (7) | O2v—Co1—O7viii | 82.02 (9) |
O7i—Sr1—O2iii | 64.92 (7) | O4—Co2—O1vii | 86.30 (10) |
O11ii—Sr1—O2iii | 121.22 (7) | O4—Co2—O13 | 175.22 (10) |
O4—Sr1—O2iii | 94.66 (7) | O1vii—Co2—O13 | 95.72 (9) |
O5—Sr1—O2iii | 129.56 (7) | O4—Co2—O5 | 85.04 (9) |
O7i—Sr1—O12iv | 66.42 (7) | O1vii—Co2—O5 | 155.36 (9) |
O11ii—Sr1—O12iv | 89.04 (7) | O13—Co2—O5 | 94.75 (9) |
O4—Sr1—O12iv | 65.03 (7) | O4—Co2—O6vi | 91.44 (10) |
O5—Sr1—O12iv | 96.69 (7) | O1vii—Co2—O6vi | 81.43 (9) |
O2iii—Sr1—O12iv | 115.29 (7) | O13—Co2—O6vi | 93.14 (9) |
O7i—Sr1—O1v | 133.13 (7) | O5—Co2—O6vi | 75.77 (9) |
O11ii—Sr1—O1v | 119.13 (7) | O4—Co2—O2v | 99.31 (9) |
O4—Sr1—O1v | 80.64 (7) | O1vii—Co2—O2v | 99.98 (9) |
O5—Sr1—O1v | 63.27 (7) | O13—Co2—O2v | 76.10 (9) |
O2iii—Sr1—O1v | 68.76 (7) | O5—Co2—O2v | 104.17 (9) |
O12iv—Sr1—O1v | 145.52 (7) | O6vi—Co2—O2v | 169.22 (9) |
O7i—Sr1—O6 | 134.98 (7) | O6vi—Co3—O3ix | 110.65 (9) |
O11ii—Sr1—O6 | 63.04 (7) | O6vi—Co3—O12x | 90.20 (10) |
O4—Sr1—O6 | 115.55 (7) | O3ix—Co3—O12x | 84.17 (10) |
O5—Sr1—O6 | 54.21 (6) | O6vi—Co3—O9iv | 109.48 (9) |
O2iii—Sr1—O6 | 111.05 (7) | O3ix—Co3—O9iv | 84.42 (9) |
O12iv—Sr1—O6 | 133.49 (7) | O12x—Co3—O9iv | 159.76 (10) |
O1v—Sr1—O6 | 58.64 (7) | O6vi—Co3—O7 | 142.20 (9) |
O7i—Sr1—O9iv | 102.99 (7) | O3ix—Co3—O7 | 106.54 (9) |
O11ii—Sr1—O9iv | 60.11 (7) | O12x—Co3—O7 | 87.01 (9) |
O4—Sr1—O9iv | 82.74 (7) | O9iv—Co3—O7 | 80.30 (9) |
O5—Sr1—O9iv | 61.25 (7) | O6vi—Co3—O5 | 77.04 (9) |
O2iii—Sr1—O9iv | 166.11 (7) | O3ix—Co3—O5 | 166.41 (9) |
O12iv—Sr1—O9iv | 51.30 (6) | O12x—Co3—O5 | 107.46 (10) |
O1v—Sr1—O9iv | 123.85 (7) | O9iv—Co3—O5 | 82.38 (9) |
O6—Sr1—O9iv | 82.19 (6) | O7—Co3—O5 | 68.00 (8) |
O7i—Sr1—O4iii | 87.68 (6) | O8—Co4—O13 | 122.63 (10) |
O11ii—Sr1—O4iii | 82.23 (7) | O8—Co4—O10 | 86.00 (10) |
O4—Sr1—O4iii | 132.33 (9) | O13—Co4—O10 | 118.80 (9) |
O5—Sr1—O4iii | 108.78 (7) | O8—Co4—O10x | 107.64 (10) |
O2iii—Sr1—O4iii | 51.92 (6) | O13—Co4—O10x | 98.76 (9) |
O12iv—Sr1—O4iii | 153.73 (7) | O10—Co4—O10x | 124.43 (5) |
O1v—Sr1—O4iii | 57.40 (6) | O1—P1—O4 | 111.72 (14) |
O6—Sr1—O4iii | 62.94 (6) | O1—P1—O3 | 109.66 (13) |
O9iv—Sr1—O4iii | 137.82 (6) | O4—P1—O3 | 105.51 (13) |
O7i—Sr1—O3 | 60.53 (7) | O1—P1—O2 | 110.70 (14) |
O11ii—Sr1—O3 | 135.45 (7) | O4—P1—O2 | 108.80 (14) |
O4—Sr1—O3 | 50.80 (6) | O3—P1—O2 | 110.33 (13) |
O5—Sr1—O3 | 114.45 (6) | O8—P2—O6 | 112.00 (14) |
O2iii—Sr1—O3 | 62.97 (6) | O8—P2—O5 | 110.08 (14) |
O12iv—Sr1—O3 | 56.98 (7) | O6—P2—O5 | 109.67 (13) |
O1v—Sr1—O3 | 103.90 (6) | O8—P2—O7 | 113.16 (14) |
O6—Sr1—O3 | 161.48 (6) | O6—P2—O7 | 107.85 (13) |
O9iv—Sr1—O3 | 105.74 (6) | O5—P2—O7 | 103.72 (12) |
O4iii—Sr1—O3 | 114.80 (6) | O12—P3—O11 | 112.92 (13) |
O13—Co1—O11vi | 94.38 (9) | O12—P3—O9 | 109.08 (14) |
O13—Co1—O3vii | 94.12 (9) | O11—P3—O9 | 108.90 (13) |
O11vi—Co1—O3vii | 89.80 (9) | O12—P3—O10 | 110.29 (14) |
O13—Co1—O9 | 106.41 (9) | O11—P3—O10 | 107.90 (13) |
O11vi—Co1—O9 | 82.65 (9) | O9—P3—O10 | 107.61 (13) |
O3vii—Co1—O9 | 158.54 (9) | Co4—O13—H13 | 107.1 |
O13—Co1—O2v | 78.70 (9) | Co1—O13—H13 | 118.6 |
O11vi—Co1—O2v | 173.06 (9) | Co2—O13—H13 | 102.7 |
O3vii—Co1—O2v | 91.29 (9) |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x−1/2, −y+1, z+1/2; (iii) x−1, y, z; (iv) −x+1/2, −y+1, z+1/2; (v) x−1/2, −y+3/2, −z+1; (vi) x+1, y, z; (vii) x+1/2, −y+3/2, −z+1; (viii) −x+1/2, −y+1, z−1/2; (ix) −x+1, y−1/2, −z+3/2; (x) x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13···O8vi | 0.82 | 2.21 | 2.982 (3) | 157 |
O13—H13···O10vi | 0.82 | 2.40 | 3.010 (3) | 132 |
Symmetry code: (vi) x+1, y, z. |
Position | Assignment |
420 | ν2 asymmetric stretching mode of P—O bonds |
463 | ν2 asymmetric stretching mode of P—O bond |
573 | ν4 asymmetric deformation of O—P—O |
637 | νL vibration mode of the hydroxyl group |
750 | [4]Co—O stretching mode |
875 | ν2 vibration of C—O bond |
1014 | ν3 asymmetric stretching mode of PO43- |
1384 | ν3 vibration of C—O bond |
1632 | O—H stretching band |
3433 | O—H stretching band |
3566 | νs stretching mode of the hydroxyl group- |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.
References
Antony, C. J., Aatiq, A., Panicker, C. Y., Bushiri, M. J., Varghese, H. T. & Manojkumar, T. K. (2011). Spectrochim. Acta Part A, 78, 415–419. Web of Science CrossRef CAS Google Scholar
Belik, A. A., Lazoryak, B. I., Terekhina, T. P. & Polyakov, S. N. (2001). Zh. Neorg. Khim. 46, 1453–1459. CAS Google Scholar
Borel, M. M., Goreaud, M., Grandin, A., Labbe', Ph., Leclaire, A. & Raveau, B. (1991). Eur. J. Solid State Inorg. Chem. 28, 93–129. CAS Google Scholar
Bouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 1143–1146. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bushiri, M. J., Jayasree, R. S., Fakhfakh, M. & Nayar, V. U. (2002). Mater. Chem. Phys. 73, 179–185. Web of Science CrossRef CAS Google Scholar
El Bali, B., Boukhari, A., Holt, E. M. & Aride, J. (1993). J. Crystallogr. Spectrosc. Res. 23, 1001–1004. CAS Google Scholar
Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517–1540. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feng, P., Bu, X., Tolbert, S. H. & Stucky, G. D. (1997). J. Am. Chem. Soc. 119, 2497–2504. CrossRef CAS Web of Science Google Scholar
Goodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. (1976). Mater. Res. Bull. 11, 203–220. CrossRef ICSD CAS Web of Science Google Scholar
Hadouchi, M., Assani, A., Saadi, M., Lahmar, A., El Marssi, M. & El Ammari, L. (2019). Acta Cryst. C75, 777–782. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Harrison, W. T. A., Vaughey, J. T., Dussack, L. L., Jacobson, A. J., Martin, T. E. & Stucky, G. D. (1995). J. Solid State Chem. 114, 151–158. CrossRef ICSD CAS Web of Science Google Scholar
Kazin, P. E., Zykin, M. A., Schnelle, W., Zubavichus, Y. V., Babeshkin, K. A., Tafeenko, V. A., Felser, C. & Jansen, M. (2017). Inorg. Chem. 56, 1232–1240. Web of Science CrossRef CAS PubMed Google Scholar
Khmiyas, J., Benhsina, E., Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2020). Acta Cryst. E76, 186–191. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930–2934. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
La Parola, V., , Liveri, V. T., Todaro, L., Lombardo, D., Bauer, E. M., Dell'Era, A., Longo, A., Caschera, D., de Caro, T., Toro, R. G. & Calandra, P. (2018). Mater. Lett. 220, 58–61. Google Scholar
Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40. Web of Science CSD CrossRef IUCr Journals Google Scholar
Menezes, P. W., Hoffmann, S., Prots, Y. & Kniep, R. (2008). Z. Kristallogr. 223, 333–334. CAS Google Scholar
Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 402–404. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pedro, I. de, Rojo, J. M., Rodríguez Fernández, J., Lezama, L. & Rojo, T. (2010). Eur. J. Inorg. Chem. pp. 2514–2522. Google Scholar
Rghioui, L., El Ammari, L., Assani, A. & Saadi, M. (2019). Acta Cryst. E75, 1041–1045. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Ribeiro, C. C., Gibson, I. & Barbosa, M. A. (2006). Biomaterials, 27, 1749–1761. Web of Science CrossRef PubMed CAS Google Scholar
Riou, D. & Raveau, B. (1991). Acta Cryst. C47, 1708–1709. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Rusakov, D. A., Filaretov, A. A., Bubentsova, M. N., Danilov, V. P. & Komissarova, L. N. (2006). Russ. J. Inorg. Chem. 51, 852–861. Web of Science CrossRef Google Scholar
Ruszala, F. A., Anderson, J. B. & Kostiner, E. (1977). Inorg. Chem. 16, 2417–2422. CrossRef ICSD CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, G., Valldor, M., Spielberg, E. T. & Mudring, A. V. (2014). Inorg. Chem. 53, 3072–3077. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, T., Zhang, Y., Yang, S., Li, G., Xiong, M., Liao, F. & Lin, J. (2008). Inorg. Chem. 47, 2562–2568. Web of Science CrossRef PubMed CAS Google Scholar
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011a). Acta Cryst. E67, i44. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Zouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011b). Acta Cryst. E67, i39. Web of Science CrossRef ICSD IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.