research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Selective synthesis and crystal structures of manganese(I) complexes with a bi- or tridentate terpyridine ligand

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and bDepartment of Natural Sciences and Informatics, Fukushima University, 1, Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: daio@sss.fukushima-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 June 2020; accepted 19 June 2020; online 26 June 2020)

The crystal structures of two manganese(I) complexes with a different coordination mode of the supporting ligand are reported: fac-bromido­tricarbon­yl(4′-phenyl-2,2′:6′,2′′-terpyridine-κ2N,N′)manganese(I), [MnBr(C21H15N3)(CO)3], I, and cis-bromido­dicarbon­yl(4′-phenyl-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)manganese(I), [MnBr(C21H15N3)(CO)2], II. In both complexes, the manganese(I) atom is coordinated by terminal carbonyl ligands, a bromide ion, and a 4′-phenyl-2,2′:6′,2′′-terpyridine ligand within a distorted octa­hedral environment. In I, the metal ion is facially coordinated by three carbonyl ligands and the terpyridine ligand binds in a bidentate fashion. The non-coordinating nitro­gen atom in the terpyridine ligand is positioned on the side opposite to the bromido ligand. In II, the metal ion is coordinated by two carbonyl ligands in a cis configuration and the terpyridine ligand binds in a tridentate fashion; notably, one carbonyl and the trans bromido ligand are mutually disordered over two positions. In I, the complex mol­ecules are linked by C—H⋯Br hydrogen bonds. In II, aromatic ππ contacts are present, as well as pairs of C—H⋯Br and C—H⋯O hydrogen bonds.

1. Chemical context

Carbonyl­manganese(I) complexes with polypyridyl ligands are of particular inter­est as novel active mol­ecules that are able to release CO in response to photoirradiation (Carrington et al., 2013[Carrington, S. J., Chakraborty, I. & Mascharak, P. K. (2013). Chem. Commun. 49, 11254-11256.]; Chakraborty et al., 2014[Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014). ChemMedChem, 9, 1266-1274.]; Jimenez et al., 2015[Jimenez, J., Chakraborty, I. & Mascharak, P. K. (2015). Eur. J. Inorg. Chem. pp. 5021-5026.]) or as electrocatalysts of CO2 reduction (Grills et al., 2018[Grills, D. C., Ertem, M. Z., McKinnon, M., Ngo, K. T. & Rochford, J. (2018). Coord. Chem. Rev. 374, 173-217.]; Stanbury et al., 2017[Stanbury, M., Compain, J.-D., Trejo, M., Smith, P., Gouré, E. & Chardon-Noblat, S. (2017). Electrochim. Acta, 240, 288-299.]). Among these compounds, studies have concentrated mainly on tricarbonyl complexes comprising bidentate polypyridyl supporting ligands; by contrast, only few reports exist on dicarbonyl complexes bearing tridentate ligands (Compain et al., 2015[Compain, J.-D., Stanbury, M., Trejo, M. & Chardon-Noblat, S. (2015). Eur. J. Inorg. Chem. pp. 5757-5766.]; Machan & Kubiak, 2016[Machan, C. W. & Kubiak, C. P. (2016). Dalton Trans. 45, 17179-17186.]). In fact, even though the typically tridentate ligands 2,2′:6′,2′′-terpyridine and derivatives thereof coordin­ate to an MnI ion, the majority of them bind the metal ion in a bidentate manner (Compain et al., 2014[Compain, J.-D., Bourrez, M., Haukka, M., Deronzier, A. & Chardon-Noblat, S. (2014). Chem. Commun. 50, 2539-2542.]; Moya et al., 2001[Moya, S. A., Pastene, R., Le Bozec, H., Baricelli, P. J., Pardey, A. J. & Gimeno, J. (2001). Inorg. Chim. Acta, 312, 7-14.]).

As indicated by the results of studies focusing on the comparison between carbonyl­manganese complexes containing bidentate and tridentate terpyridines (Compain et al., 2015[Compain, J.-D., Stanbury, M., Trejo, M. & Chardon-Noblat, S. (2015). Eur. J. Inorg. Chem. pp. 5757-5766.]; Machan & Kubiak, 2016[Machan, C. W. & Kubiak, C. P. (2016). Dalton Trans. 45, 17179-17186.]), investigating the relationship between reactivity and mol­ecular structure is a key research objective. However, comparing these two systems experimentally is difficult, particularly considering that available structural data on complexes comprising tridentate terpyridine ligands are quite scarce.

[Scheme 1]

Herein, we report the structural characterization of complex fac(CO)-[Mn(tpyPh-κ2N,N′)(CO)3Br] (I; tpyPh = 4′-phenyl-2,2′:6′,2′′-terpyridine) comprising a bidentate terpyridine-based ligand, which has been synthesized by Moya et al. (2001[Moya, S. A., Pastene, R., Le Bozec, H., Baricelli, P. J., Pardey, A. J. & Gimeno, J. (2001). Inorg. Chim. Acta, 312, 7-14.]), and the synthesis and characterization of the corresponding complex cis(CO)-[Mn(tpyPh-κ3N,N′,N′′)(CO)2Br] (II), whereby the same terpyridine-based ligand is tridentate.

2. Structural commentary

The mol­ecular structures of compounds I and II are displayed in Figs. 1[link] and 2[link], respectively. Although I was prepared by Moya et al. (2001[Moya, S. A., Pastene, R., Le Bozec, H., Baricelli, P. J., Pardey, A. J. & Gimeno, J. (2001). Inorg. Chim. Acta, 312, 7-14.]), its structure has not previously been determined. In I and II, the manganese(I) atoms exhibit distorted octa­hedral coordination environments, similar to those reported for other structurally related complexes (Compain et al., 2014[Compain, J.-D., Bourrez, M., Haukka, M., Deronzier, A. & Chardon-Noblat, S. (2014). Chem. Commun. 50, 2539-2542.], 2015[Compain, J.-D., Stanbury, M., Trejo, M. & Chardon-Noblat, S. (2015). Eur. J. Inorg. Chem. pp. 5757-5766.]). In I, the fac configuration of the three CO ligands around the central manganese(I) atom is in agreement with the IR data of the complex and similar to those previously reported for complexes of this type (Compain et al., 2014[Compain, J.-D., Bourrez, M., Haukka, M., Deronzier, A. & Chardon-Noblat, S. (2014). Chem. Commun. 50, 2539-2542.], 2015[Compain, J.-D., Stanbury, M., Trejo, M. & Chardon-Noblat, S. (2015). Eur. J. Inorg. Chem. pp. 5757-5766.]). As can be evinced from Fig. 1[link], the terpyridine ligand exhibits a bidentate coordination with respect to the central MnI atom, so that one of the outer pyridyl rings remains outside the coordination sphere. The corresponding non-coordinating N atom, N3, is positioned on the side opposite to the Br atom. As a result, the torsion angle between the coordinating and non-coordinating pyridyl rings in I (N2—C13—C14—N3) is much smaller [47.9 (3)°] than those reported for related MnI complexes with bidentate terpyridine derivatives (Compain et al., 2014[Compain, J.-D., Bourrez, M., Haukka, M., Deronzier, A. & Chardon-Noblat, S. (2014). Chem. Commun. 50, 2539-2542.], 2015[Compain, J.-D., Stanbury, M., Trejo, M. & Chardon-Noblat, S. (2015). Eur. J. Inorg. Chem. pp. 5757-5766.]). The non-coordinating N atom is positioned in proximity of the equatorial carbonyl ligand (C2≡O2), with a short value for the inter­atomic distance between C2 and N3 [2.900 (4) Å]. Since this distance is considerably shorter than the sum of the two atoms' van der Waals radii (3.25 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), evidence suggests that an inter­action exists between the free pyridine and the adjacent CO ligand. This inter­action may explain the observation that the Mn1—C2 distance [1.840 (3) Å] is longer than the other two corresponding distances in I [Mn1—C1 = 1.805 (3) and Mn1—C3 = 1.796 (3) Å].

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with atom labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound II, with atom labeling and displacement ellipsoids drawn at the 50% probability level. Only the major components (Br1/C2≡O2) of the disordered groups are shown.

The crystal structures of MnI dicarbonyl complexes with tridentate terpyridines have very rarely been reported (Compain et al., 2015[Compain, J.-D., Stanbury, M., Trejo, M. & Chardon-Noblat, S. (2015). Eur. J. Inorg. Chem. pp. 5757-5766.]), because of the instability in solution of compounds of this type. In II, the carbonyl ligands are in cis configuration, again in accordance with IR data. Differently from I, in II the MnI ion is coordinated by a tridentate terpyridyl ligand, as well as two CO ligands and a Br ion. Only the central Mn—N2 bond is slightly shortened (by ∼0.05 Å) as a result of geometric constraints. In contrast to I, where no disorder is observed, in II one of the CO ligands (C2≡O2) and the Br ligand are mutually disordered over two positions. The dihedral angle between the phenyl pendant and the central pyridyl ring in II is slightly larger than the corresponding angle in I. Specifically, the C10—C11—C19—C20 torsion angle has a value of −19.3 (5)° in II and −9.9 (4)° in I, but both values indicate an essential quasi-coplanarity. Notably, the extended conjugation made possible by the mentioned quasi-planarity may contribute to an increased stability of these compounds.

3. Supra­molecular features

In the crystal structure of I, complex mol­ecules display three kinds of C—H⋯Br hydrogen bonds (i.e., between the Br ligand and the C—H groups in the coordinating pyridyl ring, the free pyridyl ring, and the phenyl pendant), forming a three-dimensional supra­molecular structure (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H4⋯Br1i 0.95 2.83 3.754 (3) 165
C16—H8⋯Br1ii 0.95 2.88 3.612 (4) 135
C20—H11⋯Br1i 0.95 2.92 3.844 (2) 163
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The crystal packing of compound I with C—H⋯Br hydrogen bonds shown as dashed lines.

In the crystal structure of II, weak C—H⋯Br and C—H⋯O hydrogen bonding inter­actions (Table 2[link]) exist between the terpyridyl ligand and the disordered CO/Br ligands. Additional ππ inter­actions [Cg3⋯Cg2iv = 4.000 (2) and Cg1⋯ Cg1i = 4.128 (3) Å; Cg1, Cg2 and Cg3 are the centroids of the N1/C4–C8, N2/C9–C13 and N3/C14–C18 rings, respectively; symmetry codes: (i) 1 − x, −y, 2 − z; (iv) x, −y + [{1\over 2}], z − [{1\over 2}]] consolidate the crystal packing. These inter­actions lead to the formation of a three-dimensional network structure (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H2⋯Br1i 0.95 2.84 3.528 (4) 130
C7—H4⋯Br1ii 0.95 2.86 3.771 (4) 162
C12—H6⋯Br2iii 0.95 2.75 3.688 (7) 171
C12—H6⋯O2iii 0.95 2.55 3.491 (7) 173
C15—H7⋯Br2iii 0.95 2.81 3.759 (7) 175
C15—H7⋯O2iii 0.95 2.50 3.447 (7) 172
C16—H8⋯Br2iv 0.95 2.52 3.286 (7) 138
C16—H8⋯O2iv 0.95 2.57 3.363 (7) 141
C20—H11⋯Br1ii 0.95 2.81 3.743 (4) 168
C20—H11⋯O3ii 0.95 2.55 3.446 (18) 158
C24—H15⋯Br2iii 0.95 2.84 3.611 (7) 139
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
The crystal packing of compound II with C—H⋯Br and C—H⋯O hydrogen bonds (blue) and ππ contacts (green) shown as dashed lines; ring centroids are shown as red spheres.

4. Database survey

With respect to manganese(I) complexes with a tridentate terpyridine derivative ligand of the form cis(CO)-[Mn(tpyR)(CO)2Br], only a single structure, whereby R = p-tolyl, has been reported (Compain et al., 2015[Compain, J.-D., Stanbury, M., Trejo, M. & Chardon-Noblat, S. (2015). Eur. J. Inorg. Chem. pp. 5757-5766.]). In contrast, some structures of bidentate terpyridine derivative-coordinated manganese(I) complexes have been reported by Compain et al. (2014[Compain, J.-D., Bourrez, M., Haukka, M., Deronzier, A. & Chardon-Noblat, S. (2014). Chem. Commun. 50, 2539-2542.], 2015[Compain, J.-D., Stanbury, M., Trejo, M. & Chardon-Noblat, S. (2015). Eur. J. Inorg. Chem. pp. 5757-5766.]).

5. Synthesis and crystallization

All the manganese(I) complexes were handled and stored in the dark to minimize exposure to light. Compound I was synthesized as described by Moya et al. (2001[Moya, S. A., Pastene, R., Le Bozec, H., Baricelli, P. J., Pardey, A. J. & Gimeno, J. (2001). Inorg. Chim. Acta, 312, 7-14.]). The compound thus obtained proved to be analytically and spectroscopically pure (as determined by microanalysis, IR, UV–vis, and 1H NMR data). Crystals suitable for use in X-ray diffraction experiments were grown by vapor diffusion of diethyl ether into an acetone solution of I.

For the synthesis of compound II, bromido­penta­carbonyl­manganese(I) (30 mg, 0.11 mmol) and 4′-phenyl-2,2′:6′,2′′-terpyridine (31 mg, 0.10 mmol) were dissolved in an acetone–water mixture (20/30 ml). The solution thus obtained was refluxed for 24 h; the solvent was then evaporated under reduced pressure, and the resulting solid was placed in diethyl ether (50 ml); the resulting mixture was stirred for 30 min to remove the starting materials and subsequently filtered; the isolated residue was washed with diethyl ether to obtain a yield for the desired complex of 43 mg (86%). Single crystals suitable for X-ray diffraction experiments were grown by slow vapor diffusion of n-hexane into an acetone solution of II. FTIR νCO (KBr pellet): 1916 (s), 1838 (s) cm−1.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were placed at calculated positions (C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). In compound II, the CO group and the Br atom trans to it were refined as being disordered over two sets of sites, (Br1/C2≡O2) and (Br2/C3≡O3), respectively, with an occupancy ratio of 0.807 (2): 0.193 (2).

Table 3
Experimental details

  I II
Crystal data
Chemical formula [MnBr(C21H15N3)(CO)3] [MnBr(C21H15N3)(CO)2]
Mr 528.24 500.23
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 93 93
a, b, c (Å) 11.6630 (3), 11.6691 (3), 15.8892 (4) 10.497 (3), 14.123 (5), 13.504 (4)
β (°) 103.0774 (7) 96.767 (3)
V3) 2106.39 (10) 1988.0 (11)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.56 2.71
Crystal size (mm) 0.15 × 0.08 × 0.03 0.20 × 0.08 × 0.05
 
Data collection
Diffractometer Rigaku Saturn70 Rigaku Saturn70
Absorption correction Multi-scan (REQAB, Rigaku, 1998[Rigaku (1998). REQAB and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB, Rigaku, 1998[Rigaku (1998). REQAB and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.774, 0.926 0.795, 0.873
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 21455, 4813, 4253 19872, 4518, 4016
Rint 0.030 0.028
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.06 0.046, 0.096, 1.27
No. of reflections 4813 4518
No. of parameters 289 289
No. of restraints 0 3
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −0.32 0.83, −0.80
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). REQAB and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998) for (I); CrystalClear (Rigaku, 2008) for (II). Cell refinement: PROCESS-AUTO (Rigaku, 1998) for (I); CrystalClear (Rigaku, 2008) for (II). Data reduction: PROCESS-AUTO (Rigaku, 1998) for (I); CrystalClear (Rigaku, 2008) for (II). For both structures, program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2019), PLATON (Spek, 2020), publCIF (Westrip, 2010).

fac-Bromidotricarbonyl(4'-phenyl-2,2':6',2''-terpyridine-κ2N,N')manganese(I) (I) top
Crystal data top
[MnBr(C21H15N3)(CO)3]F(000) = 1056.00
Mr = 528.24Dx = 1.666 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 11.6630 (3) ÅCell parameters from 18973 reflections
b = 11.6691 (3) Åθ = 3.0–27.5°
c = 15.8892 (4) ŵ = 2.56 mm1
β = 103.0774 (7)°T = 93 K
V = 2106.39 (10) Å3Platelet, orange
Z = 40.15 × 0.08 × 0.03 mm
Data collection top
Rigaku Saturn70
diffractometer
4253 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.143 pixels mm-1Rint = 0.030
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB, Rigaku, 1998)
h = 1515
Tmin = 0.774, Tmax = 0.926k = 1515
21455 measured reflectionsl = 2019
4813 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0416P)2 + 2.6282P]
where P = (Fo2 + 2Fc2)/3
4813 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.32 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61476 (2)0.17999 (2)0.88742 (2)0.02812 (9)
Mn10.78248 (3)0.17015 (3)0.81054 (2)0.02513 (10)
O10.99149 (17)0.17222 (19)0.73649 (14)0.0400 (5)
O20.7925 (2)0.42515 (18)0.81993 (14)0.0444 (5)
O30.95375 (19)0.1798 (2)0.97692 (14)0.0457 (5)
N10.76212 (17)0.00325 (19)0.81015 (13)0.0252 (4)
N20.65411 (17)0.14582 (19)0.69692 (13)0.0238 (4)
N30.7794 (2)0.3305 (2)0.62983 (17)0.0359 (5)
C10.9075 (2)0.1690 (2)0.76117 (18)0.0320 (6)
C20.7848 (3)0.3278 (3)0.81319 (19)0.0354 (6)
C30.8852 (2)0.1758 (2)0.91343 (18)0.0327 (6)
C40.8291 (2)0.0776 (2)0.86473 (17)0.0313 (6)
H10.8930460.0483840.9072980.038*
C50.8095 (2)0.1941 (3)0.86198 (19)0.0358 (6)
H20.8602750.2439580.9006580.043*
C60.7144 (2)0.2373 (3)0.80188 (19)0.0350 (6)
H30.6984530.3171690.7987230.042*
C70.6431 (2)0.1615 (2)0.74643 (18)0.0313 (6)
H40.5766140.1889520.7052360.038*
C80.6693 (2)0.0454 (2)0.75134 (15)0.0247 (5)
C90.6038 (2)0.0406 (2)0.69157 (15)0.0232 (5)
C100.4996 (2)0.0143 (2)0.63271 (15)0.0232 (5)
H50.4664830.0602200.6321120.028*
C110.44359 (19)0.0971 (2)0.57461 (15)0.0214 (5)
C120.5003 (2)0.2023 (2)0.57681 (16)0.0248 (5)
H60.4672880.2600280.5364090.030*
C130.6042 (2)0.2244 (2)0.63698 (16)0.0254 (5)
C140.6644 (2)0.3362 (2)0.63063 (17)0.0280 (5)
C150.6033 (2)0.4378 (2)0.62349 (19)0.0326 (6)
H70.5220620.4385380.6242270.039*
C160.6619 (3)0.5393 (3)0.6152 (2)0.0418 (7)
H80.6215450.6105300.6105370.050*
C170.7798 (3)0.5349 (3)0.6138 (2)0.0446 (7)
H90.8221440.6028720.6079790.054*
C180.8345 (3)0.4297 (3)0.6212 (2)0.0403 (7)
H100.9155430.4269190.6200710.048*
C190.3301 (2)0.0749 (2)0.51219 (15)0.0215 (5)
C200.2826 (2)0.0347 (2)0.49944 (17)0.0316 (6)
H110.3242200.0972760.5304010.038*
C210.1756 (3)0.0542 (3)0.44231 (19)0.0389 (7)
H120.1444750.1296400.4341420.047*
C220.1145 (2)0.0361 (3)0.39740 (19)0.0373 (6)
H130.0395390.0239660.3599830.045*
C230.1626 (3)0.1429 (3)0.4072 (2)0.0453 (8)
H140.1225160.2047090.3741840.054*
C240.2688 (3)0.1626 (2)0.4644 (2)0.0402 (7)
H150.3000730.2380420.4707900.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02474 (13)0.03228 (14)0.02610 (14)0.00130 (9)0.00315 (10)0.00370 (10)
Mn10.01744 (18)0.0327 (2)0.0221 (2)0.00087 (14)0.00207 (14)0.00159 (15)
O10.0209 (9)0.0603 (14)0.0372 (11)0.0046 (9)0.0033 (8)0.0054 (10)
O20.0517 (13)0.0352 (11)0.0424 (12)0.0087 (10)0.0023 (10)0.0043 (9)
O30.0325 (11)0.0571 (14)0.0377 (12)0.0050 (9)0.0125 (9)0.0002 (10)
N10.0163 (9)0.0359 (11)0.0211 (10)0.0032 (8)0.0007 (8)0.0008 (8)
N20.0168 (9)0.0321 (11)0.0209 (10)0.0015 (8)0.0005 (8)0.0036 (8)
N30.0263 (11)0.0384 (13)0.0427 (14)0.0042 (9)0.0072 (10)0.0009 (10)
C10.0241 (13)0.0399 (15)0.0271 (13)0.0049 (10)0.0045 (10)0.0031 (11)
C20.0300 (14)0.0417 (16)0.0323 (15)0.0015 (11)0.0028 (11)0.0017 (12)
C30.0303 (14)0.0343 (14)0.0312 (14)0.0039 (11)0.0019 (11)0.0009 (11)
C40.0212 (12)0.0407 (15)0.0271 (13)0.0043 (10)0.0049 (10)0.0010 (11)
C50.0266 (13)0.0432 (16)0.0323 (15)0.0071 (11)0.0041 (11)0.0091 (12)
C60.0300 (13)0.0368 (15)0.0345 (15)0.0005 (11)0.0005 (11)0.0060 (12)
C70.0252 (12)0.0385 (15)0.0266 (13)0.0036 (10)0.0017 (10)0.0053 (11)
C80.0178 (11)0.0354 (13)0.0198 (11)0.0014 (9)0.0019 (9)0.0013 (10)
C90.0178 (10)0.0328 (13)0.0186 (11)0.0010 (9)0.0031 (9)0.0008 (9)
C100.0187 (10)0.0280 (12)0.0212 (11)0.0022 (9)0.0009 (9)0.0020 (9)
C110.0165 (10)0.0282 (12)0.0184 (11)0.0000 (9)0.0016 (8)0.0003 (9)
C120.0185 (11)0.0276 (12)0.0263 (12)0.0017 (9)0.0007 (9)0.0011 (10)
C130.0196 (11)0.0287 (12)0.0267 (13)0.0008 (9)0.0027 (10)0.0034 (10)
C140.0246 (12)0.0308 (13)0.0276 (13)0.0025 (10)0.0038 (10)0.0005 (10)
C150.0259 (12)0.0313 (13)0.0412 (15)0.0036 (10)0.0089 (11)0.0030 (11)
C160.0374 (15)0.0309 (14)0.0568 (19)0.0007 (12)0.0103 (14)0.0005 (13)
C170.0380 (16)0.0354 (15)0.060 (2)0.0105 (13)0.0105 (14)0.0009 (14)
C180.0279 (14)0.0428 (16)0.0506 (18)0.0074 (12)0.0100 (13)0.0054 (14)
C190.0179 (10)0.0283 (12)0.0172 (11)0.0023 (9)0.0018 (9)0.0002 (9)
C200.0300 (13)0.0320 (13)0.0278 (13)0.0007 (10)0.0039 (11)0.0056 (11)
C210.0344 (15)0.0347 (15)0.0399 (16)0.0088 (12)0.0078 (12)0.0015 (12)
C220.0246 (13)0.0417 (16)0.0368 (15)0.0031 (11)0.0115 (11)0.0062 (12)
C230.0420 (17)0.0332 (15)0.0465 (18)0.0079 (13)0.0194 (14)0.0018 (13)
C240.0377 (16)0.0266 (13)0.0432 (17)0.0041 (11)0.0182 (13)0.0049 (12)
Geometric parameters (Å, º) top
Br1—Mn12.5325 (5)C10—H50.9500
Mn1—C31.796 (3)C11—C121.390 (3)
Mn1—C11.805 (3)C11—C191.486 (3)
Mn1—C21.840 (3)C12—C131.388 (3)
Mn1—N12.037 (2)C12—H60.9500
Mn1—N22.088 (2)C13—C141.496 (3)
O1—C11.135 (4)C14—C151.375 (4)
O2—C21.143 (3)C15—C161.388 (4)
O3—C31.138 (3)C15—H70.9500
N1—C41.345 (3)C16—C171.381 (4)
N1—C81.353 (3)C16—H80.9500
N2—C91.355 (3)C17—C181.376 (4)
N2—C131.355 (3)C17—H90.9500
N3—C181.346 (4)C18—H100.9500
N3—C141.347 (3)C19—C241.374 (3)
C4—C51.377 (4)C19—C201.391 (4)
C4—H10.9500C20—C211.386 (4)
C5—C61.384 (4)C20—H110.9500
C5—H20.9500C21—C221.377 (4)
C6—C71.385 (4)C21—H120.9500
C6—H30.9500C22—C231.361 (4)
C7—C81.387 (4)C22—H130.9500
C7—H40.9500C23—C241.379 (4)
C8—C91.471 (3)C23—H140.9500
C9—C101.390 (3)C24—H150.9500
C10—C111.393 (3)
C3—Mn1—C187.58 (13)C9—C10—H5120.0
C3—Mn1—C286.53 (13)C11—C10—H5120.0
C1—Mn1—C290.48 (13)C12—C11—C10116.6 (2)
C3—Mn1—N195.30 (10)C12—C11—C19121.2 (2)
C1—Mn1—N195.53 (11)C10—C11—C19122.3 (2)
C2—Mn1—N1173.78 (11)C13—C12—C11121.2 (2)
C3—Mn1—N2172.86 (11)C13—C12—H6119.4
C1—Mn1—N296.60 (10)C11—C12—H6119.4
C2—Mn1—N299.18 (11)N2—C13—C12121.9 (2)
N1—Mn1—N278.58 (8)N2—C13—C14120.3 (2)
C3—Mn1—Br189.33 (9)C12—C13—C14117.7 (2)
C1—Mn1—Br1176.28 (9)N3—C14—C15122.7 (2)
C2—Mn1—Br187.27 (9)N3—C14—C13116.2 (2)
N1—Mn1—Br186.80 (6)C15—C14—C13121.0 (2)
N2—Mn1—Br186.69 (6)C14—C15—C16119.1 (3)
C4—N1—C8117.9 (2)C14—C15—H7120.4
C4—N1—Mn1126.07 (17)C16—C15—H7120.4
C8—N1—Mn1115.98 (16)C17—C16—C15118.9 (3)
C9—N2—C13117.3 (2)C17—C16—H8120.6
C9—N2—Mn1113.14 (16)C15—C16—H8120.6
C13—N2—Mn1128.74 (17)C18—C17—C16118.4 (3)
C18—N3—C14117.3 (2)C18—C17—H9120.8
O1—C1—Mn1174.2 (2)C16—C17—H9120.8
O2—C2—Mn1175.2 (3)N3—C18—C17123.6 (3)
O3—C3—Mn1177.3 (3)N3—C18—H10118.2
N1—C4—C5123.3 (2)C17—C18—H10118.2
N1—C4—H1118.4C24—C19—C20117.6 (2)
C5—C4—H1118.4C24—C19—C11120.9 (2)
C4—C5—C6118.8 (3)C20—C19—C11121.5 (2)
C4—C5—H2120.6C21—C20—C19121.1 (2)
C6—C5—H2120.6C21—C20—H11119.5
C7—C6—C5118.6 (3)C19—C20—H11119.5
C7—C6—H3120.7C22—C21—C20119.8 (3)
C5—C6—H3120.7C22—C21—H12120.1
C6—C7—C8119.7 (2)C20—C21—H12120.1
C6—C7—H4120.2C23—C22—C21119.3 (2)
C8—C7—H4120.2C23—C22—H13120.3
N1—C8—C7121.7 (2)C21—C22—H13120.3
N1—C8—C9114.5 (2)C22—C23—C24120.9 (3)
C7—C8—C9123.7 (2)C22—C23—H14119.6
N2—C9—C10122.9 (2)C24—C23—H14119.6
N2—C9—C8115.1 (2)C19—C24—C23121.2 (3)
C10—C9—C8122.0 (2)C19—C24—H15119.4
C9—C10—C11120.0 (2)C23—C24—H15119.4
C8—N1—C4—C51.8 (4)Mn1—N2—C13—C1420.3 (3)
Mn1—N1—C4—C5178.9 (2)C11—C12—C13—N21.1 (4)
N1—C4—C5—C61.9 (5)C11—C12—C13—C14175.4 (2)
C4—C5—C6—C70.4 (4)C18—N3—C14—C150.3 (4)
C5—C6—C7—C81.0 (4)C18—N3—C14—C13177.8 (3)
C4—N1—C8—C70.3 (4)N2—C13—C14—N347.9 (3)
Mn1—N1—C8—C7177.7 (2)C12—C13—C14—N3128.7 (3)
C4—N1—C8—C9177.3 (2)N2—C13—C14—C15134.0 (3)
Mn1—N1—C8—C95.3 (3)C12—C13—C14—C1549.5 (4)
C6—C7—C8—N11.1 (4)N3—C14—C15—C160.1 (4)
C6—C7—C8—C9175.7 (2)C13—C14—C15—C16178.1 (3)
C13—N2—C9—C105.6 (3)C14—C15—C16—C170.4 (5)
Mn1—N2—C9—C10164.82 (19)C15—C16—C17—C180.3 (5)
C13—N2—C9—C8173.0 (2)C14—N3—C18—C170.5 (5)
Mn1—N2—C9—C816.7 (3)C16—C17—C18—N30.2 (5)
N1—C8—C9—N27.9 (3)C12—C11—C19—C2410.3 (4)
C7—C8—C9—N2169.1 (2)C10—C11—C19—C24170.7 (3)
N1—C8—C9—C10173.6 (2)C12—C11—C19—C20169.1 (2)
C7—C8—C9—C109.4 (4)C10—C11—C19—C209.9 (4)
N2—C9—C10—C111.4 (4)C24—C19—C20—C211.8 (4)
C8—C9—C10—C11177.0 (2)C11—C19—C20—C21178.7 (3)
C9—C10—C11—C122.9 (3)C19—C20—C21—C220.2 (5)
C9—C10—C11—C19178.0 (2)C20—C21—C22—C232.7 (5)
C10—C11—C12—C133.1 (4)C21—C22—C23—C243.1 (5)
C19—C11—C12—C13177.8 (2)C20—C19—C24—C231.4 (5)
C9—N2—C13—C125.3 (3)C11—C19—C24—C23179.1 (3)
Mn1—N2—C13—C12163.30 (18)C22—C23—C24—C191.0 (6)
C9—N2—C13—C14171.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H4···Br1i0.952.833.754 (3)165
C16—H8···Br1ii0.952.883.612 (4)135
C20—H11···Br1i0.952.923.844 (2)163
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
cis-Bromidodicarbonyl(4'-phenyl-2,2':6',2''-terpyridine-κ3N,N',N'')manganese(I) (II) top
Crystal data top
[MnBr(C21H15N3)(CO)2]F(000) = 1000.00
Mr = 500.23Dx = 1.671 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 10.497 (3) ÅCell parameters from 5160 reflections
b = 14.123 (5) Åθ = 3.0–27.5°
c = 13.504 (4) ŵ = 2.71 mm1
β = 96.767 (3)°T = 93 K
V = 1988.0 (11) Å3Block, red
Z = 40.20 × 0.08 × 0.05 mm
Data collection top
Rigaku Saturn70
diffractometer
4016 reflections with F2 > 2.0σ(F2)
Detector resolution: 28.626 pixels mm-1Rint = 0.028
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB, Rigaku, 1998)
h = 1313
Tmin = 0.795, Tmax = 0.873k = 1818
19872 measured reflectionsl = 1717
4518 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0039P)2 + 5.6867P]
where P = (Fo2 + 2Fc2)/3
4518 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.83 e Å3
3 restraintsΔρmin = 0.80 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.39194 (6)0.11344 (3)0.73710 (4)0.02535 (17)0.807 (2)
O20.0653 (5)0.0445 (4)0.8859 (4)0.0351 (15)0.807 (2)
C20.0332 (9)0.0641 (9)0.8536 (10)0.037 (3)0.807 (2)
Br20.0197 (5)0.0661 (4)0.8657 (4)0.0403 (14)0.193 (2)
O30.4377 (18)0.1006 (12)0.7111 (13)0.033 (4)*0.193 (2)
C30.339 (3)0.092 (3)0.746 (3)0.076 (12)*0.193 (2)
Mn10.18158 (5)0.08786 (4)0.80533 (4)0.02451 (14)
O10.1797 (3)0.10749 (19)0.7376 (2)0.0359 (6)
N10.2796 (3)0.0760 (2)0.9421 (2)0.0224 (6)
N20.2005 (3)0.22091 (19)0.8440 (2)0.0202 (6)
N30.0937 (3)0.1521 (2)0.6822 (2)0.0219 (6)
C10.1807 (4)0.0334 (3)0.7637 (3)0.0310 (8)
C40.3125 (3)0.0050 (3)0.9917 (3)0.0275 (8)
H10.2888260.0635470.9600430.033*
C50.3784 (4)0.0070 (3)1.0856 (3)0.0298 (8)
H20.4003660.0656981.1174410.036*
C60.4125 (4)0.0773 (3)1.1335 (3)0.0301 (8)
H30.4580980.0772811.1985490.036*
C70.3789 (3)0.1623 (3)1.0847 (3)0.0257 (7)
H40.4005830.2212211.1162330.031*
C80.3132 (3)0.1592 (2)0.9894 (3)0.0217 (7)
C90.2711 (3)0.2443 (2)0.9303 (3)0.0212 (7)
C100.3006 (3)0.3376 (2)0.9548 (3)0.0227 (7)
H50.3512610.3525471.0157540.027*
C110.2548 (3)0.4096 (2)0.8886 (3)0.0223 (7)
C120.1818 (3)0.3838 (2)0.7994 (3)0.0225 (7)
H60.1490230.4312270.7533840.027*
C130.1572 (3)0.2887 (2)0.7779 (3)0.0208 (7)
C140.0918 (3)0.2483 (2)0.6854 (3)0.0210 (7)
C150.0335 (3)0.3016 (3)0.6061 (3)0.0251 (7)
H70.0337950.3687740.6095820.030*
C160.0251 (3)0.2560 (3)0.5220 (3)0.0274 (8)
H80.0665530.2913660.4676030.033*
C170.0223 (3)0.1587 (3)0.5187 (3)0.0277 (8)
H90.0609620.1257430.4615310.033*
C180.0376 (3)0.1095 (3)0.5994 (3)0.0262 (7)
H100.0392100.0423070.5963140.031*
C190.2863 (3)0.5109 (2)0.9128 (3)0.0247 (7)
C200.3268 (4)0.5390 (3)1.0100 (3)0.0316 (8)
H110.3336880.4935981.0622540.038*
C210.3573 (4)0.6332 (3)1.0315 (3)0.0385 (10)
H120.3857550.6514221.0981180.046*
C220.3466 (4)0.7000 (3)0.9572 (4)0.0379 (10)
H130.3674540.7641570.9726510.045*
C230.3056 (4)0.6739 (3)0.8598 (3)0.0376 (10)
H140.2978270.7202400.8083860.045*
C240.2757 (4)0.5797 (3)0.8373 (3)0.0299 (8)
H150.2479790.5618190.7704380.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0222 (3)0.0293 (3)0.0246 (3)0.0054 (2)0.0032 (2)0.00736 (19)
O20.038 (3)0.028 (3)0.041 (3)0.0170 (18)0.012 (2)0.000 (2)
C20.055 (7)0.023 (3)0.031 (4)0.009 (5)0.006 (5)0.006 (3)
Br20.060 (4)0.0228 (17)0.035 (2)0.001 (3)0.005 (3)0.0077 (14)
Mn10.0276 (3)0.0170 (3)0.0275 (3)0.0001 (2)0.0027 (2)0.0030 (2)
O10.0504 (18)0.0244 (14)0.0342 (15)0.0084 (12)0.0102 (13)0.0043 (12)
N10.0202 (14)0.0197 (14)0.0276 (15)0.0010 (11)0.0042 (12)0.0048 (12)
N20.0176 (13)0.0179 (13)0.0250 (15)0.0001 (10)0.0017 (11)0.0029 (11)
N30.0191 (14)0.0215 (14)0.0249 (15)0.0006 (11)0.0016 (12)0.0015 (12)
C10.0266 (19)0.037 (2)0.029 (2)0.0021 (16)0.0024 (15)0.0106 (17)
C40.0248 (18)0.0231 (17)0.035 (2)0.0036 (14)0.0064 (15)0.0077 (15)
C50.0276 (19)0.0283 (19)0.034 (2)0.0070 (15)0.0064 (16)0.0115 (16)
C60.0286 (19)0.039 (2)0.0235 (18)0.0076 (16)0.0040 (15)0.0082 (16)
C70.0239 (17)0.0283 (18)0.0252 (18)0.0022 (14)0.0041 (14)0.0017 (14)
C80.0182 (16)0.0240 (17)0.0236 (17)0.0012 (13)0.0059 (13)0.0031 (14)
C90.0177 (16)0.0214 (16)0.0249 (17)0.0006 (13)0.0042 (13)0.0030 (13)
C100.0192 (16)0.0247 (17)0.0244 (18)0.0003 (13)0.0028 (13)0.0012 (14)
C110.0180 (16)0.0202 (16)0.0297 (18)0.0012 (12)0.0064 (14)0.0008 (14)
C120.0208 (16)0.0196 (16)0.0270 (18)0.0014 (13)0.0028 (13)0.0027 (14)
C130.0172 (15)0.0224 (17)0.0232 (17)0.0012 (12)0.0036 (13)0.0041 (13)
C140.0173 (15)0.0209 (16)0.0251 (17)0.0000 (12)0.0037 (13)0.0018 (13)
C150.0221 (17)0.0243 (17)0.0289 (19)0.0016 (14)0.0023 (14)0.0057 (14)
C160.0225 (17)0.0333 (19)0.0261 (19)0.0011 (15)0.0016 (14)0.0059 (15)
C170.0227 (18)0.036 (2)0.0241 (18)0.0009 (15)0.0013 (14)0.0016 (15)
C180.0224 (17)0.0247 (17)0.0311 (19)0.0016 (14)0.0020 (14)0.0005 (15)
C190.0181 (16)0.0208 (17)0.036 (2)0.0005 (13)0.0065 (14)0.0015 (14)
C200.0290 (19)0.0240 (18)0.042 (2)0.0000 (15)0.0027 (17)0.0041 (16)
C210.031 (2)0.031 (2)0.053 (3)0.0024 (16)0.0019 (19)0.0145 (19)
C220.030 (2)0.0206 (18)0.065 (3)0.0047 (15)0.014 (2)0.0097 (19)
C230.038 (2)0.0211 (18)0.057 (3)0.0022 (16)0.018 (2)0.0041 (18)
C240.0288 (19)0.0221 (17)0.040 (2)0.0013 (14)0.0081 (16)0.0006 (16)
Geometric parameters (Å, º) top
Br1—O30.65 (2)C9—C101.384 (5)
Br1—C30.66 (3)C10—C111.401 (5)
Br1—Mn12.5170 (11)C10—H50.9500
O2—Br20.654 (5)C11—C121.398 (5)
O2—C21.201 (11)C11—C191.496 (5)
C2—Br20.597 (8)C12—C131.392 (5)
C2—Mn11.790 (9)C12—H60.9500
O3—C31.194 (18)C13—C141.468 (5)
Mn1—C11.803 (4)C14—C151.390 (5)
Mn1—N21.954 (3)C15—C161.384 (5)
Mn1—N12.012 (3)C15—H70.9500
Mn1—N32.019 (3)C16—C171.376 (5)
O1—C11.103 (5)C16—H80.9500
N1—C41.350 (4)C17—C181.380 (5)
N1—C81.364 (4)C17—H90.9500
N2—C91.346 (4)C18—H100.9500
N2—C131.351 (4)C19—C201.390 (5)
N3—C181.343 (4)C19—C241.402 (5)
N3—C141.360 (4)C20—C211.390 (5)
C4—C51.371 (5)C20—H110.9500
C4—H10.9500C21—C221.371 (6)
C5—C61.381 (6)C21—H120.9500
C5—H20.9500C22—C231.385 (6)
C6—C71.395 (5)C22—H130.9500
C6—H30.9500C23—C241.393 (5)
C7—C81.387 (5)C23—H140.9500
C7—H40.9500C24—H150.9500
C8—C91.481 (5)
O3—Br1—C3131 (4)N2—C9—C8111.5 (3)
Br2—O2—C215.7 (10)C10—C9—C8126.8 (3)
Br2—C2—O217.2 (12)C9—C10—C11119.2 (3)
O2—C2—Mn1177.5 (10)C9—C10—H5120.4
C2—Br2—O2147 (2)C11—C10—H5120.4
Br1—O3—C324 (2)C12—C11—C10118.2 (3)
Br1—C3—O324.3 (19)C12—C11—C19121.5 (3)
C2—Mn1—C187.9 (4)C10—C11—C19120.3 (3)
C2—Mn1—N298.6 (4)C13—C12—C11120.0 (3)
C1—Mn1—N2173.57 (15)C13—C12—H6120.0
C2—Mn1—N191.3 (4)C11—C12—H6120.0
C1—Mn1—N1100.98 (14)N2—C13—C12120.4 (3)
N2—Mn1—N179.05 (12)N2—C13—C14112.0 (3)
C2—Mn1—N393.0 (4)C12—C13—C14127.5 (3)
C1—Mn1—N3100.66 (15)N3—C14—C15121.5 (3)
N2—Mn1—N379.05 (12)N3—C14—C13114.1 (3)
N1—Mn1—N3158.08 (12)C15—C14—C13124.4 (3)
C2—Mn1—Br1177.4 (4)C16—C15—C14119.6 (3)
C1—Mn1—Br189.68 (12)C16—C15—H7120.2
N2—Mn1—Br183.89 (8)C14—C15—H7120.2
N1—Mn1—Br188.42 (8)C17—C16—C15118.8 (3)
N3—Mn1—Br188.26 (8)C17—C16—H8120.6
C4—N1—C8117.4 (3)C15—C16—H8120.6
C4—N1—Mn1126.8 (3)C16—C17—C18119.1 (3)
C8—N1—Mn1115.8 (2)C16—C17—H9120.4
C9—N2—C13120.4 (3)C18—C17—H9120.4
C9—N2—Mn1119.7 (2)N3—C18—C17123.1 (3)
C13—N2—Mn1119.3 (2)N3—C18—H10118.4
C18—N3—C14117.9 (3)C17—C18—H10118.4
C18—N3—Mn1126.7 (2)C20—C19—C24118.5 (3)
C14—N3—Mn1115.5 (2)C20—C19—C11121.0 (3)
O1—C1—Mn1179.5 (4)C24—C19—C11120.5 (3)
N1—C4—C5123.2 (4)C21—C20—C19120.5 (4)
N1—C4—H1118.4C21—C20—H11119.8
C5—C4—H1118.4C19—C20—H11119.8
C4—C5—C6119.4 (3)C22—C21—C20120.6 (4)
C4—C5—H2120.3C22—C21—H12119.7
C6—C5—H2120.3C20—C21—H12119.7
C5—C6—C7118.9 (3)C21—C22—C23120.1 (4)
C5—C6—H3120.5C21—C22—H13120.0
C7—C6—H3120.5C23—C22—H13120.0
C8—C7—C6118.8 (3)C22—C23—C24119.8 (4)
C8—C7—H4120.6C22—C23—H14120.1
C6—C7—H4120.6C24—C23—H14120.1
N1—C8—C7122.3 (3)C23—C24—C19120.5 (4)
N1—C8—C9113.7 (3)C23—C24—H15119.8
C7—C8—C9124.0 (3)C19—C24—H15119.8
N2—C9—C10121.7 (3)
C8—N1—C4—C50.7 (5)C11—C12—C13—N21.8 (5)
Mn1—N1—C4—C5179.2 (3)C11—C12—C13—C14174.8 (3)
N1—C4—C5—C60.7 (6)C18—N3—C14—C150.3 (5)
C4—C5—C6—C70.0 (5)Mn1—N3—C14—C15179.4 (3)
C5—C6—C7—C80.5 (5)C18—N3—C14—C13179.0 (3)
C4—N1—C8—C70.1 (5)Mn1—N3—C14—C131.3 (4)
Mn1—N1—C8—C7178.8 (3)N2—C13—C14—N33.4 (4)
C4—N1—C8—C9178.9 (3)C12—C13—C14—N3173.5 (3)
Mn1—N1—C8—C90.2 (4)N2—C13—C14—C15177.4 (3)
C6—C7—C8—N10.5 (5)C12—C13—C14—C155.7 (6)
C6—C7—C8—C9179.4 (3)N3—C14—C15—C160.5 (5)
C13—N2—C9—C100.7 (5)C13—C14—C15—C16179.7 (3)
Mn1—N2—C9—C10171.8 (2)C14—C15—C16—C171.0 (5)
C13—N2—C9—C8177.5 (3)C15—C16—C17—C180.7 (5)
Mn1—N2—C9—C86.4 (4)C14—N3—C18—C170.6 (5)
N1—C8—C9—N24.1 (4)Mn1—N3—C18—C17179.1 (3)
C7—C8—C9—N2174.9 (3)C16—C17—C18—N30.1 (6)
N1—C8—C9—C10174.0 (3)C12—C11—C19—C20162.1 (3)
C7—C8—C9—C107.0 (5)C10—C11—C19—C2019.3 (5)
N2—C9—C10—C110.6 (5)C12—C11—C19—C2418.0 (5)
C8—C9—C10—C11178.5 (3)C10—C11—C19—C24160.6 (3)
C9—C10—C11—C120.7 (5)C24—C19—C20—C210.7 (6)
C9—C10—C11—C19179.4 (3)C11—C19—C20—C21179.2 (3)
C10—C11—C12—C130.5 (5)C19—C20—C21—C220.7 (6)
C19—C11—C12—C13178.2 (3)C20—C21—C22—C230.2 (6)
C9—N2—C13—C121.9 (5)C21—C22—C23—C240.3 (6)
Mn1—N2—C13—C12173.0 (2)C22—C23—C24—C190.3 (6)
C9—N2—C13—C14175.2 (3)C20—C19—C24—C230.2 (5)
Mn1—N2—C13—C144.1 (4)C11—C19—C24—C23179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H2···Br1i0.952.843.528 (4)130
C7—H4···Br1ii0.952.863.771 (4)162
C12—H6···Br2iii0.952.753.688 (7)171
C12—H6···O2iii0.952.553.491 (7)173
C15—H7···Br2iii0.952.813.759 (7)175
C15—H7···O2iii0.952.503.447 (7)172
C16—H8···Br2iv0.952.523.286 (7)138
C16—H8···O2iv0.952.573.363 (7)141
C20—H11···Br1ii0.952.813.743 (4)168
C20—H11···O3ii0.952.553.446 (18)158
C24—H15···Br2iii0.952.843.611 (7)139
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+3/2; (iv) x, y+1/2, z1/2.
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP17K05799).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCarrington, S. J., Chakraborty, I. & Mascharak, P. K. (2013). Chem. Commun. 49, 11254–11256.  CSD CrossRef CAS Google Scholar
First citationChakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014). ChemMedChem, 9, 1266–1274.  CSD CrossRef CAS PubMed Google Scholar
First citationCompain, J.-D., Bourrez, M., Haukka, M., Deronzier, A. & Chardon-Noblat, S. (2014). Chem. Commun. 50, 2539–2542.  CSD CrossRef CAS Google Scholar
First citationCompain, J.-D., Stanbury, M., Trejo, M. & Chardon-Noblat, S. (2015). Eur. J. Inorg. Chem. pp. 5757–5766.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrills, D. C., Ertem, M. Z., McKinnon, M., Ngo, K. T. & Rochford, J. (2018). Coord. Chem. Rev. 374, 173–217.  CrossRef CAS Google Scholar
First citationJimenez, J., Chakraborty, I. & Mascharak, P. K. (2015). Eur. J. Inorg. Chem. pp. 5021–5026.  Web of Science CSD CrossRef Google Scholar
First citationMachan, C. W. & Kubiak, C. P. (2016). Dalton Trans. 45, 17179–17186.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoya, S. A., Pastene, R., Le Bozec, H., Baricelli, P. J., Pardey, A. J. & Gimeno, J. (2001). Inorg. Chim. Acta, 312, 7–14.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStanbury, M., Compain, J.-D., Trejo, M., Smith, P., Gouré, E. & Chardon-Noblat, S. (2017). Electrochim. Acta, 240, 288–299.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds