research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two N-{[4-(3-aryl-4-sydnonyl­­idene­amino)-5-sulfan­yl­­idene-1H-1,2,4-triazol-3-yl]meth­yl}benzamides as disordered ethanol monosolvates

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574199, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 May 2020; accepted 4 June 2020; online 9 June 2020)

Two new N-{[4-(3-aryl-4-sydnonyl­idene­amino)-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl]meth­yl}benzamides have been prepared by acid-promoted condensation reactions between 3-aryl-4-formyl­sydnones and N-[(4-amino-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl)meth­yl]benzamide, and both have been crystallized as ethanol monosolvates. N-{[4-(3-Phenyl-4-sydnonyl­idene­amino)-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl]meth­yl}benzamide ethanol monosolvate, C19H15N7O3S·C2H6O (I), and N-({4-[3-(4-methyl­phen­yl)-4-sydnonyl­idene­amino]-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl}meth­yl)benzamide ethanol monosolvate, C20H17N7O3S·C2H6O (II), differ only in the presence of a methyl group for (II) instead of a hydrogen atom for (I), and in both of them the ethanol component is disordered over two sets of atomic sites having occupancies of 0.836 (6) and 0.164 (6) in (I), and 0.906 (6) and 0.094 (6) in (II). Combinations of O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into cyclic, centrosymmetric four-mol­ecule aggregates. Comparisons are made with the structures of some related compounds.

1. Chemical context

Compounds containing the sydnone [= 1,2,3-oxa­diazol-5(2H)-one] system have been shown to exhibit a wide range of biological activities, including analgesic (Kalluraya et al., 2001[Kalluraya, B., Rahiman, M. A. & Banji, D. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 263-268.], 2002[Kalluraya, B., Rahiman, M. A. & Banji, D. (2002). Indian J. Chem. 41B, 1712-1717.]), and both anti­helminthic and anti-inflammatory properties (Kalluraya et al., 2001[Kalluraya, B., Rahiman, M. A. & Banji, D. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 263-268.]). In addition, compounds that combine sydnone units with other heterocyclic units such as thia­zoles (Kalluraya et al., 2001[Kalluraya, B., Rahiman, M. A. & Banji, D. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 263-268.]) or 1,2,4-triazines (Hegde et al., 2008[Hegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]), have been shown to exhibit CNS depressant and anti­microbial activities. Seeking to continue our studies in this area, we have now developed a synthesis of analogous compounds containing 3-aryl­sydnone and 1,2,4-triazole moieties.

We report here the syntheses and mol­ecular and supra­molecular structures of two closely related compounds, namely N-{[4-(3-phenyl-4-sydnonyl­idene­amino)-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl]meth­yl}benzamide (I) and N-({4-[3-(4-methyl­phen­yl)-4-sydnonyl­idene­amino]-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl}meth­yl)benzamide (II). Compounds (I) and (II) were prepared using an acid-mediated condensation between the 3-aryl-4-formyl­sydnones (A) (Fig. 1[link]) and the 4-amino­triazole derivative (B). The sydnone inter­mediates (A) had themselves been prepared by cyclo­dehydration of the corresponding N-aryl-N-nitro­soplycines followed by Vilsmaier–Haack formyl­ation (Goh et al., 2010[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o1303.]), while the inter­mediate (B) was prepared by the fusion-induced condensation of N-benzoyl­glycine with thio­carbohydrazide, S=C(NHNH2)2 (Kalluraya et al., 2007[Kalluraya, B., Lingappa, B. & Nooji, S. R. (2007). Phosphorus Sulfur Silicon, 182, 1393-1401.]).

[Scheme 1]
[Figure 1]
Figure 1
The reaction sequence leading to the formation of compounds (I) and (II).

2. Structural commentary

The mol­ecular and crystal structures of compounds (I) and (II) are closely related and differ only in the methyl group that is attached to C44 for (II) instead of a hydrogen atom for (I): each structure can readily be refined starting from the atomic coordinates of the other, provided that the necessary adjustment is made to the substituent at atom C44 (Figs. 2[link] and 3[link]). Both compounds crystallized from ethanol/DMF as ethanol monosolvates, and in each structure the ethanol component is disordered over two sets of atomic sites, having occupancies of 0.836 (6) and 0.164 (6) in (I), and 0.906 (6) and 0.094 (6) in (II).

[Figure 2]
Figure 2
The independent mol­ecular components of compound (I), showing the atom-labelling scheme, the disorder of the ethanol component, and the hydrogen bonds, drawn as dashed lines, within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level; the major disorder component of the ethanol is drawn with full lines, and the minor component is drawn with broken lines.
[Figure 3]
Figure 3
The independent mol­ecular components of compound (II), showing the atom-labelling scheme, the disorder of the ethanol component, and the hydrogen bonds, drawn as dashed lines, within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level; the major disorder component of the ethanol is drawn with full lines, and the minor component is drawn with broken lines.

The triazole ring is present in both structures in the 1,2,4-triazol-5(4H)-thione form, as shown by the localization of the H atom on N21 in a difference-Fourier map and the subsequent refinement of its atomic coordinates, by the inter­molecular hydrogen bonds (Tables 1[link] and 2[link]), and by the C—S distances, 1.6657 (18) Å in (I) and 1.661 (3) Å in (II). These values are typical for those found in thio­nes [mean value 1.671 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]], and they are far shorter than those found in aromatic thiols and thio­ethers (mean value 1.771 Å).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N25 0.85 (2) 2.62 (2) 2.946 (2) 104.0 (16)
N21—H21⋯O51i 0.88 (2) 1.84 (2) 2.700 (3) 166.0 (18)
N21—H21⋯O61i 0.88 (2) 1.88 (3) 2.730 (12) 164 (2)
O51—H51⋯O1 0.82 1.89 2.706 (4) 175
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N25 0.83 (3) 2.56 (3) 2.961 (3) 111 (2)
N21—H21⋯O51i 0.91 (3) 1.85 (3) 2.747 (4) 167 (2)
N21—H21⋯O61i 0.91 (3) 1.77 (3) 2.65 (4) 164 (3)
O51—H51⋯O1 0.82 1.94 2.754 (4) 171
Symmetry code: (i) -x+1, -y+1, -z+1.

Within the sydnone rings, the N—N distances have values typical of double bonds, viz. 1.300 (2) Å in (I) and 1.299 (3) Å in (II), while the exocyclic C=O distance in each structure is shorter than that for the amidic carbonyl unit.

Of the four independent aromatic rings within the mol­ecules of (I) and (II), no two are co-planar or even parallel, so that the mol­ecules exhibit no inter­nal symmetry and hence are conformationally chiral. Although there is a short intra­molecular N1—H1⋯N25 contact in both (I) and (II) (Tables 1[link] and 2[link]), the resulting rings are non-planar, but instead adopt an envelope conformation, folded across the line N1⋯C23.

3. Supra­molecular features

The supra­molecular assemblies in the crystal structures of (I) and (II) are almost identical and very simple. Within the asymmetric unit of each structure (Figs. 2[link] and 3[link]), the ethanol solvent mol­ecule is linked to the amide unit via O51—H51⋯O1 hydrogen bonds. Inversion-related pairs of these units are linked by N—H⋯O hydrogen bonds to form a cyclic centrosymmetric four-mol­ecular aggregate [shown only for (I) in Fig. 4[link]] containing an R44(2) motif (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The same motif occurs in the crystal structure of compound (II), and there are no significant direction-specific inter­actions between these aggregates.

[Figure 4]
Figure 4
Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded four-mol­ecule aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component of the ethanol mol­ecules and the H atoms bonded to C atom have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

4. Database survey

It is of inter­est briefly to compare the structures of compounds (I) and (II) with those of some related compounds. In the structure of 4-amino-3-(1,2,4-triazol-1-yl)-1H-1,2,4-triazole-5(4H)-thione (III), three independent N—H⋯N hydrogen bonds link the mol­ecules into a three-dimensional network structure (Xu et al., 2005a[Xu, L.-Z., Yu, G.-P., Xu, F.-L. & Li, W.-H. (2005a). Acta Cryst. E61, o2061-o2062.]). By contrast, in each of 5-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]-1,3,4-oxa­diazole-2-thione (IV) (Zhang et al., 2006a[Zhang, X.-R., Xu, M.-H., Bi, S. & Zhang, S.-S. (2006a). Acta Cryst. E62, o4368-o4369.]) and 5-{[4-(4-meth­oxy­phen­yl)-1H-1,2,3-triazol-1-yl]meth­yl}-1,3,4-oxa­diazole-2-thione (V) (Zhang et al., 2006b[Zhang, X.-R., Xu, M.-H., Bi, S., Yu, Y.-Q. & Zhang, S.-S. (2006b). Acta Cryst. E62, o4866-o4867.]), a single N—H⋯N hydrogen bond links mol­ecules that are related by translation into C(8) chains, running parallel to [001] and [010], respectively, in the triclinic unit cells. Although no crystal structure has yet been reported for the inter­mediate (B) (Fig. 1[link]) used in the synthesis of compounds (I) and (II), the fact that all of compounds (I)–(V) crystallize in the thione form makes it seem likely that the inter­mediate also exists in this tautomeric form in the solid state, although it may well exist as an equilibrium mixture of thione and thiol (mercapto) forms in solution, with the position of equilibrium possibly differing from one solvent to another. However, it must be emphasized that, to date, no studies have been made of the constitution of this inter­mediate in solution. On the other hand, a masked form of the thiol tautomer is present in 2-{5-[(1H-1,2,4-triazol-1-yl)meth­yl]-1,3,4-oxa­diazol-2-yl­thio}-1-(2,4-di­chloro­phen­yl)ethanone (VI) (Xu et al., 2005b[Xu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005b). Acta Cryst. E61, o3375-o3376.]), where mol­ecules which are related by a 21 screw axis are linked by a single C—H⋯N hydrogen bond to form C(14) chains.

5. Synthesis and crystallization

Previously published methods were used for the preparation of the 3-aryl-4-formyl­sydnones (A) (Fig. 1[link]) (Goh et al., 2010[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o1303.]) and N-[(4-amino-5-sulfanyl­idene-1H-1,2,4-triazol3-yl)meth­yl]benzamide (B) (Kalluraya et al., 2007[Kalluraya, B., Lingappa, B. & Nooji, S. R. (2007). Phosphorus Sulfur Silicon, 182, 1393-1401.]). For the preparation of compounds (I) and (II), the appropriate inter­mediate (A) [4.6 mmol; 870 mg for (I) or 940 mg for (II)] was added to a solution of (B) (4.6 mmol, 1.00 g) in ethanol (15 ml). Concentrated sulfuric acid (0.5 ml) was then added to each of these mixtures, under vigorous stirring, and stirring was then continued for 4 h. The resulting solid products were collected by filtration and then washed, first with ethanol and then with water, before being dried in air. Compound (I), yield 72%, m. p. 435 K, IR (cm−1) 3170 (NH), 1740 (C=O), 1660 (C=O), 1590 (C=N). Compound (II), yield 76%, m. p. 505 K, IR (cm−1) 3149 (NH), 1769 (C=O), 1665 (C=O), 1595 (C=N). Crystals of (I) and (II) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethanol/N,N-di­methyl­formamide mixtures (initial composition 7:3, v/v).

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 3[link]. In both compounds, the ethanol component is disordered over two sets of atomic sites having unequal occupancies: for the minor disorder components, the bond distances and the 1,3 (non-bonded) distances were restrained to be the same as the corresponding distances in the major disorder components, subjected to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic dis­place­ment parameters for corresponding pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be the same. All H atoms, apart from those in the minor disorder components, were located in difference-Fourier maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (alkenyl and aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were allowed to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms: the H atoms bonded to C atoms in the minor disorder components were included on the same basis. For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving the N—H distances shown in Tables 1[link] and 2[link]. For the major disorder components of the ethanol mol­ecules, the H atoms bonded to O atoms were treated as riding atoms with O—H distances of 0.82 Å and with 1.5Ueq(O). However, using the normal riding models for hydroxyl H atoms, it was not possible to establish satisfactory positions for these H atoms in the minor disorder components, and accordingly they were included in calculated positions, riding at 0.82 Å from the atoms O61, at positions calculated by inter­polation along the O61⋯O1 vectors, again with Uiso(H) = 1.5Ueq(O). The refined occupancies for the disorder components were 0.836 (6) and 0.164 (6) in (I), and 0.906 (6) and 0.094 (6) in (II).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C19H15N7O3S·C2H6O C20H17N7O3S·C2H6O
Mr 467.51 481.53
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 8.6313 (6), 10.8378 (9), 13.384 (1) 8.5631 (5), 11.1242 (8), 13.5632 (9)
α, β, γ (°) 66.645 (8), 79.287 (8), 85.151 (8) 70.244 (6), 76.086 (7), 84.058 (6)
V3) 1129.30 (16) 1179.92 (15)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.18
Crystal size (mm) 0.48 × 0.28 × 0.24 0.50 × 0.12 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.822, 0.956 0.841, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 7829, 4464, 2985 8056, 4670, 2828
Rint 0.016 0.025
(sin θ/λ)max−1) 0.618 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 0.96 0.062, 0.117, 1.10
No. of reflections 4464 4670
No. of parameters 317 327
No. of restraints 3 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.22 0.19, −0.18
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

N-{[4-(3-phenyl-4-sydnonylideneamino)-5-sulfanylidene-1H-1,2,4-triazol-3-yl]methyl}benzamide ethanol monosolvate (I) top
Crystal data top
C19H15N7O3S·C2H6OZ = 2
Mr = 467.51F(000) = 488
Triclinic, P1Dx = 1.375 Mg m3
a = 8.6313 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8378 (9) ÅCell parameters from 4868 reflections
c = 13.384 (1) Åθ = 2.9–28.0°
α = 66.645 (8)°µ = 0.19 mm1
β = 79.287 (8)°T = 293 K
γ = 85.151 (8)°Needle, yellow
V = 1129.30 (16) Å30.48 × 0.28 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4464 independent reflections
Radiation source: Enhance (Mo) X-ray Source2985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 26.1°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 106
Tmin = 0.822, Tmax = 0.956k = 1312
7829 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0712P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
4464 reflectionsΔρmax = 0.23 e Å3
317 parametersΔρmin = 0.22 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4087 (2)0.49774 (19)0.18161 (16)0.0539 (5)
O10.4564 (2)0.57411 (15)0.21616 (15)0.0905 (5)
N10.44135 (19)0.36690 (16)0.22477 (13)0.0521 (4)
H10.400 (2)0.316 (2)0.2026 (17)0.063*
C110.3163 (2)0.54838 (18)0.08944 (15)0.0511 (5)
C120.2787 (2)0.4703 (2)0.03721 (17)0.0590 (5)
H120.30960.38040.06050.071*
C130.1954 (3)0.5253 (3)0.04951 (19)0.0728 (6)
H130.17050.47180.08400.087*
C140.1495 (3)0.6565 (3)0.0849 (2)0.0770 (7)
H140.09320.69270.14320.092*
C150.1865 (3)0.7346 (3)0.0343 (2)0.0879 (8)
H150.15580.82470.05860.106*
C160.2686 (3)0.6813 (2)0.05221 (19)0.0766 (7)
H160.29240.73560.08620.092*
C170.5456 (2)0.31146 (19)0.30517 (16)0.0548 (5)
H17A0.61280.38250.29870.066*
H17B0.61310.24410.28750.066*
N210.39481 (18)0.18933 (16)0.59238 (14)0.0514 (4)
H210.397 (2)0.1937 (19)0.6562 (18)0.062*
N220.48632 (18)0.27926 (16)0.50167 (14)0.0546 (4)
C230.46533 (19)0.24940 (16)0.42114 (15)0.0437 (4)
N240.36560 (15)0.14207 (13)0.45836 (11)0.0389 (3)
C250.31748 (19)0.10342 (16)0.57162 (14)0.0413 (4)
S250.18954 (6)0.01347 (5)0.65906 (4)0.05549 (17)
N250.32368 (16)0.10047 (14)0.38197 (11)0.0433 (3)
C260.26974 (18)0.01806 (16)0.41643 (14)0.0395 (4)
H260.25880.07510.49060.047*
O310.1874 (2)0.08129 (15)0.18574 (12)0.0762 (5)
N320.1439 (2)0.19906 (17)0.27290 (15)0.0663 (5)
N330.17026 (16)0.18125 (14)0.35876 (12)0.0455 (4)
C340.2272 (2)0.05913 (16)0.33674 (15)0.0429 (4)
C350.2393 (3)0.0120 (2)0.22153 (17)0.0610 (5)
O350.2818 (2)0.12192 (15)0.15706 (12)0.0876 (5)
C410.1316 (2)0.28902 (17)0.46537 (15)0.0448 (4)
C420.1955 (2)0.41464 (19)0.4829 (2)0.0605 (5)
H420.26440.43150.42740.073*
C430.1543 (3)0.5148 (2)0.5855 (2)0.0753 (7)
H430.19590.60090.59930.090*
C440.0533 (3)0.4903 (2)0.6675 (2)0.0752 (7)
H440.02610.55950.73620.090*
C450.0075 (2)0.3635 (2)0.64828 (18)0.0650 (6)
H450.07460.34640.70440.078*
C460.0303 (2)0.26166 (18)0.54647 (16)0.0511 (5)
H460.01180.17570.53260.061*
O510.5469 (4)0.8063 (3)0.21769 (15)0.0720 (8)0.836 (6)
H510.52360.73650.21420.108*0.836 (6)
C510.6351 (5)0.8888 (4)0.1149 (3)0.0896 (11)0.836 (6)
H51A0.62270.98190.10680.107*0.836 (6)
H51B0.59300.88050.05560.107*0.836 (6)
C520.7995 (5)0.8544 (7)0.1049 (4)0.1074 (13)0.836 (6)
H52A0.85330.91220.03400.161*0.836 (6)
H52B0.81260.76260.11190.161*0.836 (6)
H52C0.84270.86520.16200.161*0.836 (6)
O610.6330 (19)0.7535 (13)0.2239 (8)0.0720 (8)0.164 (6)
H610.57720.69750.22150.108*0.164 (6)
C610.672 (3)0.834 (2)0.1102 (12)0.0896 (11)0.164 (6)
H61A0.61700.91980.09520.107*0.164 (6)
H61B0.63430.79060.06840.107*0.164 (6)
C620.837 (3)0.858 (4)0.073 (2)0.1074 (13)0.164 (6)
H62A0.89140.82530.13480.161*0.164 (6)
H62B0.85440.95260.03300.161*0.164 (6)
H62C0.87650.81170.02460.161*0.164 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0647 (12)0.0410 (11)0.0513 (11)0.0048 (9)0.0002 (10)0.0164 (9)
O10.1374 (15)0.0516 (9)0.0993 (13)0.0019 (9)0.0475 (11)0.0355 (9)
N10.0604 (10)0.0401 (9)0.0516 (10)0.0061 (7)0.0088 (8)0.0124 (7)
C110.0570 (11)0.0408 (10)0.0444 (10)0.0021 (8)0.0048 (9)0.0105 (8)
C120.0591 (12)0.0497 (12)0.0605 (13)0.0074 (9)0.0033 (10)0.0147 (10)
C130.0716 (15)0.0766 (17)0.0638 (14)0.0180 (12)0.0094 (12)0.0181 (13)
C140.0673 (14)0.0774 (17)0.0603 (14)0.0062 (12)0.0078 (11)0.0002 (13)
C150.105 (2)0.0605 (15)0.0736 (17)0.0198 (14)0.0149 (15)0.0046 (13)
C160.1100 (19)0.0488 (13)0.0644 (15)0.0088 (12)0.0134 (14)0.0176 (11)
C170.0500 (11)0.0454 (11)0.0629 (13)0.0073 (9)0.0064 (10)0.0146 (10)
N210.0605 (10)0.0528 (10)0.0502 (10)0.0000 (8)0.0180 (8)0.0259 (8)
N220.0569 (10)0.0506 (10)0.0643 (11)0.0038 (8)0.0183 (8)0.0266 (9)
C230.0407 (9)0.0368 (9)0.0544 (11)0.0010 (7)0.0118 (8)0.0171 (8)
N240.0435 (8)0.0347 (7)0.0412 (8)0.0010 (6)0.0108 (6)0.0159 (6)
C250.0457 (10)0.0378 (9)0.0437 (10)0.0100 (7)0.0145 (8)0.0184 (8)
S250.0654 (3)0.0496 (3)0.0435 (3)0.0021 (2)0.0044 (2)0.0115 (2)
N250.0521 (8)0.0399 (8)0.0405 (8)0.0051 (6)0.0073 (7)0.0176 (7)
C260.0426 (9)0.0340 (9)0.0411 (9)0.0017 (7)0.0084 (7)0.0135 (7)
O310.1185 (13)0.0688 (10)0.0512 (9)0.0207 (9)0.0151 (8)0.0293 (8)
N320.0916 (13)0.0572 (11)0.0617 (11)0.0142 (9)0.0135 (10)0.0322 (9)
N330.0507 (8)0.0413 (8)0.0513 (9)0.0033 (7)0.0087 (7)0.0246 (7)
C340.0499 (10)0.0361 (9)0.0449 (10)0.0041 (8)0.0060 (8)0.0180 (8)
C350.0871 (15)0.0525 (13)0.0485 (12)0.0108 (11)0.0104 (11)0.0234 (10)
O350.1473 (16)0.0598 (10)0.0485 (9)0.0296 (10)0.0126 (9)0.0097 (8)
C410.0442 (10)0.0352 (9)0.0560 (11)0.0055 (7)0.0127 (8)0.0161 (8)
C420.0574 (12)0.0427 (11)0.0857 (16)0.0009 (9)0.0145 (11)0.0286 (11)
C430.0738 (15)0.0357 (12)0.109 (2)0.0044 (10)0.0313 (14)0.0139 (13)
C440.0765 (15)0.0523 (14)0.0777 (16)0.0121 (11)0.0255 (13)0.0023 (12)
C450.0615 (13)0.0629 (14)0.0607 (13)0.0105 (10)0.0060 (10)0.0137 (11)
C460.0474 (10)0.0428 (11)0.0598 (12)0.0009 (8)0.0105 (9)0.0161 (9)
O510.095 (2)0.0762 (16)0.0573 (10)0.0211 (14)0.0090 (11)0.0365 (10)
C510.101 (3)0.096 (3)0.0654 (18)0.001 (2)0.0205 (17)0.0220 (19)
C520.104 (4)0.140 (3)0.071 (3)0.000 (3)0.005 (2)0.038 (3)
O610.095 (2)0.0762 (16)0.0573 (10)0.0211 (14)0.0090 (11)0.0365 (10)
C610.101 (3)0.096 (3)0.0654 (18)0.001 (2)0.0205 (17)0.0220 (19)
C620.104 (4)0.140 (3)0.071 (3)0.000 (3)0.005 (2)0.038 (3)
Geometric parameters (Å, º) top
C1—O11.225 (2)N32—N331.300 (2)
C1—N11.329 (2)N33—C341.352 (2)
C1—C111.488 (3)N33—C411.442 (2)
N1—C171.444 (2)C34—C351.412 (3)
N1—H10.851 (19)C35—O351.200 (2)
C11—C161.378 (3)C41—C421.371 (2)
C11—C121.382 (3)C41—C461.374 (3)
C12—C131.382 (3)C42—C431.375 (3)
C12—H120.9300C42—H420.9300
C13—C141.358 (3)C43—C441.369 (3)
C13—H130.9300C43—H430.9300
C14—C151.364 (3)C44—C451.370 (3)
C14—H140.9300C44—H440.9300
C15—C161.372 (3)C45—C461.373 (3)
C15—H150.9300C45—H450.9300
C16—H160.9300C46—H460.9300
C17—C231.481 (3)O51—C511.422 (3)
C17—H17A0.9700O51—H510.8200
C17—H17B0.9700C51—C521.432 (5)
N21—C251.330 (2)C51—H51A0.9700
N21—N221.372 (2)C51—H51B0.9700
N21—H210.88 (2)C52—H52A0.9600
N22—C231.288 (2)C52—H52B0.9600
C23—N241.376 (2)C52—H52C0.9600
N24—N251.3821 (18)O61—C611.413 (9)
N24—C251.392 (2)O61—H610.8198
C25—S251.6657 (18)C61—C621.431 (10)
N25—C261.277 (2)C61—H61A0.9700
C26—C341.421 (2)C61—H61B0.9700
C26—H260.9300C62—H62A0.9600
O31—N321.367 (2)C62—H62B0.9600
O31—C351.412 (2)C62—H62C0.9600
O1—C1—N1120.3 (2)C34—N33—C41127.36 (15)
O1—C1—C11121.36 (18)N33—C34—C35105.95 (15)
N1—C1—C11118.31 (17)N33—C34—C26124.92 (16)
C1—N1—C17121.94 (16)C35—C34—C26129.09 (16)
C1—N1—H1118.0 (14)O35—C35—O31121.02 (18)
C17—N1—H1120.0 (14)O35—C35—C34135.49 (18)
C16—C11—C12118.0 (2)O31—C35—C34103.48 (16)
C16—C11—C1118.33 (18)C42—C41—C46122.09 (18)
C12—C11—C1123.63 (18)C42—C41—N33119.66 (17)
C13—C12—C11120.3 (2)C46—C41—N33118.25 (15)
C13—C12—H12119.8C41—C42—C43117.8 (2)
C11—C12—H12119.8C41—C42—H42121.1
C14—C13—C12120.7 (2)C43—C42—H42121.1
C14—C13—H13119.6C44—C43—C42121.3 (2)
C12—C13—H13119.6C44—C43—H43119.4
C13—C14—C15119.5 (2)C42—C43—H43119.4
C13—C14—H14120.2C43—C44—C45119.8 (2)
C15—C14—H14120.2C43—C44—H44120.1
C14—C15—C16120.4 (2)C45—C44—H44120.1
C14—C15—H15119.8C44—C45—C46120.3 (2)
C16—C15—H15119.8C44—C45—H45119.9
C15—C16—C11121.0 (2)C46—C45—H45119.9
C15—C16—H16119.5C45—C46—C41118.77 (18)
C11—C16—H16119.5C45—C46—H46120.6
N1—C17—C23114.88 (15)C41—C46—H46120.6
N1—C17—H17A108.5C51—O51—H51109.5
C23—C17—H17A108.5O51—C51—C52112.8 (3)
N1—C17—H17B108.5O51—C51—H51A109.0
C23—C17—H17B108.5C52—C51—H51A109.0
H17A—C17—H17B107.5O51—C51—H51B109.0
C25—N21—N22114.74 (15)C52—C51—H51B109.0
C25—N21—H21128.3 (13)H51A—C51—H51B107.8
N22—N21—H21116.9 (13)C51—C52—H52A109.5
C23—N22—N21104.27 (14)C51—C52—H52B109.5
N22—C23—N24110.68 (16)H52A—C52—H52B109.5
N22—C23—C17126.19 (15)C51—C52—H52C109.5
N24—C23—C17122.94 (16)H52A—C52—H52C109.5
C23—N24—N25118.51 (14)H52B—C52—H52C109.5
C23—N24—C25108.53 (14)C61—O61—H61100.2
N25—N24—C25132.76 (14)O61—C61—C62113.9 (14)
N21—C25—N24101.77 (15)O61—C61—H61A108.8
N21—C25—S25128.17 (14)C62—C61—H61A108.8
N24—C25—S25129.98 (13)O61—C61—H61B108.8
C26—N25—N24118.01 (14)C62—C61—H61B108.8
N25—C26—C34117.24 (16)H61A—C61—H61B107.7
N25—C26—H26121.4C61—C62—H62A109.5
C34—C26—H26121.4C61—C62—H62B109.5
N32—O31—C35111.00 (14)H62A—C62—H62B109.5
N33—N32—O31104.83 (13)C61—C62—H62C109.5
N32—N33—C34114.72 (16)H62A—C62—H62C109.5
N32—N33—C41117.88 (14)H62B—C62—H62C109.5
O1—C1—N1—C176.2 (3)C23—N24—N25—C26160.75 (15)
C11—C1—N1—C17172.55 (16)C25—N24—N25—C2625.1 (3)
O1—C1—C11—C167.8 (3)N24—N25—C26—C34179.98 (14)
N1—C1—C11—C16173.48 (18)C35—O31—N32—N331.1 (2)
O1—C1—C11—C12170.63 (19)O31—N32—N33—C340.7 (2)
N1—C1—C11—C128.1 (3)O31—N32—N33—C41178.55 (15)
C16—C11—C12—C130.1 (3)N32—N33—C34—C350.1 (2)
C1—C11—C12—C13178.57 (18)C41—N33—C34—C35177.57 (17)
C11—C12—C13—C140.1 (3)N32—N33—C34—C26177.83 (16)
C12—C13—C14—C150.1 (3)C41—N33—C34—C264.5 (3)
C13—C14—C15—C160.4 (4)N25—C26—C34—N33179.15 (16)
C14—C15—C16—C110.4 (4)N25—C26—C34—C351.7 (3)
C12—C11—C16—C150.1 (3)N32—O31—C35—O35179.6 (2)
C1—C11—C16—C15178.4 (2)N32—O31—C35—C341.2 (2)
C1—N1—C17—C23100.0 (2)N33—C34—C35—O35179.8 (3)
C25—N21—N22—C230.3 (2)C26—C34—C35—O352.0 (4)
N21—N22—C23—N241.01 (19)N33—C34—C35—O310.7 (2)
N21—N22—C23—C17176.04 (16)C26—C34—C35—O31177.04 (17)
N1—C17—C23—N22124.95 (19)N32—N33—C41—C4255.7 (2)
N1—C17—C23—N2460.6 (2)C34—N33—C41—C42126.68 (19)
N22—C23—N24—N25176.86 (14)N32—N33—C41—C46124.04 (18)
C17—C23—N24—N257.9 (2)C34—N33—C41—C4653.5 (2)
N22—C23—N24—C251.4 (2)C46—C41—C42—C430.4 (3)
C17—C23—N24—C25176.60 (16)N33—C41—C42—C43179.38 (17)
N22—N21—C25—N240.50 (19)C41—C42—C43—C440.2 (3)
N22—N21—C25—S25176.58 (13)C42—C43—C44—C450.6 (3)
C23—N24—C25—N211.08 (17)C43—C44—C45—C461.2 (3)
N25—N24—C25—N21175.67 (16)C44—C45—C46—C410.9 (3)
C23—N24—C25—S25175.93 (13)C42—C41—C46—C450.2 (3)
N25—N24—C25—S251.3 (3)N33—C41—C46—C45179.94 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N250.85 (2)2.62 (2)2.946 (2)104.0 (16)
N21—H21···O51i0.88 (2)1.84 (2)2.700 (3)166.0 (18)
N21—H21···O61i0.88 (2)1.88 (3)2.730 (12)164 (2)
O51—H51···O10.821.892.706 (4)175
O61—H61···O10.821.792.614 (16)180
C12—H12···O350.932.593.468 (3)158
Symmetry code: (i) x+1, y+1, z+1.
N-({4-[3-(4-Methylphenyl)-4-sydnonylideneamino]-5-sulfanylidene-1H-1,2,4-triazol-3-yl}methyl)benzamide ethanol monosolvate (II) top
Crystal data top
C20H17N7O3S·C2H6OZ = 2
Mr = 481.53F(000) = 504
Triclinic, P1Dx = 1.355 Mg m3
a = 8.5631 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1242 (8) ÅCell parameters from 5107 reflections
c = 13.5632 (9) Åθ = 2.6–28.0°
α = 70.244 (6)°µ = 0.18 mm1
β = 76.086 (7)°T = 293 K
γ = 84.058 (6)°Needle, yellow
V = 1179.92 (15) Å30.50 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4670 independent reflections
Radiation source: Enhance (Mo) X-ray Source2828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.1°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 105
Tmin = 0.841, Tmax = 0.986k = 1313
8056 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.4689P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4670 reflectionsΔρmax = 0.19 e Å3
327 parametersΔρmin = 0.18 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4320 (3)0.4989 (3)0.1887 (2)0.0516 (7)
O10.5007 (3)0.57130 (19)0.21463 (17)0.0728 (6)
N10.4417 (3)0.3724 (2)0.2369 (2)0.0571 (7)
H10.390 (3)0.325 (3)0.221 (2)0.069*
C110.3385 (3)0.5462 (3)0.1039 (2)0.0498 (7)
C120.2858 (3)0.4682 (3)0.0582 (2)0.0593 (8)
H120.30710.38070.08180.071*
C130.2022 (4)0.5194 (4)0.0219 (3)0.0728 (10)
H130.16750.46630.05210.087*
C140.1696 (4)0.6474 (4)0.0573 (3)0.0840 (11)
H140.11240.68160.11120.101*
C150.2216 (5)0.7253 (4)0.0129 (3)0.0894 (12)
H150.19910.81270.03660.107*
C160.3065 (4)0.6754 (3)0.0662 (3)0.0722 (9)
H160.34300.72950.09470.087*
C170.5493 (3)0.3149 (3)0.3086 (2)0.0596 (8)
H17A0.61720.38080.30630.072*
H17B0.61870.25260.28220.072*
N210.4015 (3)0.1866 (2)0.5901 (2)0.0560 (7)
H210.401 (3)0.184 (3)0.658 (2)0.067*
N220.4901 (3)0.2760 (2)0.5037 (2)0.0597 (7)
C230.4687 (3)0.2512 (3)0.4215 (2)0.0492 (7)
N240.3715 (2)0.14807 (19)0.45373 (18)0.0430 (5)
C250.3256 (3)0.1057 (3)0.5646 (2)0.0465 (7)
S250.20592 (10)0.01225 (8)0.64723 (6)0.0607 (2)
N250.3260 (3)0.1148 (2)0.37505 (17)0.0463 (6)
C260.2769 (3)0.0009 (2)0.4004 (2)0.0427 (6)
H260.27330.05780.46860.051*
O310.1843 (3)0.0446 (2)0.16972 (16)0.0798 (7)
N320.1452 (3)0.1594 (2)0.2474 (2)0.0666 (7)
N330.1738 (3)0.1471 (2)0.33327 (18)0.0463 (6)
C340.2283 (3)0.0315 (2)0.3201 (2)0.0449 (7)
C350.2365 (4)0.0409 (3)0.2114 (3)0.0667 (9)
O350.2748 (3)0.1471 (2)0.15540 (18)0.0986 (9)
C410.1448 (3)0.2546 (2)0.4303 (2)0.0421 (6)
C420.2134 (3)0.3709 (3)0.4292 (2)0.0541 (8)
H420.27450.38180.36600.065*
C430.1898 (4)0.4716 (3)0.5243 (3)0.0607 (8)
H430.23570.55110.52440.073*
C440.1002 (3)0.4577 (3)0.6190 (3)0.0547 (8)
C450.0311 (3)0.3401 (3)0.6162 (2)0.0579 (8)
H450.03150.32910.67900.069*
C460.0520 (3)0.2377 (3)0.5224 (2)0.0505 (7)
H460.00410.15860.52160.061*
C470.0841 (4)0.5680 (3)0.7222 (3)0.0829 (11)
H47A0.00510.54650.77750.124*
H47B0.18590.58570.74290.124*
H47C0.05120.64210.71210.124*
O510.5508 (4)0.8106 (3)0.2175 (2)0.0639 (10)0.906 (6)
H510.53410.74340.20980.096*0.906 (6)
C510.6322 (6)0.8952 (5)0.1173 (3)0.0883 (16)0.906 (6)
H51A0.60890.98240.11740.106*0.906 (6)
H51B0.58980.88540.06040.106*0.906 (6)
C520.8062 (5)0.8748 (5)0.0935 (3)0.0981 (17)0.906 (6)
H52A0.85370.94090.02950.147*0.906 (6)
H52B0.83110.79320.08310.147*0.906 (6)
H52C0.84860.87680.15240.147*0.906 (6)
O610.599 (5)0.773 (3)0.228 (3)0.0639 (10)0.094 (6)
H610.56700.70790.22370.096*0.094 (6)
C610.663 (8)0.833 (3)0.116 (3)0.0883 (16)0.094 (6)
H61A0.58330.83410.07580.106*0.094 (6)
H61B0.75640.78350.09230.106*0.094 (6)
C620.711 (6)0.963 (3)0.095 (3)0.0981 (17)0.094 (6)
H62A0.82220.97290.05980.147*0.094 (6)
H62B0.69370.98010.16190.147*0.094 (6)
H62C0.64651.02240.05010.147*0.094 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0548 (18)0.0450 (18)0.0514 (18)0.0072 (15)0.0021 (15)0.0186 (15)
O10.1006 (17)0.0496 (13)0.0801 (16)0.0097 (12)0.0273 (13)0.0287 (12)
N10.0597 (17)0.0467 (16)0.0666 (18)0.0120 (13)0.0199 (13)0.0131 (13)
C110.0483 (17)0.0459 (17)0.0498 (18)0.0020 (14)0.0020 (14)0.0172 (14)
C120.0555 (18)0.0549 (19)0.064 (2)0.0025 (15)0.0071 (16)0.0188 (17)
C130.066 (2)0.084 (3)0.069 (2)0.010 (2)0.0138 (19)0.025 (2)
C140.068 (2)0.097 (3)0.068 (2)0.004 (2)0.0143 (19)0.002 (2)
C150.092 (3)0.061 (2)0.098 (3)0.007 (2)0.024 (2)0.004 (2)
C160.084 (2)0.051 (2)0.078 (2)0.0000 (18)0.016 (2)0.0178 (18)
C170.0545 (18)0.0515 (18)0.072 (2)0.0104 (15)0.0173 (17)0.0146 (17)
N210.0683 (17)0.0571 (16)0.0571 (17)0.0055 (13)0.0268 (15)0.0301 (15)
N220.0655 (16)0.0506 (15)0.0738 (19)0.0021 (13)0.0280 (15)0.0251 (14)
C230.0477 (17)0.0448 (17)0.064 (2)0.0002 (14)0.0205 (15)0.0236 (15)
N240.0470 (13)0.0401 (13)0.0495 (15)0.0034 (11)0.0153 (11)0.0206 (11)
C250.0500 (17)0.0463 (17)0.0499 (18)0.0101 (14)0.0188 (14)0.0218 (14)
S250.0708 (5)0.0570 (5)0.0516 (5)0.0006 (4)0.0106 (4)0.0165 (4)
N250.0535 (14)0.0433 (14)0.0495 (14)0.0051 (11)0.0146 (11)0.0210 (11)
C260.0470 (16)0.0383 (16)0.0436 (16)0.0013 (13)0.0103 (13)0.0148 (13)
O310.139 (2)0.0618 (14)0.0462 (13)0.0308 (14)0.0296 (13)0.0119 (11)
N320.103 (2)0.0557 (16)0.0506 (16)0.0197 (15)0.0224 (15)0.0203 (13)
N330.0560 (14)0.0412 (13)0.0461 (14)0.0067 (11)0.0113 (11)0.0180 (11)
C340.0567 (17)0.0366 (15)0.0446 (17)0.0055 (13)0.0125 (14)0.0150 (13)
C350.099 (3)0.055 (2)0.055 (2)0.0181 (19)0.0223 (18)0.0199 (17)
O350.180 (3)0.0552 (15)0.0578 (15)0.0416 (16)0.0319 (16)0.0002 (12)
C410.0437 (16)0.0387 (15)0.0476 (17)0.0048 (13)0.0115 (13)0.0168 (13)
C420.0572 (18)0.0455 (17)0.065 (2)0.0037 (15)0.0080 (15)0.0273 (16)
C430.062 (2)0.0318 (16)0.088 (3)0.0025 (14)0.0227 (18)0.0164 (17)
C440.0501 (18)0.0480 (18)0.063 (2)0.0117 (15)0.0184 (16)0.0075 (16)
C450.0551 (18)0.060 (2)0.0523 (19)0.0048 (16)0.0047 (15)0.0136 (16)
C460.0506 (17)0.0416 (16)0.058 (2)0.0044 (14)0.0095 (15)0.0184 (15)
C470.086 (3)0.062 (2)0.084 (3)0.0187 (19)0.026 (2)0.0074 (19)
O510.089 (2)0.056 (2)0.0543 (15)0.0169 (16)0.0188 (14)0.0212 (14)
C510.103 (4)0.070 (4)0.079 (3)0.021 (3)0.032 (3)0.005 (3)
C520.095 (4)0.100 (4)0.070 (3)0.004 (3)0.015 (2)0.007 (3)
O610.089 (2)0.056 (2)0.0543 (15)0.0169 (16)0.0188 (14)0.0212 (14)
C610.103 (4)0.070 (4)0.079 (3)0.021 (3)0.032 (3)0.005 (3)
C620.095 (4)0.100 (4)0.070 (3)0.004 (3)0.015 (2)0.007 (3)
Geometric parameters (Å, º) top
C1—O11.228 (3)N33—C411.436 (3)
C1—N11.340 (3)C34—C351.409 (4)
C1—C111.479 (4)C35—O351.198 (3)
N1—C171.446 (4)C41—C421.368 (3)
N1—H10.83 (3)C41—C461.370 (4)
C11—C161.375 (4)C42—C431.379 (4)
C11—C121.386 (4)C42—H420.9300
C12—C131.373 (4)C43—C441.378 (4)
C12—H120.9300C43—H430.9300
C13—C141.362 (5)C44—C451.371 (4)
C13—H130.9300C44—C471.505 (4)
C14—C151.368 (5)C45—C461.379 (4)
C14—H140.9300C45—H450.9300
C15—C161.370 (5)C46—H460.9300
C15—H150.9300C47—H47A0.9600
C16—H160.9300C47—H47B0.9600
C17—C231.478 (4)C47—H47C0.9600
C17—H17A0.9700O51—C511.426 (4)
C17—H17B0.9700O51—H510.8200
N21—C251.339 (3)C51—C521.458 (6)
N21—N221.370 (3)C51—H51A0.9700
N21—H210.91 (3)C51—H51B0.9700
N22—C231.292 (3)C52—H52A0.9600
C23—N241.373 (3)C52—H52B0.9600
N24—C251.383 (3)C52—H52C0.9600
N24—N251.387 (3)O61—C611.429 (11)
C25—S251.661 (3)O61—H610.8214
N25—C261.284 (3)C61—C621.465 (11)
C26—C341.415 (3)C61—H61A0.9700
C26—H260.9300C61—H61B0.9700
O31—N321.364 (3)C62—H62A0.9600
O31—C351.414 (3)C62—H62B0.9600
N32—N331.299 (3)C62—H62C0.9600
N33—C341.353 (3)
O1—C1—N1120.1 (3)C35—C34—C26129.2 (2)
O1—C1—C11122.2 (3)O35—C35—C34135.6 (3)
N1—C1—C11117.8 (3)O35—C35—O31121.0 (3)
C1—N1—C17122.2 (2)C34—C35—O31103.4 (2)
C1—N1—H1119 (2)C42—C41—C46121.4 (3)
C17—N1—H1119 (2)C42—C41—N33119.3 (2)
C16—C11—C12118.3 (3)C46—C41—N33119.3 (2)
C16—C11—C1118.0 (3)C41—C42—C43118.3 (3)
C12—C11—C1123.7 (3)C41—C42—H42120.8
C13—C12—C11120.4 (3)C43—C42—H42120.8
C13—C12—H12119.8C44—C43—C42121.9 (3)
C11—C12—H12119.8C44—C43—H43119.0
C14—C13—C12120.5 (3)C42—C43—H43119.0
C14—C13—H13119.7C45—C44—C43117.9 (3)
C12—C13—H13119.7C45—C44—C47121.7 (3)
C13—C14—C15119.5 (3)C43—C44—C47120.4 (3)
C13—C14—H14120.2C44—C45—C46121.6 (3)
C15—C14—H14120.2C44—C45—H45119.2
C14—C15—C16120.4 (4)C46—C45—H45119.2
C14—C15—H15119.8C41—C46—C45118.9 (3)
C16—C15—H15119.8C41—C46—H46120.6
C15—C16—C11120.8 (3)C45—C46—H46120.6
C15—C16—H16119.6C44—C47—H47A109.5
C11—C16—H16119.6C44—C47—H47B109.5
N1—C17—C23114.9 (2)H47A—C47—H47B109.5
N1—C17—H17A108.6C44—C47—H47C109.5
C23—C17—H17A108.6H47A—C47—H47C109.5
N1—C17—H17B108.6H47B—C47—H47C109.5
C23—C17—H17B108.6C51—O51—H51109.5
H17A—C17—H17B107.5O51—C51—C52114.2 (3)
C25—N21—N22114.5 (2)O51—C51—H51A108.7
C25—N21—H21125.5 (19)C52—C51—H51A108.7
N22—N21—H21120.0 (18)O51—C51—H51B108.7
C23—N22—N21104.3 (2)C52—C51—H51B108.7
N22—C23—N24110.6 (3)H51A—C51—H51B107.6
N22—C23—C17125.6 (3)C51—C52—H52A109.5
N24—C23—C17123.6 (3)C51—C52—H52B109.5
C23—N24—C25109.0 (2)H52A—C52—H52B109.5
C23—N24—N25118.0 (2)C51—C52—H52C109.5
C25—N24—N25132.7 (2)H52A—C52—H52C109.5
N21—C25—N24101.7 (2)H52B—C52—H52C109.5
N21—C25—S25127.9 (2)C61—O61—H6197.5
N24—C25—S25130.4 (2)O61—C61—C62110.6 (15)
C26—N25—N24117.5 (2)O61—C61—H61A109.5
N25—C26—C34117.1 (2)C62—C61—H61A109.5
N25—C26—H26121.4O61—C61—H61B109.5
C34—C26—H26121.4C62—C61—H61B109.5
N32—O31—C35111.2 (2)H61A—C61—H61B108.1
N33—N32—O31104.6 (2)C61—C62—H62A109.5
N32—N33—C34114.9 (2)C61—C62—H62B109.5
N32—N33—C41117.9 (2)H62A—C62—H62B109.5
C34—N33—C41127.2 (2)C61—C62—H62C109.5
N33—C34—C35105.9 (2)H62A—C62—H62C109.5
N33—C34—C26124.7 (2)H62B—C62—H62C109.5
O1—C1—N1—C179.0 (4)C25—N24—N25—C2627.7 (4)
C11—C1—N1—C17170.3 (3)N24—N25—C26—C34179.0 (2)
O1—C1—C11—C1610.8 (4)C35—O31—N32—N330.9 (3)
N1—C1—C11—C16169.9 (3)O31—N32—N33—C340.6 (3)
O1—C1—C11—C12167.1 (3)O31—N32—N33—C41179.5 (2)
N1—C1—C11—C1212.2 (4)N32—N33—C34—C350.1 (3)
C16—C11—C12—C130.7 (4)C41—N33—C34—C35179.9 (3)
C1—C11—C12—C13178.7 (3)N32—N33—C34—C26175.8 (2)
C11—C12—C13—C140.1 (5)C41—N33—C34—C264.3 (4)
C12—C13—C14—C150.3 (5)N25—C26—C34—N33179.9 (2)
C13—C14—C15—C160.3 (6)N25—C26—C34—C355.2 (4)
C14—C15—C16—C111.2 (6)N33—C34—C35—O35179.7 (4)
C12—C11—C16—C151.4 (5)C26—C34—C35—O354.8 (7)
C1—C11—C16—C15179.5 (3)N33—C34—C35—O310.5 (3)
C1—N1—C17—C23114.4 (3)C26—C34—C35—O31175.0 (3)
C25—N21—N22—C230.3 (3)N32—O31—C35—O35179.3 (3)
N21—N22—C23—N240.9 (3)N32—O31—C35—C340.9 (3)
N21—N22—C23—C17175.0 (3)N32—N33—C41—C4252.9 (3)
N1—C17—C23—N22124.1 (3)C34—N33—C41—C42127.2 (3)
N1—C17—C23—N2462.5 (4)N32—N33—C41—C46128.6 (3)
N22—C23—N24—C251.1 (3)C34—N33—C41—C4651.3 (4)
C17—C23—N24—C25175.4 (2)C46—C41—C42—C431.2 (4)
N22—C23—N24—N25175.0 (2)N33—C41—C42—C43177.2 (2)
C17—C23—N24—N2510.7 (4)C41—C42—C43—C440.2 (4)
N22—N21—C25—N240.3 (3)C42—C43—C44—C451.4 (4)
N22—N21—C25—S25178.8 (2)C42—C43—C44—C47176.8 (3)
C23—N24—C25—N210.8 (3)C43—C44—C45—C461.1 (4)
N25—N24—C25—N21173.5 (2)C47—C44—C45—C46177.0 (3)
C23—N24—C25—S25178.3 (2)C42—C41—C46—C451.4 (4)
N25—N24—C25—S255.6 (4)N33—C41—C46—C45177.0 (2)
C23—N24—N25—C26160.2 (2)C44—C45—C46—C410.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N250.83 (3)2.56 (3)2.961 (3)111 (2)
N21—H21···O51i0.91 (3)1.85 (3)2.747 (4)167 (2)
N21—H21···O61i0.91 (3)1.77 (3)2.65 (4)164 (3)
O51—H51···O10.821.942.754 (4)171
O61—H61···O10.821.732.55 (4)180
C12—H12···O350.932.473.366 (4)163
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

CHC thanks the University of Mysore for research facilities.

Funding information

AKK thanks the Department of Science and Technology, Government of India, for providing a Senior Research Fellowship under the DST–INSPIRE Scheme. HSY thanks the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o1303.  Google Scholar
First citationHegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Lingappa, B. & Nooji, S. R. (2007). Phosphorus Sulfur Silicon, 182, 1393–1401.  Web of Science CrossRef CAS Google Scholar
First citationKalluraya, B., Rahiman, M. A. & Banji, D. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 263–268.  Web of Science CrossRef CAS Google Scholar
First citationKalluraya, B., Rahiman, M. A. & Banji, D. (2002). Indian J. Chem. 41B, 1712–1717.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, L.-Z., Yu, G.-P., Xu, F.-L. & Li, W.-H. (2005a). Acta Cryst. E61, o2061–o2062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005b). Acta Cryst. E61, o3375–o3376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-R., Xu, M.-H., Bi, S., Yu, Y.-Q. & Zhang, S.-S. (2006b). Acta Cryst. E62, o4866–o4867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-R., Xu, M.-H., Bi, S. & Zhang, S.-S. (2006a). Acta Cryst. E62, o4368–o4369.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds