research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-methyl-N-propyl­benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 May 2020; accepted 6 June 2020; online 12 June 2020)

The crystal structure of the title sulfonamide, C10H15NO2S, comprises two mol­ecules in the asymmetric unit. The S=O bond lengths of the sulfonamide functional group range from 1.428 (2) to 1.441 (2) Å, with S—C bond lengths of 1.766 (3) Å (for both mol­ecules in the asymmetric unit), and S—N bond lengths of 1.618 (2) and 1.622 (3) Å, respectively. When both mol­ecules are viewed down the N—S bond, the propyl group is gauche to the toluene moiety. In the crystal structure, mol­ecules of the title compound are arranged in an intricate three-dimensional network that is formed via inter­molecular C—H⋯O and N—H⋯O hydrogen bonds. The crystal structure was refined from a crystal twinned by inversion.

1. Chemical context

Mol­ecules containing the sulfonamide moiety are found among a variety of biologically significant compounds, and have been used to inhibit a variety of enzymes to improve or repair biological functions. Commonly referred to as `sulfa drugs', these mol­ecules have been in clinical use since 1968 (Connor, 1998[Connor, E. E. (1998). Elsevier Science Inc. 5, 32-35.]). Since then, many sulfonamides have been recognized as effective inhibitors of the zinc enzyme carbonic anhydrase (Gul et al., 2018[Gul, H. I., Yamali, C., Sakagami, H., Angeli, A., Leitans, J., Kazaks, A., Tars, K., Ozgun, D. O. & Supuran, C. T. (2018). Bioorg. Chem. 77, 411-419.]). Several inter­esting anti­cancer properties are exhibited upon inhibition of this enzyme (Supuran et al., 2001[Supuran, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem. 9, 703-714.]).

[Scheme 1]

The title compound, 4-methyl-N-propyl­benzene­sulfon­amide, is structurally similar to a variety of biologically significant compounds. In particular, tacrine-p-toluene­sulfon­amide derivatives containing the 4-methyl-N-propyl­benzene­sulfonamide moiety have proven to be effective acetyl­cholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors (Makhaeva et al., 2019[Makhaeva, G. F., Rudakova, E. V., Kovaleva, N. V., Lushchekina, S. V., Boltneva, N. P., Proshin, A. N., Shchegolkov, E. V., Burgart, Y. V. & Saloutin, V. I. (2019). Russ. Chem. Bull. 68, 967-984.]; Fig. 1[link]). The AChE cholinesterase enzyme catalyzes the hydrolysis of acetyl­cho­line (ACh), a neurotransmitter with the ability to coordinate neural responses in the brain (Picciotto et al., 2012[Picciotto, M. R., Higley, M. J. & Mineur, Y. S. (2012). Neuron, 76, 116-129.]). The inhibition of AChE decreases the extent of ACh hydrolysis and enhances cholinergic transmission. AChE inhibition treats the symptoms of neuron deterioration characteristic of Alzheimer's disease (García-Ayllón et al., 2011[García-Ayllón, M., Small, D. H., Avila, J. & Sáez-Valero, J. (2011). Front. Mol. Neurosci. 4, 22.]). While BChE and AChE both regulate the cholinergic system, the effects of BChE are more prevalent in the blood than the nervous system (Pohanka, 2014[Pohanka, M. (2014). Int. J. Mol. Sci. 15, 9809-9825.]). BChE is, however, found in the central nervous system and is involved in the formation or growth of β-amyloid plaques (Kim et al., 2016[Kim, J. H., Lee, S., Lee, H. W., Sun, Y. N., Jang, W., Yang, S., Jang, H. & Kim, Y. H. (2016). Int. J. Biol. Macromol. 91, 1033-1039.]). The inhibition of both AChE and BChE improves cognitive function and minimizes the accumulation of β-amyloid and is a viable strategy for treating Alzheimer's disease.

[Figure 1]
Figure 1
Acetyl­cholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing the N-propyl-4-methyl­benzene­sulfonamide moiety.

A facile synthesis of sulfonamides is necessary to produce a variety of compounds with the potential to improve human health. A review of the current literature suggests that nucleophilic substitution of sulfonyl halides or sulfonic acids with an amine is an efficient method for the synthesis of sulfonamides (Mukherjee et al., 2018[Mukherjee, P., Woroch, C. P., Cleary, L., Rusznak, M., Franzese, R. W., Reese, M. R., Tucker, J. W., Humphrey, J. M., Etuk, S. M., Kwan, S. C., am Ende, C. W. & Ball, N. D. (2018). Org. Lett. 20, 3943-3947.]; De Luca & Giacomelli, 2008[De Luca, L. & Giacomelli, G. (2008). J. Org. Chem. 73, 3967-3969.]). The title compound was synthesized by reacting p-toluene­sulfonyl chloride with propyl­amine in the presence of pyridine. The reaction was carried out in an inert atmosphere, using di­chloro­methane as the solvent. These reaction conditions resulted in a poor yield and slow reaction time. To work toward a facile synthesis of sulfonamides, a more efficient and environmentally benign method was recently developed. By substituting pyridine and di­chloro­methane with aqueous potassium carbonate and tetra­hydro­furan, a significant increase in the yield and rate of the reaction was observed. The products formed under these reaction conditions are easily isolated upon acidification of the reaction mixture. Furthermore, the solvent combination supports a broader range of nitro­gen nucleophiles. In our ongoing efforts to synthesize and characterize sulfonamide products, the synthesis and crystal structure of 4-methyl-N-propyl­benzene­sulfonamide is reported here.

2. Structural commentary

The title compound comprises two equivalents of the mol­ecule in the asymmetric unit, as shown in Fig. 2[link] (suffix `A′ for all atomic labels used for the second mol­ecule). The S=O bond lengths of the sulfonamide functional group range from 1.428 (2) to 1.441 (2) Å, which fall within expected values. The S—C bond lengths are 1.766 (3) Å for both mol­ecules, and the S—N bond lengths are 1.618 (2) and 1.622 (3) Å. The O—S—O bond angles are 119.49 (13) and 118.26 (13)°, with N—S—C bond angles of 106.86 (13) and 108.27 (13)°. The two independent mol­ecules differ in the orientation of the propyl chain and the H atom attached to the N atom, however, in each case with the propyl chain being gauche to a sulfonamide oxygen atom and to the toluene moiety when the mol­ecules are viewed down the N1—S1 bond (Fig. 3[link]). The torsion angles between the first carbon atom of the propyl chain (C8 or C8A) and the sulfonamide oxygen atom O1 or O1A are 60.5 (3) and 57.3 (2)°, respectively. The groups bonded to the sulfur atom of both sulfonamide groups adopt slightly distorted tetra­hedral environments with fourfold coordination τ4 descriptors of 0.94 for both S1 and S1A (ideal values are 0 for square-planar, 0.85 for trigonal pyramidal, and 1 for tetra­hedral coordinations; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

[Figure 2]
Figure 2
The structures of the two mol­ecules in the asymmetric unit of the title compound, with the atom-labeling scheme. Displacement ellipsoids are shown at the 40% probability level using standard CPK colors.
[Figure 3]
Figure 3
Overlay plot of the two independent mol­ecules in the title compound, with grouping of the atoms C1—S1—-N1 and C1A—S1A—N1A, and the mol­ecule oriented so as to view it down the S—N bond. Displacement ellipsoids are as in Fig. 2[link].

3. Supra­molecular features

Hydrogen-bonding inter­actions, both N—H⋯O and C—H⋯O, hold mol­ecules of the title compound together in the crystal structure (Table 1[link], Fig. 4[link]). The inter­molecular N—H⋯O inter­actions are between the sulfonamide N(H) atoms and the oxygen (O1 or O1A) atoms of a nearby mol­ecule. These classic hydrogen-bonding inter­actions form ribbons of the title compound that lie parallel to the ab plane. These inter­actions have DA distances of 2.925 (3) and 2.968 (3) Å, with D—H⋯A angles of 161 (3) and 172 (3)°. The inter­molecular C—H⋯O hydrogen bonding inter­actions (Sutor, 1958[Sutor, D. J. (1958). Acta Cryst. 11, 453-458.], 1962[Sutor, D. J. (1962). Nature, 195, 68-69.], 1963[Sutor, D. J. (1963). J. Chem. Soc. pp. 1105-1110.]; Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 157-305.]) have, as expected, longer DA distances ranging from 3.399 (4) to 3.594 (4) Å, and D—H⋯A angles ranging from 152.8 to 170.2°. Specific­ally, the C8(H8B)⋯O2A, C8A(H8AA)⋯O2 and C6(H6)⋯O1A inter­actions contribute to the stabilization of the supra­molecular ribbons. The inter­action between C3A(H3A) and O2A links the supra­molecular ribbons into an intricate three-dimensional network (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3A⋯O2Ai 0.95 2.53 3.399 (4) 153
C6—H6⋯O1Aii 0.95 2.59 3.474 (4) 156
C8—H8B⋯O2Ai 0.99 2.56 3.489 (4) 156
C8A—H8AA⋯O2iii 0.99 2.61 3.594 (4) 170
N1A—H1A⋯O1iv 0.82 (3) 2.14 (3) 2.925 (3) 161 (3)
N1—H1⋯O1Aii 0.85 (3) 2.13 (4) 2.968 (3) 172 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
A diagram showing the specific hydrogen-bonding inter­actions (N—H⋯O: purple dashed lines, C—H⋯O: green dashed lines) present in the title compound, using a ball-and-stick model with standard CPK colors. Hydrogen atoms bonded to parent atoms that are not involved in a non-covalent inter­action have been omitted for clarity. [Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (ii) x, −y + 1, z + [{1\over 2}]; (iii) x, −y + 1, z − [{1\over 2}]; (iv) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]].
[Figure 5]
Figure 5
A packing diagram of the title compound viewed down the b axis. Inter­molecular hydrogen bonds are shown with dashed lines (N—H⋯O: purple, C—H⋯O: green). This figure was drawn using a ball and stick model with standard CPK colors. Hydrogen atoms bonded to parent atoms that are not involved in a non-covalent inter­action have been omitted for clarity.

4. Database survey

A search for structures containing the p-methyl­benzene­sulfonamide entity in the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), where the nitro­gen atom bears one carbon-containing group, resulted in over 2,200 hits. A few structures with relatively simple, yet inter­esting, –R groups bonded to the sulfonamide nitro­gen atom are BOLPOH (Germain et al., 1983[Germain, G., Declercq, J.-P., Castresana, J. M., Elizalde, M. P. & Arrieta, J. M. (1983). Acta Cryst. C39, 230-232.]), AZUQUI (Rehman et al., 2011[Rehman, J., Ejaz , Khan, I. U. & Harrison, W. T. A. (2011). Acta Cryst. E67, o2709.]), AYURUI and AYURUI01 (Khan et al., 2011[Khan, I. U., Sheikh, T. A., Ejaz & Harrison, W. T. A. (2011). Acta Cryst. E67, o2371.]; Akyıldız et al., 2018[Akyıldız, F., Alyar, S., Bilkan, M. T. & Alyar, H. (2018). J. Mol. Struct. 1174, 160-170.]), and ATOVIO (Muller et al., 2004[Müller, P., Riegert, D. & Bernardinelli, G. (2004). Helv. Chim. Acta, 87, 227-239.]). In the structures of BOLPOH and AZUQUI, the –R groups are both aromatic systems with a quinoline ring and a 4-amino­benzene ring, respectively. The structures of AYURUI and AYURUI01 contain two p-methyl­benzene­sulfonamide groups linked via a propane chain. Lastly, the –R group in ATOVIO is a tri­cyclo­heptyl ring system.

5. Synthesis and crystallization

The title compound was prepared by the dropwise addition of 0.59 M aqueous potassium carbonate (10 ml, 5.90 mmol) to a stirring mixture of propyl­amine (0.49 ml, 5.90 mmol) and p-toluene­sulfonyl chloride (1.00 g, 5.25 mmol) in 10 ml of tetra­hydro­furan. The reaction mixture was stirred at room temperate for 24 h under a nitro­gen atmosphere. After acidification with 5 M HCl and dilution with 15 ml of di­chloro­methane, the organic layer was washed with water and brine. The aqueous layers were back extracted with 10 ml of di­chloro­methane. The combined organic layers were then combined, dried over anhydrous sodium sulfate, and evaporated to dryness. The liquid residue was triturated with diethyl ether, placed in a freezer for 48 h and, after isolation via vacuum filtration, the product was obtained as colorless crystals (59%; m.p. 335–337 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal under investigation was twinned by inversion, with a refined Flack parameter of 0.443 (19) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). For this structure, hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined to ride on their parent atoms: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methyl­ene groups and aromatic hydrogen atoms, and Uiso(H) = 1.5Ueq(C) for methyl groups. Hydrogen atoms bonded to nitro­gen atoms were located using electron density difference maps, and were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C10H15NO2S
Mr 213.29
Crystal system, space group Monoclinic, Cc
Temperature (K) 173
a, b, c (Å) 15.9353 (9), 10.3526 (6), 14.8486 (9)
β (°) 115.1347 (6)
V3) 2217.7 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.45 × 0.40 × 0.39
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.684, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18931, 4554, 4422
Rint 0.028
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.02
No. of reflections 4554
No. of parameters 265
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.20
Absolute structure Flack x determined using 2140 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.443 (19)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

4-Methyl-N-propylbenzenesulfonamide top
Crystal data top
C10H15NO2SF(000) = 912
Mr = 213.29Dx = 1.278 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 15.9353 (9) ÅCell parameters from 9996 reflections
b = 10.3526 (6) Åθ = 2.4–26.4°
c = 14.8486 (9) ŵ = 0.27 mm1
β = 115.1347 (6)°T = 173 K
V = 2217.7 (2) Å3Block, colourless
Z = 80.45 × 0.40 × 0.39 mm
Data collection top
Bruker APEXII CCD
diffractometer
4422 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 26.4°, θmin = 2.4°
Tmin = 0.684, Tmax = 0.745h = 1919
18931 measured reflectionsk = 1212
4554 independent reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.9882P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.27 e Å3
4554 reflectionsΔρmin = 0.20 e Å3
265 parametersAbsolute structure: Flack x determined using 2140 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.443 (19)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.40337 (4)0.32398 (6)0.21849 (4)0.02809 (16)
S10.61545 (4)0.30322 (7)0.77858 (4)0.03083 (17)
O2A0.33689 (14)0.2460 (2)0.14206 (15)0.0368 (5)
C1A0.48935 (19)0.2218 (3)0.3034 (2)0.0266 (5)
C50.3803 (2)0.1709 (3)0.5601 (3)0.0388 (7)
H50.31890.20150.52310.047*
C3A0.6417 (2)0.1911 (3)0.4327 (2)0.0325 (6)
H3A0.70090.22490.47490.039*
C10.5341 (2)0.2024 (3)0.6871 (2)0.0300 (6)
C60.4440 (2)0.2486 (3)0.6334 (2)0.0366 (7)
H60.42670.33160.64700.044*
C40.4047 (2)0.0488 (3)0.5397 (2)0.0347 (6)
C2A0.5763 (2)0.2713 (3)0.3643 (2)0.0324 (6)
H2A0.59050.35930.35900.039*
N10.62264 (18)0.4342 (2)0.72284 (18)0.0328 (5)
O20.58027 (16)0.3406 (2)0.84936 (15)0.0400 (5)
C4A0.6225 (2)0.0614 (3)0.4409 (2)0.0319 (6)
O1A0.45006 (14)0.4257 (2)0.19202 (16)0.0362 (5)
C20.5590 (2)0.0820 (3)0.6681 (2)0.0370 (7)
H20.62040.05140.70500.044*
C30.4942 (2)0.0052 (3)0.5949 (2)0.0418 (7)
H30.51150.07840.58250.050*
N1A0.34797 (17)0.3914 (2)0.27586 (19)0.0332 (5)
C5A0.5348 (2)0.0145 (3)0.3788 (2)0.0350 (6)
H5A0.52040.07360.38370.042*
C80.6443 (2)0.4213 (3)0.6357 (2)0.0399 (7)
H8A0.58850.39160.57740.048*
H8B0.69360.35580.64990.048*
C9A0.3349 (2)0.5714 (3)0.3760 (2)0.0421 (7)
H9AA0.27760.52920.37200.051*
H9AB0.36590.61190.44250.051*
C6A0.4685 (2)0.0937 (3)0.3105 (2)0.0338 (6)
H6A0.40900.06040.26880.041*
O10.70368 (15)0.2382 (2)0.81488 (17)0.0411 (5)
C70.3343 (3)0.0346 (3)0.4595 (3)0.0480 (8)
H7A0.33720.01770.39600.072*
H7B0.27200.01440.45350.072*
H7C0.34800.12590.47720.072*
C7A0.6943 (2)0.0253 (3)0.5154 (2)0.0420 (7)
H7AA0.75580.01330.53590.063*
H7AB0.69280.10990.48510.063*
H7AC0.68100.03580.57370.063*
C8A0.3984 (2)0.4693 (3)0.3654 (2)0.0377 (6)
H8AA0.45230.51140.36080.045*
H8AB0.42190.41270.42480.045*
C100.6052 (3)0.6546 (4)0.5879 (3)0.0575 (10)
H10D0.54660.62600.53430.086*
H10E0.62730.73190.56660.086*
H10F0.59530.67470.64720.086*
C90.6761 (3)0.5489 (4)0.6120 (3)0.0535 (9)
H9A0.73340.57600.66960.064*
H9B0.69160.53700.55460.064*
C10A0.3090 (3)0.6751 (4)0.2977 (3)0.0613 (11)
H10A0.28200.63520.23160.092*
H10B0.36450.72400.30610.092*
H10C0.26360.73350.30440.092*
H1A0.307 (2)0.343 (3)0.277 (2)0.034 (9)*
H10.576 (2)0.481 (3)0.713 (2)0.030 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0225 (3)0.0303 (3)0.0288 (3)0.0027 (3)0.0082 (3)0.0011 (3)
S10.0278 (3)0.0362 (3)0.0270 (3)0.0067 (3)0.0102 (3)0.0013 (3)
O2A0.0286 (10)0.0384 (11)0.0336 (10)0.0029 (9)0.0039 (9)0.0020 (9)
C1A0.0250 (13)0.0287 (13)0.0257 (13)0.0013 (10)0.0104 (11)0.0008 (11)
C50.0275 (15)0.0389 (17)0.0436 (18)0.0017 (12)0.0088 (14)0.0004 (13)
C3A0.0274 (14)0.0338 (16)0.0327 (15)0.0037 (11)0.0094 (13)0.0031 (11)
C10.0281 (14)0.0353 (14)0.0289 (14)0.0030 (11)0.0143 (12)0.0011 (11)
C60.0304 (14)0.0304 (15)0.0451 (17)0.0054 (12)0.0124 (14)0.0022 (12)
C40.0403 (16)0.0338 (15)0.0327 (14)0.0044 (12)0.0180 (13)0.0004 (12)
C2A0.0275 (14)0.0305 (14)0.0362 (15)0.0043 (11)0.0106 (12)0.0009 (11)
N10.0309 (12)0.0334 (12)0.0349 (12)0.0048 (10)0.0147 (10)0.0028 (10)
O20.0442 (12)0.0468 (12)0.0318 (10)0.0060 (10)0.0188 (9)0.0014 (9)
C4A0.0348 (15)0.0362 (15)0.0263 (13)0.0020 (12)0.0143 (12)0.0023 (11)
O1A0.0305 (10)0.0367 (11)0.0405 (11)0.0013 (8)0.0141 (9)0.0073 (9)
C20.0347 (15)0.0360 (15)0.0392 (16)0.0100 (12)0.0147 (13)0.0005 (13)
C30.0485 (19)0.0360 (16)0.0412 (17)0.0063 (14)0.0193 (15)0.0034 (13)
N1A0.0244 (11)0.0343 (13)0.0404 (13)0.0051 (10)0.0133 (10)0.0042 (10)
C5A0.0417 (17)0.0272 (14)0.0353 (14)0.0046 (12)0.0156 (13)0.0016 (11)
C80.0415 (16)0.0430 (16)0.0420 (16)0.0048 (14)0.0243 (14)0.0015 (14)
C9A0.0377 (16)0.0497 (19)0.0421 (17)0.0032 (14)0.0199 (14)0.0107 (14)
C6A0.0323 (14)0.0337 (14)0.0323 (14)0.0075 (12)0.0105 (12)0.0024 (11)
O10.0334 (11)0.0448 (13)0.0379 (11)0.0111 (9)0.0083 (9)0.0001 (9)
C70.051 (2)0.0457 (18)0.0440 (18)0.0119 (15)0.0171 (16)0.0088 (15)
C7A0.0437 (18)0.0407 (17)0.0381 (16)0.0047 (13)0.0139 (14)0.0081 (13)
C8A0.0321 (15)0.0457 (16)0.0323 (14)0.0014 (13)0.0109 (12)0.0053 (13)
C100.079 (3)0.0418 (19)0.060 (2)0.0037 (19)0.038 (2)0.0091 (16)
C90.053 (2)0.058 (2)0.062 (2)0.0094 (17)0.0365 (19)0.0031 (18)
C10A0.082 (3)0.042 (2)0.051 (2)0.0113 (19)0.021 (2)0.0126 (16)
Geometric parameters (Å, º) top
S1A—O2A1.428 (2)N1A—C8A1.469 (4)
S1A—C1A1.766 (3)N1A—H1A0.82 (3)
S1A—O1A1.437 (2)C5A—H5A0.9500
S1A—N1A1.622 (3)C5A—C6A1.381 (4)
S1—C11.766 (3)C8—H8A0.9900
S1—N11.618 (3)C8—H8B0.9900
S1—O21.438 (2)C8—C91.509 (5)
S1—O11.441 (2)C9A—H9AA0.9900
C1A—C2A1.392 (4)C9A—H9AB0.9900
C1A—C6A1.382 (4)C9A—C8A1.518 (4)
C5—H50.9500C9A—C10A1.505 (6)
C5—C61.387 (5)C6A—H6A0.9500
C5—C41.393 (4)C7—H7A0.9800
C3A—H3A0.9500C7—H7B0.9800
C3A—C2A1.381 (4)C7—H7C0.9800
C3A—C4A1.394 (4)C7A—H7AA0.9800
C1—C61.397 (4)C7A—H7AB0.9800
C1—C21.374 (4)C7A—H7AC0.9800
C6—H60.9500C8A—H8AA0.9900
C4—C31.385 (5)C8A—H8AB0.9900
C4—C71.512 (4)C10—H10D0.9800
C2A—H2A0.9500C10—H10E0.9800
N1—C81.481 (4)C10—H10F0.9800
N1—H10.85 (3)C10—C91.503 (6)
C4A—C5A1.394 (4)C9—H9A0.9900
C4A—C7A1.505 (4)C9—H9B0.9900
C2—H20.9500C10A—H10A0.9800
C2—C31.389 (5)C10A—H10B0.9800
C3—H30.9500C10A—H10C0.9800
O2A—S1A—C1A108.49 (13)N1—C8—H8A109.5
O2A—S1A—O1A119.48 (13)N1—C8—H8B109.5
O2A—S1A—N1A105.96 (13)N1—C8—C9110.6 (3)
O1A—S1A—C1A107.43 (13)H8A—C8—H8B108.1
O1A—S1A—N1A106.77 (13)C9—C8—H8A109.5
N1A—S1A—C1A108.27 (13)C9—C8—H8B109.5
N1—S1—C1106.86 (13)H9AA—C9A—H9AB107.8
O2—S1—C1109.52 (13)C8A—C9A—H9AA109.0
O2—S1—N1106.43 (13)C8A—C9A—H9AB109.0
O2—S1—O1118.26 (13)C10A—C9A—H9AA109.0
O1—S1—C1107.03 (13)C10A—C9A—H9AB109.0
O1—S1—N1108.23 (14)C10A—C9A—C8A113.1 (3)
C2A—C1A—S1A120.0 (2)C1A—C6A—H6A120.3
C6A—C1A—S1A119.4 (2)C5A—C6A—C1A119.5 (3)
C6A—C1A—C2A120.6 (3)C5A—C6A—H6A120.3
C6—C5—H5119.4C4—C7—H7A109.5
C6—C5—C4121.2 (3)C4—C7—H7B109.5
C4—C5—H5119.4C4—C7—H7C109.5
C2A—C3A—H3A119.4H7A—C7—H7B109.5
C2A—C3A—C4A121.2 (3)H7A—C7—H7C109.5
C4A—C3A—H3A119.4H7B—C7—H7C109.5
C6—C1—S1118.5 (2)C4A—C7A—H7AA109.5
C2—C1—S1120.8 (2)C4A—C7A—H7AB109.5
C2—C1—C6120.7 (3)C4A—C7A—H7AC109.5
C5—C6—C1118.8 (3)H7AA—C7A—H7AB109.5
C5—C6—H6120.6H7AA—C7A—H7AC109.5
C1—C6—H6120.6H7AB—C7A—H7AC109.5
C5—C4—C7120.5 (3)N1A—C8A—C9A110.1 (2)
C3—C4—C5118.7 (3)N1A—C8A—H8AA109.6
C3—C4—C7120.8 (3)N1A—C8A—H8AB109.6
C1A—C2A—H2A120.4C9A—C8A—H8AA109.6
C3A—C2A—C1A119.2 (3)C9A—C8A—H8AB109.6
C3A—C2A—H2A120.4H8AA—C8A—H8AB108.2
S1—N1—H1108 (2)H10D—C10—H10E109.5
C8—N1—S1117.7 (2)H10D—C10—H10F109.5
C8—N1—H1115 (2)H10E—C10—H10F109.5
C3A—C4A—C5A118.3 (3)C9—C10—H10D109.5
C3A—C4A—C7A120.8 (3)C9—C10—H10E109.5
C5A—C4A—C7A120.9 (3)C9—C10—H10F109.5
C1—C2—H2120.1C8—C9—H9A108.9
C1—C2—C3119.7 (3)C8—C9—H9B108.9
C3—C2—H2120.1C10—C9—C8113.5 (3)
C4—C3—C2120.9 (3)C10—C9—H9A108.9
C4—C3—H3119.5C10—C9—H9B108.9
C2—C3—H3119.5H9A—C9—H9B107.7
S1A—N1A—H1A111 (2)C9A—C10A—H10A109.5
C8A—N1A—S1A120.07 (19)C9A—C10A—H10B109.5
C8A—N1A—H1A117 (2)C9A—C10A—H10C109.5
C4A—C5A—H5A119.4H10A—C10A—H10B109.5
C6A—C5A—C4A121.2 (3)H10A—C10A—H10C109.5
C6A—C5A—H5A119.4H10B—C10A—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3A···O2Ai0.952.533.399 (4)153
C6—H6···O1Aii0.952.593.474 (4)156
C8—H8B···O2Ai0.992.563.489 (4)156
C8A—H8AA···O2iii0.992.613.594 (4)170
N1A—H1A···O1iv0.82 (3)2.14 (3)2.925 (3)161 (3)
N1—H1···O1Aii0.85 (3)2.13 (4)2.968 (3)172 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y+1, z1/2; (iv) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. MRI CHE-1725699; grant No. MRI CHE-1919817); GVSU Chemistry Department's Weldon Fund.

References

First citationAkyıldız, F., Alyar, S., Bilkan, M. T. & Alyar, H. (2018). J. Mol. Struct. 1174, 160–170.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationConnor, E. E. (1998). Elsevier Science Inc. 5, 32–35.  Google Scholar
First citationDe Luca, L. & Giacomelli, G. (2008). J. Org. Chem. 73, 3967–3969.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcía-Ayllón, M., Small, D. H., Avila, J. & Sáez-Valero, J. (2011). Front. Mol. Neurosci. 4, 22.  PubMed Google Scholar
First citationGermain, G., Declercq, J.-P., Castresana, J. M., Elizalde, M. P. & Arrieta, J. M. (1983). Acta Cryst. C39, 230–232.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGul, H. I., Yamali, C., Sakagami, H., Angeli, A., Leitans, J., Kazaks, A., Tars, K., Ozgun, D. O. & Supuran, C. T. (2018). Bioorg. Chem. 77, 411–419.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhan, I. U., Sheikh, T. A., Ejaz & Harrison, W. T. A. (2011). Acta Cryst. E67, o2371.  Google Scholar
First citationKim, J. H., Lee, S., Lee, H. W., Sun, Y. N., Jang, W., Yang, S., Jang, H. & Kim, Y. H. (2016). Int. J. Biol. Macromol. 91, 1033–1039.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMakhaeva, G. F., Rudakova, E. V., Kovaleva, N. V., Lushchekina, S. V., Boltneva, N. P., Proshin, A. N., Shchegolkov, E. V., Burgart, Y. V. & Saloutin, V. I. (2019). Russ. Chem. Bull. 68, 967–984.  Web of Science CrossRef CAS Google Scholar
First citationMukherjee, P., Woroch, C. P., Cleary, L., Rusznak, M., Franzese, R. W., Reese, M. R., Tucker, J. W., Humphrey, J. M., Etuk, S. M., Kwan, S. C., am Ende, C. W. & Ball, N. D. (2018). Org. Lett. 20, 3943–3947.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMüller, P., Riegert, D. & Bernardinelli, G. (2004). Helv. Chim. Acta, 87, 227–239.  Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPicciotto, M. R., Higley, M. J. & Mineur, Y. S. (2012). Neuron, 76, 116–129.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPohanka, M. (2014). Int. J. Mol. Sci. 15, 9809–9825.  Web of Science CrossRef PubMed Google Scholar
First citationRehman, J., Ejaz , Khan, I. U. & Harrison, W. T. A. (2011). Acta Cryst. E67, o2709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 157–305.  CrossRef Google Scholar
First citationSupuran, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem. 9, 703–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSutor, D. J. (1958). Acta Cryst. 11, 453–458.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSutor, D. J. (1962). Nature, 195, 68–69.  CAS Google Scholar
First citationSutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110.  CrossRef Web of Science Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds